S-Plus for
The Analysis of Biological Data

Jones · Gilliver · Robson · Edwards
S-Plus for the
Analysis of Biological Data

Rhondda Jones
Robin Gilliver
Simon Robson
&
Will Edwards
Contents

Preface xv
 Why S-Plus? xv
How to use the manual xvii
To the instructor xvii
Acknowledgements xviii
Typesetting conventions used in the manual xix

1 Introduction to S-Plus 1
1.1 Starting S-Plus in Windows 2
 Choosing or setting a working directory 2
1.2 The S-Plus main program window 3
 Getting help 3
1.3 Import data to create a new S-Plus data set 4
1.4 Create a new empty data set to enter sample data manually 6
1.5 The Object Explorer 7
 Changing the properties of an object 8
 Examining the details of a Data object 8
1.6 Data types in S-Plus 9
1.7 Data transformation: creating and modifying data 10
 Steps to be taken in S-Plus 11
 • Checking and modifying data types 11
 • Calculating a time interval in days 11
 • Calculating a time interval in weeks 12
 • Calculating a proportional weight gain 12
 • Calculating weekly growth rates 13
 • Creating a logical variable 13
 Single-function transforms 15
 Other options provided by the Data menu 15
 Examining the data set with the Object Explorer 15
 Special values and reserved words 16
1.8 Data Objects in S-Plus 16
1.9 Introduction to the Commands Window
 Using the commands window as a calculator
 Using S-Plus standard functions
 Giving names to objects: assignment commands
 Creating vectors
 • Creating vectors with the `c()` function
 • Creating vectors with the `scan()` function
 • Naming elements of a vector with the `names()` function
 • Creating vectors with sequential or repeating data: `seq()` and `rep()`
 • Creating vectors from probability distributions: `rnorm()` and `runif()`
 Working with vectors
 Drawing plots by entering commands
 Using data frames on the command line
 Working with parts of a data frame
 Creating a data frame in the commands window

1.10 Using the Script Window
 Opening the script window
 Entering and running a script
 Writing functions

1.11 S-Plus language and functions

1.12 References and further reading
 Test Your Skills

2. Displaying data

2.1 Displaying frequency distributions
 Bar graphs for categorical data
 Frequency tables and histograms for numerical data

2.2 Quantiles of a frequency distribution
 Plotting a cumulative frequency distribution

2.3 Associations between categorical variables
 Creating a grouped bar plot
 Creating a stacked bar plot
 Creating a mosaic plot

2.4 Comparing numerical variables between groups
 Using box plots
 Using trellis graphics to compare histograms
 Comparing cumulative frequencies for different groups
Contents

2.5 Displaying relationships between a pair of numerical variables 50
 Scatter plots 50
 Line graphs 51
 Putting several graphs on the same graph sheet 51
 Varying symbols between groups on the same plot 52
 Plotting fitted lines to scatter plots 53
 Test your skills 56

3. Describing data 61
3.1 Arithmetic mean and standard deviation 61
 Data as individual values 61
 Data as a frequency table 62
3.2 Median and interquartile range 63
3.3 How measures of location and spread compare 64
 Descriptive statistics with the GUI 64
3.4 Proportions 67
 Calculating proportions using the GUI 67
 Calculating proportions using the commands window 68
 Test Your Skills 69

4. Estimating with uncertainty 71
4.1 The sampling distribution of an estimate 71
4.2 Measuring the uncertainty of an estimate 74
 The standard error of the mean 75
4.3 Standard errors and confidence intervals for the sample mean from the GUI 75
4.4 Plotting means and their confidence limits 76
 Test your skills 78

5. Probability distributions 79
5.1 Some terminology 79
5.2 Probability 79
5.3 What is a probability distribution? 80
5.4 Using S-Plus to calculate probabilities for a binomial distribution 81
 Calculating binomial probabilities using the GUI 81
 Calculating binomial probabilities using the commands window 81
5.5 What other information might you need from a probability distribution? 83
5.6 Another common discrete probability distribution: the Poisson 84
5.7 Continuous probability distributions in S-Plus: the normal distribution 85
5.8 Other key continuous probability distributions 88
 The Chi-square distribution 89
 The t-distribution 90
 The F-distribution 91

