Aquaculture
Contents

Preface to the Second Edition xiii
Preface to the First Edition xiv
List of Contributors xv

1 Introduction
John S. Lucas
1.1 What is aquaculture? 1
1.2 Origins of aquaculture and agriculture 2
1.3 Aquaculture and capture fisheries production 4
1.4 The ‘Blue Revolution’ 6
1.5 An allegory 11
1.6 Diversity of aquaculture 12
1.7 Stock enhancement 12
1.8 New developments in aquaculture 14
1.9 Conclusions 16
References 17

2 General Principles
Peter Appleford, John S. Lucas and Paul C. Southgate
2.1 Introduction 18
2.2 Structures used for aquaculture 18
2.3 Intensity of aquaculture 26
2.4 Static, open, semi-closed and recirculating (closed) systems 32
2.5 Plumbing and pumps 37
2.6 Site selection and development 42
2.7 Hatchery systems 44
2.8 Selecting a new species for culture 46
2.9 Developing a new cultured species 48
References 50

3 Water Quality
Claude Boyd
3.1 Introduction 52
3.2 Water quality variables 52
3.3 Effects of water quality on culture species 62
3.4 Water quality management 68
3.5 Effluents 80
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Aspects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martin Kumar and Simon Cripps</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>Public image</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Impacts from land-based aquaculture</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Impacts of aquaculture within large water bodies</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>General impacts on the environment</td>
<td>93</td>
</tr>
<tr>
<td>4.5</td>
<td>Impact assessment</td>
<td>99</td>
</tr>
<tr>
<td>4.6</td>
<td>Integrated wastewater treatment and aquaculture</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>Integrated resource management</td>
<td>103</td>
</tr>
<tr>
<td>4.8</td>
<td>Conclusions</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>Desert Aquaculture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland: Sagiv Kolkovski, Yitzhak Simon and Gideon Hulata</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Coastal: Sagiv Kolkovski and Nasser Ayaril</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>The Israeli experience</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Regional variation in Israel</td>
<td>108</td>
</tr>
<tr>
<td>5.4</td>
<td>Aquaculture in geothermal water</td>
<td>108</td>
</tr>
<tr>
<td>5.5</td>
<td>Water-limited aquaculture</td>
<td>112</td>
</tr>
<tr>
<td>5.6</td>
<td>Indoor aquaculture facilities</td>
<td>116</td>
</tr>
<tr>
<td>5.7</td>
<td>Desert coastal aquaculture technology – the Saudi Arabian experience</td>
<td>116</td>
</tr>
<tr>
<td>5.8</td>
<td>Brine shrimp (Artemia sp.) production in Western Australia</td>
<td>120</td>
</tr>
<tr>
<td>5.9</td>
<td>Species for water-limited aquaculture</td>
<td>121</td>
</tr>
<tr>
<td>5.10</td>
<td>Conclusions and future directions</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>124</td>
</tr>
<tr>
<td>6</td>
<td>Reproduction, Life Cycles and Growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John S. Lucas and Paul C. Southgate</td>
<td>126</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>126</td>
</tr>
<tr>
<td>6.2</td>
<td>Reproductive physiology</td>
<td>126</td>
</tr>
<tr>
<td>6.3</td>
<td>Life cycles</td>
<td>129</td>
</tr>
<tr>
<td>6.4</td>
<td>Growth</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>137</td>
</tr>
<tr>
<td>7</td>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rex Dunham</td>
<td>138</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>138</td>
</tr>
<tr>
<td>7.2</td>
<td>Basic genetics</td>
<td>138</td>
</tr>
<tr>
<td>7.3</td>
<td>Domestication and strain evaluation</td>
<td>140</td>
</tr>
<tr>
<td>7.4</td>
<td>Selection</td>
<td>141</td>
</tr>
<tr>
<td>7.5</td>
<td>Inbreeding and maintenance of genetic quality</td>
<td>145</td>
</tr>
<tr>
<td>7.6</td>
<td>Crossbreeding and hybridization</td>
<td>145</td>
</tr>
<tr>
<td>7.7</td>
<td>Chromosomal techniques</td>
<td>149</td>
</tr>
<tr>
<td>7.8</td>
<td>Molecular and genomic techniques</td>
<td>155</td>
</tr>
<tr>
<td>7.9</td>
<td>Future developments</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>162</td>
</tr>
</tbody>
</table>
Contents

