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ABSTRACT

The use of information technology (IT) in scientific investigations is now commonplace, 
due largely to the increased efficiency of IT procedures in managing and organising data sets  
now able to be generated through technologically aided data recording methods. While such 
data sets can be advantageous to investigative work, the size and complexity of these pose 
special challenges to exploring and revealing their information content. 

Data mining procedures offer many general purpose tools that can be used to explore 
large volumes of data to find patterns and structures within the data sets that are able to relate 
response variables to observations. However data mining techniques need to be matched to 
the  attributes  of  the  input  data  sets.  In  general,  data  sets  with  larger  numbers  of  input  
variables  require  robust  and  sophisticated  techniques  to  reliably  identify  patterns  and 
processes within the data structures. Additionally, more sophisticated data mining techniques 
take more computational  time to execute  than simple  data  mining techniques.  However, 
some computational problems typical of data mining are amenable to being easily divided 
into discrete tasks able to be executed independently, in parallel across many computational  
resources.

The project reported in this thesis generated the components of an eResearch framework. 
A workflow language was developed to capture the critical aspects of a data mining process, 
allowing the parallel components to be exploited. Subsequent development of a distributed 
computing framework enabled leverage of existing data mining tools such as MATLAB and 
R  to  perform  actual  data  processing.  This  distributed  computing  framework  controls 
movement  of  data  and  execution  of  tasks  based  on  the  workflow  submitted  by  the 
practitioner initiating the workflow.

The  coordinating  element  within  the  distributed  computing  framework is  a  new task 
scheduling algorithm, termed “Neglected”. This algorithm is the major research contribution 
of this project. “Neglected”is a task matching algorithm that optimises total execution time 
of an experiment by minimising the unnecessary movement of data. This is achieved by 
matching resources to tasks, where a task's estimated completion time is within a margin of 
that task's best matching option.

The “Neglected” task scheduling algorithm was tested in simulation against a commonly 
used distributed computing scheduling algorithm, the “MinMin” greedy scheduler. The new 
algorithm  significantly  outperformed  “MinMin”  in  terms  of  data  transfer,  and  in  most 
scenarios  it  also  outperformed  in  terms  of  total  compute  time.  This  is  attributed  to  the 
reduced transfer overhead required to satisfy the tasks assigned to each resource.

The “Neglected” scheduling algorithm offers improved efficiency in the use of resources  
and improved time to solution for workflow execution. This, together with the data mining 
workflow and execution framework, extend and improve overall efficiency, robustness and 
repeatability in the analysis of new and existing data sets by computationally intensive data 
mining techniques.
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Chapter One

1. Introduction
Information Technology (IT) tools have become ubiquitous in modern day science, and 

are commonly applied as fundamental components of data acquisition and analysis across a 

broad spectrum of scientific fields. Not surprisingly, IT has also played a seminal role in 

extending horizons of many scientific endeavours – notably the life and chemical sciences – 

by providing tools and techniques for exploring data sets that were previously intractable.  

This has been due primarily to advanced IT techniques that a) enable massive computational 

power to be applied practically to managing, organising and exploring very large, complex 

data sets, and also b) vastly increases the capacity of data collection, through devices such as 

high  speed,  high  resolution,  robotic  analysis  instrumentation,  sensor  networks,  and  high 

resolution telemetry. 

Similarly large data sets  can also be produced through simulation,  and calculating or 

deriving  new  attributes  from  previously  collected  data.  For  example,  in  the  field  of 

cheminformatics  [1],  chemical  structures  are  analysed  using  computer  applications  that 

compute chemical, electrical and physical properties of a molecule. data sets generated by 

the above mechanisms typically result  in enormous numbers of records containing many 

attributes. This phenomenon is often referred to as the data deluge [2] and is also illustrated 

by the increasing availability of data sets via the internet, and superscience instruments like  

the  high energy physics  experiment  –  the  Large  Hadron Collider  (LHC)  – that  produce 

petabytes of data per year. 

While  the  characteristic  size  and  complexity  of  data  sets  has  in  part  re-defined  the 

potential scope of investigative work, it is evident that increased size and availability of data 

sets poses special challenges to exploring and revealing their information content.  Analysis 

of large data sets requires the use of specialised techniques, including data mining  [3], in 

order to expose the patterns and structures that  relate the response variable to the many  

1



candidate predictor variables. Data mining is particularly important when the system under  

investigation  is  not  thoroughly  understood,  and  new leads  are  required  to  focus  future 

research. However, data mining does not discern between valid and spurious correlations,  

and may be misled by large numbers of variables. Robust  techniques may be applied to  

begin to overcome these issues, but this requires a large amount of computing time, and still  

requires a domain expert to validate and interpret the results of the data mining investigation.

The project presented in this thesis explores the application of the  eScience [4],  Grid 

[5][6][7] and  distributed computing [8] paradigms to the fields of computational statistics 

and data mining. eScience focuses on the use of IT tools within the scientific process while  

the Grid is a paradigm concerned with the interoperability of distributed computing systems. 

Data  mining  and  computational  statistics  have  a  natural  affinity  with  the  concepts  of 

eScience. Particular care must be taken to ensure rigorous record keeping is observed when  

performing experiments, as in silico experimentation can often be performed so readily that 

this attention to detail may be overlooked. This has consequences for the repeatability of 

experiments, and for the recording of novel work that may be further explored at a later date. 

This study project has produced a framework that allows practitioners to express their 

data mining process as a workflow – a clear, repeatable plan or sequence of steps for an 

experiment – which enables the use of Grid computing [9] and Data Grid [10] resources to 

provide the required computational and data services. To use these resources efficiently and 

effectively requires an appropriate task scheduling algorithm. Many existing Grid computing 

frameworks use a task scheduling algorithm based on the greedy MinMin heuristic [11][12], 

that aims to minimise total computation time by accepting locally optimal solutions at each 

step.  This  thesis  presents  a  new  scheduling  algorithm,  Neglected,  which  is  shown  to  

outperform the MinMin heuristic in most situations across a range of typical experiment 

scenarios.

The sections following in this chapter give a brief introduction to eScience, the Grid and 

data mining, in sufficient detail to appreciate this work, with a more thorough analysis in  

2



Chapter 2.

1.1. eScience and the Grid
The  term  eScience has  been  used  to  describes  scientific  endeavours  that  are  largely 

enabled through the use of IT. IT can be employed to provide data management, simulation,  

instrumentation  and/or  experiment  workflow  orchestration.  The  actual  scope  and 

implementation details of these services will vary between implementations, but the essential  

purpose  of  eScience  is  to  facilitate  discovery  which  would  not  be  possible  without  IT 

enhancements. 

The Grid is the name of a modern IT paradigm that endeavours to seamlessly integrate  

researchers, instrumentation, and computing and analysis services on a large scale. The Grid 

paradigm proposes a small number of standards be used to interface between users, services 

and other widely distributed components. The purpose of keeping the number of required 

interfaces low is to improve interoperability and facilitate integration. Distributed identity 

management for users and services provides authentication and authorisation and is used to 

tie the Grid components together. This is intended to maximise compatibility and re-usability 

of the services and components, allowing them to be reconfigured and orchestrated for use in 

almost arbitrary workflows. Many Grid services build on existing components, such as Grid  

Computing  services,  which  utilise  transitional  compute  clusters  and  high  performance 

computers  via  the  Grid  mechanism.  Similarly,  Data  Grid  services  are  typically  used  to  

expose traditional file systems and databases via standardised Grid interfaces. 

When discussing the composition of a Grid system, it is important to highlight the roles 

that humans play. In Unified Modelling Language (UML) [13] terminology they are referred 

to as actors. In this project several human actors will be discussed. These are:

1. The algorithm developer who designs or implements data processing software;

2. The workflow developer or workflow integrator who develops the workflows which 

pull together the data sets and the algorithms; and
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3. The domain practitioner, or practitioner, who will be applying the system provided 

to analyse their  data sets,  and also refining the workflows to improve predictive 

performance.

To develop this  discussion,  consider  a  scenario in  which a workflow integrator  actor 

adapts an existing algorithm for use in data mining in such a way that it can be used within  

the workflow framework being developed in this thesis. The domain practitioner actor has a 

number  of  data  sets  of  interest  to  their  research.  The  workflow  integrator  produces  a 

workflow utilising an algorithm, which is run and analysed by the domain practitioner. Once 

the workflow exists, it is then possible for the domain practitioner to reuse the workflow on 

other data sets, and possibly tune parameters to optimise their investigations. It should be 

noted that although there are three distinct roles expressed here, it is not unreasonable to 

assume some or all of these would be performed by the same physical person, depending on  

their skill set.

The goals of eScience and the Grid are not novel within themselves. Since computers first  

became available, investigators, integrators and computer scientists have been attempting to 

use them to perform mundane, repetitive tasks of data collection and analysis. As the speed 

and  capabilities  of  computers  have  increased  they  have  been  tasked  with  increasingly  

complex responsibilities. This also requires the integrators and practitioners to think more 

about the presentation of the problems for the computers. Simply providing a set of linear  

instructions to solve a problem does not lend itself to reuse, so more abstract forms of the 

instructions need to be derived which allow the solution to be used in many situations.

In general eScience experiments aim to be easy to repeat and modify, as compared to  

their physical analogues, so they can be easily copied, modified, repeated and even shared. 

This  means  that  the  process  for  developing  an  idea  differs  from an  equivalent  physical 

investigation. With software, it is possible to prototype ideas quickly, and without significant 

financial penalty, leading to the exploration of many potential lines of investigation. The  

consequence of this approach is that many pilot investigations can be run, possibly without  
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due documentation, before the primary or significant investigation is performed. 

The  use  of  Grid  computing  for  data  mining  is  intended  to  improve  the  time-to-

solution/completion  of  a  data  mining  workflow  by  increasing  the  number  of  available 

processing units available to perform work. By doing this efficiently it also enables larger  

data sets to be analysed – within the constraints of the data mining algorithm's ability.

1.2. Data mining
Data mining is “the extraction of implicit,  previously unknown, and potentially useful 

information from data”[3].  This is  achieved using computer programs – the data mining 

methods – that implement an algorithm for fitting the data set of interest to an understood  

structure  such  as  an  equation  or  a  decision  tree,  resulting  in  a  model  that  represents  

relationships in the original data set. This model can then be used to better understand the  

original data set and the system from which the observations were collected, and also used to 

predict the responses from new, unseen data sets, which has application to decision support 

systems and other business requirements (Figure 1.1).

Data  analysis  in  modern  scientific  investigations  are  moving  towards  the  use  of  

increasingly larger data sets, containing more observations and larger numbers of attributes. 

The increase in the number of observations is a consequence of improvements in automated 

data collection allowing more observations to be collected, and the increasing availability of 

public data sets which can be combined or integrated to produce a single larger data set. The 

5

Figure 1.1: High level flow chart of the data mining process, and the outputs  
produced by it.



number of attributes collected for each observation is also increasing, once again driven by 

improved data collection at the instrument, and a growing number of synthetic or derived 

attributes showing promise or improving predictions. In the field of cheminformatics, where 

Quantitative Structure-Activity Relationship (QSAR)  [14], Quantitative Structure-Property 

Relationship (QSPR)  [15] and Quantitative Structure-Retention Relationships (QSRR) are 

studied, the data sets are composed of compounds (molecules), and an observed property of 

the molecule. The attributes of the molecules are calculated from the molecular structure,  

and can number in the thousands when topological, structural, electrical, solubilities, etc are  

considered. 

The  analysis  of  data  sets  like  those  just  described  often  requires  new,  or  modified  

statistical and data mining methods. Traditional statistical methods may not perform well (on 

their own) when there are a very large number of attributes involved. As an example, a  

simple method like multiple linear regression (MLR) will not compute an accurate fit when 

there  are  large  number  of  attributes  as  it  lacks  a  robust  mechanism  for  disregarding 

unimportant attributes. This can be addressed through the use of either a variable selection  

technique to reduce the attribute space, or by using a more sophisticated linear modelling  

technique such as partial least squares (PLS)[16]. Obviously PLS is not a novel technique, 

but this does demonstrate that techniques must be applied within their limits of applicability, 

which  is  likely  to  become  a  more  serious  issue  when  researchers  are  confronted  with 

increasingly large data sets. 

In developing new or modified techniques to work on large data sets another issue is the  

time it takes to execute or “fit” a model. Many robust models have a large time-to-solution.  

Consider the use case of model validation. 10-fold cross validation, which is the minimum 

accepted  by  many  practitioners  in  the  field,  will  escalate  the  execution  time  by 

approximately a factor of 10 due to the 10 repetitions of the process. On a small data set this  

increase in time-to-solution will not be significant, but the addition of new observations or 

attributes to the data set will  increase the significance of this impact until it becomes an 
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important consideration. While in some situations it may be acceptable to wait for extended 

periods for results to be returned, it is often desirable to reduce the time-to-solution as much  

as possible. It is also desirable to have a strategy for scaling the techniques should future data 

sets become larger. In this thesis tools will be developed to reduce this time-to-solution.

1.3. Scheduling Distributed Computing Execution
Data mining workflows take one or more data sets as inputs, and apply transformations or  

operations to these inputs to produce outputs. Within the workflow data will pass from the 

primary sources of data, through the operators and finally to the data sinks. Depending on the 

type and size of the data, considerations about data location may affect the time-to-solution 

just as significantly as the number of computational elements, or their speeds. There are two 

components to the transfer time problem, 1) the network speed, and 2) the network latency. 

Network speed is significant for large data transfers, and ultimately limits the transfer time.  

Network latency - the amount of time it takes signals to travel between hosts - is significant  

for  small  data  transfers  as  it  begins  to  dominate  the  actual  transfer  time  when the data  

occupies only a few packets. This penalty for transferring data is the typical motivation for 

performing  coarse  grained  parallelism  in  distributed  environments,  and  restricting  fine 

grained  parallelism  to  clusters  and  shared  memory  machines.  In  the  general  case  the 

workflow scheduler  should be able  to  place the tasks  appropriately to  minimise time to 

completion by taking into account processing speed and data transfer speed.

By modelling the workflow in finer detail  it  becomes possible to effectively have the 

workflow system adjust  the  coarseness  of  the  parallelism by scheduling  tightly  coupled 

sections on low latency sections of the network. This has particular applicability in scenarios  

where there is a mixture of single CPU and multiple CPUs per machine, as the workflow can 

be decomposed to an extent where the CPUs are being used efficiently on a specific section 

of workflow which would have otherwise required large data transfers.
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1.4. Project Summary
The project described in this thesis had the goal of designing and prototyping an eScience 

system to address the requirements of data mining practitioners. This involved the collection 

of requirements based on first hand data mining experience, a survey of existing tools used  

by data mining practitioners in their  work,  and then the design and implementation of a  

prototype system to demonstrate the utility of such a system. This involved developing a  

simple  workflow  language  which  could  elegantly  capture  the  experiments  data  mining 

practitioners typically execute, and developing a task scheduling algorithm to improve the 

time-to-solution for executing data mining workflow across distributed hardware.

1.5. Contributions
This thesis makes several contributions to the fields of eScience and data mining. These  

are summarised as follows:

1. This thesis provides analysis of some typical data mining workflows and develops a 

general  template  for  these  investigations.  From  this  template  it  is  possible  to 

determine the limiting factors in parallelisation, and to enable the understanding of 

the  computational  and  data  requirements  for  supporting  the  execution  of  these 

investigations.

2. This thesis presents a workflow model which addresses the requirements developed 

from the general  model  of  data mining,  and the design and implementation of a 

workflow engine to execute this workflow model.

3. This thesis adapts contemporary master-slave scheduling algorithms to efficiently 

schedule tasks derived from the workflow. Simulation studies have been conducted 

using  the  GridSim  [17][18] toolkit,  investigating  the  performance  of  these 

scheduling algorithms on a number of different network topologies.

1.6. Thesis Organisation
The  remainder  of  this  thesis  is  organised  as  follows:  Chapter  2  presents  a  detailed 
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background of the application areas, and the technologies involved. Chapter 3 develops a 

framework which can be applied to the application areas to achieve the benefits of eScience 

and the Grid. Chapter 4 formalises the scheduling problem, and presents a new heuristic to 

address the problem. Chapter 5 presents a study performed using the framework, utilising 

modern data mining techniques to model the absorption of pharmaceuticals via the human 

intestinal pathway. Chapter 6 presents conclusions and future work.
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Chapter Two

2. Background and Overview
Increases in the volume and resolution of data available for scientific endeavours is a  

consequence of technological advancements which allow more, higher quality data to be 

collected more easily. In recent years many large scale projects have provided frameworks 

for the automatic integration and collection of data from analytical instruments  [19][20], 

sensor networks and large scale scientific projects. These concepts are being enhanced and 

informed by initiatives such as the OpenData [21] movement, which aims to standardise data 

formats,  and  encourage  free  and uninhibited  access  to  data  collected  by  researchers,  in  

particular involving publicly funded projects.

Increases in the production and availability of data sets create a situation termed the data 

deluge [2]. The ability of researches to use this data will be dependent on the availability of 

tools to discover and robustly analyse it. eScience aims to provide these tools, and in this 

chapter the requirements around data mining will be evaluated in an eScience context.

This chapter continues the discussion of the large and complex scientific data sets from 

Chapter 1, and covers the use case of data mining and computational statistics discussing 

their  adaptation  into  an  eScience  framework.  Initially,  the  field  of  cheminformatics  is 

introduced as an example of a field where the growing size of data sets offers opportunities  

to  improve  scientific  outcomes.  Then  the  requirement  for  the  use  of  computationally 

intensive data mining techniques is illustrated with a discussion of cross-validation, meta-

models and randomisation techniques. Next, requirements for performing data mining within 

an eScience context are explored, including the use of a workflow to express the data mining 

process. Following this, a summary of distributed computing practises is presented, which 

identifies candidate resources,  and approaches to utilising them. And finally,  this chapter  

presents  an  overview  of  projects  which  have  previously  contributed  towards  the 

requirements identified for this project.
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2.1. Robust Data Mining of Large Data sets
As outlined in Chapter 1.2, data sets are increasing in size and complexity, requiring new 

methods  and approaches for  their  analysis.  There  exist  many contemporary  data  mining 

methods that can be applied to these large data sets, however, these methods often have long 

execution times. However, many methods, and other processes of data mining fall into a 

class of problem that is naturally suitable for distributed computing. In addition, concepts 

and processes within data mining experiments can be readily mapped to eScience concepts,  

allowing a natural adaptation of common data mining tasks to an eScience and distributed  

computing framework. This approach will be covered in detail in the following sections.

Data mining is performed through the application of computational techniques to produce 

predictive  and  explanatory  models  of  an  observed  system.  Data  mining  typically  uses 

standard types of models, such as decision trees and linear equations, and fits parameters and 

structures of the model to the observations. There are many different data mining techniques 

which take different  approaches to  the  fitting process.  Some techniques  produce models 

which  are  better  for  explanation  than  prediction  and  vice  versa.  These  techniques  were 

developed and used in a variety of disciplines including statistics, computer science, artificial  

intelligence and machine learning. 

Data  mining  techniques  have  applications  that  reach  far  beyond  the  disciplines  that  

contributed  them.  In  general,  data  mining  can  be  applied  to  most  fields  which  collect 

quantitative data, and is typically applied when there is no existing model of the system 

under investigation. The application to a new problem area requires different models and 

fitting techniques to be evaluated to determine the properties of the data, and the suitability 

of the particular model for that data. 

Robust data mining refers to data mining techniques that are able to handle either large  

data sets, or high dimensional data sets without negative impacts such as:

• Over fitting – when a model is too closely matched to the input data that it is unable  

to perform on new unseen data, and
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• The influence of outliers – an observation “... that appears to deviate markedly from 

other members of the sample in which it occurs.”[22], which can skew the data.

The remainder of this section will introduce cheminformatics, being the application area 

considered  in  this  thesis,  introduce  the  data  mining  process  in  the  context  of  eScience, 

discuss  the  options  for  improving  the  execution  speed  of  an  experiment,  and  will  then 

analyse some contemporary data mining techniques and experiments. This will results in a  

set of requirements being developed that encompasses what is to be achieved by this project.

2.1.1. Cheminformatics – Data mining in Chemistry
In this thesis the application area of cheminformatics  [1] will be discussed and used in 

examples. Cheminformatics is the application of data mining techniques to the prediction 

and understanding of chemical systems. The particular field of cheminformatics discussed 

here  is  Quantitative  Structural  Activity  Relationships  (QSAR)  [14],  which  relates  some 

measure of chemical activity (response) to the chemical properties (predictors).  A typical  

pharmacological application of QSAR would be to relate the bio-availability or absorption of 

a drug to the chemical structure of that drug.

Predictors for cheminformatics include measured molecular properties such as the near 

infrared (NIR) and mass spectrometry (MS) spectra, measured physical properties such as 

melting point,  and other calculated properties  known as molecular descriptors  which are 

derived  from  the  3D molecular  model  of  the  compound  (Figure  2.1).  There  also  exist 

specialised data mining techniques which can utilise the 3D models directly, but in this thesis 

the focus will be on the use of numerical data sets. All of the numerical data sets indicated 

here have the property of having a very large number of predictors. In the case of NIR or MS 

data sets there may be 10,000 or more ordered points and can be gigabytes in size, while 

descriptor data sets may have over 1,000 molecular descriptors. The significance of having 

so  many predictors  must  be  considered  in  the  context  of  a  pharmacological  experiment 

which  may  have  only  a  few  hundred  observations,  meaning  that  spurious  correlations 
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between the predictor and response become likely. In order to handle this, either a variable 

selection pre-processing step needs to be applied to reduce the number of predictors, or a 

robust technique which works well in high-dimensional space should be applied. Both of  

these options typically have significant execution times  Both of these approaches will be 

discussed in more detail in the next section.

2.1.2. Data Mining as eScience
From the inception of many scientific investigations, information technology plays an 

integral role, beginning with experiment design and preliminary calculations, through to the 

laboratory reports  and field trips  where the  data are collected.  Direct  data entry or  data  

capture is being used to improve the quality and handle the quantity of measurements and 

observations,  replacing  situations  where  hand written  tables  would  be  used.  Direct  data 

13
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collection means that data can be curated or stored immediately along with experimental  

metadata associated with the data sets. Storing and organising the experimental data as it is 

generated gives  the opportunity for  data processing to begin while the remainder of the 

experiment is completed. This data can be used as quality control for the experiment, and to 

assist in tuning or optimising the experimental apparatus in the lead up to the main data 

collection stage of the experiment. 

As described in Section 1.1, eScience is a term used to describe scientific endeavours that 

utilise information technology as an integral part of the process of scientific investigation.  

Exemplar eScience projects include Comb-e-chem  [20] in chemistry,  myGrid  [23][24] in 

bioinformatics, and GEODISE  [25] in engineering. Key themes in each of these projects 

include  data  and  provenance  management,  experiment  management  via  workflows,  and 

distributed  execution  of  tasks.  Further,  these  projects,  and  others,  strive  to  present  this 

functionality as flexible services – middleware – that can be reused in other projects. As 

well, the required use of abstract experiment representations – workflows – ensures that the  

experiments being carried out are guaranteed to have at least a minimum level of standard  

documentation, aiding in the repeatability of the experiment and the integrity of the results. 