Test your skills 92

6. Hypothesis testing: matching hypotheses and analyses in S-Plus 93
 6.1 Making and using hypotheses 93
 Null hypothesis 93
 Alternative hypothesis 93
 When do we reject the alternative hypothesis? 94
 One-tailed and two-tailed tests 94
 6.2 Hypothesis testing in practice 95
 6.3 Hypotheses about frequencies and proportions 97
 Testing a single proportion or relative frequency 97
 Testing a set of proportions or relative frequencies from a single sample 97
 Testing for independence of two categorical variables, each with two levels (2 x 2 contingency tables) 97
 Testing for independence of two categorical variables with an unspecified number of levels in each (n1 x n2 contingency tables) 98
 Testing for independence of two n categorical variables 98
 Testing whether a proportion is related to (can be predicted from) a numeric variable 98
 6.4 Hypotheses about the shape of distributions 98
 Testing for normality 98
 Testing for Poisson, binomial, chi-square, uniform and a variety of other distributions 98
 6.5 Hypotheses about one, two or n means 99
 Testing a single mean 99
 Comparing two means 99
 Comparing n means 99
 6.6 Hypotheses about one, two or n medians 99
 Testing a single median 99
 Comparing two medians 100
 Comparing n medians 100
 6.7 Hypotheses about variances 100
 Comparing two variances 100
 Comparing n variances 100
6.8 Hypotheses about relationships between two numerical variables x and y 100
 Identifying relationships 101
 Testing the form of relationships 101
 Examining regression assumptions 101

6.9 Hypotheses involving multiple explanatory variables 102
Test your skills 103

7. Analysing proportions 105
7.1 The binomial distribution 105
 Calculating binomial probabilities using the commands window 106
 Properties of the sampling distribution for a proportion 107
7.2 Testing a proportion: the binomial test 108
7.3 Estimating proportions 109
 Estimating the standard error of a proportion 109
 Estimating confidence limits for a proportion 109
Test your skills 111

8. Fitting probability models to frequency data 113
8.1 Example of a random model: the proportional model 113
8.2 χ^2 goodness-of-fit test 114
8.3 Assumptions of the χ^2 goodness-of-fit test 115
8.4 Goodness-of-fit tests when there are only two categories 116
8.5 Fitting the binomial distribution 117
 Testing goodness of fit to a binomial using frequency data 117
 Testing goodness of fit to a binomial distribution with individual values 118
8.6 Random in space or time: the Poisson distribution 119
 Using the S-Plus GUI to test goodness-of-fit to a Poisson distribution 120
 Using the commands window to test goodness-of-fit to a Poisson distribution 124
Test your skills 126

9. Contingency analysis: associations between categorical variables 129
9.1 Associating two categorical variables 129
 Contingency tables, proportional plots, and a χ^2 contingency test on
categorical data for individuals 129
 Creating a mosaic or stacked bar plot 131
9.2 Estimating association in 2 x 2 tables: odds ratio 132
 Using S-Plus to calculate odds and the odds ratio 132
9.3 The \(\chi^2 \) contingency test for \(n \times n \) tables 133
 What if S-Plus warns that some expected values are too low? 135
9.4 Fisher's exact test 137
9.5 Log-linear models and G-tests 138
 Two categorical variables: using log-linear modelling to execute a G-test 138
 A more complex example 140
Test your skills 143

10. The normal distribution 145
10.1 Bell-shaped curves and the normal distribution 145
10.2 Exact probability estimates for normal distributions 146
10.3 Properties of the normal distribution 147
10.4 The standard normal distribution 148
 Using normal distributions to answer questions about populations 149
10.5 The normal distribution of sample means 150
10.6 The Central Limit theorem 151
10.7 The normal approximation for the binomial distribution 151
 Using the normal approximation for the binomial 152
 Using the binomial probabilities 152
Test Your Skills 154

11. Inference for a normal population 155
11.1 The \(t \)-distribution for sample means 155
 Using S-Plus to find values of \(t \) from probability values 157
 Using S-Plus to find probabilities from the values of \(t \) 158
11.2 The confidence interval for the mean of a normal distribution 159
 Calculating confidence limits from the original data in the commands window 160
11.3 The one-sample \(t \)-test 161
 The effects of larger sample size: body temperature revisited 163
11.4 Confidence intervals for the standard deviation and variance of a normal population 164
Test Your Skills 166