11.12 Specialised niche market products 238
11.13 Flavours and taints 238
11.14 Texture 239
11.15 Concepts: quality, freshness, shelf-life and quality index 239
11.16 Microbiology, specific spoilage organism (SSO) and other spoilage processes 241
11.17 Freezing and frozen storage 242
11.18 Packaging 246
11.19 Quality control, quality assurance, HACCP and risk assessment 248
11.20 Traceability, identification and origin 249
11.21 Canning 249
11.22 Smoking 250
11.23 Concluding remarks 250
References 251

12 Economics and Marketing 252
Clem Tisdell
12.1 Introduction 252
12.2 Profitability from a business viewpoint (farm models) 253
12.3 Markets and marketing 256
12.4 Economies of scale and similar factors 259
12.5 Allowing for and coping with business risk and uncertainty 261
12.6 Economic assessment from a social standpoint 264
References 266

13 Seaweed and Microalgae 268
Seaweed: Nicholas A. Paul and C. K. Tseng
Microalgae: Michael Borowitzka
13.1 General introduction 268
13.2 Seaweed 268
13.3 Microalgae 284
References 292

14 Carps 294
Sena De Silva
14.1 Introduction 294
14.2 Aspects of biology 295
14.3 Artificial propagation 296
14.4 Nutrient requirements 299
14.5 Culture 300
14.6 Diseases 307
14.7 Genetic improvement 307
14.8 Economic viability 307
14.9 Culture-based fisheries 308
14.10 Recent developments in carp culture 310
14.11 Conclusions 311
References 311

15 Salmonids 313
John Purser and Nigel Forteath
15.1 Introduction 313
15.2 Biology 315
Contents

15.3 Freshwater farming 317
15.4 Marine farming 327
15.5 Feeds 331
15.6 Grading and stocking densities 333
15.7 Maturation, sex reversal and triploidy 334
15.8 Fish health 335
15.9 Harvesting and products 336
References 336

16 Tilapias 338
Victor Suresh and Ram C. Bhujel
16.1 Introduction 338
16.2 Family, species and genetic variation 339
16.3 Ecology and distribution 343
16.4 Sex determination and reproduction 344
16.5 Control of reproduction 345
16.6 Seed production 348
16.7 Nutrition, feeds and feeding 350
16.8 Grow-out systems 354
16.9 Disease management 359
16.10 Harvest, processing and marketing 361
References 362

17 Channel Catfish 365
Craig Tucker
17.1 Introduction 365
17.2 Biology 365
17.3 Commercial culture 366
17.4 Culture facilities 367
17.5 Production practices 368
17.6 Water quality management 373
17.7 Nutrition, feeding and feed formulation 375
17.8 Infectious diseases 376
17.9 Harvesting and processing 380
17.10 The future of channel catfish farming 381
References 382

18 Marine Fish 384
John Tucker
18.1 Introduction 384
18.2 Early development 384
18.3 Environmental conditions for culture 387
18.4 Rearing systems 394
18.5 Fish for stocking 397
18.6 Nutrition of larvae 401
18.7 Larval culture types 406
18.8 Juvenile and adult nutrition 409
18.9 Health 413
18.10 Family accounts 417
References 443
Contents

19 Preventing Diseases in Fish by Vaccination
Andrew Barnes
19.1 Definition
19.2 History of fish vaccines
19.3 Fish immunology in a nutshell
19.4 Vaccinating fish
19.5 Types of vaccine
19.6 Routes of delivery
19.7 Adjuvants
19.8 Vaccination in practice
19.9 Research and development track for commercial fish vaccines
19.10 Conclusions
References
445