It is proposed here that this holistic application of object oriented design, service oriented 

architectures, and the general desire for interoperability and reuse of components is critical  

in  discriminating  eScience  from  science  simply  done  with  computers.  Often  existing 

middleware providers are utilised, such as Grid computing, as the provider of computational  

resources.

A data mining experiment is a process that applies operations or transformations to input 

data to produce output data, models, and experiment reports (Figure 2.2). In eScience the 

experiment  process  is  referred  to  as  the  workflow,  and  the  experiment  reports  are  the 

provenance and metadata of the experiment. eScience commonly relates to input and output 

data in the same way as data mining.
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The model for a data mining process that will be considered in this thesis involves three  

distinct  concepts:  variable  selection,  cross-validation,  and  model  fitting  (Figure  2.3). 

Variable selection is a data set reduction technique that can improve runtime and predictive 

performance of data mining methods by removing clearly redundant variables from the data 

set; model fitting is the application of the data mining method; and cross-validation is an 

iterative technique for evaluating the real-world performance of a data mining method.

The process of eScience closely emulates the world of physical science. It involves data  

management, experiment management, workflow enabled data processing, as well as parallel  

and  distributed  computing.  eScience  sometimes  enables  physical  science,  while  at  other 

times eScience is  itself  an end,  with experimentation occurring via simulation producing 

quantities of data which subsequently require analysis. In this thesis the entire data mining 

process is considered in the context of the eScience paradigm, with the intention to exploit  

eScience  experiment  and  process  management  approaches,  and  to  achieve  an  efficient  

speedup through parallel execution. In fact, it can be seen that the data mining process, when 
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Figure 2.2: An experiment is the application of a process on input data and 
algorithms, to produce output data and an experiment log.



presented in this way, is a very close match to eScience ideas.

To achieve the outcomes of parallel data mining execution requires a data analysis system 

designed  to  support  this  functionality,  but  the  benefits  of  faster  execution  time  are  

significant. Whether the analysis is being performed for real-time applications, or the system 

is being used for the development of analysis techniques, reducing completion times from 

days to hours, or hours to minutes can be of significant value.

2.1.3. Efficiently Speeding Up Execution
The most effective method for improving the execution time of an application depends on 

many factors, such as: the language used to implement the application, the algorithms and 
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design of the application,  and the way it  uses data.  Applications which are implemented  

using scripting languages can often achieve speedups by re-implementing (at least the slow 

method) in a compiled language, as this removes the interpreter and type checking overhead. 

Many scripting languages provide efficient ways to achieve common tasks, such as R[26], 

where you can achieve upwards of a 10 times speedup for loops if you use the apply method 

instead of a for loop.

Another approach to achieve speedup is to ensure the data are stored in an efficient way 

in memory, so that processing it does not incur unnecessary operations to transform it. For  

instance, the use of strongly typed, primitive arrays are much faster to access than object 

arrays. This is due to a couple of reasons: firstly the primitives are normally a smaller data 

type, so will  fit  better in memory and cache memory; and secondly because objects will 

normally be converted to primitives for the CPU to process, and this conversion incurs an  

overhead.

Once it is clear that the application is as efficient as is practical, it is possible to consider 

using multiple computing resources to perform the work. Parallel processing adds an extra 

level of complexity to the application, as it will now have to consider coordinating these 

resources,  transferring  data  if  required,  and  recombining  the  output  data.  This  added 

complexity  and overhead can make  it  impractical  for  smaller  applications,  but  once the 

framework is established, it is possible to continue to scale to additional resources.
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The  benefit  gained  by  adding  additional  resources  to  an  application  is  described  by 

Amdahl's law, which expresses the diminishing returns of adding additional resources as a 

function of the percentage of the application that can be made parallel (Figure 2.4). This is 

expressed as:

(2.1)

Where S = the number of resources, and P is the percentage of the application that can be 

made parallel. To be made parallel in an efficient way the application needs to be broken into  

tasks  that  have  minimal  data  communications  overhead,  ideally  only  requiring 

communications  at  the  start  and  end of  the  execution  (loosely  coupled),  and  where  the 

execution time dominates the communication time (coarse grained).

Applications that can be broken into coarse grained, loosely coupled tasks are in the well-

known class of parallel programs called embarrassingly parallel (EP) [27]. EP problems can 

be efficiently solved using up to n independent machines, where n is the number of models. 

Consider a single task that occurs in three distinct steps:
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Figure 2.4: Amdahl's law showing the speedup obtained by adding additional  
resources.
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1. Load data into memory,

2. Compute model, and

3. Return result.

The time taken to perform steps 1 and 3 will be limited by the bandwidth and latency of 

the connection between the main memory of the machine and the storage resource being 

used to store the data. When the data are local to the machine it may be much faster than if  

the data are stored on a remote machine accessed via a network. For an EP problem the time 

taken to perform step 2 will be limited by the speed of the CPU in the machine. There also  

exists a spectrum of parallel applications which require data to be transferred between tasks 

during execution, and are described by the frequency with which these exchanges occur, 

from coarse grained to tightly coupled. In this spectrum of parallel applications the time 

taken  to  perform  step  2  will  also  be  affected  by  the  latency  and  bandwidth  between 

machines, in addition to the CPU speeds of the other machines and their own CPU speeds. 

This is because resources have to wait while other CPUs calculate and deliver the data they 

depend on, resulting in idle CPU time.

From this discussion it should be clear that efficient parallel processing is dependent on 

being able to break the data mining application into coarse grained, loosely coupled tasks.  

The discussion of parallel processing will be continued in Section 2.4.  Next, contemporary 

data mining techniques will be introduced, and assessed as to how they can be efficiently  

parallel processed.

2.1.4. Review of Contemporary Data Mining Techniques
There are a large number of data mining algorithms and techniques employed in a field 

like cheminformatics. They include classification, regression and clustering techniques, and 

aim to produce both predictive and explanatory models to aid the practitioner in their work. 

The effectiveness of a technique will be influenced by the data, and the desired outcomes of 

the  practitioner.  Data  dimensionality  will  be  a  primary  driver  in  the  selection  of  the 
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algorithm,  with  many  methods  failing  as  the  number  of  variables  increases,  requiring 

variable selection as a pre-processor. Many methods can only utilise either continuous or  

categorical data, and may not be able to handle missing values. Depending on the form of the 

model,  there  will  be  a  trade-off  between a  complex model  which  has  a  high degree of 

predictive power, but is hard to interpret,  and a simpler model which has less predictive 

power but is more easily used as an explanatory model.

Once a model has been fitted to a data set it is important to know how well the model  

represents the data. There are a number of methods which compare the predicted and actual  

responses. Two very commonly reported figures are error and variance. These are commonly 

reported as mean absolute error, MAE, often calculated as a mean squared error, MSE, or its 

square  root,  RMSE,  which  all  approach  zero  as  the  model  improves.  Variance  can  be 

calculated using  Pearsons correlation coefficient, r, or it's square R2 which approach 1 as the 

model improves. These methods are covered in more detail in [28] and [29]. 

However, an important concept to understand when fitting complex, or even some simple 

models, is that the model needs to be generalised (not over-fit) if it is to be of any use. That 

is, it needs to be able to make accurate predictions from data that was not in the original data  

set.  Evaluation  of  this  requires  that  an  external  test  set  be  available  to  validate  the 

performance of the model.  This process is  known as  cross validation (CV).  There are a 

number of specific approaches to cross validation summarised in Table 2.1. The selection of 

a CV technique will depend on the type of data, the size of the data set, and the requirements 

for time-to-completion and the accuracy of performance metrics. 

Simply splitting the original data set into a test set and a training set is straight forward  

and  computationally  inexpensive,  but  it  does  not  robustly  evaluate  the  performance  as 

artefacts  in  the  test  or  training  set  can  give  misleading  results.  Leave  One  Out (LOO) 

validation iteratively selects each observation from the data set and removes it as the test set,  

performing the model  building process  on the remainder  of  the  data,  and averaging the 

resultant figures. Due to the small size of the test set this method is also prone to issues such 
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as high variance [30][31], and it comes at a higher computational cost.

A variation  on  the  LOO  is  leave  group  out  (or  k-fold),  where  a  fixed  number  of  

observations are removed into the test set. This number is typically N/k where N is the total 

number of observations and k is the number of times this will need to be repeated to use all  

observations in a test set. This offers better computational performance than LOO, and can  

also avoid the high variance drawbacks. Leave one out is a special case of leave group out,  

where k=N.

Monte-carlo cross validation (MCCV) [32] is a more robust and accurate performance 

estimation technique,  which approaches the performance estimation problem as a monte-

carlo simulation. At each iteration of the validation the data set is split, with training and 

testing performed as before.  However,  this  process is  repeated hundreds or thousands of 

times, and an aggregate of the measured performances is reported as the result, meaning it is  

computationally  the  most  expensive.  This  process  eliminates  any  bias  which  may 

accidentally occur due to the prior ordering of the data, but does so at great computational 

expense.

To appreciate the impact of the computational expense of each cross-validation technique, 

remember that each training iteration involves performing the model fitting, which itself may 

be a computationally expensive operation. For example, if a data mining technique takes 1 

minute to fit the model on 100 observations, it will take ~1 minute to cross validate under a  

single  split  CV,  10  minutes  under  10-fold  CV,  100  minutes  under  LOO CV,  and  1000 

minutes under MCCV.
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Single Split Leave One Out Leave Group 
Out

Monte Carlo 
Cross 

Validation

Test set-
Training 

set

Training set

Test set

Training set

Test set

Runs 1 k = n k 1000+

Test set 
size

~30% n/k 1 50.00%

Group 
order

Selected  or  randomised 
at start

Randomised  at 
start

Randomised  at 
start

Randomised  at 
each run

Table 2.1: Summary of cross-validation technique procedures, relating number of  
iterations required to n=observations and k=testsets.

Data  mining aims  to  fit  a  general  purpose model  to  a  data  set  through a  calibration 

process. General purpose models are used because the exact physical mechanisms of the 

system under observation may not be fully understood. It is not expected that an exact fit will 

be achieved as general purpose models are being used, and accordingly there is a large and 

increasing number of data mining methods available to fit models catering for various types 

of data. Some typical models include decision trees, linear or non-linear equations and meta-

models.

While some sophisticated methods are able to robustly fit the training data, there is also a 

class of meta-models which can utilise simple, weak learners, such as decision trees with a 

single split, or linear regressions built with a small number of terms. When many models are 

combined together like this they are referred to as ensemble methods. Most of these meta-

methods  heavily  utilise  randomisation  in  the  generation  of  the  individual  models  as  a 

mechanism to avoid bias.

Ensembles(Figure  2.5)  are  one class  of  meta-method that  may employ randomisation 
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when combining their base learners. An example of this is bootstrap aggregation or bagging 

[33] (Figure 2.6), which trains many models on a sample (bootstrap) of the training set. The 

bootstrap  sample  is  of  the  same  size  as  the  original  training  set,  and  is  sampled  with  

replacement, meaning that some observations will appear many times. When evaluating the 

bagged model all the individual models are evaluated, and the average of the predictions is  

used. The resultant model has a low variance and is more resilient to overfitting. Another 

example of an ensemble is boosting, which takes a base learning method and produces many 

individual models using subsets of the input data variables, and combine these individual  

models into a single larger model. 

One popular ensemble technique which utilises bagging is Random Forests [34]. Random 

Forests uses decision trees as the weak learner. Each tree is trained on a bootstrap of the  

training data, and at each node a bootstrap of the predictors is used to calculate the split. This  

is repeated for a number of trees which are combined to make the Random Forest ensemble. 

Random Forests can perform well in the presence of many predictors, and produces accurate 

predictions in many situations.

Another  popular  data  mining  technique  for  cheminformatics  is  the  Support  Vector 

Machine (SVM) [35].  SVMs can be used for classification and regression and offer a robust  

approach to fitting models. Importantly, they can be used with various kernel transformations 
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Figure 2.5: Generic ensemble of  
independent weighted models.

Figure 2.6: Bagging: Ensemble of  
independent weighted models built on 
subsets of the data.



on the input data which allows them to fit non-linear data sets.

2.1.5. Typical Data Mining Experiments
In this section the development cycles of two actors are discussed: data miners who are  

interested in analysing data sets; and algorithm developers who are interested in producing 

and  evaluating  new  data  mining  techniques.  Both  these  groups  have  the  same  core 

requirements,  although  they  approach  the  problem  from  different  angles.  First  the  data 

miner's  environment  will  be  described,  and  then  the  algorithm developer's  environment, 

highlighting the differences.

Data mining practitioners start their work by identifying a data set of interest. Whether 

they collect the data themselves or derive it from other data sets is not relevant, but in either  

case it is assumed they can identify the response and predictor variables so these can be  

considered as generic data sets. Assuming the data are in an unprocessed form it will now be  

analysed to test the quality of the data set, filtering out homogenous variables, and perhaps 

centring and normalising the variables. 

Next a decision will be made by the practitioner about the validation technique that will 

be used. All validation techniques involve splitting the data set into two parts, training a 

model on one part, and evaluating the model's predictive capabilities on the remaining part 

(Figure 2.7), and each research field that utilises data mining tends to have its own accepted 

validation technique. 

Following this, the actual modelling techniques to be used on the data must be selected. 

This decision will be guided by a combination of domain knowledge, the linearity or non-

linearity of the data,  whether the model  is  for prediction or understanding the data,  and  

personal preference and experience. Nearly all but the simplest of modelling techniques will 

require a number of parameters to be set,  requiring manual selection by rules, automatic  

tuning algorithms, or parameter sweep operations.
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Figure 2.7: Flow chart of cross-validation as applied in data mining.



Finally the practitioner will execute the experiment with the selected validation, model, 

and parameter selection, and will analyse its performance. This may lead to changes in the 

set up, and re-running of the experiment in an attempt to improve the outcome. Ultimately  

the experiments will produce a model which the practitioner can use to predict new unseen 

data, or be used to describe the system from which the data was originally collected.

Data mining practitioners will hold the data set and probably the model constant,  and 

attempt to tune the parameters to get the best performance from the models and the best  

understanding of the system.

Algorithm developers are typically interested in using many data sets, selected for their 

data  type  or  origin  (spectral,  QSAR,  etc)  and  using  these  to  evaluate  the  algorithm or  

modelling  technique  they  have  developed.  Therefore  algorithm developers  will  hold  the 

model and possibly the parameter selection constant, and evaluate across many data sets. An  

example of this kind of experiment is presented in Appendix A.

a)

1. clean data
2. cross validation
3.   variable selection
4.   model parameter selection
5.     model building
6. summarise

b)

1. data sets
2.   clean data
3.   cross validation
4.     model building
5.   summarise

Figure 2.8: Abstract representation of the list of steps for the generalised process that  
a) data mining practitioners and b) algorithm developers, may use in their work.

Figure 2.8 shows an abstract list of steps that a data mining practitioner and algorithm 

developer may use in their work. Indentation represents sub-steps that are performed in the  

context of the higher level indentation. In both cases, each iteration of the cross validation 

will require a model to be built. It is clear that there are common constructs between these  

two lists of steps. The common structures of these lists are extracted and presented in Figure

2.9 as a generic template that demonstrates these structures. It is not intended to be fully 

representative of the work practices of of all data mining practitioners, but rather it capture  
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the  core  elements  of  the  process  sufficiently  for  us  to  then  map  these  practices  to  the 

paradigms of eScience and the Grid.

Figure 2.9: A typical data mining experiment template exhibiting iteration, nesting of  
iteration and sequential application of operators.

Figure 2.9 shows a typical data mining experiment, from which the core requirements for 

the experiment process language of the data mining eScience platform can be developed.  

These are:

1. Nestable iterations or looping over data;

2. Invocation of actions with the data exposed by the iterations;

3. Storage of output from actions;

4. Chaining of multiple actions in sequence; and

5. Loops or actions executed in sequence.

The essential elements of this template include: the idea that data should to some degree  

be self-describing; the observation that the process of validation is an EP class problem; 

parameter  tuning,  whether  through  a  sweep  or  an  optimisation  is  also  EP;  capturing 

environment and performance information for each execution of the algorithm is a desirable 

outcome; and by reducing the time to completion it can enable more focused and hopefully  

productive efforts  on the particular  problem at  hand.  Further  to  this,  the  pre-processing, 

execution and post-processing of the data may also be composed of other elements which 

themselves could be transformed into EP problems. 

2.1.6. Properties of an eScience Data Mining System
The previous sections presented a high level overview of the data mining process as it,  
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2.   for each model type
3.     for each cross validation split point
4.       compute model
5.       record performance
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7. for each model type
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applies to cheminformatics, and some typical experiments that would be performed. The goal 

of  the project  reported in  this thesis,  was to develop a system to assist  the  data mining 

process by addressing the following requirements:

1. Repeatable experiments,

2. Capturing the process as completely as possible to minimise manual setup and data 

handling,

3. Well documented experiments, at least to the extent of capturing the inputs, outputs 

and experiment process,

4. Minimise execution time of  experiments  and allow the ability  to  scale  up using 

arbitrary computing resources,

5. Make it possible to integrate existing data mining applications, and

6. Make experiments easily adaptable to different input data sets.

Clearly  if  a  system such  as  this  was  to  be  made  useful  to  the  general  data  mining 

community it would also need to address other issues which are beyond the scope of this  

thesis, such as:

1. Recovery from failure,

2. Security, and

3. Integration into a wide variety of data, compute and service providers.

The requirements being explored in this thesis can be broken into three groups:

1. eScience and experiment management (#1, #2, and #3), 

2. Integration and deployment (#5 and #6), and

3. Distributed execution (#4).

The following sections will each investigate the current state of research and practise in 

each of these three groups of requirements.

2.2. Experiment Expression and Management Review
A data  mining  experiment  needs  to  be  expressed  in  a  way  that  makes  it  easy  to 
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understand, adapt, reuse, and also execute. Scalability and fast execution is a requirement for 

this project, thus the expression of the experiment should make it possible, if not easy, to  

achieve this, by allowing the experiment to be decompose into individual tasks that can be 

executed in parallel.  Then,  once the execution is  complete, the results  of the experiment  

should  be  accompanied  with  the  appropriate  experiment  metadata  and  data  provenance 

information so the experiment can be archived, discovered, understood, and validated by a  

third party. These requirements will be investigated in the rest of this section.

2.2.1. Expression of a Data Mining Experiment
Computational experiments, such as data mining, may be performed using a high level 

language  such  as  MATLAB,  R  or  Java,  and  will  include  code  which  handles  the  data  

manipulation, algorithm execution and overall  process flow. To better achieve the project 

requirements  the  experiment  should  be  structured  in  such  a  way  that  the  high  level 

coordination concerns, such as input and output data sets and setup parameters, are separated 

from the lower level algorithm implementation concerns (Figure 2.10). Further, these lower 

levels should be parameterised such that changing the experiment setup does not involve 

changing multiple sections of the overall experiment.
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Figure 2.10: A computational experiment is comprised of algorithms, data  
management and experiment management. Workflows provide the experiment  
management functionality, allowing the application to be more focused and general  
purpose.



In general, the coordination layer should capture the main data operations and outer loops 

of the experiment,  such as the implementation of the cross-validation,  as these have the  

greatest potential to provide the coarse grained, loosely coupled tasks suitable for parallel  

execution. The further the boundary is pushed into the data mining application, the greater 

the potential  for  parallelisation,  but  the gains  achieved will  diminish as  the  overhead of 

coordination layer begins to dominate the speedup. As well, the coordination layer will apply 

constraints on the types of operations that can be captured, preventing the boundary being 

pushed further.

The task model used by the coordination layer will determine what types of, and degree  

to  which,  experiments  can  be  captured.  These  models  vary  in  terms  of  how  compact, 

expressive or general purpose they are. These include:

1. Process workflows which chain together operations with dependencies,

2. Dataflows which  explicitly  track  the  data  movement  between  operations  in 

workflow like dependency graphs,

3. Bag of tasks which are independent tasks,

4. Parameter  sweeps which  iterate  over  all  combinations  of  candidate  parameters, 

invoking a single main task each time, and

5. Syntax  tree which  nests  iterators  and  conditional  propositions  around operations 

which need to be performed.

The suitability of each of these coordination task models will be discussed based on the 

typical  data  mining  experiment  requirements  presented  previously.  Process  workflows 

represent  the  interdependencies  between  operations,  where  an  operation  needs  to  be 

completed before the next operation is signalled to begin. The operations in workflows can 

perform any actions, and will produce and consume signals or data. However, due to the way 

the signals propagate through the workflow graph it would be difficult to conceive how to  

fulfil  the  nested  iteration  requirement  with  this  scheme,  without  providing  high  level  

operations  that  encapsulate  the  entire  data  iteration  and  execution  process.  This  would 
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obscure the EP tasks that would provide the speedup opportunity.

Dataflows are quite similar to process workflows in that operators and data signals are 

represented by nodes and edges respectively. They differ however, in that dataflows do not  

operate from signals, but rather the availability of data. In this way the data flows from one  

end of the graph to the other, like a pipeline. Like a pipeline, data can be in-flight in multiple 

places along the pipeline, and simply block when waiting for the next operator if it is still  

processing the previous data package. However, like the process workflow, the dataflows 

provides too high level abstraction to expose the parallel aspects of an experiment without  

developing experiment specific actors.

Bag of tasks are a very coarse grained model for the coordination level. They represent  

each individual task that will need to be executed to fulfil the experiment. Although this is 

the form that the coordination layer will eventually decompose the experiment into, it is not  

suitable for modelling the experiment due to its verbosity.

Parameter sweeps, in their purest form, represent the execution of a single operation with 

each  combination  of  parameters  from a  parameter  space.  Implementations  of  parameter  

sweep  systems,  such  as  Nimrod,  list  the  parameter  space  and  specifies  the  task  to  be 

executed for each item in the parameter space. This type of system does capture the intention 

of the nested iteration part of the requirements. However, in itself parameter sweeps provide 

only a subset of the requirements.

Syntax trees are an open ended model, with their suitability determined by what syntax is 

supported.  As  a  reference  to  the  variety  and  possibility  of  syntax  trees,  all  textual  

programming languages are represented as a syntax tree at some point when being compiled 

or interpreted. By providing data iteration and execution the syntax tree can be used as an  

alternative representation of the parameter sweep, using compact syntax. By unrolling these 

data  iteration  loops  it  is  possible  to  decompose  the  syntax  tree  into  individual  tasks, 

constrained by input data that are suitable for parallel processing. The chaining of loops and 

operations could be allowed by the syntax grammar, and implemented by the coordination 
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layer provided the data dependencies between the derived tasks are properly tracked. Finally, 

the  order  of  execution  of  the  operations  within  the  iterations  could  be  preserved  by  a 

constraint in the coordination layer.

From  this  discussion  it  is  clear  that  the  more  general  purpose  syntax  tree  model 

supporting data iteration and operation execution is the most suitable fit to the data mining 

experiment requirements. It is a compact, abstract representation of the experiment that is 

contained  enough  to  allow  the  coordination  layer  an  opportunity  to  decompose  the 

experiment into parallel tasks.