12. Comparing two means 169
12.1 Paired samples versus independent samples 169
12.2 Paired comparison of means 170
12.3 Two-sample comparison of means 172
 A two-sample t-test where variances can be assumed to be equal 172
 A two-sample t-test where variances cannot be assumed equal 174
12.4 Using the correct sampling units 175
12.5 Avoid indirect comparisons 176
12.6 Interpreting overlap of confidence intervals 177
12.7 Comparing variances 177
Test your skills 179

13. Handling violations of assumptions 181
13.1 Detecting deviations from normality 181
 Graphical methods 181
 Formal tests of normality 184
13.2 When to ignore violations of assumptions 184
13.3 Data transformations 184
13.4 Non-parametric alternatives to one-sample and paired t-tests 186
 The sign test 187
13.5 Non-parametric comparisons of two groups 188
 The Wilcoxon rank-sum test (Mann-Whitney U-test) 188
 The Kolmogorov-Smirnov test 190
Test your skills 192

14. Experimental design 193
14.1 Why (and why not) do experiments? 193
 Confounding variables and experimental artifacts 193
 When an observational study is required 194
14.2 How to reduce bias 195
14.3 How to reduce the impact of sampling error 197
14.4 Experiments with more than one factor 199
14.5 Choosing a sample size 201
 Designing for precision 202
 Designing for power 202
 • Power and sample size calculations for testing a single proportion 203
 • Power and sample size calculations for comparing two means 205
 • Other options 206
 Designing for data loss 206
Test your skills 207
15. Comparing means of more than two groups 209

15.1 The analysis of variance 210

- Executing a one-way ANOVA in S-Plus 211
- Interpreting and reporting the results: the formula 212
- Interpreting and reporting the results: sums of squares, degrees of freedom, and mean squares 213
- Interpreting and reporting the results: the ANOVA table 214
- Interpreting and reporting the results: the R² value 214
- Interpreting and reporting the results: summarising the data values 215
- What you should report 215
- How sums of squares are calculated 215

15.2 Assumptions and alternatives 217

15.3 Planned comparisons 218

- Planned comparisons between two means 219

15.4 Unplanned comparisons 220

- Testing all pairs of means 220

15.5 Fixed and random effects 222

15.6 ANOVA with randomly chosen groups 222

- Variance components and repeatability 224

Test your skills 225

16. Correlation between numerical variables 227

16.1 Estimating a linear correlation coefficient 227

- The correlation coefficient 228
- Standard error and confidence interval 229

16.2 Testing the null hypothesis of zero correlation 229

- Reporting the results of Pearson’s correlation 230

16.3 Assumptions 231

16.4 The correlation coefficient depends on the range 231

16.5 Spearman’s rank correlation 233

- Reporting the results of Spearman’s rank correlation 234
- Assumptions of Spearman’s rank correlation 235

16.6 The effects of measurement error on correlation 235

Test your skills 236
17. Regression 239

17.1 Linear regression 240
 The method of least squares 241
 Executing a regression analysis through the Statistics menu 243
 Interpreting and reporting the output: the function call 243
 Interpreting and reporting the output: the residuals summary 244
 Interpreting and reporting the output: coefficients and their standard errors 244

17.2 Confidence in predictions 244
 Interpreting and reporting the output: the prediction interval 245
 Interpreting and reporting the output: confidence bands 246
 Interpreting and reporting the output: the R² value 247
 Interpreting and reporting the output: testing hypotheses about the regression line 247

17.3 Doing the analysis in the commands window 248

17.4 What you should report 248

17.5 Assumptions of regression 249
 Outliers 249
 Detecting deviations from the assumptions: linearity 251
 Detecting variations from the assumptions: non-normality and unequal variance 253

17.6 Transformations 254

17.7 The effects of measurement error 255

17.8 Non-linear regression 255
 A curve with an asymptote 255
 Quadratic and polynomial curves 257
 Formula-free curve fitting 258
 Logistic regression: fitting a binary response variable 259

17.9 Multiple linear regression 263
 A warning 268
 A further warning 268

17.10 References 269
 Test your skills 270

18. Multiple explanatory variables 273

18.1 Defining a model in S-Plus 274

18.2 Analysing experiments with blocking: the randomised block design 275
 Analysing data from a randomised block design 275
Chapter 2: Functions for plotting data 328
 2.1 Displaying frequency distributions 328
 Bar graphs and dot plots for categorical data 328
 Frequency histogram 329
 2.2 Cumulative frequency distribution 330
 2.3 Associations between categorical variables 330
 Mosaic plot 330
 Grouped bar plots 330
 Stacked bar plot 330
 2.4 Comparing numerical variables between groups 331
 Trellis graphics 331
 Comparing frequency histograms 332
 Box plots 333
 2.5 Displaying relationships between a pair of numerical variables 333
 Scatter plots 333
 Line graphs 333
 Varying symbols between groups on the same plot 334
 Plotting fitted lines to scatter plots 334