20 Soft-shelled Turtles
Qingjun Shao
20.1 Introduction
20.2 Biological characteristics
20.3 Commercial culture
20.4 Culture methods and facilities
20.5 Culturing the developmental stages
20.6 Water quality
20.7 Nutrition, feeding and feed formulation
20.8 Infectious diseases
20.9 Harvesting and processing
20.10 The future of soft-shelled turtle farming
References
460

21 Marine Shrimp
Darryl Jory and Tomás Cabrera
21.1 Introduction
21.2 Cultured species
21.3 Grow-out systems
21.4 Preparation of ponds
21.5 Reproduction and maturation
21.6 Hatchery design and larval culture
21.7 Seedstock quality and stocking
21.8 Production management and harvest
21.9 Nutrition, formulated diets and feed management
21.10 Emerging production technologies and issues
21.11 Responsible shrimp farming and the challenge of sustainability
References
476

22 Other Decapod Crustaceans
Chaoshu Zeng, Yongxu Cheng, John S. Lucas and Paul C. Southgate
22.1 Introduction
22.2 Cultured species
22.3 The Chinese mitten crab
22.4 Freshwater prawns
22.5 Freshwater crayfish
References
514
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.6 Mud crabs</td>
<td>533</td>
</tr>
<tr>
<td>22.7 Spiny lobsters</td>
<td>538</td>
</tr>
<tr>
<td>References</td>
<td>539</td>
</tr>
<tr>
<td>23 Bivalve Molluscs</td>
<td>541</td>
</tr>
<tr>
<td>John S. Lucas</td>
<td></td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>541</td>
</tr>
<tr>
<td>23.2 Aspects of biology</td>
<td>541</td>
</tr>
<tr>
<td>23.3 Cultured bivalves</td>
<td>545</td>
</tr>
<tr>
<td>23.4 Phases of bivalve aquaculture</td>
<td>547</td>
</tr>
<tr>
<td>23.5 Culture problems</td>
<td>554</td>
</tr>
<tr>
<td>23.6 Introductions and other environmental issues</td>
<td>558</td>
</tr>
<tr>
<td>23.7 Industry reviews</td>
<td>559</td>
</tr>
<tr>
<td>23.8 The future of bivalve aquaculture</td>
<td>564</td>
</tr>
<tr>
<td>References</td>
<td>565</td>
</tr>
<tr>
<td>24 Gastropod Molluscs</td>
<td>567</td>
</tr>
<tr>
<td>Laura Castell</td>
<td></td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>567</td>
</tr>
<tr>
<td>24.2 Abalone</td>
<td>569</td>
</tr>
<tr>
<td>24.3 Conchs</td>
<td>576</td>
</tr>
<tr>
<td>24.4 Trochus</td>
<td>577</td>
</tr>
<tr>
<td>24.5 Stock enhancement</td>
<td>579</td>
</tr>
<tr>
<td>24.6 Conclusion</td>
<td>580</td>
</tr>
<tr>
<td>References</td>
<td>581</td>
</tr>
<tr>
<td>25 Ornaments</td>
<td>583</td>
</tr>
<tr>
<td>Daniel Knop (marine) and Jonathan Moorhead (freshwater)</td>
<td></td>
</tr>
<tr>
<td>25.1 Introduction</td>
<td>583</td>
</tr>
<tr>
<td>25.2 The aquatic ornamental industry</td>
<td>583</td>
</tr>
<tr>
<td>25.3 Trade in ornamental fish</td>
<td>583</td>
</tr>
<tr>
<td>25.4 Comparing the freshwater and marine ornamental fish trades</td>
<td>585</td>
</tr>
<tr>
<td>25.5 Tropical marine ornaments</td>
<td>585</td>
</tr>
<tr>
<td>25.6 Aquaculture of coral reef fish</td>
<td>586</td>
</tr>
<tr>
<td>25.7 Aquaculture of marine invertebrates</td>
<td>588</td>
</tr>
<tr>
<td>25.8 Aquaculture of live rock</td>
<td>592</td>
</tr>
<tr>
<td>25.9 Culture versus field collection of marine ornaments</td>
<td>593</td>
</tr>
<tr>
<td>25.10 Tropical freshwater ornamentals</td>
<td>594</td>
</tr>
<tr>
<td>25.11 Commonly traded freshwater species</td>
<td>595</td>
</tr>
<tr>
<td>25.12 Aquaculture of freshwater ornamental species</td>
<td>597</td>
</tr>
<tr>
<td>25.13 Production and marketing goals</td>
<td>603</td>
</tr>
<tr>
<td>25.14 The future of the ornamental industry</td>
<td>603</td>
</tr>
<tr>
<td>References</td>
<td>603</td>
</tr>
<tr>
<td>26 The Next 20 Years</td>
<td>606</td>
</tr>
<tr>
<td>Rohana Subasinghe and Nathanael Hishamunda</td>
<td></td>
</tr>
<tr>
<td>26.1 Introduction</td>
<td>606</td>
</tr>
<tr>
<td>26.2 Recent trends in aquaculture development and major challenges</td>
<td>606</td>
</tr>
<tr>
<td>26.3 Aquaculture development slows down, but it continues to grow</td>
<td>609</td>
</tr>
<tr>
<td>26.4 Marine resources and aquafeeds</td>
<td>611</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>26.5 Environmental and social aspects</td>
<td>612</td>
</tr>
<tr>
<td>26.6 Diversification and expansion</td>
<td>613</td>
</tr>
<tr>
<td>26.7 Communication and networks</td>
<td>614</td>
</tr>
<tr>
<td>26.8 Aquaculture insurance</td>
<td>615</td>
</tr>
<tr>
<td>26.9 Unexplored opportunities</td>
<td>615</td>
</tr>
<tr>
<td>26.10 Conclusions</td>
<td>615</td>
</tr>
</tbody>
</table>