2.2.2. Experiment Management – Collection of Experiment 
Metadata

The execution of computational or in silico experiments like those addressed in this thesis 

follows the same patterns of scientific endeavour as any other scientific pursuit. Accordingly,  

clear,  accurate and detailed record keeping is  as important  in silico as it  would be in a 

physical laboratory. As all the information about experiment set up is already available in 

computerised form it should, in principle, be a much simpler task to capture this information  

in  a  standardised  way,  than  it  would  be  in  a  comparable  physical  laboratory.  Various  

disciplines do specify standards and procedures for the collection and storage formats of 

metadata, but there exists no encompassing standard or procedure. For instance, a data set 

analysed in a cheminformatics study may provide chemical names or Simplified Molecular 

Input  Line  Entry  Specification (SMILES)  [36] descriptors  under  investigation,  and  will 

perhaps report the programs and techniques used to calculate the molecular descriptors used  

in their analysis. However, the parameters for these programs and optimisations which would 

have been performed along the way may not be thoroughly reported in the text. While there  

may be alternative avenues to discover this additional data in some circumstances, such as 

direct contact with the author, generally this lack of consistent detail  makes the reported 

findings far less useful, and certainly less reproducible.

By definition, the Grid computing environment consists of heterogeneous collections of 
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computers,  connected  by  a  variety  of  interconnects  or  networks,  running  a  variety  of 

software environments. This variability introduces the potential that the experiment may not 

be reproducible or reliable. Extensive documentation of the hardware and software can begin 

to overcome this, allowing comparisons of the different execution environments which can 

explain  unusual  trends  in  the  data.  As  part  of  this  standardisation,  it  is  suggested  that 

mandatory  test  cases  should  be  incorporated  to  validate  the  methods  on  the  execution 

machines.

As  discussed  by  Simmhan,  et  al.  [37], provenance  metadata  can  be  collected  about 

different  parts  of  the  data  processing  system,  and  can  contain  multiple  levels  of  detail.  

Simmhan, et al. define two models for provenance: firstly data-oriented provenance which is  

concerned explicitly with the data, and secondly process-oriented provenance which models 

the derivation process and can be used to deduce the provenance of the data by inspection of 

the process inputs and outputs.  Uses for provenance metadata in eScience as defined by 

Goble, et al. [38] includes data quality, audit trail, replication of experiments, attribution of 

the data owner and contextual information which would help interpret the data.

Greenwood, et al.  [39] describe their experience using the myGrid [23][24] provenance 

system for capturing metadata related to bioinformatics experiments. The myGrid project is a 

framework for executing scientific workflows composed of Grid Services. Greenwood, et al. 

ibid describe the use of two types of metadata. Firstly, derivation path describes the process 

of transforming the input data via services, and includes database queries, applications and 

their parameters, and secondly annotations that can be attached to data to describe generic 

attributes such as  ownership,  as well  as domain specific attributes  such as the  chemical  

names  or  protein  sequences.  They  demonstrate  the  usages  of  these  sets  of  metadata  in 

making experiments findable, repeatable and quality assured.

Chimera  [40] is another process oriented workflow system, which tracks the derivation 

path of the data. Workflows and provenance are stored using the Virtual Data Language [41]. 

Once run, workflows can be queried via a central catalogue, and re-run taking advantage of 
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previously derived results to hasten execution.

Provenance metadata provides critical information for validating the process and outputs  

of  in  silico experiments.  Although there  is  no  standardised  storage  format  or  collection 

mechanism,  there  are  many  examples  of  successful  and  useful  provenance  metadata 

collection  systems,  such as  those just  discussed,  which  can  act  as  a  template  for  future 

systems.  The  methods  for  the  collection  of  provenance  information  will  vary  between 

application implementations, and do not need to occur within the main application. A pre and 

post process would be able to collect this information without the need for modification to  

the running main application. This could be written to a document store, and returned along 

with the results of the main application.

As an example of the application of this provenance information to the validation of an  

experiment consider the following. It  is possible to collect generic apparatus information 

from  in silico which includes static machine information such as hardware and software.  

Gathering  this  data  creates  a  reference  metric  which  can  be  used  to  group  and loosely 

compare executions run on different machines. The same workflow run on a machine with 

the  same memory  and  CPU should  yield  results  that  are  computationally  equivalent.  If 

discrepancies are significant this would indicate there are issues relating to the hardware,  

software, or the application being executed. Then software dependencies can be investigated, 

ideally leading to the offending library, or methods being identified and addressed.

2.3. Deployment and Integration Review
This section discusses the requirements to leverage existing data mining, as this is where  

the expertise of the practitioners already lies, and to integrate with existing data sets. The 

separation  of  concerns  between  the  experiment  coordination  and  low level  data  mining 

introduced in Section 2.2.1 allows the data handling to be absorbed into the coordination 

layer, and enable the reuse of existing, “legacy” applications. As well, a discussion about 

some  real  world,  desirable  requirements  is  presented  at  the  end  of  this  section  for 
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completeness.

2.3.1. Execution of Operations and Applications
Any application or data operation that is going to be executed in an experiment needs to 

be invoked through a standard interface that specifies the inputs and outputs of the execution. 

This interface is what separates the coordination layer from the implementation layer which 

may be a combination of new and legacy applications. Legacy applications, or legacy code, 

refers to any existing application which is in use, and which may not support any forward 

looking interoperability, and which cannot or will not be modified to adapt them. Legacy 

applications are typically written to expect a certain specific data format, with known data 

layouts and parameters which are exposed through an arbitrary interface. To enable legacy 

applications to be used in a Grid environment requires some analysis of the functionality that 

will need to be exposed, and on whether the code can be modified or if it will have to be  

wrapped to provide the required interface. 

Integrating these independent  systems is  one of  the  challenges  of  eScience,  and it  is  

fundamentally  addressed  through  the  use  of  standardised  systems,  and  rich,  consistent 

system metadata. This is often referred to as a semantic-rich system, as this extra system 

metadata  enables  automatic  system  configuration,  reuse,  adaptation,  and  documentation. 

There are a number of established technologies, discussed throughout this section, that assist  

in achieving these goals.

The use of  arbitrary computing resources for  performing executions assumes that  the 

resources provided will be suitably configured to run the desired applications, and that the 

applications are written in a portable way that enables them to be executed in the provided 

environment. Typical issues that will restrict the use of a resource include:

1. Requirements for the application to be installed on the resource,

2. Licensing preventing the desired application being used on the resource,

3. Incompatible versions of the application on the resource,
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4. Missing or incompatible shared libraries available on the resource,

5. Missing runtime environment, or

6. Incorrect hardware architecture for the application.

Issue #1, #2 and #3 can only be addressed by selecting resources that provide the required 

software. The impact of remaining issues will vary depending on the type of application that  

is being used. This could be a native executable or library, scripting language or byte code 

language that runs on a virtual machine.

If  the  application  is  compiled  to  native  machine  code,  one  approach  for  ensuring 

portability across  environments,  addressing issue #4,  is  to statically link all  the required 

elements into a single relocatable package, which reduces the assumptions about the libraries 

that are provided. However, unless the application is compiled for all of the possible machine 

architectures then issue #6 may prevent some resources from being utilised.

Issue  #6  is  overcome  if  the  application  utilises  an  abstract  environments  such  as  a 

scripting language, such as MATLAB and R, or virtual machine (VM), like Java and Python. 

Scripting languages and virtual  machines differ  in the degree to which they abstract  the  

computing environment. Virtual machines often provide the best portability, so long as the 

application is purely executed in the VM, and does not invoke native code to preform part of 

the calculation. This is because the shared libraries that often accompany the application will  

most likely also be built to run in the VM, making them portable across hardware. Scripting 

languages on other hand, particularly MATLAB and R, are often high level abstractions on 

top of native libraries, meaning that portability is potentially hindered if the required libraries  

are not available or installable on the target resource.

Software agents run on the resources can be used for invoking the application on the 

resource provided. The role of the agent is to:

1. Inspect the execution environment for suitability,

2. Prepare the environment if required,

3. Invoke the application, 
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4. Monitor the application, and

5. Clean up the environment once execution is complete.

In the wider computing community software agents are used to perform many monitoring 

and maintenance tasks, and the exact definition of a software agent may vary. Within the  

parallel and distributed computing community, agents are utilised to perform many of the  

functions mentioned previously, with varying sophistication and scope. Cluster computing 

software  such  as  PBS  [42],  Xgrid  [43] and  Condor  [44],  and  Grid  software  such  as 

Nimrod/G [45] use the agent model to stage data and launch applications on remote systems. 

They  typically  do  not  provide  any  form of  interprocess  communication  (IPC)  with  this 

service, but can set up a third party system to provide this.

Once the application is able to be executed on the provided resource the next step is to 

ensure  the  input  and output  data  are  in  an  appropriate  format  for  that  application.  This 

requirement is covered in the next section.

2.3.2. Data Interchange and Conversion
Larger  catalogues  of  data  are  becoming available,  assisted  by  increasing  adoption  of 

information  technology and use  of  network  services.  These  are  provided  by  researchers 

making data available to collaborators, colleagues and sometimes the general public through 

data repositories. Provided the data are adequately described then it is possible for the data  

users to confidently perform their research without having to do primary data collection. For 

instance,  a statistician developing or evaluating methods of classifying DNA microarrays 

will potentially be able to evaluate their work using one of many publicly available data sets.

To use a given data set within a data mining experiment requires that the data set be  

available in a format that can be understood by the data mining algorithms. Achieving this 

may require preprocessing before being used in the main data mining process. In order to 

completely capture  the  process it  is  important  that  these steps  of format  conversion and 

preprocessing be captured by the data mining system. Doing so helps to prevent unidentified 
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errors creeping into results due to ad hoc or undocumented steps in the experiment processes. 

Ideally, the data mining system would provide a way to encapsulate this step by conceptually 

providing a system for adapting or transforming the data, allowing the original data set to be 

used directly (Figure 2.11).

Building systems which can interact in the way described here is a major focus of the 

Grid, as interfacing with existing data services is a major challenge for adoption of any new 

technology,  including Grid,  by existing practitioners.  This problem is typically exhibited 

when legacy applications are to be used to analyse the data sets collected and curated using 

Grid technologies. While the description given is quite straight forward, it disguises many 

issues that arise including, interactions with proprietary, and legacy systems which may have 

been developed prior to standardised formats, and may not be modifiable. 

There is almost no limit to possible data file formats, but in general there are normally 

only a handful of formats that will be prevalent in a given field. In cheminformatics data are 

often tabular – like a spreadsheet or database table – and stored in either text files, or binary 
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Figure 2.11: Adaption of disparate data sources to provide a consistent interface for 
the data mining workflow.



table  formats  like  netCDF  [46].  Conversion  between  these  formats  is  relatively  straight 

forward,  but  possible  issues  could  include:  loss  of  precision  when  converting  to  text 

formatted numbers; exact formatting rules such as delimiter characters; or column names.  

Other cheminformatics data formats such as microarray images or chemical structure files  

will encounter similar conversion issues.

Beyond  just  converting  data  between  formats  to  allow  interoperability  between 

algorithms and applications, using data adapters to allow the data mining system to address  

and subset the data would enable the given data set to be iterated over as was discussed in  

section 2.2.1.  However, not all data will require this functionality as a data mining process 

may  not  call  for  it.  This  is  fortunate,  as  it  becomes  hard  to  manage  having  complex 

structured data represented within a generalised data processing system without the system 

becoming overly specialised and complex. For instance, a structured record representing a  

molecule may be easily handled within a cheminformatics application, but it is unlikely that 

the molecule will need to be subsetted or iterated over. Also, should it require analysis with a  

statistics application, it would have to be transformed into a format that can be represented 

with that application. 

Once the data are of the correct format it must be provided for the application to use. The 

simplest method of providing data to legacy applications is to stage the data via the file  

system. This involves writing copying the file from its original location, potentially across a  

network, and writing it to the file system on the resource executing the application. This 

method provides a simple, portable method for allowing access to remotely sourced data  

(Figure 2.12), as it does not require any modifications to the end application and it does not 

require any special functionality from the operating system. The drawback is that the entire 

data file will need to be copied across the network, which is inefficient if the entire file is not  

used.
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A potentially more efficient solution is to provide a transparent, remote access to the file.  

Remote access is potentially desirable if only a portion of the file is actually required, and 

provided that the file can be accessed without too much latency. However, this property may 

not be determinable at the commencement of execution. Further, providing remote access 

will either require modification of the executed operator so it can talk to the remote data 

store,  or  the  deployment  of  a  data  access  shim  such  as  Parrot  [47] to  intercept  file 

Input//Output (IO) calls made by the application and redirect them to the appropriate remote  

file  store  (Figure  2.13).   This  approach  would  also  have  deployment  issues  as  not  all 

operating  systems  will  support  such  shims,  and  the  shims  themselves  will  be  platform 

dependent.
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Figure 2.12: Staging data via disk is a simple way of bridging legacy applications to  
the Grid.



2.3.3. Communications and Data Security
Communications  and  data  security  is  another  important  consideration  for  production 

eScience  and  Grid  systems.  Although,  it  is  beyond  the  scope  of  this  project  a  brief 

background and discussion is included here for completeness.

For a system to be considered secure then from the data are collected onwards the data 

needs to be stored in such a way that it is protected from unauthorised access, while still  

being  available  on  demand for  use  by  its  owners.  This  must  include  all  stages  of  data 

activities including data collection, transfer, storage and staging to computational resources. 

This can be achieved either by only using secure and trusted networks and computers, or  

through a combination of transport layer and on-disk encryption. 

Once the data are available on the data processing systems there may be further need to 
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Figure 2.13: The use of a shim can redirect file access in a way that is transparent to  
the Application.



move the data around between elements within the computing network. Communications 

between processing elements needs to be secured as, in the case of the Grid, these computing  

elements may be agents or services executing at different institutions communicating over 

public networks. 

Within the Grid world the X509 [48] public key encryption standard is used to provide 

both  data  security  and  actor  authentication.  X509  uses  a  hierarchy  of  trust,  and  digital  

signatures  to  establish  the  framework  of  authenticated  communications,  on  top  of  the 

asymmetric encryption. Particular communications schemes employing X509 such as web 

services also time-stamp communications  to further  improve the trust  and authentication 

aspects of the scheme.

By  applying  this  technology  to  a  computational  network  it  is  possible  to  secure 

communications  and data  from interception  (theft),  and  man-in-the-middle  style  attacks. 

However, this does not address security on the resource where processing will occur. At this 

level there is reliance on the operating system to provide protection from other users and 

processes.  This  is  identified  as  a  particular  issue  when  the  resource  being  used  for 

computations  is  not  owned  by  the  researcher  or  their  institution,  such  as  when  rented 

commercial resources are used. This area requires further investigation in order to establish  

best practise when using third party resources.

2.3.4. Recoverability
Distributed computing systems by definition contain and rely on many components, such 

as  computers,  routers,  switches,  power  and communications  links.  As the complexity of 

these systems increases so does the probability that a single component will be out of service 

at  a  given  time.  Hence,  it  is  important  to  address  this  situation  within  any  distributed 

processing system. This is especially so in the case of the Grid, which is not only distributed,  

but may fall under many administrative and technical domains of control. For instance, an  

execution  which  utilises  the  resources  of  two universities  may be  affected  by  a  loss  of 
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network connectivity between the two sites. During this time the execution system should 

respond appropriately to salvage the work it has already performed, and to try to recover the 

progress when the connection is re-established.

Similarly, the experiment execution should support being paused, unpaused or restarted 

with minimal loss of progress. This addresses the situation where non-dedicated computing 

resources  are  being  used  to  perform  the  calculations,  and  these  resources  need  to  be 

reclaimed, or restarted during the period of the execution. 

Finally, ungraceful machine crashes should be recoverable, again with minimal loss of 

progress. In traditional parallel and distributed programming this may be addressed by taking 

a snapshot of the running system as a security against machine crashes. In the case of a 

single,  monolithic  program a complete  memory dump of  the running application can be 

taken. This can be slow, and takes large amounts of storage as the physical memory, and  

scratch disk files all have to be duplicated. In the case of a distributed application, special 

measures have to be taken to get a checkpoint from all nodes simultaneously. 

Task based experiment  execution systems,  such as  Nimrod,  approach the problem of  

recoverability through the use of transactional execution processing. Experiment execution 

systems contain many distinct tasks. Each task is considered to be atomic, either running to  

completion, or else does not affecting the global state, allowing recovery to occur by simply 

re-executing the failed tasks or those that  were in progress when the system failed.  The  

implementation  must  be  made  transactionally  safe  by  ensuring  all  the  data  are  located 

somewhere secure and not affected by system failure before marking the task as complete.

2.4. Computational Platform Review
Identifying  the  resources  which  are  available  to  execute  workflow  helps  refine  the 

constraints on the system, and the attributes of the system will  the suitability of various 

scheduling  decisions.  Network  topology,  resource  configurations  and  availability  of 

resources are all  important  considerations.  This section discusses these variables and the 
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framework within which they will be utilised. For the purposes of distributed data mining the 

resources need to be able to provide a network enabled environment that can execute the 

required  software.  This  will  be  determined  by  the  hardware,  software  and  network 

configuration of the system. From there, the performance, reliability, availability and cost of 

the resources will be the main selection criteria.

2.4.1. Survey of Distributed Computing Topologies and Services
A distributed computer typically refers to a virtual computer which has many CPUs that 

do not  share  the  same main memory.  This  is  commonly realised as  a  set  of  computing  

elements, connected by a network of high latency, as compared to computer bus speed. This 

is  in  contrast  to  multiprocessor  machines  such  as  multi-core  CPUs  and  Symmetric 

Multiprocessor (SMP) machines which are comprised of many computational units within 

the same physical housing, sharing the same main memory (RAM) and hard drives. These 

units  have  low  latency  and  high  throughput  for  communications  between  computing 

elements.

A second property of distributed computing systems is that their communication latency 

and throughput can be variable. Unlike a multiprocessor configuration where the system bus 

is used exclusively for CPU, memory and peripheral communications, distributed computing 

networks may carry communications for other network devices. However, it should be noted 

that  multiprocessor  machines  can  be  part  of  a  distributed  computing  configuration.  A 

possible  set  of  distributed  computing  resources  is  depicted  in  Figure  2.14 where  a 

practitioner uses commercial,  Grid and workstation resources, connected via the internet, 

local area networks and firewalls. 
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Computing clusters are homogeneous collections of computing elements which share a 

single network for the exclusive use of the cluster. This allows the network to be tuned for 

the application of the cluster, which improves the throughput and latency fluctuation within 

this type of distributed computer.

A widely distributed compute resource is defined here as any collection of computing 

resources that are connected by multiple network hops, which may include segments which 

may need to be shared with other resources. This increases the network latency, increases 

network jitter, and potentially reduces the available network bandwidth and reliability.

Grid  computing is  a  special  case  of  widely  distributed  computing  as  the  computing 
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Figure 2.14: Compute resources potentially available to practitioners within an 
institution. Includes networks of workstations, Grids and clusters, and commercially  
provided Cloud resources.



elements are assumed to be heterogeneous, and are accessed in a utility style, on demand.  

This means there will be variability of both the computing power and network throughput  

and latency within the Grid.  The computational  resources which are exposed using Grid 

computing may include multiprocessor machines or entire clusters which are made available 

as  single  computing resources.  These resources  are  typically  owned by virtual  or  actual 

organisations, and the Grid is used as a mechanism to share these resources with members of 

the organisation and their collaborators in a seamless fashion.

Cloud computing is similar to Grid computing as it is exposed as a utility style computing 

service which is usually accessed via a multi-hop network. It has the additional property of  

offering  reconfigurable  computing  services,  allowing  the  client  to  provide  the  entire  

operating environment including operating system for execution on the resources.  Cloud 

computing providers exist as commercial entities such as Amazon's EC2  [49] service, and 

generally offer generic resources on a pay-per-use model. The advantage of this model to 

researchers is the ability to acquire large amounts of computing power for relatively short  

periods of time, offering potential cost savings over owning physical hardware.

Table 2.2 shows some available types of distributed computing resources, as well as the 

accessibility,  reliability,  cost,  and availability attributes of these resources.  The trade-offs 

between the different classes of resource will determine which resources are appropriate for 

running a particular application.
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Resource class Accessibility Reliability Cost Availability

Desktop 
workstation

Varies, mainly at 
night

Low – 
possibility of 
unscheduled 
restarts

Low Ubiquitous

Grid/Cluster High availability 
– Possibly long 
queues

Medium to high 
– depending on 
underlying 
resources 

High Specialised, 
owned by some 
large 
organisations

Cloud High, depending 
on provider

Medium to high 
–  depending on 
provider

Medium to High Commercially 
available

Table 2.2: Different classes of distributed resource, and some attributes of these.

For Grid enabled resources to be utilised they must first be discovered. This can occur by 

the user providing a list  of valid resource addresses, or using a discover service. A Grid 

Broker is one such service that allows resources to be discovered, accessed and orchestrated.  

Brokers can be provided with various criteria for selecting resources. One such architecture 

which  has  been  proposed  to  formalise  and  leverage  cost  based  computing  is  Grid 

Architecture for Computational Economy, GRACE [50]. GRACE proposed a market model, 

Grid economics, which allows resources to be advertised, and compute time sold in a market 

system. This requires a centralised Grid Resource Broker (GRB), which allows the user to 

search, purchase, and access Grid resources (Figure 2.15). The GRB model exemplifies one 

possible way to monetise existing idle resources, and allows commercial resource providers 

to help supplement the available pool of resources available for research computing.
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Data transfer time within a distributed Grid system can be significant where large data  

sets are copied across wide area networks. This has implication for managing distributed 

executions,  as it  may not  be possible to centrally store all  data sets and access them on 

demand,  rather  data  may  be  stored  across  distributed  resources.  In  the  context  of  Grid  

computing there is typically a complementary service used to manage data known as the 

Data Grid [10]. The Data Grid is concerned with all aspects of data management including 

access,  security,  metadata and replication.  For  the purpose of scheduling,  the  replication 

feature is of greatest interest. Two typical data grid implementations supporting replication 

are  Globus Toolkit's  GridFTP with RLS  [51],  and Storage Resource Broker  [52].  These 

systems have the same general structure for storing, locating, replicating and retrieving files, 

but differ in the protocols, implementation and repository structure. 
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Figure 2.15: Grid Resource Broker provides a service to locate and acquire 
resources, based on market system.



The  general  data  grid  system includes  a  replica  catalogue  and  one  or  more  storage 

resources (Figure 2.16). The replica catalogue stores a reference to all files under its control 

using a logical name. The logical name is mapped to all the physical instances of the file in 

the various resources. A client user or service can query the replica catalogue for all available  

instances of a file using its logical name (a), and then select the most appropriate replica (b).  

The client can also request new replicas of a file be created (c), which may be done ahead of 

time.