Chapter 3: Functions for describing data 336
 3.1 Examining the whole data frame 336
 3.2 Descriptive statistics for individual vectors 337
 Measures of location 338
 * Measures of dispersion 338
 Measures of distribution shape 339
 To calculate descriptive statistics for subsets of an individual vector 340

Chapter 4: Estimating with uncertainty – functions for calculating standard errors and confidence limits 340
 4.1 Standard error of the mean 340
 4.2 Confidence limits of the mean for normally distributed data 341
 4.3 Confidence limits for the variance and standard deviation for normally distributed data 341
 4.4 Confidence limits for descriptive statistics which do not require the assumption of normality 341
Appendix 2: Scripts used in each chapter 344

Chapter 1:

plot.summarize()
Generates a set of descriptive plots and returns summary statistics for a numeric vector 344

growth.rate()
Calculates and returns growth rate per time unit given start and end sizes, and times 344

Chapter 4:

sample.means()
Calculates and returns the means of a set of random samples taken from a numerical vector x 345

summaries()
Calculates and returns in a form suitable for plotting, the means, standard deviations, sample sizes, and half-confidence intervals for a numerical vector subdivided according to the levels of one or two categorical variables 345

Chapter 7:

Cl.p.agresti()
Calculates and returns a proportion and its confidence limits using the Agresti-Coull approximation for confidence limits 346

Cl.p.exact()
Calculates proportion and its confidence interval with a specified tolerance 347

Chapter 8:

chisquare.gof()
Executes a chi-square goodness of fit for any specified set of observed counts, expected proportions, and degrees of freedom 348

Chapter 9:

contingency.expected()
Calculates expected values for a contingency table provided as an array or data frame 348

oddsratio()
Calculates an odds ratio and its confidence interval given the numbers of 'successes' and 'failures' in two samples 349

Chapter 10:

p.outside()
Calculates the area of a normal curve outside the interval upper - lower 349

Chapter 11:

Cl.mean()
Calculates the mean and confidence limits for a numerical vector 350

Cl.var()
Calculates sample variances & standard deviation, and a confidence interval for each, from a numeric vector 351
onesample.t()
Executes a one-sample t-test from previously-calculated descriptive
statistics: arguments are a hypothesized mean, a sample mean, a
sample standard deviation, and a sample size 352

Chapter 12:
twosample.t()
Executes a two-sample t-test (assuming homogeneous variances)
from previously-calculated descriptive statistics: arguments are the
mean, standard deviation, and sample size from two samples 352

levene.test()
Executes a Levene test for homogeneity of variances given a numerical
vector and a grouping variable of the same length 353

Chapter 13:
sign.test()
Executes a sign test to test whether the median of x could equal some
specified value 353

Chapter 16:
Cl.r()
Calculates confidence limits for a previously-calculated Pearson
correlation coefficient, given values for r and the sample size.
Uses the Fisher approximation 354

Index 355
Preface

This manual is designed to teach people to use the statistical software S-Plus and to support the process of learning statistical concepts and methods. It is most useful as a workbook to accompany Whitlock and Schluter's *The Analysis of Biological Data*, published by Roberts & Company, Colorado. Although we include enough statistical background to put the procedures being demonstrated in context, we assume that readers will be acquiring most of their understanding of statistical concepts elsewhere.

Several of the authors of this manual have been teaching introductory biostatistics to undergraduate and postgraduate students on two campuses in Australia for more than a decade (in fact one of us, who would prefer not to be identified, taught a biostatistics course for the first time more than three decades ago). In 2008 we discovered the textbook *The Analysis of Biological Data* (referred to in this manual as ABD). We liked everything about the book: its explanations were beautifully clear and aimed at students much like our own; it used a wide variety of real biological examples; it emphasized concepts and procedures important to biologists and explained how they worked; and it introduced some newer computer-intensive techniques that almost all beginning researchers find themselves needing sooner rather than later. We immediately adopted the book as a text for our own introductory biostatistics course. But this adoption acted as a trigger for making some other changes to our teaching—and in particular, to the way we introduced students to statistical software.

