Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations

Prakash, Om, and Datta, Bithin (2013) Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations. Environmental Monitoring and Assessment, 185 (7). pp. 5611-5626.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1007/s10661-012-297...
 
19
5


Abstract

One of the difficulties in accurate characterization of unknown groundwater pollution sources is the uncertainty regarding the number and the location of such sources. Only when the number of source locations is estimated with some degree of certainty that the characterization of the sources in terms of location, magnitude, and activity duration can be meaningful. A fairly good knowledge of source locations can substantially decrease the degree of non-uniqueness in the set of possible aquifer responses to subjected geochemical stresses. A methodology is developed to use a sequence of dedicated monitoring network design and implementation and to screen and identify the possible source locations. The proposed methodology utilizes a combination of spatial interpolation of concentration measurements and simulated annealing as optimization algorithm for optimal design of the monitoring network. These monitoring networks are to be designed and implemented sequentially. The sequential design is based on iterative pollutant concentration measurement information from the sequentially designed monitoring networks. The optimal monitoring network design utilizes concentration gradient information from the monitoring network at previous iteration to define the objective function. The capability of the feedback information based iterative methodology is shown to be effective in estimating the source locations when no such information is initially available. This unknown pollution source locations identification methodology should be very useful as a screening model for subsequent accurate estimation of the unknown pollution sources in terms of location, magnitude, and activity duration.

Item ID: 25294
Item Type: Article (Research - C1)
ISSN: 1573-2959
Keywords: optimal monitoring network, groundwater pollution, geostatistical spatial interpolation, optimization, pollution source locations identification
Date Deposited: 06 Mar 2013 01:32
FoR Codes: 09 ENGINEERING > 0905 Civil Engineering > 090509 Water Resources Engineering @ 50%
09 ENGINEERING > 0907 Environmental Engineering > 090799 Environmental Engineering not elsewhere classified @ 50%
SEO Codes: 96 ENVIRONMENT > 9609 Land and Water Management > 960999 Land and Water Management of Environments not elsewhere classified @ 100%
Downloads: Total: 5
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page