By utilising a data grid, or similar system with replication capabilities, it is possible to  

manage the data transfers to complement the task execution. Replication transfers can occur 

between sites, allowing bandwidth to be fully utilised. To optimally execute a task the speed 

of the compute resources, the locations of the replicas and the available bandwidth between 

49

Figure 2.16: Example Data Grid scenario: Multiple resources located next to  
computational resources, and controlled by a replica catalogue. The User can 
request data be replicated between storage resources to provide local access to data 
by compute resources.



sites must all be considered. Often scheduling of data transfers is closely coupled with the 

scheduling  of  tasks,  but  it  should  be  noted  that  some  research  has  been  conducted  on 

decoupling  data  and  task  scheduling.  Ranganathan,  et  al.  [53] present  results  which 

demonstrate it is possible to schedule the replication of popular data sets and use a simple 

task scheduler to achieve acceptable results. 

However,  most  task  schedulers  for  the  Grid  are  also  responsible  for  data  replication 

scheduling. As evaluated by Hamscher, et al. [54] many popular scheduling algorithms will 

optimise using a simple heuristic such as minimum execution time or minimum start time. 

Nimrod/G [45], which is discussed further in section 2.4.4, uses a greedy algorithm to create 

and dispatch a time and budget constrained scheduler.

Data grids may not always be suitable, as existing data may need to be ingested into the  

data grid before execution, or for adapters to be provided to allow legacy applications to  

access the data grid. This additional complexity might not be worthwhile in many instances, 

unless there is already significant, integrated, data grid infrastructure. However, many of the  

data grid concepts are worthwhile considering.

2.4.2. Master-Slave Execution Model
The execution model  which is  used herein is  the  master-slave paradigm  [55].  It  was 

selected due to the simplicity in implementation, and its common adoption amongst other 

distributed computing projects. In this paradigm there are a number of nodes or agents that  

are connected by a network (Figure 2.17). One of these nodes is designated as the master 

node, and is responsible for the overall execution of the experiment. All the other nodes are 

slave nodes, and they process commands from the master to perform work. This is a very  

common  model  for  distributed  computation  as  it  centralises  the  complexities  of  task 

coordination, and allows the computational resources to be simple and light weight.  This  

technique is used in scientific computing projects such as Nimrod, and volunteer computing 

projects such as BOINC [56], SETI@Home [57] and Folding@Home [58]. 
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A significant amount of work has been previously undertaken looking at various aspects  

of  the  master-slave  paradigm,  and  a  common  technical  model  is  used  to  describe  the 

particular aspects of a master-slave system. This model covers network access, pre-emption 

of  tasks  and  execution  speed,  and  is  useful  for  analysing  algorithms  and  comparing 

performance.

The following discussion of the master-slave paradigm assumes a single port per node,  

which means that communication is limited to one full bandwidth transfer at any given time. 

Tasks  cannot  be  preempted,  meaning  they  cannot  be  stopped  and  started,  or  migrated 

between computational  hosts.  Other  parameters  such as  the  speed of  the  nodes,  and the 

number of simultaneous tasks which can be executed will vary during the discussion.

The abstract algorithm for the master node in a master-slave system is shown in Figure

2.18. The algorithm involves computing an objective function for each task to determine the 

best node to execute the task, and then dispatching the scheduled tasks to their assigned  

resources. 
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Figure 2.17: Master-slave paradigm: Slave compute resources connected via a  
network perform tasks requested by a master resource.



Figure 2.18: Abstract algorithm for the master node in a master-slave system.

The slave nodes run the counterpart algorithm to the master algorithm, seen in  Figure

2.19. In the slave there is a queue of tasks, and the slave will simply execute the tasks as they 

arrive.

Figure 2.19: Abstract algorithm for a slave node in a master-slave system.

The assignment of work occurs with the master not waiting for the completion of the 

individual slaves, rather tracking their state via a pool for idle slave nodes. When the slave 

receives an assignment it is removed from the idle pool, and when it completes its work it is  

re-added to the idle pool (Figure 2.20). Commonly, following the initial allocation of tasks, 

slaves will receive a new allocation immediately after reporting the completion of their task, 

skipping over the idle pool. Alternatively the scheduling events may occur on specific time 

intervals.

2.4.3. Scheduling Notation
This thesis will describe a master-slave system with the following notation, which has 
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1. For each task:
2.     Select most appropriate node from idle pool (Schedule)
3. Assign tasks to nodes (Dispatch)

1. While running:
2.     Dequeue task
3.     Execute task

Figure 2.20: Communications between master and slaves during task execution.



been influenced by Leung, et al.  [59] and Pineau, et al.  [60] and which is summarised in 

Table 2.3. 

Symbol Meaning

t j
R Release time of task j

t ij
E Execution time of task j on resource i

t j
I Execution length in instructions of task j.

si Speed factor of resource i

t j
C Completion time of task j

t ki
T Transfer time to get data set k to resource i

t i
W Wasted time of a resource

bk Size of data set k

Ei The efficiency of using resource i

Tmax The makespan, or completion time of the workflow

lil Bandwidth between resource i and l.

Ei Efficiency of the use of resource i.

Table 2.3: Summary of notation used to describe task scheduling.

Consider  a  master-slave  system  with  one  master  node  and  I slave  resources, 

R={R1, ... , R I } . Each slave resource,  Ri, has a CPU speed factor si which represents how 

quickly the resource can perform work. There are K data sets, D={d 1, ... , d K} , where data 

set dk has size bk and requires tik
T  to be transferred to resource  Ri being a function of its size, 

and available bandwidth,  l ij . There are also J task processes, P={P1, ... , P J } . Each task 

process Pj, has a set of input data D j⊆D , a release time after which it can be scheduled t j
R

,  a  length,  t j
I ,  based  on  the  number  of  instructions  required,  and  an  execution  time, 

tij
E
∝ t j

I si , on resource Ri. Once executed, a task process has a completion time of t j
C . The 

completion time is a combination of the release time, the execution time and whatever data 

transfer is required. 

In line with Pineau ibid this thesis adopts the definition of the one-port model as being 
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“where the master can communicate with a single slave at any time”.

Efficiency of a resource is the amount of time it  spends processing, compared to the  

makespan, or the time it is being held for exclusive use. In the situation where data transfer  

and computation do not overlap Tmax can be expressed as its components, where  ti
W  is the 

time a resource Ri  wastes being idle, and is not transferring data or executing task processors.

Ei=
∑

j

( tij
E
)

Tmax

=
∑

j

(t ij
E
)

∑
j

(tij
E
)+∑

k

(t ik
T
)+t i

W

 

(2.2)

The  final  completion  time,  time-to-solution  or  makespan of  the  workflow  is  the 

completion time of the final task in the workflow, 

T max=max
j

(t j
C
)  (2.3)

 Within Grid and commodity computing multi-objective optimisations are also common 

[61][45][62],  and  can  include  both  makespan/deadline  targets  in  addition  to  a  budget 

constraint  that  is  computed based on a cost  being applied to computational,  storage and 

network resources.

The scheduling problem is described by which information in  t j
R ,  tij

E ,  si and  t j
C  is 

known in  advance.  In  one  group of  literature  [63][64] the  scheduling  problem has  two 

classes, on-line and off-line. Maheswaran, et la. [64] describes these classes as:

“In the on-line mode, a task is mapped onto a machine as soon as it arrives at the mapper.  

In batch mode tasks are not mapped onto the machines as soon as they arrive; instead they 

are collected into a set that is examined for mapping at prescheduled times called mapping 

events.” 

The consequence of this is that Venugopal, et al.  [63] describes the scheduling problem 

they addresses as being in the class of off-line scheduling problems. However, Pineau, et al.  

[60] and Pinedo  [65] have a different framework to handle on-line and off-line classes of 

problems. They maintain the definition based on the information available at the start of the 
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workflow, but do not prescribe that on-line scheduling needs to immediately be mapped to a 

resource, or that rescheduling cannot occur. 

Alternatively, Pinedo [65] defines off-line and on-line on a continuum of information, and 

include a third class called stochastic scheduling. That is, off-line has all information for the 

jobs up-front, stochastic where the number of jobs is known but release times, deadlines and 

runtimes are all unknown and drawn from a random distribution. Then on-line scheduling is 

where no information is known up-front, including the total number of jobs.

Based on the definitions in [65], which appear to be the most authoritative, the problems 

addressed both in  [63] and in this thesis are in fact of the third class of problem, termed 

stochastic. That is, all the jobs are available at the start of the execution, with a release time 

of 0, but unknown runtimes which are drawn from an unknown distribution. 

2.4.4. Task Scheduling in Distributed Computing
To utilise the available compute resources an algorithm is needed which can assign tasks  

to  the  resources  such  that  all  tasks  are  executed  and  any  prerequisites  of  the  tasks  are  

fulfilled.  This  algorithm is  known  as  a  scheduling  algorithm.  It  will  typically  be  more 

sophisticated, and involve other constraints or objective functions, such as minimising the 

makespan  [59].  The  scheduling  problem is  NP-complete  [66],  meaning  that  there  is  no 

optimal  algorithm which  will  run  in  polynomial  time.  For  this  reason  polynomial  time 

heuristics are used to compute schedules.

The scheduling problem has a number of variables which need to be considered, covering 

the  tasks,  compute  resources  and  the  network.  These  include  task  run  times,  task 

dependencies,  compute  resource  speed,  number  of  CPUs,  and  network  speeds.  These 

variables may be unknown at the start of the execution, and may vary during the execution.

Data  mining workflows may contain  many compute  intensive  tasks  and include  data 

dependencies between particular tasks, or groups of tasks. These data dependencies need to 

be resolved, and the data transported, before dependent tasks can be executed. The size of the 
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data transfers may vary from gigabytes for some input data, to just kilobytes for models and 

summary vectors. Scheduling the execution of these tasks on a distributed set of computing 

resources  in  an  efficient  way  motivates  this  investigation  into  the  scheduling  of  data 

dependent workflows on distributed and Grid resources.

The  scheduling  problem  in  a  distributed  computing  environment  has  significantly 

different  factors than the scheduling problem within a single machine.   Communications 

latency  and  bandwidth  limitations  between  computational  elements  becomes  more 

significant, so does the frequency with which these communication channels are used. This 

will  be  a  limiting factor  for the efficiency and minimum makespan of  an execution.  To  

illustrate  this,  consider  a  single  processor  which  is  executing  tasks.  In  Figure  2.21 the 

scenario in  a has a higher bandwidth than the scenario in  b. The tasks, T, require data, D, 

which needs to be transferred across a network. As the network bandwidth decreases, the 

transfer time increases, and this increases the makespan. This means that for a task to be  

efficiently executed the task run time must dominate the data transfer time, which places a  

constraint  on  the  types  of  tasks  which  can  be  efficiently  executed  using  distributed 

computing.

In addition to makespan and efficiency, cost is another function which can be optimised 

by the scheduler. This approach assigns a cost against a resource based on the amount of 

time the resource is occupied, and would typically reflect the real world ownership costs of 

the resource. Different resources will have different attributes such as speed and cost, and the 

56

Figure 2.21: Impact of decreasing bandwidth (or increasing data size) on makespan.



trade-offs  between  the  different  classes  of  resource  will  determine  which  resources  are 

appropriate for running a particular  application.  Research into scheduling systems which 

utilise  budget  constraints  has  been  previously  conducted  by  Buyya,  et  al.  [45][50],  and 

others. These systems can utilise market based Grid resource brokers such as GRACE to 

discover and acquire resources based on performance and cost attributes, as well as other  

sources of cost information such as user supplied values. For instance, Nimrod allows the 

practitioner to specify a parameter sweep workflow, supply a list of resources, and then run  

the experiment with both time and budget constraints. Nimrod will attempt to satisfy both 

constraints by choosing resources based on cost and performance using a greedy algorithm.

Different  distributed  and  Grid  resource  environments  exist,  and  are  generally 

characterised by heterogeneity of processor speeds,  memory,  storage,  network speed and 

network  latency.  This  results  in  a  less  than  ideal  computing  platform.  Two  particular 

configurations  of  interest  are  Grids  comprising  workstation  networks,  and  hybrid 

workstation networks supplemented with Grid enabled clusters.  Workstation networks are 

typically highly heterogeneous due to differing requirements of the end user, and different 

purchase dates of the systems. However they are a low cost computing option. In contrast 

specialist clusters are more homogeneous as they are typically purchased at the same time  

with the same specifications, and deliberately matched to maximise parallel performance, 

making them a higher cost option.

Section 2.1 identified heterogeneous configurations of computational resources and has 

shown them to be appropriate for experimental cheminformatics work, making better use of 

existing  resources  and  utilising  centralised  or  Grid  resources  where  required.  Individual 

machines in the network may have one or more CPUs or computational elements, and are  

assumed to have sufficient local storage (hard drive) space, to hold the data that they are 

processing.  Consideration  needs  to  be given  to  the  real  world  requirements  for  network 

communications between these resources,  as security firewalls  can and do interfere  with 

direct  communications.  In  particular  communications  to  clusters,  where  the  individual  
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cluster nodes are typically inaccessible from the wider network can be problematic. In this  

scenario the cluster “head node” needs to be used to relay messages to the cluster nodes, 

either using a proxy as is done by Nimrod [45], or by using an agent as presented here. 

Master-slave systems requires a resource, known as the master, to host the experiment 

and coordinate  the  execution,  while  one  or  more  slave  resources  perform the  work.  An 

anticipated scenario for workflow execution would be for the practitioner to be using their  

workstation or high performance computing environment as the master resource, meaning 

the network connections between the master and the slaves will  impact on the workflow 

execution performance. If required the workflow could also be executed from a dedicated  

workflow service, removing the workstation from being part of the execution environment. 

Initially all  the data are located on the master resource. Once the workflow begins to be  

executed  the  data  are  copied  to  the  remote  slave  resources  where  it  is  required  for  

processing.  This  assumption  differs  from some  other  data  intensive  schedulers,  such  as 

Venugopal [61], who assume a random distribution of data across participating slave nodes. 

Data dependency between computational tasks is a constraint on scheduling options, as 

the list of candidate tasks for execution will vary depending on the available data. In contrast 

to other Grid applications like bag-of-tasks, where independent tasks which all relate to one 

application execute under common constraints, data dependencies brings the possibility of 

starvation of slaves due to the unavailability of data to execute more tasks. This reduces the 

throughput of the system, and the efficiency of the execution as machines sit idle.

2.5. Previous Projects
Both  Grid  and  distributed  computing,  as  well  as  the  eScience  paradigm,  have  been 

maturing over many years and consequentially there are many existing software solutions in  

the  problem space as  described in  the  previous sections.  Many are  research implements 

which focus on single issues within the problem space or focus on specific applications, and 

they  do  not  intend to  provide  the  solution  to  the  specific  problems described  here.  For 
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instance, the Blast application which is used to compute sequence alignment has been “Grid 

enabled” many times. For example, Squid  [67] is a Perl based project to execute a Blast 

search in parallel, and SOAP-HT-Blast [68] exposes the same application as a Web service, 

making  it  available  to  be  run  on  the  hosting  resource  from other  applications  on  other 

machines.

The following section covers several  projects which make significant contributions to 

various  aspects  of  executing  data  mining  workflows on distributed resources.  These  are 

Nimrod, Kepler and Taverna, which will be discussed in the context of the problems set out 

previously. Aside from Grid computing there are also a number of data mining suites that are 

important to discuss here, such as Rapid Miner, the R language and WEKA. These projects 

do not attempt to provide a parallel or Grid execution solution, or embrace the eScience 

paradigm directly,  but they do mark an important point  in the evolution of thinking and 

technology along this road.

At this point it is important to distinguish data mining performed on distributed resources, 

from the field of distributed data mining. The distinction is that distributed data mining is the 

development of algorithms that can perform data mining on data which is distributed and not 

moved. That is, the data mining application is sent to the data, typically because the data is to  

large to  transfer.  Data  mining on distributed resources,  on the other  hand,  is  the  use  of  

distributed computing resources to perform data mining, typically where the data mining 

application and the data can be transferred.

2.5.1. Data Mining Services Middleware
Many Grid  data  mining  projects,  such as  GridMiner  (below),  the  work  presented by 

Perez, et al.  [69], and WEKA4WS  [70] approach the use of the Grid for data mining by 

developing service oriented architectures.  That  is,  presenting data mining applications as  

services that  can be invoked remotely by practitioners.  The focus of these projects is  to  

resolve architectural and interoperability issues with the services frameworks, and they do 
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not concern themselves with the low level requirements addressed in this thesis.  A service 

oriented implementation may well present a data mining service that is, in fact, executed in  

parallel. And, it may be desirable to one day present this thesis project as a service. 

2.5.2. GridMiner
GridMiner [71][72] takes a pure Grid approach to providing a data mining environment. 

The project  is  built  using Globus Grid services,  providing a high level  BPEL workflow 

enactment engine to execute experiments. Data access is also provided by Data Grid enabled 

OGSA-DAI  databases.  GridMiner  relies  on  parallelism  within  the  Grid  service 

implementations,  and  does  not  attempt  to  expose  and  exploit  parallelism  within  an 

experiment. It is a good demonstration of a services, and standards focused project, but it  

leaves  behind  many  of  the  legacy  data  mining  application  that  are  a  key  focus  of  the  

requirement for this thesis.

2.5.3. Nimrod
One  of  the  identified  required  features  is  the  ability  to  perform  parameter  sweep 

operations in parallel. This functionality is the primary focus of the Nimrod software [45]. 

Nimrod introduced a novel concept of using market based placement of jobs. In setting up 

the  Nimrod  workflow  the  investigator  would  specify  a  deadline  and  a  budget  for  the 

completion  of  their  application.  Then  the  Nimrod  software  would  communicate  with  a 

broker to find appropriate computing resources to use for the execution. Each resource has a 

price per unit time associated with it, faster computers typically being more expensive per 

unit  time  than  slower  machines.  This  allows  the  investigator  who  needs  faster  time-to-

completion to acquire additional resources to achieve this.

The workflow used by Nimrod is  a  simple  parameter  sweep model.  The investigator 

constructs a series of nested loops to iterate over the parameters of interest. Within these  

loops a job execution operation is specified which substitutes the parameters as command 

line arguments. Alternatively the parameters can be substituted into a file template.
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Nimrod will stage in the data and application, and stage out the output as specified by the 

investigator. The philosophy of this approach is to enable legacy applications to be executed 

on Grid resources without modifying the application in question.

Each job in a  Nimrod workflow is  entirely standalone,  and thus  there is  no onus on  

determining  an  order  of  execution.  Each  unique  parameter  combination  is  stored  in  a 

database, and marked as done when the application has successfully completed. This allows 

Nimrod to be restarted without loss of previously completed work.

Nimrod uses an agent based architecture, with the agents written in C/C++ and the master 

being a Python application. They communicate over a HTTP communications protocol.

Nimrod does fulfil  some of the requirements set out  at the beginning of this chapter. 

However, the workflow language does not allow the nesting or chaining of iterations, so 

steps such as pre-processing cannot be expressed. 

Since the completion of this project Nimrod/K [73] has been developed and reported on. 

Nimrod/K makes significant progress toward the goals of the project presented in this thesis. 

Specifically,  Nimrod/K utilises  the  Kepler  workflow engine  (discussed  in  the  following 

section) to enable the execution of parameter sweeps across subsections of a workflow, with 

the tasks executed on distributed resources using the Nimrod system. This allows some of 

the  parameter  sweep style  components  of  a data  mining workflow to be expressed,  and  

executed in parallel.

2.5.4. Kepler
The Kepler [74][75] scientific workflow system is centred around the desktop, and uses a 

process workflow paradigm. This means that instead of considering the path that data will  

take from the source, through transformations, to its sink, Kepler considers each action to be 

triggered by the completion of the previous. This has many similarities to a data flow system, 

if  signals are considered to be data flows. 

Kepler supplies a suite of interesting and useful workflow actors, including logical and 

61



arithmetic operations, reading and writing data and graphics, as well as invoking external 

programs and services. 

Kepler does not fulfil the parallel processing aspect of the requirements because it does  

not provide an understanding of properties of the data being passed between actors, such as 

its ability to be parallelised. Also, it is desktop centric, and does not allow for unattended  

execution. This supports the observation that Kepler is not appropriately oriented toward 

Grid processing. Kepler does provide Grid service invocation, which lends itself to being 

used  as  an  overall  process  co-ordinator,  but  this  alone  does  not  enable  parallel  Grid 

processing.

2.5.5. Taverna
Taverna  [76] is a group of applications and standards which have arisen from the UK 

eScience  community  to  facilitate  desktop  bioinformatics  workflows.  Its  parts  include  a 

workflow engine,  desktop  interface,  task  enactment  services,  and  tools  to  wrap  existing 

applications for use within Taverna. Their goal was to create an open source bioinformatics  

environment which could create, execute, record and share experiment workflows.

Their workflow system is described in an XML language called Scufl (Simple Conceptual 

Unified Flow language). It consists of three element types: processors which transform a set 

of inputs into a set of outputs, data links which dictate how data moves between processors,  

and  coordination  constraints  which  control  the  order  of  processing  when  no  direct  data 

dependencies exist  between processors.  The processors which are provided with Taverna 

allow for the invocation of remote web services, applications wrapped for webservices using 

Soaplab,  nested  Scufl  workflows,  local  applications,  constant  outputs  and  Talisman 

[77] which is used for rapidly developing Grid services.

Provenance information is recorded for each task in the workflow. This occurs when the 

tasks start and finish, and captures the parameter information about the task.

Taverna  is  strongly  oriented  towards  web  service  enactment,  and  thus  provides  only 
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coarse grained parallelism for the execution of the workflow. Of coarse, the webservices may 

themselves  be  executed  using  clusters  or  other  parallel  systems,  and  this  complexity  is 

hidden from the user and Taverna.

2.5.6. RapidMiner
RapidMiner 4.3 [78], formally known as Yet Another Machine Learner (YAML) is a Java 

machine learning framework and workbench.  Following the tree  based workflow model, 

RapidMiner  allows  the  practitioner  to  assemble  a  workflow comprised  of  sequential  or 

nested  operators,  which  perform  work  on  a  data  set.  It  uses  a  very  strict  structure  for 

dataflows between elements, allowing only a single data set to be accessed by each operator,  

and relying on the operator themselves to perform any filtering required on the data. This  

design consideration is acceptable in the context of a single computational element, as the 

data will always be located where the processing is occurring.

For instance, in the case of a cross validation operator will receive the data set from the 

previous operator and split the data into a test and training set. The cross validation operator 

is  allowed  to  have  two  nested  operators,  the  first  being  a  learner,  the  second  being  an 

evaluator. The cross validation operator then passes one subset of the data to the learner, and 

then passes the resultant model plus the remaining data to the evaluator, which returns a  

PerformanceVector, containing the performance evaluation.

2.5.7. WEKA
WEKA [3] is a university developed Java data mining package, which provides a suite of 

classification and regression methods,  inside a rich environment. The WEKA workbench 

provides both a graphical workflow tool, and a more technical interface which allows the  

investigator to visualise and data mine their data. It includes a comprehensive suite of tree, 

linear regression and meta-models. 

The classes within WEKA can,  and have been used in other projects to provide data  

mining and analysis  features.  To achieve this,  the client  application needs to  provide an 
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adapter within the application from the data representation to the WEKA data interface.

There  have  previously  been  projects  aimed  at  parallelising  complements  of  WEKA, 

specifically the cross-validation step. WEKA4WS [70] is a project that produced a version of 

WEKA that  was  exposed as  a  web service,  however  it  is  limited  to  executing  a  single  

experiment on each resource. It is possible to start multiple separate experiments on different  

resources, and have them execute in parallel, but this does not improve the time to solution  

of any individual experiment.