Index

617
Preface to the Second Edition

The rapid growth of aquaculture continues at a faster rate than predicted a decade ago. Total global production by 2007 had increased by two-thirds over the production reported in the first edition of this book. This has been possible because of new technical developments, rapid expansion of some new and existing industries, and diversification in the species utilised by aquaculture. These exciting developments provide the basis for this second edition, which includes a major revision of production statistics and chapter contents, seven new chapters and a more diverse international authorship and coverage. There are contributors from 12 countries, and aquaculture in many more countries is considered. With the increasing importance of China as the major source of aquaculture products, there is greater consideration of aquaculture in that country. There are three new Chinese authors contributing to this edition. Sadly, Professor C. K. Tseng, who contributed Macroalgae in the first edition, is now deceased. He is considered to be the ‘father of Chinese mariculture’ for his great achievements in marine science and outstanding leadership in that country over many years.

We express our sincere gratitude to the authors for their commitment in contributing chapters and, in some cases, for their understanding and patience. We also express our gratitude to our wives, Helen and Dawn, for their contributions and support. We trust that you will find this new edition both helpful and stimulating.

John S. Lucas
Paul C. Southgate
June 2011
This textbook seeks to convey to its readers the contributors’ enthusiasm for aquaculture and their accumulated knowledge. The contributors are recognised internationally in their fields. While it is not possible to comprehensively cover the ranges of aquaculture theory, practices and cultured organisms in one textbook, it is our earnest hope that this text will give readers a broad understanding of these topics.

The first part of the text introduces aquaculture with a series of ‘theory and practice’ topics, ranging from traditional topics such as ponds and pumps to contemporary environmental issues, nutrition physiology and genetic engineering. The second part of the text consists of chapters dealing with specific organisms, or groups of organisms, which illustrate the variety of culture methods used in aquaculture. It also provides examples of biological and other factors that make these organisms suitable for culture. The aquatic animals and plants treated in the text are but a small proportion of the hundreds of commercially cultured species; however, they constitute the most significant commercial components of world aquaculture production. They include the four major groups of cultured organisms – fish, crustaceans, bivalve molluscs and seaweeds; the three broad categories of aquatic environments – fresh, brackish and seawater; and the broad latitudinal zones – temperate, subtropical and tropical regions.