To statistical novices, no statistical software is ‘user-friendly’, and its use needs to be introduced in a structured way which runs in parallel with their acquisition of statistical understanding. At the same time, teaching effort needs to stay focused on statistics rather than software, so that students do not come to see learning to use the software as their primary goal. This manual is intended to allow users to learn to use the software on their own, while keeping a focus on the concepts and procedures which it supports.

We have followed the ABD approach and layout very closely—indeed, we started out with the intention of simply demonstrating in S-Plus every example used in the body of that text. In the end, because everyone has a slightly different view of what should be included in a first statistics course, we added a number of other examples, mostly using our own data, to demonstrate software capabilities that would not otherwise have been covered.

Also we did not include material associated with ABD Chapter 20 (*Likelihood*) or with Chapter 21 (*Meta-analysis*) which are largely conceptual. Most of the computational procedures in Chapter 20 are covered elsewhere in the manual.

Why S-Plus?

There are a lot of statistical software options, and most of them will execute all the procedures needed in an introductory course. In choosing a software package, we had four criteria beyond its ability to execute procedures taught in the course:

- It should have little or no cost to students, and should run on operating systems that students are likely to use on their own machines. Some of us (OK, one of us) remembered teaching statistics in the days when the only computing aid available to students was
a hand calculator; the rest of us at least remember being taught that way. While we did not wish to return to those days, they had one huge advantage—students could work on the material anywhere and any time, and not just in computer laboratories provided by the university. Many of our students are part-time, and some are in remote locations. While we can now reasonably expect that students will have access to a computer at home, we cannot reasonably expect them to buy expensive software for themselves. That meant that if we wanted students to work off-campus, we needed to choose software which was either free or very cheap, or which gave students access on their own machines as part of the university’s site licence.

- **It should be useful beyond the course.** We wanted students to use professional-quality software that they would not ‘grow out of’: providing access to all or most of the techniques they were likely to use throughout their careers; and able to import and export data in a wide range of formats (including text files, databases, spreadsheets, and other statistical software).

- **It should have a very strong graphics capability.** We wanted students to realise as quickly as possible that nothing substitutes for an intimate familiarity with the data they are analysing—and easily-usable graphics allow the data to be explored more quickly and thoroughly than anything else. We wanted the graphics capability to cover the whole range from quick-and-dirty exploratory plots to presentation and publication-quality graphs.

- **It should reinforce the statistical concepts we wanted students to grasp, and not get in the way of learning them.** We wanted to avoid both excessive or inappropriate output, and too much difficulty in using the software itself. Excessive output is often a problem with menu-driven software, which may be relatively easy to use, but often provides pages of output that users neither asked for nor know what to do with. Especially for novices, our preference was for software that gives users exactly what they request and offers warnings (or refuses to perform) when what they request is questionable. We believe that someone learning to use statistical procedures should also learn to think about what they are doing and work out exactly what it is they want, rather than making guesses about what button to click in the hope that something useful will happen. On the other hand, if software is too difficult to use, students will inevitably concentrate on learning the mechanics of how to use it rather than developing more fundamental understanding.

In the end we chose S-Plus as the best fit to our needs. That choice committed us to producing this manual: there are some excellent introductory books available for S-Plus, but none that we investigated is targeted at undergraduates who begin as complete statistical novices. S-Plus is very powerful and flexible, has superb editable graphics, and its site licence for universities gives enrolled students permission to use the software on their own computers. While it provides a professional-quality graphical user interface (GUI), it also has an easily-accessible command language. Mostly we use the S-Plus GUI, but we also provide a parallel introduction to the command line and to writing basic scripts.

Since we made this decision, a final issue has become more important. That is, the increasing importance of the open-source statistical software R in the biological research community. Learning the R language as a complete
statistical novice is a hard ask for students, who are often having quite enough difficulty with statistical concepts. But S-Plus shares its command language with R—and our experience has been that students make the transition to R quite easily by the end of an introductory course based on S-Plus.