2.5.8. R Language
The  R  language  [26] has  a  long  history  in  informatics  research.  It  is  a  complete 

programming  environment  designed  for  statistical  analysis,  and  based  on  the  ideas  and 

structures of the S+ statistical environment. Like any language it has some fundamental data 

structures, in this case the matrix, array, list and data frame (a very useful R structure that  

allows  heterogeneous  data  sets  to  be  addressed,  filtered  and subsetted).  There  are  other 

derivations  of  these  structures  within  R,  but  these  four  are  representative  of  the  main  

structures. The first two are quite self-explanatory. Lists are similar to arrays, except they can 

use strings as their keys. They are equivalent to maps or dictionaries from Java or Python 

respectively. Lists are very useful for storing complex objects, such as models, which might 

have multiple sets of parameters,  or other homogenous data which needs to be stored in  

relation to each other. 

The data frame is based on a the list data type, but with some restrictions, as each key  

must contain an array equal to the length of the arrays in the other keys. Another way of  

looking at this is: a data frame in a matrix where each column can be of different data types.  

Data frames are very useful in numerical analysis situations, as different attributes in the data 

set can be of different data types.

The R language lends itself to extension in other languages. Natively it can use Fortran 

functions,  and many core  packages are  in  fact  implemented in  Fortran,  with a  set  of  R 
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functions available to assemble the data in a form that Fortran can use. This is normally done  

to  improve  the  speed  of  the  methods,  as  R  is  an  interpreted  language  and  suffers  a 

performance penalty for this.

Parts  of  the  bioinformatics  community  have  adopted  R  as  their  preferred  working 

environment. This has spawned the Bioconductor [79] project, which provides a number of 

bioinformatics specific libraries.

2.5.9. Summary of Previous Projects
A comparison of the projects discussed above is presented in Table 2.4. The comparisons 

are made against the three requirement groups presented in Section 2.1.6.  It can be seen that 

the requirements  are  not  fulfilled by any of  the  systems,  but  all  systems make valuable  

contributions  towards  them.  In  particular  WEKA  and  RapidMiner  provide  insightful 

workflow  management  for  data  mining,  while  Taverna  and  Kepler  provide  excellent  

provenance management, and Nimrod provides excellent contributions to the execution of 

tasks.

The significant gap remains the lack of a mechanism for breaking a workflow into coarse  

grained  tasks.  Then  the  task  execution  will  need  to  be  optimised  to  accommodate  the 

potentially  large  data  set  that  will  be  moved  around  during  the  execution.  Finally,  the 

provenance collection systems will need to be extended to better cater for the heterogeneous  

environments that executions will occur in.
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Project eScience and experiment management Integration and deployment Distributed execution

GridMiner • Experiment  management  provided 
with high level workflows

• Only integrates to web/Grid services
• No legacy application support

• Provides  support  for  existing  Grid 
services

Nimrod • Support for simple experiments only,
• Experiment  is  confined  to  a  single 

directory  meaning  good 
repeatability.

• Only  supports  executables,  no 
specific language integration

• Excellent parameter sweep support

Kepler • Excellent  high  level  experiment 
representation,

• Workflow  representation  not 
conducive to parallel execution.

• Support  local  execution  of  R  and 
MATLAB

• No  distributed  support  for  R  or 
MATLAB

• Provides  support  for  existing  Grid 
services, 

• No  support  for  parallel  workflow 
execution.

Taverna • Excellent  high  level  experiment 
representation,

• Workflow  representation  not 
conducive to parallel execution,

• Excellent capture of provenance.

• Individual  applications  can  be 
wrapped as  services,  which  can  be 
consumed.

• Provides  support  for  existing  Grid 
services, 

• No  support  for  parallel  workflow 
execution.

RapidMiner • Data  mining  centric  workflow 
language

• Support  R  and  WEKA  through 
extensions

• No support

WEKA • Workflow management is excellent • No  direct  support,  but  can  be 
extended  by  implementing  new 
plugins

• Limited  support  for  some  steps  of 
the  execution  through  3rd party 
extensions

R language • Excellent flexibility for experiments, 
but experiment management is up to 
practitioner

• Many integration points to WEKA, 
C, Fortran and many other systems

• Supports  simple  distributed 
computing  functionality  through 
SNOW module, but the distribution 
and coordination of the execution is 
up to the practitioner

Table 2.4: Summary of previous projects covering data mining.



2.6. Summary
Data mining is an important tool in many fields, including cheminformatics, as it is used  

to extract useful information from large, complex or poorly understood data sets. However,  

data mining needs to be able to scale up to meet the computational throughput required to 

analyse larger and more complex data sets. Grid computing offers some remedies for this 

through scalable  computing resources,  and distributed compute  and data  paradigms.  The 

problem for eScience is to bring together the existing software and data systems, and build  

them into a greater framework which adds value for the practitioner. The requirements to be 

met in order to achieve this outcome include reliability and recoverability, interoperability,  

and use of distributed resources. 

There  have  been  a  number  of  projects  to  date  which  have  addressed  some of  these 

requirements, either for specific disciplines or in a generic way. In analysing these projects 

with  a  view  to  their  application  to  data  mining  several  inadequacies  in  the  existing 

approaches  have  been  identified  and  have  informed  the  development  of  the  workflow 

language  presented  here.  However,  many  of  the  previous  projects  make  substantial 

contributions towards the desired outcome, and may provide partial solutions that can be  

adopted  or  adapted  to  provide  a  complete  data  mining  eScience  toolset.  This  will  be 

discussed in the next chapter.

A data mining eScience platform needs to provide a workflow language which allows the 

practitioner to integrate existing applications in a single workflow, using constructs or syntax 

that allows the abstract data mining process to be expressed. The platform should then be  

able to break the workflow into inter-dependant tasks, and schedule these tasks for execution 

using distributed compute resources.
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Chapter Three

3. Distributed workflow, and eScience tool chain
The  project  described  in  this  thesis,  in  part,  involved  the  designing  of  a  distributed 

experiment workflow execution system – here in referred to as the workflow system – to 

fulfil the requirements for a distributed data mining workflow system as outlined in Chapter 

2. This chapter discusses the architecture and design decisions of the workflow system. It  

covers the workflow language and its artefacts, and their interactions with external systems, 

as  well  as  the  platform  for  utilising  resources  and  managing  data.  The  details  of  the 

algorithms used in the scheduling component will be discussed in Chapter 4. And, a real  

world implementation of workflow and execution system is demonstrated in Chapter 5.

The system is an implementation of the master-slave distributed computing paradigm, 

and integrates a data distribution system based on tuple space and data grid principles. The 

system  executes  experiments,  which  encapsulate  data  sources,  executable  code  and  the 

workflow which describes what is to be done. Each slave resource runs a piece of software 

called  an  agent,  which  is  remotely  controlled  by  the  master  in  order  to  orchestrate  the 

workflow execution.

The computational experiment is expressed in an experiment document (Figure 3.1) using 

Extensible Markup Language (XML)[80]. XML is suited to this role as it is an expressive, 

extensible  structured document  format  that  supports  validation and is  well  supported by 

software libraries in many languages. The experiment document describes data elements that 

describe data sources and sinks. There are various data elements that allow for data files to 

be processed at various granularities, from sets of files to individual records within files. data 

are made accessible to be processed by the system via  adapters,  that  make various data 

sources available through a consistent interface, separating data input requirements from data  

format requirements. When data are not available on a particular resource it can be replicated 

(copied) from other resources. Workflow operators are provided by external applications, in 

68



particular R and MATLAB as they are common powerful data mining languages.

The workflow language implements parameter sweep functionality such as is found in 

Nimrod  [45] for nested and sequential  iterations,  and also allows for data sub-setting to  

enable  more  complex  processes  to  be  captured.  This  allows  complex  experiments  to  be 

expressed  in  the  workflow  at  an  abstract  level,  leaving  the  details  of  the  algorithm 

implementation to more mature data mining applications.

Experiment  and data  provenance information is  captured by the agents  executing the 

individual tasks of the workflow. Tasks are annotated with information about execution time, 

input data, output data, and execution environment. This information is useful in verifying 

the  integrity  of  an  experiment  by  auditing  the  execution  environment,  and  detecting 

anomalies  and errors  in  the  intermediate  data.  In  a  heterogeneous environment  software 

version  mismatches  may  unexpectedly  cause  program  errors  or  erroneous  data  to  be 

produced.

The  design  of  the  distributed  data  mining  system is  described  in  detail  through this  

chapter.

3.1. Review of Data Mining Experiment Requirements
As introduced in Chapter  2.1.2, the data mining process involves three key classes of 
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which all map to their counterparts in the eScience system.



artefacts  to  describe  an  experiment,  as  they  provide  sufficient  context  to  reproduce  the 

experiment: 

1. The data sets, both producers and consumers; 

2. The operations being performed on the data; and 

3. The workflow which describes the order of operations. 

Requirements for these artefacts in this project are:

1. data sets of various sources and formats must be made available through a consistent 

interface;

2. Operators must make use of legacy software, including scripts in specialised data 

mining environments such as R and MATLAB; and

3. Workflow must support:

1. Nestable iterations;

2. Invocation of actions with the data exposed by the iterations;

3. Storage of output from actions;

4. Chaining of multiple actions in sequence; and

5. Loops or actions executed in sequence.

In fulfilling these requirements many technical,  technology and architectural decisions 

will need to be made. The most pragmatic decision will typically be made where the choices  

do not impact on the central research questions and investigation.

3.1.1. General Data Mining Experiment Use Case
The practitioner begins by selecting the data object or objects that are of interest, then the 

operations which will  be used on the data,  and subsequently uses  these to construct  the 

workflow to fulfil their investigation. For the data mining scenario the construction of the 

workflow will essentially require setting up appropriate validation patterns, such as 10-fold 

cross validation, and invoking the operations which are required to be execute the modelling 

technique.  This results  in the workflow description replacing the outer  loops of the data 
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processing, with the actual processing being provided by the operators. This mimics the form 

of a normal procedural programming language, which is beneficial because its form will be  

familiar to the practitioner, and also because it separates the orchestration details from the  

algorithmic details.

Collectively the data, operators and workflow will be referred to as the experiment, with 

the series of experiments from which conclusions are drawn and which will be refined over 

time being referred to as the investigation. The practitioner can now execute the experiment 

locally or on a set of Grid resources, and collect the output data set using it to make decisions 

about how to proceed in their investigation. This will probably mean manually refining the 

parameters of operations in the experiment, adding in additional sweeps to determine 

parameter responses, or changing the actual operations which are being executed. Essentially 

the process of discovery is made up of number of linear and non-linear components. By 

analogy if the processes is considered as a control system, the investigator is a non-linear 

component in the feedback loop.

When the practitioner launches the workflow from their workstation, or other networked 

machine it is the only node with all the data and workflow information. As remote nodes 

become available they must be configured, and have data and workflow requests sent to 

them so they can perform their tasks. There is assumed to be no pre-staging of data or 

programs in this environment as nodes will have been recently acquired for this task and are 

assumed to be in a clean state. Nodes can differ in what hardware architecture they use, and 

what operating system, memory, network, and pre-installed applications they have.

3.2. Experiment Representation
The experiment is represented as an XML document (Figure 3.2) that consists of three top 

level  elements:  data,  operators and  workflow,  and  two  descriptive  attributes  of  the 

experiment,  name and  version.  The data elements describe the input and output data; the 

operators  describe  the  transforms  available  for  use  in  the  workflow;  and  the  workflow 
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section describes the actual work to be done. While the document is self-contained, it can 

also be assembled using components from other sources, such as common repositories or  

libraries of operators and data elements. An example of this would be a data set repository,  

cataloguing data sets and describing them in XML fragments which can be imported into 

new experiments.

3.2.1. Workflow
A workflow is the process that is to be followed to perform a data mining experiment. As 

discussed in Chapter 2.2.1 there are a number of forms that workflows can take, including 

parameter sweep, process workflow, data flow and task lists. It is clear from the data mining 

template in Chapter 2.1.5 that the data mining process is well suited to the parameter sweep 

style  workflow,  as  it  uses  deeply  nested  loops  to  perform  executions  on  different 

combinations  of  input  data.  However,  many  pure  parameter  sweep  workflows  have 

limitations that need to be addressed in a new parameter sweep style language.

Data  mining requires that  the  workflow has  the capacity  to chain multiple parameter 

sweep groups together in order to express the different steps of the data mining process. A 

process  workflow would  express  these  requirements  using  a  flow  chart  with  boxes  for 

process steps and arcs for transitions. However, many process workflow implementations do 

not support iteration in a way that would allow the parallel execution of those loops. For  

instance, the process workflow language Business Process Execution Language (BPEL) [81]

was identified by Slominski [82] as a candidate for scientific workflows, however he notes 
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that it is limited by not supporting parallel loops. Data flows may be suitable for some data  

mining applications, however, like process workflows, data flows lack an elegant way to 

express iteration. Pure parameter sweep languages such as Nimrod and AppLeS[83]  only 

allow  a  single  task  template  to  be  applied  per  parameter  sweep,  so  would  require  an 

extension to allow multiple parameter sweep experiments to be chained together. Finally,  

task lists  are  unsuitable  as  they require  the  practitioner  to  define each task individually. 

Although, it should be noted that parameter sweeps can be broken up into task lists, which 

are then useful for execution.

Figure 3.3: Parameter sweep blocks and subsetting example: Lines 1-4 generate data 
and write it to a store including variables which indicate the index of the iterators.  
Lines 5-6 bring those same iterators into scope again, and line 8 uses subsetting to  
retrieve the data stored in line 4. Method or sub-setting parameter names are shown 
in italics.

The  parameter  sweep  style  was  adopted  as  the  basis  for  the  data  mining  workflow 

language  as  it  naturally  supports  the  parallel  processing  of  tasks,  nesting  of  loops,  and  

execution  of  the  operators  in  sequence,  additionally  it  has  simple  syntax  that  is 

straightforward to parse and easy for the practitioner to understand. Two additional pieces of 

functionality are required to fully accommodate the requirements: multiple parameter sweep 

blocks and data set sub-setting. Support for multiple parameter sweep blocks there may be 

more than one top level loop, such as when there is preprocessing in addition to the main  

process. The constraints on the order of their execution is implied by their data set reading  

and writing dependencies. The workflow in Figure 3.3 contains two parameter sweep blocks, 
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1. For each data set:
2.   for each method:
3.     {method}(in=data set, out=model)
4.     write to models (data set=data 

set,method=method,model=model)
5. for each data set:
6.   for each method:
7.     for each second_method:
8.       for each models[data set=data set,method=method]
9.         {second_method}(in=data 

set,first_model=model,out=second_model)
10.         write to output (data set=data 

set,method=method,second_method=second_method,model=second_mode
l)



the first in lines 1-4, and the second in lines 5-10. Data input and output of the elements  

within each block will determine which block is executed first.

Data sub-setting allows a parameter sweep to only consider a subset of the tuples in a data 

set, based on the value of tuple attributes. As an example of the use of sub-setting consider  

the workflow in Figure 3.3. Its purpose is to test all combinations of data sets, two stages of 

methods.  In order  to express  this without  nesting iterators after  operators two groups of 

nested iterators are used. The first group, lines 1-4, generate the first stage of method models.  

The second group revisit the same iterators (lines 5-6), retrieve the data stored in the first  

group using subsetting (line 8), then perform the application of the second method and store  

the results (lines 9-10). 

The workflow representation is designed to be as brief as possible to assist in keeping the  

separation between the workflow and the data mining operators, and to keep the workflow 

language general purpose for data mining as practical. The general elements of the workflow 

are  containers  which  contain  actions and  other  containers.  A  container  groups  other 

workflow elements while defining the variables that are in scope for them, and an action 

manipulates the data within its scope by mapping data to the input and output ports of the  

action. From Figure 3.3, lines 1 and 2 will bring variables from data set and method into the 

scope of the action on line 3. The action on line 3 will be invoked with its in port mapped to 

data set and its out port mapped to model. This same data, including the value in model will 

then be available to be written out by the write operation on line 4.

The workflow uses a data-centric model which allows the system to maintain a consistent  

state, including in widely distributed executions. The system requires that data sources be 

addressable by row and by variable, similar to a database. The individual rows, or tuples in  

database terminology, can consist of any number of variables and combination of data types. 

Each variable is a vector of a primitive type, integer, double or string, or it can be a file. Files 

are a special case of a string and are made available to the operator as a string reference to 

the file.
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The workflow language provides a means of moving through the data sources, processing 

and transforming the data,  and depositing the outputs into the  data  sinks.  These will  be  

referred to as  keywords,  in reference to their  similarity to the built  in functions in other 

programming languages.  The first  keyword is  the  data iterator which is  responsible  for 

moving sequentially through the records of a data source, bringing the row into scope. This 

keyword is the principal point of parallelism as it offers a container which may contain a 

discrete set of operations. Another similar keyword which defines a set of operations is a  

group, which simply combines operations in a container which cannot be further segmented.

Next the data manipulation operation, execute that presents data, which has been brought 

into scope by the data iterator keyword, to an external operator which manipulates the data  

and returns an output. The results returned by the operator are then in scope and available to 

subsequent operators, including write keyword which commits data to a data sink.

The data iterator and write keywords in this workflow language are similar to the in and 

out keywords  in  the  traditional  tuple  space  distributed  computing  model  Linda  [84]. 

However, they differ in a number of subtle ways, specifically the restricted way in which the 

data  iterator  is  used  to  sequentially  move  through  the  input  space.  There  will  be  more 

discussion of this in section 3.4.1.

Figure 3.4: Illustration of variable scoping. a) Variable x is in scope on line 3. b)  
Variable x is out of scope on line 3.

Scoping of a variable is initialised either by a data iterator, or by an execute returning a 
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a)

1. for cv in 1 to 10
2.     x = operation()
3.     write(x=x)

b)

1. for cv in 1 to 10
2.     x = operation()
3. write(x=x)



new named variable. The variable in the workflow is only inherited by the nested elements in  

the workflow. For instance, see Figure 3.4a, this write operator will be able to access variable 

x, while in Figure 3.4b the write operator will not be able to access variable x. Furthermore, 

all variables are immutable, meaning that once they are set they cannot be changed. The data  

iterator does not break this rule, as at the end of the data iteration all of its variables become  

out of scope, and are recreated with new values.

The syntax available in this workflow is slightly more sophisticated than in some other 

workflow  systems,  as  it  provides  both  data  assignment  and  iteration.  Parameter  sweep 

workflows which use textual syntax, such as Nimrod [45] only allow simple data to be used 

within the workflow. Many graphical languages like Kepler  [74] allow you to specify the 

data flows between operators, but expressing constructs such as iteration can be difficult if  

possible at all. 

By providing the syntax similar to that of a procedural programming language it becomes 

possible  to  more  easily  move  the  division  between the  workflow system and the  target 

applications. As long as the invocation of the operator and data handling occur efficiently 

then there will be minimal or no penalty for doing this, and it will expose more places where 

an  experiment  can  parallelised.  The  process  of  parallel  execution  involves  breaking  the 

workflow into discrete tasks, with data dependencies; then executing these on the remote  

machines.  The exact  process will  be described later,  but  for now the simple model  is  to  

increase the number of times which the inner operator block is iterated over.

3.2.1.1. Example workflow

Consider the following data mining process. (Figure 3.5) n is the number of cases in the 

data set; random_sample(n, m) selects m unique values from the interval 1 to n; the notation 

data set[-testset] indicates the data set excluding test set samples; train(data set) produces a 

model  on the data set;  and  predict(model,  data set) predicts the response of the data set 

inputs using the model.
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Figure 3.5: Example workflow that only has a single level of iteration.

It is clear that there is no data dependency between iterations of the loop defined at 1, 

however, there are also no viable points for dividing up tasks between multiple processors 

except by unrolling the outer loop. However, if more was known about the  train operation 

then  perhaps  there  would  be  opportunities  to  increase  the  level  of  parallelism.  From 

experience it is known that train will typically take the longest time to run as it may need to 

explore the data set,  while  predict may not require so much time as it  only requires the 

application of the model developed previously. 

If train was a simple, fast method like multiple linear regression then there would be little  

gained by further parallelisation,  as overheads of distributed computing such as network  

latency would be significant. However, there are many instances where the runtime of the 

learning method is longer and investment in parallelism is warranted, as is the case with 

sophisticated  methods  such  as  genetic  algorithms,  random  forests  and  support  vector 

machines, or meta methods such as bagging or boosting.

Consider the boosting method applied to a tree method. Tree methods can take several  

seconds to minutes to construct a model, depending on the size of the training data. Boosting 

will require that the training method be applied to many bootstrap sets of the data. All these  

models are used in the final prediction of the outcome and are averaged to determine the  

final result. The workflow used previously could be used in this instance to represent the 

data mining operation, as a boosting method could be considered to be one single operation. 

However, it is of more use to drill  down into this meta method to expose its parallelism 

(Figure 3.6). By doing this the number of unique tasks is increased from 1000, to 1000 + 

1000*100 = 1,001,000. This increased granularity is useful if  there are enough available 

resources to execute with, as it can optimise the total run time.
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1. for cv in 1 to 1000
2.     testset = random_sample(n,n/2)
3.     model = train(data set[-testset])
4.     y_ = predict(model, data set[testset])



Figure 3.6: An example workflow which illustrates how exposing inner iterations 
improves the degree to which a workflow can be executed in parallel.

3.2.2. Operators
Workflow  operators  define  the  external  processes  which  produce  or  transform  data.  

Operator  implementations  need  to  be  interchangeable  to  facilitate  a  plethora  of  data 

processing options, with implementations provided for all the legacy applications that need 

to be supported within the workflow, either using concrete implementations for individual 

applications,  or  configurable  operators  that  support  a  range  of  similar  applications. 

Implementation details are discussed in Chapter 3.3.1.

Figure 3.7: Example of an operator declaration for an R script.

Each  operator  needs  to  be  declared  within  the  operators  element  of  the  experiment  

document.  This  declaration will  give a  symbolic  name to the  operator,  and  define  what 

execution method will be required, and what input and output data are required. Figure 3.7 

shows an example of an operator declaration for an R script. The declaration is comprised of 

a  named  element  which  is  specific  to  the  operator  type.  Enclosed  in  that  element  is 

information about the operator, in this case an inline script, along with declarations of the  

input and output parameters (sometimes called ports). An element like this will exist for each  
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1. for cv in 1 to 1000
2.     testset = random_sample(n, n/2)
3.     for boost in 1 to 100
4.         bootstrap_set = bootstrap(-testset)
5.         model[boost] = train(data set[bootstrap_set])
6.     y_ = predict(model, data set[testset])

1. <callR name="lm">
2.     <script>
3.     <![CDATA[
4.     data(iris)
5.             s = dim(iris)[1]
6.             testset = seq(s)[(itr*s/10):((itr+1)*s/10)]
7.     m<-lm(Sepal.Length~Sepal.Width, iris[-testset,])
8.     save(m, file=modelfile)
9.     ]]>
10.     </script>
11.     <parameter name="modelfile" type="file" direction="out"/>
12.     <parameter name="itr" direction="in"/>
13. </callR>



operator that is being used in the experiment.