We express our sincere gratitude to the authors for their commitment in contributing chapters and, in some cases, for their understanding. Mr Michael New, President, European Aquaculture Society, Past-President, World Aquaculture Society, kindly assisted by reviewing Chapters 1 and 23. We also wish to express our gratitude to our wives, Helen and Dawn, for their substantial contributions.

John Lucas
Paul Southgate
April 2003
List of Contributors

Dr Peter Appleford
Department of Sustainability and Environment
Victoria
Australia

Dr Nasser Ayaril
Research and Development
National Prawn Company
Kingdom of Saudi Arabia

Associate Professor Andrew Barnes
Aquatic Animal Health
University of Queensland
Australia

Dr Ram C. Bhujel
Aquaculture and Aquatic Resources Management
Asian Institute of Technology
Thailand

Professor Michael Borowitzka
Biological Science and Biotechnology
Murdoch University
Australia

Professor Claude Boyd
Department of Fisheries and Allied Aquacultures
Auburn University
USA

Dr Allan Brenner
Allan Brenner and Associates
Coolum Beach
Australia

Dr Tomás Cabrera
Instituto de Investigaciones Científicas
Universidad de Oriente
Venezuela

Dr Laura Castell
School of Marine and Tropical Biology
James Cook University
Australia

Professor Yongxu Cheng
Key Laboratory of Aquatic Genetic Resources and
Ecology
Shanghai Ocean University
P. R. China

Dr Simon Cripps
Dorset Wildlife Trust
Dorchester
UK

Professor Sena De Silva
Network of Aquaculture Centres in Asia Pacific
Bangkok
Thailand

Professor Rex Dunham
Department of Fisheries and Allied Aquacultures
Auburn University
USA

Professor Nigel Forteath
School of Human Life Sciences
University of Tasmania
Australia

Dr David Francis
Australian Institute of Marine Science
Townsville
Australia
List of Contributors

Professor Gideon Hulata
Agricultural Research Organization
Institute of Animal Science
Israel

Dr Nathanael Hishamunda
Development and Planning Service
FAO Fisheries and Aquaculture
Italy

Dr Darryl Jory
Divisions of Marine Biology and Fisheries
University of Miami
USA

Mr Daniel Knop
Chief editor ‘KORALLE’
Sinsheim
Germany

Dr Sagiv Kolkovski
Marine Aquaculture
Western Australia Department of Fisheries
Australia

Dr Martin Kumar
SARDI Aquatic Sciences
South Australia
Australia

Mr Jonathan Moorhead
School of Marine and Tropical Biology
James Cook University
Australia

Professor Leigh Owens
School of Biomedical and Molecular Sciences
James Cook University
Australia

Dr Nicholas A. Paul
School of Marine and Tropical Biology
James Cook University
Australia

Associate Professor John Purser
National Centre for Marine Conservation and Resource Sustainability
University of Tasmania
Australia

Professor Qingjun Shao
College of Animal Sciences
Zhejiang University
China

Mr Yitzhak Simon
Ministry of Agriculture and Rural Development
Israel

Dr Rohana Subasinghe
FAO Fisheries and Aquaculture Department
Rome
Italy

Dr Victor Suresh
United Research (Singapore) Pty Ltd.
Singapore

Professor Clem Tisdell
School of Economics
University of Queensland
Australia

Professor C. K. Tseng
Chinese Academy of Science
P. R. China
(deceased)

Professor Craig Tucker
National Warmwater Aquaculture Center
Mississippi State University
USA

Dr John Tucker
Indian River Institute, Inc.
Florida
USA

Dr Giovanni Turchini
School of Life and Environmental Sciences
Deakin University
Australia

Dr Chaoshu Zeng
School of Marine and Tropical Biology
James Cook University
Australia