How to use the manual

If you are a student using ABD as a text, and you have access to S-Plus, you can use S-Plus to work through each chapter of the manual independently. Every example is demonstrated in enough detail for you to carry it out on your own after reading the ABD chapter and/or covering the statistical concepts in class. You should execute every example yourself to make sure that you can carry out the procedures correctly and get to the right result. A set of exercises is provided at the end of each chapter for you to test your skills. You should make sure that you can do all those marked essential—you may require assistance from your instructor to successfully complete some of them, possibly the advanced exercises. All the data and scripts required for each chapter are available in the resource material provided with the manual.

The first chapter of the manual is a basic introduction to S-Plus, and is one of a few chapters whose content is not linked to ABD. The second chapter introduces you to S-Plus graphics. The remaining chapters can be covered in several different orders, but you need to work through these two first. Not all the material in later chapters will necessarily be included in an introductory course.

In most chapters, we show how to execute statistical procedures using both the GUI and the command line. A few procedures require the use of scripts (short programs written in the S language). Where this is the case, we provide the scripts in the resource material, with them being reproduced in Appendix 2—and we show you how to load and use them (but we also encourage you to learn to write your own). In many cases, there are more efficient or elegant ways to write scripts than we have used here—in general, we have tried to produce scripts whose logic can be easily understood by beginners, rather than trying for maximum computational efficiency. Appendix 1 provides a more extensive summary of the S language and S-Plus functions relevant to each chapter of the manual.

To the instructor

We believe that learning statistics is like learning to play the piano—there is no substitute for practice. Consequently, in our own teaching, we provide a lot of incentives for students to practice.

In the introductory course that we teach, we expect students to have worked through the appropriate chapter(s) in the manual and attempted the exercises before they arrive at the relevant practical class or tutorial—and the first 20 minutes of each 2-hour practical class includes a simple open-book practical test, marked in class, which requires them to analyse some new data using techniques covered in the chapter. (By the end of the course, most students score full marks on most of these tests.) We also run formal (but also open-book) practical exams twice during the course, where the emphasis is on demonstrating that students can make sensible decisions about what to do as well as demonstrating that they can do it. These are also graded immediately. Because students can take this manual—or anything else—into practical tests and exams, we are explicitly not testing how well they remember what buttons to click.
When we first changed to this very assessment-oriented approach to the acquisition of practical skills, one unexpected result was that the average grade on the theory exam at the end of the course (which was in the same format and covered the same material as previously) was significantly higher than that achieved by any previous class; it has remained at this level in subsequent years. Perhaps the development of practical skills really does improve theoretical understanding.

Acknowledgements
As noted above, the structure and content of this manual owes a huge debt to Whitlock and Schluter's text, which provides the best introduction we know of to statistical methods for biology students. We are also very grateful to the students in our 2009 biometrics class, and especially to the practical class tutors (Clwedd Burns, Gavin Coombes, Rie Hagihara, and Philip Newey) whose combined input and feedback improved the manual immensely. Finally, for all his help our thanks to Kris Angelovski of SolutionMetrics Pty Ltd, the Australian distributor of S-Plus.
Typesetting conventions used in the manual

To make it easier to use the manual, there are several conventions to note.

Navigating – The instructions about how to navigate around S-Plus are always given in a particular typeface. For example, the way to navigate from the drop-down menus looks like:

Statistics > Regression > Log-linear (Poisson)...

Similarly, this typeface is used to indicate the parts of a dialogue box you need to change.

Entering new information – Where you are required to enter a name or value in a dialogue box or change an existing name, such as perhaps the name of a column (vector) in a data set, the instruction might look like:

Right click at the top of the No.deaths column, select Properties, and enter **Number of cases (Frequency)** in the Description box.

This **typeface** represents a name or value that you can either enter or change, whereas the **navigation typeface** cannot be altered.

Coding – You learn in Chapter 1 the significance of single lines of code. When programming, pressing the Enter key always means something. Where we have reproduced lines of code that you will see on your computer screen, it has often been necessary to spread them over more than one line because the printed page is narrower than your screen. Where this has happened, the subsequent lines of that instruction have been indented. The following example shows two separate instructions (in a lighter shade) and the screen output, with the screen prompts [>] omitted.

```r
  titanic.array = table(titanicAdults$Gender,
                        titanicAdults$Outcome)
  titanic.array
  Died  Survived
  Female  109  316
  Male    1329 338
```

Quotation marks when used in code should be straight (" ") and not curly (" "), sometimes called “smart” quotes. In S-Plus code, curly quotes will generate an error message.

These conventions will become clear as you work through the chapters.