Operators are named objects within an operator list in the experiment that are invoked by 

references  in  the  workflow  using  the  execute  operator.  Figure  3.8 shows  the  abstract 

invocation process: the workflow engine looks up the operator in the list; the required data 

are retrieved from the data  store;  the  operator is  instantiated,  the  input  data are  set,  the 

operator invoked, the output data extracted; then the output data are written to the data store. 

The  data  input  occurs  by  passing  the  variables  named in  the  workflow into  the  names 

parameters, and similarly retrieving the output data from the output parameters and write it  

to the named variables.  The input  data parameters can be used for  configuration,  or  for  

passing data.

3.2.3. Data
Data access is provided using sources and sinks which adapt common data stores and 

storage formats. Sources are indexed by row, and sinks are append-only. The intention is to  

expose as much internal detail about the sources as possible, as this allows the workflow to 
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Figure 3.8: An abstract view of the invocation of an operator. Operators are invoked 
by the workflow, with operators looked up by name from an operator list and input  
and output data mapped to their ports.



take advantage of parallelism by unrolling the iterations over the data. The declaration of the  

data sources and sinks are similar to operator declaration, and include a unique name, data  

type, role, and then mappings for each attribute within the data source or sink. Attribute  

types  supported by this  implementation is  limited to  strings,  integers,  doubles  and files.  

Details about the attribute and adapter implementations will be covered later in this chapter.

Figure 3.9: Data source declaration for the Iris flower data set.

Figure 3.9 shows a data source declaration for a data set containing data about the iris  

plant. It is a CSV file that has 5 column attributes. Each column is named and defined by a  

column offset and data type. An iterator operating on this source would proceed row by row 

through  the  file,  presenting  a  tuple  containing  SepalLength,  SepalWidth,  PetalLength, 

PetalWidth and Species.
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1. <data name="iris" type="text/csv" role="source" 
uri="file://./data/iris.csv" > 

2.   <format type="col" index="0"> 
3.     <variable name="SepalLength" type="double" value="" 

length="-1"/> 
4.   </format> 
5.   <format type="col" index="1"> 
6.     <variable name="SepalWidth" type="double" value="" 

length="-1"/> 
7.   </format> 
8.   <format type="col" index="2"> 
9.     <variable name="PetalLength" type="double" value="" 

length="-1"/> 
10.   </format> 
11.   <format type="col" index="3"> 
12.     <variable name="PetalWidth" type="double" value="" 

length="-1"/> 
13.   </format> 
14.   <format type="col" index="4"> 
15.     <variable name="Species" type="integer" value="" length="-

1"/> 
16.   </format> 
17. </data>



3.3. Agent Based Execution System

A master-slave system as introduced in Chapter 2.4.2 is used to harness the computational 

resources available across the heterogeneous environment. It is implemented using an agent 

model to exploit the system level parallel capabilities of each machine, in addition to the  

Grid level  parallelism across the entire system (Figure 3.10). The central “master” agent 

holds the workflow being executed, and is responsible for assigning parts of the workflow to 

the “slave” agents so that the entire workflow is executed. The master agent holds location 

information about individual tuples and this information is used by its scheduler component  

to  make  scheduling  decisions.  When  a  slave  has  more  than  one  processing  element  it  

provides this information to the master scheduler, which will assign additional tasks to the 

slave, which will locally schedule the tasks onto the processors.

The agent model is comprised of a number of components which perform specific tasks.  

These are the core agent control module, the data management component, and the workflow 

management  component  (Figure  3.11).  The  central  component  is  the  agent  control 

component  which  is  responsible  for  coordinating  the  construction  and  control  of  other 

components.  It  is  a  network  accessible  module,  and  exposes  the  command  and  control  

interface discussed in  3.3.2.1. Many commands it provides are related to starting, stopping 
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Figure 3.10: Hierarchy of parallelism from CPU level, to LAN level, up to WAN level.



and monitoring the Workflow Manager, and the agent as a whole.

The Data manager, like the agent control component, is network accessible. It provides 

data location, registration and transfer services for the agent, which is typically set up by the  

control  agent,  but  used by the workflow component.  These operations are performed by 

direct  communications  between  the  data  modules  of  different  agents,  not  via  the  agent 

controller. This provides a good separation of concerns between the command and control,  

and the data management aspects of the agent, and also allows for different protocols to be 

used for the different components.

The Workflow manager component is responsible for the local workflow. It maintains a 

pool  of  worker  threads  which  execute  tasks  from  the  workflow,  and  is  responsible  for 

notifying the master of the current execution state, via the agent control component.
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Figure 3.11: Components which exist within an agent: agent controller, workflow 
component and data management component.



3.3.1. Operator Invocation
Workflow operators are external applications and libraries which the domain practitioner 

will  use  to  transform or  analyse their  data.  The operators  are  invoked by the workflow 

execution  engine,  as  specified  by  the  experiment  workflow.  To  invoke  the  operator  the 

execution engine requires the operator type, the input and output parameters of the operator, 

file dependencies, and operator specific parameters such as scripts or invocation command 

lines. On completion of the operator the execution engine can return the output data and 

continue the execution of the workflow. 

Task execution is atomic, as the operator is not operating on the main copy of the data,  

and the data are immutable so failure of the operator will not corrupt the global state of  

system. It is not until the output data are returned to the tuple space that the operator is able 

to  affect  the  global  system state.  Also,  operators  must  be  purely  functional,  that  is,  the 

operator must not hold any state information inside, or outside itself, other than that passed 

through its ports.

The  operators  implemented  in  this  project  are  Java,  R,  MATLAB and native  library 

operators.  Each  operator  provides  the  necessary  utilities  to  transfer  data  between  the 

workflow stores and the operators, and to invoke and monitor the process. In the case of the 

two scripting environments, R and MATLAB, this is done by deserialising the data to disk,  

and then starting the application with a bootstrapping script which reads the data into the 

application, invokes the users code, and then serialises the output data back to disk to be 

picked up by the workflow engine. 
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Consider the following example in Figure 3.12:

1. Workflow engine invokes the operator adapter, passing the operator, and references 

to the data in scope;

2. The operator writes the data to a temporary file on disk;

3. The operator invokes the application, R or MATLAB, with a bootstrap script;

4. The application reads the data from the file;

5. The application runs;

6. The application writes the output data to another temporary file on disk, then exits;

7. The operator reads the output file, and places the data in the current workflow scope.

The Java operators directly pass data, without it being staged via files on disk. This has 

efficiency advantages, as the data can be held in memory once by the agent, which is then 

accessed by the operator, as opposed to potentially having the data in memory in the agent 

and in the target application. There may also be speed advantages as data does not have to 

travel  via  disk,  and  there  is  no  additional  process  startup  time.  However,  using  a  Java 

operator does require the data processing functionality required by the practitioner to be 

implemented in Java, which may not be the case.

Operators support arrays and matrices of primitive data types, including byte arrays and 

files for accommodating arbitrary structures of data. This is discussed in greater detail in  

Chapter  3.4.  The  operator  execution  itself  will  be  performed  by  the  operator  adapter 
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Figure 3.12: Flow chart of events when invoking an operator, including data  
preparation and retrieval.



appropriate to the operators' requirements. 

3.3.2. Distributed Execution
Distributed execution is an important feature of the agent execution model, and in this  

project  the  distributed  execution  functionality  is  implemented  using  the  master-slave 

paradigm as introduced in Chapter 2.4.2. In this section the services provided by the agents 

to allow this functionality is discussed. The specifics of how the workflow is split  up or 

segmented into tasks is discussed in Chapter 3.6 and the scheduling algorithm used to place 

the segments on executing nodes is discussed in Chapter 4.

In a distributed environment task failure may be more probably than in a single machine  

environment  due  to  the  increased  complexity  of  the  environment.  This  design  calls  for 

failure recovery is the responsibility of the master agent. Should any slave agent fail, all its  

incomplete tasks should be returned to the waiting pool for assignment, and any individual 

task that fails should also be rerun. Repeated failures may indicate an actual issue with the  

task,  so  at  this  point  the  user  will  need  to  be  notified.  This  feature  is  not  part  of  this  

implementation.

3.3.2.1. Agent Communications

Basic tasks that are required of the agents are:

1. To have work assigned;

2. Report completion or error conditions; and 

3. Resolve data references and place data into the global context. 

85



The most important sequence of interactions is the execution of tasks (Figure 3.13). It 

involved interactions between the components of the master agent and the slave agent that is  

to execute task. Communication between agents are achieved through direct network remote 

procedure calls (RPC) between agents, and can be initiated by either master or slave agents 

depending on the nature of the request. 

3.3.2.2. Agent Communications Protocol

The wire protocol used for agent communications has the following requirements: 

1. It needs to be efficient in transporting binary data;

2. It needs to be able to recover from packet loss; and

3. It needs to support encryption. 

There are a number of candidate technologies which can fulfil this requirement, and a  

brief discussion around these is presented in the remainder of this section.

Efficient  transport  of  binary  data,  requires  that  the  protocol  be  able  to  support  8-bit  

communications,  and  not  just  7-bit  ASCII  text.  This  effectively  excludes  an  XML only 
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Figure 3.13: Sequence diagram of executing a remote task, including the staging of  
data.



approach, as 8-bit data would need to be encoded in base 64 or similar to be transported, 

which  has  less  than  100%  efficiency  in  encoding.  Many  XML based  communications 

schemes support a multi-part attachment  which transports the binary portion of the message 

in separate section of the same stream, allowing the versatility of XML for the command and  

control protocol, and the efficiency of a pure binary protocol for data transport.

Robust communication features like recovery from packet loss are usually provided by 

using the Transmission Control Protocol (TCP)  [85]. This is utilised by a majority of the 

Internet  applications,  like  HTTP  [86] (web  browsing),  SMTP  [87] (email)  and  XMPP 

[88] (instant  messaging).  TCP provides  a data  stream,  a  continuous series  of  bytes,  and 

guarantees that the packets making up the stream will arrive in order and completely. This is  

achieved  using  a  sequence  number  in  the  packets,  with  the  stream  receiving  endpoint 

sending acknowledgements (ACKs) for all the packets it receives. If one does not arrive then  

the sending endpoint will resend the missing packet. 

If each packet had to be acknowledged before the next one were sent then there would be 

at most one packet in flight at any time, putting an upper limit on the data rate of packet  

size/RTT. To improve this situation TCP has the concept of a window, which is the number 

of unacknowledged packets which can be outstanding at any time. This allows TCP to fill the  

network pipeline. The window size uses a slow start algorithm to increase the window size 

until packet loss begins to occur. 

TCP provides a good general purpose approach which is good for most applications, but 

it does incur an overhead, and the throughput of the stream can be adversely affected by a 

single lost packet. 

The alternative to TCP is the User Defined Protocol (UDP), which does not make any 

guarantees about delivery, and rather than being connection oriented and providing a stream, 

UDP delivers individual packets. It is up to the application to determine if there are missing  

packets, and to assemble them into the appropriate order. This is useful in situations where 

latency is critical, and where out of order packets can be dealt with in other ways, such as in  
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voice communications where a single missing packet represents 20 ms of speech. In this case 

it is better to drop the packet and continue, rather than wait for it and have a noticeable 

latency in the conversation.

In data communications UDP can be more appropriate than TCP, as it does not matter  

what order the data arrives in, so long as it is reassembled on disk or in memory in the  

correct locations. This means that throughput does not need to be jeopardised by unnecessary 

retransmission of data, or delays in processing data due to out-of-order packets.

The final requirement, support for encryption, is almost universally provided by using a  

secure  sockets  layer  (SSL),  which,  once again,  is  the  same process  used  to  secure  web 

transactions (HTTPS) and secure remote shells (SSH). SSL is a mechanism which replaces 

the standard TCP connection with an encrypted tunnel to the remote host, secured by a suite  

of encryptions algorithms. It  can also allow the endpoints to identify themselves using a 

certificate signed by a trusted third party, typically a certificate authority (CA). SSL can be 

applied to practically all wire protocols, including those discussed here, and as it is a flexible 

and well understood approach, it will be used here for this purpose.

The drawback to encryption is that each packet must be encrypted as it is being sent, 

which leads to an increase in CPU load. If the network connection is sufficiently fast, this  

overhead can  become a  bottleneck,  preventing  the network  connection from being  fully 

utilised as data will be held up in the encryption process.

GridFTP [89] is a good option for data transfer, and it fulfils the above requirements for 

robustness and security. GridFTP provides file transfer capabilities over an X509 secured, 

authenticated connection. It also provides the ability to stream the data over multiple sockets, 

which may better utilise network bandwidth. However, in this implementation GridFTP is 

not supported due to complexity and time constraints, but it would be an ideal candidate in a 

future implementation.

For this project, Java RMI has been selected as it offers native binary transport of the 

primitive array data types. RMI also supports encryption and authenticated channels using 
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custom socket factories, and due to its use of TCP supports low level packet loss recovery. 

More complex communications failures are the responsibility of the agent to negotiate, with 

exceptions used to report these failures.

Additional, real-world requirements would include a robust mechanism to recover from 

network failure, or network slowdown. These are not addressed in this implementation of the 

system due to time constraints, as they are not the focus of this particular project.

3.4. Data Services to Support Distributed Execution
As proposed previously, the key requirement for a data system to supporting distributed 

execution using the Grid is the ability for the system to prepare and present this data to 

individual computing elements in a timely and efficient way. In practise this means reducing 

the unnecessary transfer of data by only transporting the subset of the data which is required. 

For instance, if a model being computed only requires a subset of the variables available in 

the data set, then only the required variables should be sent to the computing element. While 

this proposition is quite simple, it makes the assumption that the data service understands the 

source data format, and is capable of performing the actions of segmenting the data set. To 

achieve this the required operations are defined, and implemented for each of the supported 

data types. The operations are:

1. Get full row as tuple;

2. Get full column/variable as vector/matrix;

3. Get subset of variables as a data frame; and

4. Get subset of variables and rows as a data frame.

In general data sets are made up of a number of discrete observations, comprised of one 

or more variables. These variables may be of a primitive type (integer, double, string), and 

are  either  single  dimensional  (vectors)  or  multidimensional  (matrices).  Scalar  values  are 

represented as vectors of length 1, with categorical  data being encoded by either unique 

string  or  integer  values  depending  on  the  source  type.  This  description  covers  many 
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interesting data sources including simple observational data, waveforms, and images. Binary 

data are also supported via files, which are a special case of the string type.

As mentioned in Chapter  3.2.3 data set tuples are immutable, hence no data set update 

operations are supported. The dataflow is intended to be from a data source to a data sink. A  

special class of data set exists which can first operate as a data sink, and then become a data  

source, but no further updates are allowed to it after it becomes a data source. This is to 

ensure  data  integrity  in  a  highly  parallel  environment.  This  locking  is  detected  at  the 

workflow level, but also enforced at the store level, and can either involve locking the entire  

store to additions, or, if the retrieval only uses a subset, blocking any further insertions into 

that subset. 

This accessing method is not unlike a database or tuple store, but as it only provides a 

subset of the functionality of either of these other data models, hence no claim is made that 

the data accessing method is either a database or tuple space. A database would allow, at a 

minimum, for updates and deletes to occur to the data set. While a tuple store provides a 

distributed memory space which can be locked, updated and deleted from. Locking, updating 

and deleting is  not  required  in  the  parallel  execution system discussed  here,  due to  the 

restriction on the order and type of data transformations.

Each data set described for use in this system can either be used for input, output or both. 

Input sources may only be read from, and are thus safe for any order of access, although only  

whole of set or iterations are supported. Similarly, output only supports the appending of 

data. Data sets which support both input and output need to be used in a particular way.  

These types typically start out empty, and are populated by writing to them. Once the writing 

is concluded then they can be read from either iteratively, or in totality as a matrix or data 

frame. When the data begins to be read back it means that the data set can no longer be  

written to,  as  this  would invalidate  the  operations  using the data  as  an input.  Thus,  the  

workflow must complete all the operations which write to a data set before it can begin other  

operations  which reads from that  data  set.  This  constraint  ensures  data  consistency,  and 
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simplifies the concurrency requirements.

3.4.1. Agent Data Access Component
The data access is provided as a component or service of the agent platform. At any point  

where data access is required by the workflow engine or the operator adapters it will occur  

using this service. The service makes all available data appear as if it is local, which may 

require it to be fetched from a remote site. The master agent, which is run in the practitioners  

environment has direct access to all the data sources, so is the primary source of all data. For  

slave agents to access the data, they need to fetch copies of it from the master agent and hold  

it in a local cache. 

Movement of data into an agent's cache can happen in both a push and pull operations.  

That is, the master agent can push records into a slave agent's data cache, or slave agents can  

pull data from any other agents cache. This functionality is akin to the replication capabilities 

of many data grid packages such as SRB [52], except in this case it is handling a special type 

of data and addressing scheme, and handling short term data storage with a particular access 

pattern.
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 Scheduling  decisions  around  data  movements  is  the  responsibility  of  the  workflow 

scheduler, so if the data are not locally available it is due to the directions given by this  

global scheduler. The scheduler can orchestrate the movement of data across slow or laggy 

links once, and have the agent at the remote end of the link act as a source for other agents in 

that area of the network. This helps to optimise the start times of the task processing by 

reducing  the  congestion  around  the  root  agent.  This  has  been  looked  at  by  Venugopal  

[63] where he shows that optimising for the transfer time and data location is complementary 

to optimising for time-to-solution.

3.4.2. Data Formats
The responsibility of reading and saving the data from its file storage format falls on the 

data management system, and therefore some understanding of the required data storage  

formats is required. Typically in cheminformatics data are stored in tabular formats such as 

comma separated variable, tab separated variable and Excel files. All of these methods of  
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Figure 3.14: Data management component provides a service for operator adapters  
to access local and remote data.



storing  data  are  trivially  read,  or  converted  to  a  format  which  can  be  read.  Data  types  

covered  by  these  formats  include  QSAR  descriptors,  near-infrared  spectra  and  mass 

spectrometry, and most observational data. However, this may not be sufficient to cover all  

DNA-microarrays,  and  other  image  based  formats.  Cases  such  as  these  require  that  

specialised readers be written for the data management system, but semantically the formats 

pose no particular issue as the data are simply a large numerical data set with either many 

cases and attributes, or with a large value matrix.

Data which is normally expressed as a network or a structure, such as a 3D molecule 

representation  or  a  gene  activation  graph  may  not  be  so  easily  adapted  into  the  full  

functionality  of  this  management  system.  For  instance,  there  may not  be  a  standard  or  

meaningful way to address a subset of a graph or 3D structure. This does not make these 

types  of  data  incompatible  however.  All  these  formats  can  have  numerical  or  string 

representation, graphs being represented as a matrix of connected nodes, or molecules being  

a series of atoms, bonds and angles. As these subsets cannot be generated within the data 

management framework it may be more desirable for these types of data to be stored and 

replicated as normal data files.

Data  interchange  between  the  system  and  the  operators  is  done  such  that  platform 

specifics such as whether the system is big-endian or little-endian does not matter. Endian 

format has no implications for text interchange formats.  When binary data are read it  is  

transmitted in big-endian format – the native format for the Java Virtual Machine – and when 

passed to the operator it is read in big-endian format, with any internal conversion taken care 

of by the receiving operator. Other binary interchange formats such as network common data 

format (netCDF) [46] enforce platform independence in a similar way.

3.5. Experiment Metadata and Data Provenance
Provenance information, previously introduced in Chapter 2, describes the context and 

lineage of a process or data. In this discussion the taxonomy proposed by Simmhan, et al.  
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[37] will be used to describe the type, use and collection method of provenance metadata. 

Within  the  context  of  this  distributed  workflow  system  the  subjects  of  the  provenance 

metadata will include the data, the process which manipulates it,  and the environment in 

which the process runs. These different subjects require different attributes to describe them 

and will be collected by different components in the distributed system. Their data are stored 

in  different  documents,  with  references  between  them.  Metadata  about  the  data  uses 

attributes that describes the data in a generic way, not  specific to this system, while the  

process provenance is specifically refined to the experiment and workflow representations  

used here.

The workflow itself, which describes all the steps required to produce the output, is an 

important piece of provenance information as ideally it can be rerun with the verified input  

data to ideally produce the same, or similar output data. As many data mining techniques 

utilise stochastic monte carlo methods, the exact same output cannot be produced twice in a  

row, unless there was a single, central, pseudo-random number generator used to generate all  

the randomness within the entire network of executing agents. In this case the same starting 

seed  would  generate  a  deterministic  sequence  of  random  numbers.  However,  if  the 

techniques  do  produce  any  meaningful  information  then  they  will  be  repeatable,  and 

parameters  for  accepting  two  runs  as  equivalent  can  be  established  through  domain 

understanding.  For  instance,  a  variation  of  0.1%  between  outputs  may  be  considered 

acceptable for a given problem.

3.5.1. Process provenance
When executions occur in a heterogeneous environment it becomes critically important 

that contextual information about the execution of each task is recorded. The information of 

highest  importance  will  be  dependent  on  the  specific  operator  being  used,  but  some 

generalisations can be made. Describing the environment in which the workflow is executed 

is important for verification, as software versions and other hardware and software variations 
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may introduce unexplained errors into the system. Common information includes CPU and 

operating system information (Table 3.1). 

Attribute name Use of attribute

Node ID Indicate which node this data relates to

Host name Host name of the resource.

IP addresses List of all interface IP addresses for the 
resource.

Operating System The operating system identification string.

CPU info The make model and speed of the CPU.

CPU count The number of physical processors (or cores) 
available to execute processes.

RAM The amount physical memory available on 
the resource.

Table 3.1: Common provenance attributes about compute resources.

Each task is also described using provenance metadata with critical information such as  

input  and output  file information,  execution node and execution environment (Table 3.2) 

allowing the task environment to be accounted for. Execution information such as system 

time and peak memory are also collected as diagnostic attributes to help identify abnormal 

task executions. Each operator type is required to provide its  own provenance document 

type, which, in the cases of R and MATLAB, include software and library versions (Table

3.3).  This  allows  variations  between  executions  to  be  investigated,  and  improves 

repeatability of experiments.

95



Attribute name Use of attribute

Node ID Indicate which node in the network this work 
was performed on.

System time The amount of system time used to perform 
this calculation.

Peak memory The peak amount of RAM required to 
perform this operation.

Environment Map of environment variables.

Input files (Parameter name, size, checksum, 
input tuple)

Information to verify that data was not 
changed or corrupted in transport.

Output files (Parameter name, size, 
checksum, output tuple)

Information to verify that data was not 
changed or corrupted in transport.

Table 3.2: Common provenance attributes supplied by all operators.

Attribute name Use of attribute

R version The version of R in use.

Packages Name and version of all available packages

Table 3.3: Additional provenance information provided by the R operator.

It may not always be desirable to collect such fine grained provenance information, as it 

may result in the size of the provenance information exceeding the size of the actual data. In 

the case where all operators are recording provenance information, then a nested iteration of 

10 and 100 items would produce 1000 provenance documents for the innermost operator.  

This may be excessive,  and not  useful.  Instead it  may be more useful  to  simply collect  

general provenance information about the set of computing resources which performed the 

work.  Essentially  this  is  collecting  workflow  level  provenance  information  instead  of 

operator level provenance information. 

This provenance collection is implemented in much the same way as is described above.  

The workflow system operating on the executing agent  will  prepare a provenance report  

document  which  describes  the  attributes  outlined  in  Table  3.2.  Once  the  operator  has 

executed it is queried by the agent to return the relevant information specific to the operation 

which  has  just  occurred.  The  executing  agent  then  merges  the  pre-execution  and  post-
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execution provenance documents and queues the combined document to be filed against the 

workflow execution  step.  This  is  transferred  back  to  the  master  agent  for  collation  and 

permanent storage.

At  the  conclusion  of  an  experiment  there  will  be  a  large  number  of  provenance 

documents  associated  with  the  experiment.  The  provenance  documents  can  be  analysed 

individually and used to develop a better, system level understanding of where the time is 

spent in the execution. Code execution times for different parts of the parameter space can be  

utilised to focus optimisation efforts on particularly slow pieces of code. At a higher level the  

workflow documents collectively provide a detailed description of the process entered into to 

transform the input data to output data. 

3.5.2. Data Provenance
Data provenance involves an input data set document which describes where all the input  

data sets originate from, and the data elements of the process provenance. For instance, if the 

original data originates from a public repository, or research publication, then the input data 

set  document  will  contain  the  URL to  the  repository  or  publication,  along  with  other 

identifying information such as file size and checksums. This allows the original data set to 

be located and verified, and also acts as attribution for publication purposes.

The process provenance metadata covered in the previous section describes the operations 

which occur to create any intermediate and output data. The input and output data elements  

within the process provenance contain similar attributes to the input data set document, for  

the purpose of identifying and verifying the data at the beginning and end of each task in the 

process.

Unless the entire workflow and data are handed to an independent and trusted third party 

to execute then it is not possible to entirely guarantee that the data outputs presented for  

check-summing and time-stamping are in fact from that particular run of a workflow, or are  

not adjusted to present more favourable results. However, the chain of metadata provided 
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here would also need to be manipulated to ensure that the output was consistent with the 

process the provenance information described. 

Much like the provenance information required by other experimental  disciplines,  the 

information here is expected,  in good faith, to be accurate. This is not a fraud detection 

system, its  intended use is  for documentation and verification,  rather than validating the 

claims of a researcher. The mechanism for verification of claims remains to be for other  

groups to repeat the experiments performed, and to obtain the same results and conclusions.

3.5.3. Provenance Storage
During  workflow execution  provenance  documents  or  records  are  transported  to  the 

master  agent  where they  are  stored  in  a  flat  file  structure  on  disk.  At  this  stage of  the 

execution there is no requirement to be able to query the provenance store, the store at the 

master is simply appended to.

Once the workflow execution is complete the experiment can be registered with a central  

experiment repository. The central repository used in this case is the ICAT. The ICAT is an  

experiment metadata system, derived from the CCLRC metadata standard, and implemented 

by the Australian ResearCH Enabling enviRonment (ARCHER) project  [90]. The service 

provides  structured  experiment  management  elements,  suitable  for  experiment  based 

research.  Through  its  web  services  framework  it  was  extended  to  store  auxiliary  XML 
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documents against the experiment elements. Using this mechanism, the composite workflow 

provenance XML document is  stored in the ICAT, making it  available for inspection by 

people  looking  to  understand  this  experiment.  As  well  as  this,  the  experiment  XML 

document is optionally stored, as it provides further information relevant to this task. Finally,  

the data set capacity of the ICAT is used to describe the input and output data sets from the  

workflow, and link them with other experiments.

3.6. Transforming Syntax Trees into Tasks
The scheduling algorithms presented here schedule individual tasks, or blocks of work 

onto  computational  resources.  However,  experiments  constructed  by  data  mining 

practitioners are in the form of workflows. These workflows, represented as syntax trees, 

need to be transformed into individual tasks which can be scheduled and executed.

A syntax tree is an abstract representation of a process, which uses syntactical constructs  

to express actions based on data and operators. For the purpose of expressing data mining 

workflows  a  simple  syntax  has  been  developed  which  can  capture  the  iterative  data 

operations which represent many data mining problems. The syntax includes four elements: 

data iteration, element grouping, operator invocation, and data output. Using these elements 

the  syntax  tree  encodes  data  dependency  and  task  grouping  into  its  model  through  the  

nesting of operators and outputs within data iterators. This is convenient when constructing 

the workflow, but needs to be decoded by the scheduler for execution, ensuring that data 

dependencies are met. 

The process of breaking down syntax trees into tasks is referred to as segmenting, and 

this  is  a  service  provided  by  a  segmenter.  The  segmenter  is  responsible  for  producing 

individual tasks, which can then be scheduled for execution by the scheduler (Figure 3.16). 

To do this the segmenter uses information about the availability of data from the data store, 

and then generates tasks based on this information.
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The syntax tree is decoded following a set of rules which govern data dependency. A 

workflow contains many individual blocks of iterators. Each block is treated independently 

by  the  segmenter.  Each  block  must  only  contain  non-iterator  elements  in  its  innermost 

iterator. If operators do occur in places other than the innermost loop, then it is possible to  

normalise the workflow by breaking the block into two pieces, and storing the output of the 

operator in an intermediate store. An exception to this rule occurs if an operator group occurs 

at a higher level in the syntax tree. An operator group indicates that all the elements within it 

must be processed as a sequential block, and not decomposed into individual tasks.

Data  scoping  occurs  by  data  being  brought  into  scope  by  iterators,  or  the  output  of  

operators, and is passed into nested iterators. All data are immutable, so cannot be updated 

by operators. 

Each workflow block will contain elements that produce and consume data. All of the  

data  sets  involved in  each case are  calculated on the normalised workflow,  and used to 

determine when to release new tasks from the segmenter. To be eligible for decomposing a 

block must have all its input data sets available, meaning all blocks (and the tasks produced 

from them) which output to these data sets must be complete. Once this occurs tasks can be  

produced. All tasks produced with this method are independent of each other and can be 

scheduled in any order. 

When transforming the syntax tree into discrete tasks which are sent to the slaves, it is  
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workflow is segmented into discrete tasks, and these tasks are scheduled for 
execution.



possible and in some cases desirable to control the degree to which the nested loops are 

decomposed into discrete tasks, perhaps by inserting operator groups and changing the order 

of the iterators. Previous work has been done by Muthuvelu, et al. [91] looking at grouping 

fine-grained tasks from within a bag of tasks to improve execution efficiency through lower  

overheads. In the case of a syntax tree it would be possible to achieve a similar outcome by 

allowing one or more levels of iterator to be fully or partially assigned to a slave. This may 

also  provide  benefits  to  multi-processor  systems,  giving  that  slave  an  opportunity  to 

efficiently  utilise  all  of  its  computational  elements,  while  minimising  the  data  transfer 

requirements as common dependencies will already be available on that machine.

The effectiveness of this strategy will vary depending on the amount of time required to  

execute  the computational  tasks,  the  quantity of  data required to be transferred,  and the 

number  of  computational  resources  available.  If  tasks  are  short  then  it  will  improve 

efficiency by grouping tasks like this, as there will be a queue of tasks available to the slave  

without the need for the slave to consult with the master for each individual task assignment.  

However, if there are many available slaves and the tasks are long then assigning an entire 

iterator may cause starvation of some of these slaves. 

3.7. Conclusion
This  chapter  discussed  the  design  of  the  workflow  execution  system  based  on  the 

requirements from the general model of data mining developed previously. The system has 

three  distinct  components,  workflow,  data  handing  and  algorithm  execution.  These 

components are specifically designed to leverage distributed computing systems. The data 

management  system  is  based  on  the  distributed  memory  paradigm  of  tuple  space;  the  

workflow language allows for discrete tasks to be generated for parallel execution; and the 

algorithm execution occurs in a purely functional way. 

Language integration was demonstrated using R, chosen due to its popularity within the 

cheminformatics community, with this approach easily extended to Java and MATLAB as 
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well. This serves to show the flexibility of leveraging of existing languages to provide the 

domain functionality, leaving the workflow language to be simple and domain agnostic. 

The experiment  metadata  and provenance captured by  the  system was  discussed  and 

linked to the desired usages of this metadata for provenance tracking, experiment integrity, 

and performance monitoring. Ultimately the experiment workflow needs to be executed on 

distributed resources, requiring that the workflow be broken into discrete tasks for execution.  

The workflow language enforces immutable variables, thus it is possible to unroll the loops 

and create discrete tasks, once all input data sources are finalised. 

The execution is  performed using an agent  based implementation of the master-slave  

distributed computing paradigm. Slave agents  are run on all  compute  resources,  and are 

controlled by the master to transfer data and execute tasks. The scheduling algorithm utilised 

by  the  master  is  discussed  in  the  next  chapter,  but  is  also  inter-changeable  within  this 

framework.  This  implementation  satisfies  the  requirements  for  data  mining  workflows 

outlined previously in Chapter 2, and allows expression and execution of many data mining 

processes within a consistent, high-level framework.
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Chapter Four

4. Development and Analysis of a New Task 
Scheduling Algorithm

The execution of a computational  workflow in a distributed environment requires the 

coordinated assignment of tasks to each of the computational resources, and the movement 

of  input  and  output  data  between  these  resources.  Where  there  are  data  dependencies  

between tasks in the workflow the prerequisite data must be available before the dependent 

task can be executed. The movement of data between resources incurs a time cost as the  

transfer time is a function of the size of the data and the network conditions between hosts.  

Ideally, the scheduling of workflow tasks needs to be adaptive to accommodate unequal run 

times for the individual tasks, resulting from the influence of stochastic algorithms or input  

data variations, and unequal computational performance of the executing machines.

This  chapter  defines  and  addresses  the  scheduling  problem for  distributed  workflow 

systems  which  was  introduced  in  Chapter  2.4.4,  and  discusses  a  formal  resource  and 

application model for the analysis of this problem. The master-slave paradigm, introduced in 

Chapter 2.4.2, is adopted as the basis of a solution to the scheduling problem. This resource 

and application model and the master-slave paradigm are applied to the workflow model  

from  Chapter  3,  to  produce  an  algorithm  for  scheduling  data-dependent  workflows  on 

distributed  computing  resources.  The  objective  of  the  algorithm  is  to  minimise  overall  

execution time, makespan, of the workflow. This new algorithm is then evaluated through 

simulation  in  a  variety  of  network  scenarios,  and  compared  against  other  common 

scheduling algorithms used for scheduling tasks in Grid computing environments.

Many variations of the scheduling problem are known to be NP-Complete[66] or NP-

Hard[59], meaning there is no optimal solution which can be computed in polynomial time. 

On top of this, the scenario proposed for this project has tasks, resources and networks as  

non-deterministic,  making  any  computed  scheduling  solution  an  approximation.  When 
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framed in the master-slave paradigm there are a number of useful heuristics which have been 

previously proposed with the objective of reducing the total execution time. These include 

resource sorting algorithms which assign to the fastest processor or communications link 

first, and greedy heuristics which assign based on shortest total execution time. 

Many scheduling algorithms reported in the literature focus on scenarios where one or 

more of the attributes of job length (E), bandwidth (l), resource speed (s) and data size (b) 

are homogeneous (Figure 4.1). However, the real world experiments which will be scheduled 

require all these attributes to be heterogeneous, making the scheduling problem harder. This 

required the development of a new scheduling heuristic which was robust to these attributes. 

Through simulation experiments two greedy schedulers were observed to determine their 

performance. It was observed that they had a tendency to require all the data to end up on all  

the resources. Further analysis of the greedy algorithm indicated that replication of data, di, 

into the network reduced the cost of further replication di, resulting in tasks requiring di to be 

favoured. This led to the development of a new algorithm which uses a relative measure of  

total estimated run time which aims to increase efficiency by not assigning tasks to resources 

which require a large amount of data transfer if  other resources are already equipped to 

execute the task. The new scheduling heuristic was again tested in simulation, and a dramatic 

reduction in total data transfer was observed, as was a significant reduction in total run time 

in many data intensive scenarios.
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4.1. Survey of Master-Slave Scheduling Heuristics
As introduced in Chapter 2.4.3 the scheduling problem has a number of versions; off-line 

where all attributes of the tasks and resources are known at the start of the execution; and on-

line where attributes of the tasks are not known at the start of the execution. The off-line 

version of the scheduling problem falls into the class of NP-complete [66], and requires an 

approximation or  a  heuristic  to  achieve  reasonable  results.  So  it  follows  that  the  online 

version is at  least NP-complete. Variables within the system which affect the scheduling 

problem include task size, resource speed and network speed. When all of these variables are  

homogeneous the scheduling problem, optimising for makespan, is solved by round robin 

allocation. Few researchers address the case where all variables are heterogeneous, and often  

make the assumption that all tasks are equal although may be of unknown size, and then 

apply a statistical model to estimate task lengths based on previous executions [60][92]

In the scenario where there are homogeneous jobs and a heterogeneous pool of machines 

there exists a number of quite effective scheduling algorithms [93][94][60]. In this situation 

it would be possible for the completion time of each task to be estimated, either using a  

precomputed  resource  execution  rate,  or  a  running  average  of  the  execution  rate.  The 

problem is then a matter of finding an assignment of tasks to machines so that the end time 

of the last task on each resource is equal to the result being a minimisation of the makespan. 

Due  to  the  set-up  overhead  involved  in  staging  data  to  each  host,  tasks  are  started  on 

machines one at a time, which is another way of stating the one-port model.

The MJF  [93] algorithm assigns jobs to the fastest processors first, and achieves good 

performance.  The  shortest  communications  time  first  (SCTF)  [95] algorithm tends  to 

outperform MJF, especially in the turnaround time.

In [60] Pineau, et al. consider homogeneous tasks within the context of a heterogeneous 

pool of machines assuming a one-port network model,  calculating theoretical bounds for 

makespan, max-flow and sum-flow under on-line and off-line scheduling.  They analysed 

Shortest  Remaining Processing Time (SRPT),  List  Scheduling (LS),  Round Robin (RR), 
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Round Robin  cj (RRC) which orders for shortest  communications time,  Round Robin  wj 

(RRP)  which  orders  by  shortest  execution  time,  Schedule  Last  Job  First  (SLJF),  and 

Schedule Last Job First With Communications (SLJFWC). SLJF and SLJFWC were off-line 

algorithms, and were modified for on-line scheduling by having them assign tasks to the 

nodes which would finish them the quickest. The result of their experiment suggested that:

1. In a homogeneous platform all scheduling algorithms had similar performance;

2. Most algorithms have similar performance with homogeneous communications and 

heterogeneous processors.

3. Communications heterogeneity impacted greatly on the performance of many of the 

algorithms, with LS and SLJFWC performing better than the other algorithms.

This suggests that communications time is more important than processing speed when 

scheduling tasks,  which is  supported by the results  of  the  SCTF algorithm in  [94].  One 

explanation for this outcome is that task starvation occurs while data are delivered to other 

resources because under  the one-port  network model  only one communications task can 

occur  at  a  time.  This  means  that  resources  will  sit  idle  for  longer  periods  if  slow 

communications links are utilised before faster ones. As executions on different resources 

occur concurrently the selection of slower resources does not have the same limiting affect  

on other resources being utilised. 

4.2. Scheduling of Heterogeneous Tasks in a 
Heterogeneous Environment

As stated previously the data mining workflows being executed contain heterogeneous 

tasks, and the target execution environment will be made up of heterogeneous networks and 

compute  resources.  Heterogenaity  can  be  dealt  with  in  different  ways.  For  instance, 

benchmark metrics or execution rates can be measured for compute resources,  and these 

used  to  compare  candidate  resources.  Similarly,  network  links  can  be  modelled  using 

instantaneous  or  aggregate  bandwidth  measurements  that  can  be  utilised  for  estimating 
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transfer  times.  Heterogeneous  tasks  are  harder  to  optimally  schedule  as,  unlike 

heterogeneous compute resource or network links,  the size of each task is not known in 

advance and, as each task is only executed once, any information about individual tasks can 

only contribute to knowledge about that class of task. Information built up about classes of  

tasks contain assumptions regarding the variation in run time between executions due to 

normal  program  execution  variability,  while  information  built  up  about  machines  and 

network links may remain more predictable and deterministic over time as these elements 

can be monitored and modelled in a more robust way.

Despite  master-slave  computing  being  a  conceptually  simple  model,  there  are  many 

variations and assumptions that may impact on the performance of the system in the real 

world.  As  covered  in  Section  2.4.2 the  basic  master-slave  process  involves  the  master 

scheduler assigning tasks from the workflow to the slaves,  and the slaves  retrieving the 

required data,  running the task,  and returning the result.  Underlying this is  a number of 

smaller, specialised schedulers and queues that allow each of these steps to be performed 

(Figure 4.2). The master will have the task scheduler which is the focus of this chapter, a 

data scheduler for outbound transfers. While the slaves may have a number of configurations  

involving  a  local  task  scheduler,  and  incoming  data  scheduler.  This  becomes  more 

complicated when there are multiple cores, CPUs or threads running on the slave, as then 

there are design decisions around whether the computing elements are independent with their  

own data scheduler (Resource A), or whether they share a common data scheduler (Resource 

B), keeping in mind that they will be sharing the same network link. 
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To illustrate the impact of the different components consider the following scenarios: 

1. If two resources have received tasks that require data then they will each request  

the data from the master. The master's data scheduler must decide how to best  

transmit the data to the competing resources. Under the one-port model this is 

achieved using a first in first out (FIFO) queue, meaning that only one resource's  

request will be processed at a time, and this will occur in the order in which the  

requests arrived. Alternatively, given that it is possible that the full  bandwidth 

may not  be  utilised,  it  may be  possible  to  begin  sending  data  to  the  second 

resource at the same time, perhaps applying some priority or bandwidth sharing 

to these transfers.

2. A resource executing a task may have multiple data files that it requires. These 

files  may  be  available  from multiple  locations  and have  different  connecting 

bandwidths. Again, under the one-port model only one transfer can occur at a 
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scheduling systems that may impact on the performance of an execution.



time, so file ordering may be important. But otherwise bandwidth sharing could 

be applied.

3. A resource with multiple computing elements may have a shared data scheduler,  

and queued tasks may have overlapping data requirements (Resource B).  The 

order of retrieval of these files will impact on which tasks become available for 

execution.

4. A resource with multiple computing elements that do not share a data scheduler 

will have to compete for bandwidth, much like would occur when using other 

shared resources (Resource A).

5. When a resource has multiple computing elements, they can either share a task 

queue,  and  the  master  can  assign  enough  tasks  to  that  queue  to  occupy  the 

elements (Resource B), or each element can have its own queue, so the master  

scheduler must explicitly assign tasks to each computing element (Resource A).

To simplify this investigation and focus on the scheduling of tasks from the master, the  

one-port  model  is  applied  to  the  master's  data  scheduler.  In  resources  with  multiple 

computing  elements  tasks  are  executed  when  they  become  available,  ie  their  data 

requirements are met, and are assigned to the first available computing element (shared task 

queue). When tasks are assigned their data requirements are queued in the local FIFO data  

queue.

At the beginning of an experiment data are located in a single centralised location, ie at  

the master or practitioners workstation. data are copied to the slave nodes as it is required,  

which has consequences for the startup time of future tasks. As illustrated in Figure 4.3 data 

initially  located  only  on  the  practitioners  workstation  will  be  copied  to  the  executing 

resource 1 after it is assigned a task. Then, when resource 2 is assigned a task it may also get  

the  data  from  the  practitioners  workstation,  but  it  may  get  the  data  from  resource  1, 

depending on the schedulers decision. This means that any scheduling algorithm will need to 

track the data locations, and machine interconnects in order to properly evaluate the startup  
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times of tasks on a given machine. This further adds to the heterogeneity of the system, as 

the startup time, and the compute time of a task will vary between machines, and will be 

dependent on at what stage during the execution the task is scheduled. 

As discussed in Chapter 2.4.3 the efficiency of an execution is a function of the execution 

time, data transfer time and machine idle time. In the traditional master-slave model the data 

are unique to the task, and thus the strategy for mapping tasks can become a network link 

scheduling problem,  as  well  as  an execution resource scheduling problem.  Data  transfer  

bottlenecks put an upper limit on efficiency, as tT is non-zero. But as data are shared between 

tasks, once all machines have copies of all the data tT goes to zero (0). Therefore, if there is a 

finite set of data, and an infinite set of tasks the efficiency will tend towards 1. This property  

is important to appreciate, as it  says that an algorithm which optimises the data location  

problem may outperform one which neglects data transfer for a given number of tasks, but as 

the number of tasks increases, the relative makespan will converge.

The execution times of the tasks are not known in advance, so a task scheduling strategy 
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Figure 4.3: Process of data migrating from its initial location. First it is copied from 
the Practitioners Workstation to Resource 1, then from Resource 1 to Resource 2.



which can adapt to the situation needs to be used. As stated previously it is not possible to  

preempt or migrate tasks, so allocation decisions either have to be honoured completely, or 

the task cancelled and rescheduled elsewhere. To accommodate these constraints a number 

of scheduling heuristics are proposed which accommodate these unknown quantities. Some 

common  functionality  is  used  by  all  of  these  algorithms,  and  includes  a  task  length 

estimation  and  transfer  time  estimation  which  are  used  by  the  heuristics  to  maintain  a  

constant flow of work to the slaves keeping efficiency high.

Tasks have data input requirements and an execution component. Each task has a class, 

i.e. an application, and the assumption is that the execution time of each class has a random  

runtime, drawn for an unknown distribution. This distribution is reconstructed by recoding 

the  task  runtime  and  CPU  speed  of  the  executing  host  when  the  task  completes.  The  

scheduler will be allocate initially based on the assumption that all tasks are equal, and will  

begin to use the mean task length for the given class of task, based on the timing information 

returned from the completed tasks.

The primary objective of the allocation algorithm is to minimise the makespan of the  

execution and to maximise the efficiency of the system usage. The efficiency of a machines 

usage will be the ratio of time spent executing tasks, compared to time spent sitting idle or  

waiting  for  data.  These  two  metrics  may  be  correlated,  as  increasing  the  efficiency  of 

machine  usage  will  decrease  the  idle  and  transfer  times,  thus  reducing  the  makespan.  

However, it is possible that the transfer time will dominate the execution time to the extent  

that using a single computational resource would be the optimum solution, which would 

mean that system efficiency would be minimum. Analysing each computational element in 

the  system  will  reveal  how  efficiently  each  scheduling  algorithm  utilises  the  available  

resources.

In  this  section  three  existing  scheduling  algorithms  are  presented  that  address  the 

scheduling problem.  One is  an on-line  scheduler  that  schedules  tasks  to  resources  when 

resources become available, the second is an offline scheduler which computes an entire 
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schedule at the start of the execution, updating it as new information becomes available, and 

the third is another offline scheduler.

Figure 4.4: Compute-first matching heuristic. Matches tasks to the resource which 
will complete the computational component the quickest.

The first scheduler (Figure 4.4) is based on the Compute-first heuristics presented in [61]. 

Compute-first  ignores  the  data  component  of  the  execution  and  simply  maps  tasks  to  

resources  based  on  minimising the  computational  component  of  the  makespan objective 

function using MinMin greedy selection. Once the task is mapped the fastest available data  

hosts are used to provide the required data for the execution of the task.

Figure 4.5: Greedy (MinMin) task mapping heuristic.

The second scheduler (Figure 4.5) is another MinMin greedy scheduler, based on those 

presented in [96] and [61]. This algorithm considers both the estimated execution time and 

the  estimated  data  transfer  time  when  computing  the  objective  function.  Tasks  are  then 

mapped to resources based on minimising the objective function.

The third scheduling heuristic (Figure 4.6), Sufferage, maps tasks to machines based on 

which task will “suffer” the most from not being mapped.  Maheswaran, et al. Present this 
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1. for each tasks Pi  P:∈
2.   for each resource Rj ∈ R:
3.     tCij = tEij + tRj

4. mark all Pi  P as unmapped∈
5. while there are unmapped tasks in P:
6.   Pi, Rj = find earliest completing task-machine mapping  tC∈
7.   find the fast data hosts for Pi on Rj

8.   assign Pi to Rj

9.   mark Pi as mapped 
10.   update C

1. for each tasks Pi  P:∈
2.   for each resource Rj ∈ R:
3.     tCij = tEij + tTd + tRj (Based on fastest available data 

sources)
4. mark all pi  P as unmapped∈
5. while there are unmapped tasks in P:
6.   Pi, Rj = find earliest completing task-machine mapping  tC∈
7.   assign Pi to Rj

8.   mark Pi as mapped
9.   update tC



heuristic in a comparison against min-min and other scheduling heuristics and it is shown to 

outperform  these  other  heuristics  in  a  simulation  of  a  heterogeneous  resource  pool  and 

heterogeneous task list. Sufferage was not designed to explicitly handle the data transfer so 

for the purposes of this experiment the transfer time estimation along with the execution time 

estimation is used in place of execution time estimation alone. The fundamental principle of 

Sufferage remains unaffected.

Figure 4.6: Sufferage mapping heuristic.

4.2.1. Scheduling for Data Distribution
When a workflow contains many large data sets, data distribution becomes a principal 

factor in efficiently scheduling the tasks onto the computational resources. Congestion and 

link speeds contribute to a situation where resources wait longer for the required data than  

they spend processing that data, resulting in an inefficient use of the resource and extending 

the makespan.  This  issue is  a  known problem with very large data  projects,  but  is  also  

important at smaller scales, as the important factor for efficiency is the ratio between data 

transfer time and compute time. 
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1. for each tasks Pi  P:∈
2.   for each resource Rj ∈ R:
3.     tCij = tEij + tTd + tRj (Based on fastest available data 

sources)

4. while there are unmapped tasks in P:
5.   mark all Ri  R as unassigned∈
6.     for each task Pi  P:∈
7.       
8.       Pi, Rj = find earliest completing task-machine mapping ∈ 

tC
9.       sufferage = second_earliest tC – earliest tC
10.       if  Rj is unassigned:
11.         assign Pi to Rj
12.         mark Pi as mapped
13.       else:
14.         P' = task already assigned to Rj
15.         if sufferage P' < sufferage Pi:
16.           unassign P'
17.           assign Pi to Rj
18.           mark Pi as mapped
19.   update tC



Data grids are built around Grid computing resources to help alleviate these issues, by  

increasing  the  availability  of  data  by  efficiently  replicating  data  to  storage  close  to  the 

computational  resources  which  will  process  them.  However,  these  systems  address  a 

different scenario to that which is being presented here. Data Grids exist at the cluster or  

institutional level, and move data between sites. They typically hold long term data stores,  

and expect an amount of long term data reuse. The scenario here uses data replication at the  

machine level, and expects no data to be pre-existing on resources at the beginning of the 

execution. This difference is an important one with respect to the algorithms and approaches 

which can be adopted for this situation. For instance, it is important for both the data location 

and machine capabilities to contribute to scheduling decisions. 

Figure 4.7: Neglected matching heuristic maps tasks to resource when a resource is  
near, but not strictly, optimal for the task.

The final heuristic presented here, which will be referred to as the  neglected heuristic 

(Figure 4.7), is designed to provide efficient execution of tasks, avoiding the situation where 

some tasks are neglected because their data are not widely available on the computational  

114

1. for each tasks Pi  P:∈
2.   for each resource Rj ∈ R:
3.     tCij = tEij + tTd + Rj (Based on fastest available data 

sources)
4. mark all Pi  P as unmapped∈
5. for each idle resource Rj  R:∈
6.   g = {}
7.   for each tasks Pi  P:∈
8.     if tCij <= min(tCi) * 1.1:
9.       add tCij to g
10.   if g != {}:
11.      p,r = min(g)
12.      mark p as mapped
13.      mark r as running
14.      update tC
15. for each idle resource Rj  R:∈
16.   g = {}
17.   for each task Pi  P:∈
18.     skip the first Pi
19.     if Rj = Pi resource:
20.       add tCij to g
21.   if g != {}:
22.      p,r = min(g)
23.      mark p as mapped
24.      mark r as running
25.      update tC



resources.  Instead of  just  making greedy selections  based on  the  objective  function,  the 

neglected algorithm uses the a second round of mapping to recruit currently non-optimal 

resources and populate them with the required data. The objective function is arranged such 

that  for  each task the executing resources are sorted from shortest  makespan to longest. 

Then, for each available resource, each task is considered for mapping if that mapping is 

within  10% for  all  the  possible  mappings  of  that  task.  Then,  the  shortest  makespan  is 

selected from this short-list of tasks. Following this a second round of mapping occurs, this  

time for each available resource the task is only considered if the resource is not the first  

choice based on makespan. From this list of tasks the smallest makespan is chosen.

The first step of the Neglected algorithm is similar to the greedy algorithm, but with a  

relaxed  selection  criteria,  as  it  assigns  tasks  to  the  resource  that  minimises  the  task's 

makespan. However, many tasks may find a small subset of hosts as the most desirable, thus 

there will be contention for those resources. The relaxed selection criteria, of within 10% of  

the best available makespan for the task, was selected as it is considered as an acceptable  

worst case trade-off. Further work could be done to tune the selection of this value. The 

second step of Neglected attempts to map tasks to resources that are not that's tasks shortest  

makespan. In a data dominated workflow this would likely be a resource that does not have 

all  the  required  datasets.  By  mapping  these  tasks,  the  availability  of  these  datasets  is 

increased, in turn increasing the number of potential parallel tasks. 

Sufferage is a variation on the greedy algorithm, and attempts to prevent worst case task 

mapping, but does not attempt to resource starvation due the data distribution overheads. It 

would be possible to use the Sufferage allocation mechanism for the first step of Neglected, 

but this investigation is not addressing this variation. Finally, the compute-first algorithm is 

only  concerned  with  the  execution  time  component  of  the  makespan,  and  is  not  data 

allocation aware at all.

Neglected, Sufferage, greedy and compute-first are compared throughout the remainder 

of this chapter.
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4.3. Validation of systems via simulation frameworks
A systematic  approach  is  needed  to  evaluate  a  particular  scheduling  algorithm  or 

approach, compare it to others or measure its performance. In these situations it is desirable 

to  simulate  the  entire  system of  machines  and networks which compose the scenario in 

software.  Simulation  allows  statistical  approximations  of  the  characteristics  of  the 

components of the system to be used in testing the algorithm of interest. Due to the statistical  

nature of the approximations, a number of runs of any simulation must done to build up  

confidence in their outcomes. Further, comparisons with some real world measurements are 

also required to help validate that the simulations are representative of a real system.

There  are  a  number  of  techniques  for  simulating  systems like  those  discussed.  Their 

properties can be broadly broken down into:

● Static or dynamic – does the system change with time

● Continuous or discrete – is the system constantly changing, or are there distinct 

events which signify the change

● Deterministic or stochastic – does the system rely on sources of randomness

One  of  the  most  widely  used  techniques  in  network  simulation  is  discrete  event 

simulation (DES)[97]. DES simulations have a global clock and calendar of future events. At 

the outset the calendar is populated with user provided events, such as starting jobs or data  

transfers. Then, as these events are processed by moving the clock to the start time of each 

event and invoking the specified elements of the simulations. The processing elements may 

then add their own future events to the calendar, such as the completion of a data transfer  

based on link conditions and data size. The simulation proceeds in this way until the exit  

condition is reached, or there are no more future events. Important information can then be 

obtained from the trace of this execution, such as system responses to certain events, total  

execution time, etc.

Quite  complex scenarios  can be simulated,  such as  complex network topologies  with  

background network and machine load, system and network failures, and addition of new 
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resources. These real world situations would be very difficult to arrange, orchestrate and then 

monitor, especially in the repeatable way which is required for this kind of research.

There  is  already a  significant  body of  work  done  on  simulating  scheduling  systems,  

including for Grid style resource allocation and usage. Here we will discuss some of these, 

and select an existing framework which we will use to test our scheduling algorithms, and 

compare them with existing contenders.

GridSim [17] is a Grid system simulator which models many layers of the Grid. It is built  

on SimJava, a discrete event simulation framework for Java. The power of GridSim comes 

from the number of components modelled. From the bottom level machines and the network 

links between these, including simulated background traffic, quality of service (QoS), and 

network  routing.  On  top  of  this  computational  resources  support  advanced  reservation, 

allocation, and workloads based on recorded traces or simulated distributions. More recently  

data  grid elements  were provided which include  replica  catalogues,  and  data  movement 

management.  After  evaluating  other  simulation  packages  including  GSSim[98], 

DGSim[99] and GangSim[100], GridSim was selected for this project. Contributing factors 

to this decision included the use of Java which makes integration with the real workflow 

system  components  easier,  and  the  complementary  work  in  [45] and  [61] which  were 

performed using GridSim.

4.3.1. Calibration of the simulation
The selected simulation software, Grid Sim toolkit version 4.2beta, provides a number of 

different network models and configurations.. These include packet based and flow (stream) 

based network models as well as various “background traffic” simulations. The difference 

between these network models is  important,  as they may impact  on the accuracy of  the 

simulations, and the time it takes to compute them.

When a simulator entity, for instance the master or slave, needs to communicate it does so 

by  using  the  simulated  network.  It  creates  a  packet,  which  has  a  payload,  size  and 
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destination. This packet  is sent to the output  link of the entity,  where it  is passed along  

routers and links until it reaches its destination. When the packet based model is used the 

single packet is broken up into many smaller packets which can be sent along the network, 

and these are independently handled by the networking entities. When the final packet is 

received the destination entity is given the payload. 

The flow based networking simply calculates the time the data would take to reach the 

destination,  based  on  propagation  delay  and  bottleneck  bandwidths.  When  a  flow  is 

established the bottleneck bandwidth is reserved along the entire path, with existing flows 

being adjusted to accommodate these new flows.

Computationally the flow network model is much faster to run than the packet based 

model,  as  it  does  not  involve creating many packets out  of  the  data  and handling them 

independently.  This  is  important  when simulations  involve large data sets.  However,  the 

accuracy of the simulations needs to be tested to ensure that the network is performing as  

expected. To do this a simple network with one router and two entities was set up, using the 

standard network packet size of 1500 bytes. Data of different sizes is passed between the 

entities, and the transfer time recorded. This was repeated for the packet based and flow 

based network, and compared to the ideal transfer times.

The results of this experiment, seen in Table 4.1, demonstrate that the flow networking is 

much more  accurate  than  the  packet  network model.  In  fact,  the  packet  network  model 

appears  to  be  broken  as  the  transfer  time  is  in  error  by  an  order  of  magnitude.  The  

118

Data size (bytes) Flow network 
transfer time (s)

Packet network 
transfer time (s)

Ideal network 
(107bps) transfer 

time (s)

103 0.04 0.04 0.001

104 0.05 0.10 0.008

105 0.12 0.70 0.080

106 0.84 6.70 0.800

107 8.04 66.70 8.000

Table 4.1: GridSim network model comparison results.



consequences of this network layer error would be to inflate the impact of data transfer time,  

and any experiment using this model would favour algorithms which concentrated more on 

efficient data placement than efficient computational placement. 

Obviously, for the purpose of simulations in this thesis the flow network model will be  

used, as it is superior to the packet network is both computational time and accuracy. The 

discrepancies between simulated and ideal are acceptable for these purposes.

4.3.2. Simulation of Allocation Algorithm
Simulation was used to validate the performance of the proposed Neglected algorithm 

against the competing algorithms. The simulations compare a number of exemplar network 

topologies  and  workflows  which  cover  a  range  of  observed  and  plausible  experiments 

performed in cheminformatics. 

The simulation is built using the Grid Sim toolkit, version 4.2beta. The components of the 

network are modelled using the link and router components provided by Grid Sim, with the 

topologies under investigation being inspired by actual site layouts. Computing elements are 

subclasses from the Grid Sim GridResource classes.  GridResources represent  an abstract  

computing element, comprised of one or more machines, each with one or more processing 

elements or CPUs. As these scheduling algorithms are used to assign work to specific CPUs,  

in this simulation each computing element will only consists of one machine with one or 

more CPUs.

GridResources are designed to process abstract Grid jobs called Gridlets. A Gridlet is a 

package of work which takes a certain number of instructions to complete, requires input  

data of a certain size, and produces further data of another size. This input data are copied 

from the master before the job starts, and the output data are copied back at the end of the  

job.

The  implemented  algorithms  are  designed  to  operate  on  a  bag  of  tasks  which,  as 

discussed earlier, is a primitive unrolled representation of the workflow being run. As the 
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algorithms do  not  directly  deal  with complex  workflows  a  class,  Workflow,  is  provided 

which presents the tasks available for running. It deals with task dependency, updating the 

list  of  runnable  tasks  on  the  completion  of  a  task.  It  also  provides  the  dependency 

information for more advanced algorithms to utilise.

The  network  scenario  (Figure  4.8)  considered  here  will  vary  the  processing  speed, 

number  of  processors  and their  position in  the  network  topology.  Network  links  are  all  

100Mbps with 1500byte packet size, as are the interconnect between routers. For each of the 

simulation runs the machines are randomly assigned a router, such that there are 10 hosts  

connected to Router 1, and 5 to each of Router 2 and Router 3. The host configurations are:
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Figure 4.8: Configuration of compute resources connected via a network used in 
scheduling simulation.



Count CPUs CPU Speed

2 1 100MIPS

2 1 120MIPS

2 1 140MIPS

2 1 160MIPS

2 1 180MIPS

1 2 100MIPS

1 2 120MIPS

6 2 140MIPS

1 2 160MIPS

1 2 180MIPS

Table 4.2: Host configurations for simulation executions.

The workflow scenario (Figure 4.9) being used to investigate the performance of these 

scheduling algorithms will consist of 20 data files ranging from 1GB to 20GB (datafile). The 

workflow will  be  a  parameter  sweep across  those data  files,  executing a  number  (5)  of  

operators of different classes  on each file. The run time of each operator will be different, 

but will remain constant within the class of operator. An additional parameter repeat will be 

swept as well, which represents the repeated re-execution as occurs in cross validation. This 

parameter will be varied to control the number of tasks present in the system. Similarly, the 

operator run times will be varied to adjust the ratio of compute time to data transfer time.

Figure 4.9: Workflow used in simulation.

This scenario covers a range of variability within scientific workflows, and is useful for 

creating a heterogeneous pool of independent tasks. The workflow situations covered by this 

scenario include situations where the data transfer is expected to dominate the compute time, 

and vice-versa, and where there are many operators of varying run times operating on the 

same data.
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1. for each datafile
2.     for each operator
3.         for each repeat
4.             execute operator on datafile



The data transfer system used in these simulations is not the data grid functionality within 

GridSim, rather it is a new data management system implementation which is designed to 

more naturally fit the tuple data model of the data mining workflow system developed in 

Chapter 3. Each resource in the network has a tuple store attached to it, which can be queried  

by  other  resources  to  retrieve  data.  When  a  tuple  is  replicated  between  resources  that  

replication is registered with the Master node's data location service. This allows the Master 

to quickly access the locations of all the data within the system and allows the scheduling 

algorithms to use this information to estimate data transfer times. The network information is  

mapped out using the GridSim's ping packets which include information about the bottleneck 

bandwidth.

When a Slave is assigned a task, the data requirements are handed to the local tuple store 

to retrieve. The task allocation specifies the remote stores to be used when retrieving data, as  

it is the responsibility of the scheduling algorithm to determine the best replica sources. Once 

all the data are available on the slave resource the task is passed to the Slave Resource's local  

scheduler to execute in space share mode, which process tasks using a first come first served 

model.

Once  tasks  are  complete  the  Slave  signals  the  Master  that  the  task  has  completed,  

returning task metadata such as the amount of CPU time the task required to execute. The 
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Figure 4.10: Component diagram of simulation experiment software.



scheduler can then use this information to build a model of the time each class of task takes 

to run. It also marks this task as complete, consulting the workflow segmenter if any new 

tasks can be released, and then invoking another iteration of the workflow scheduler.

4.4. Experimental Results
The  four  scheduling  strategies  discussed  in  Section  4.2.   were  evaluated  using 

simulations.  The  experiment  recorded  the  makespan,  system  efficiency,  and  final  data 

distributions across the parameter space. From the data distribution it is possible to calculate 

the total data transferred, and present this as a percentage of the worst case scenario where  

all data are transferred to all nodes, termed transfer saturation. The fixed parameters are the 

data file sizes and locations, the machine speeds, and the network. The variable parameters 

are the lengths of the operations, which are 1, 2, 10 and 100 times the base operators and 

number of iterations over each data set-operator pair, which are 10, 25, 50 and 100. This 

translates into the total number of tasks in the workflow, with each datafile requiring the  

same number of times, for the same average length of time. The locations of the machines in  

the network were permuted for the 20 runs of each scenario to randomise for small network  

variations and machine ordering. 

The normalised values in  Table 4.3 show the makespan of each of the four scheduling 

algorithms for variations in the number of tasks, with the four different operator run times 

and different numbers of data files. The compute-first algorithm and the greedy algorithm 

both increase in relative makespan as operator runtime or number of tasks increases, with 

there being little difference between the two. This observation agrees with the observations 

made  in  [61],  where  their  greedy  algorithm  only  slightly  outperformed  compute-first. 

Sufferage performs much better  than compute-first  and  greedy over  the  same parameter 

space,  particularly  in  the  data  dominated  scenario.  The  performance  of  the  Neglected 

algorithm is similar to Sufferage, but it particularly out performs Sufferage when there are 

less tasks to average out poor allocations. 
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Table 4.3: Normalised makespan for varying operator run times and repeat values.

 Op. Length Tasks Files Compute-first Greedy Neglected Sufferage
x1 25 1 1.00 1.07 1.05 1.11

10 18.28 17.43 9.16 10.67
20 49.85 40.27 17.24 36.13

50 1 1.00 1.03 0.83 1.04
10 17.21 19.04 8.72 7.23
20 53.65 37.46 15.60 28.01

75 1 1.00 1.06 0.97 1.05
10 14.82 19.28 9.09 8.11
20 45.61 37.91 17.12 19.63

100 1 1.00 0.98 0.87 0.97
10 12.39 16.21 8.55 7.80
20 35.19 33.88 16.38 15.06

x5 25 1 1.00 1.18 1.00 1.19
10 7.89 8.88 7.42 7.13
20 18.17 20.48 13.97 14.91

50 1 1.00 1.05 0.72 1.06
10 6.38 7.51 5.99 5.88
20 13.16 14.76 11.60 11.38

75 1 1.00 1.11 0.85 1.08
10 7.62 8.45 7.22 7.13
20 15.82 16.77 14.13 13.89

100 1 1.00 1.03 1.00 0.99
10 8.21 8.94 7.84 7.73
20 16.87 17.69 15.47 15.28

x10 25 1 1.00 1.26 1.00 1.22
10 7.88 8.21 7.30 7.72
20 15.06 15.08 14.06 14.22

50 1 1.00 1.10 0.69 1.13
10 6.11 6.19 5.78 5.94
20 11.98 11.90 11.40 11.34

75 1 1.00 0.97 0.75 1.01
10 6.59 6.63 6.31 6.43
20 13.02 12.84 12.54 12.48

100 1 1.00 1.03 0.99 1.02
10 8.01 8.08 7.82 7.80
20 15.87 15.83 15.47 15.49

x100 25 1 1.00 1.26 1.00 1.31
10 8.31 8.34 7.66 8.31
20 15.42 15.61 14.51 15.47

50 1 1.00 1.13 0.67 1.10
10 6.05 6.14 5.68 6.07
20 11.57 11.43 11.32 11.40

75 1 1.00 1.02 0.77 1.01
10 6.79 6.75 6.52 6.76
20 13.25 13.17 12.96 13.15

100 1 1.00 1.00 0.95 0.99
10 7.83 7.81 7.71 7.77
20 15.44 15.41 15.25 15.35



A second observation is that the compute-first mapping is outperformed by the greedy 

when there are only a small number of data dominated tasks, but as the tasks become more  

CPU dominated,  or  the  number  of  tasks  increases,  the  compute-first  mapping  performs 

better.

To understand the differences between these algorithms the final data distributions were 

analysed and plotted in Table 4.5 and Table 4.6. These diagrams plot the data sets as rows, 

and machines as columns, where a solid box indicates the presence of the data set on that  

machine.  The patterns shown are  typical  examples  taken from a single  execution of  the 

simulation. It can be seen that as the number of tasks increases the compute-first and greedy  

algorithms migrate all  data sets  to  all  hosts.  In  contrast,  the Neglected algorithm avoids 

unnecessary replication of data sets, preferring to extend the availability of neglected data  

sets rather than to focus on data sets which are already being processed elsewhere. This 

means that all  the tasks are completed with a reduced need to transfer data. This is also  

expressed  in  Table 4.4 as transfer saturation – the percentage of data (in bytes) that has 

ended up being copied to each node.

This behaviour is explained by the way tasks are assigned to resources. Under Neglected 

a resource is assigned tasks Pi if that task can be completed within a given margin of the best  

resource for running Pi. In a data dominated scenario t i
C  will be heavily influenced by t ij

T , 

meaning resources will favour tasks which require the least relative transfer time. This will 

include tasks that have most of the required data, or tasks for which there are no resources  

with the required data. 
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Table 4.4: Experiment data transfer saturation for the four scheduling algorithms,  
across the parameter space of operator size, task size and file count.

 Op. Length Tasks Files Compute-first Greedy Neglected Sufferage
x1 25 1 82% 81% 83% 80%

10 55% 56% 37% 40%
20 54% 45% 18% 42%

50 1 100% 100% 100% 100%
10 98% 82% 44% 46%
20 99% 64% 19% 53%

75 1 100% 100% 100% 100%
10 100% 93% 46% 49%
20 100% 72% 21% 50%

100 1 100% 100% 100% 100%
10 100% 98% 47% 50%
20 100% 78% 21% 44%

x5 25 1 82% 81% 82% 79%
10 68% 65% 41% 45%
20 66% 58% 18% 53%

50 1 100% 100% 100% 100%
10 98% 90% 47% 52%
20 97% 86% 20% 59%

75 1 100% 100% 100% 100%
10 100% 95% 48% 53%
20 100% 94% 21% 61%

100 1 100% 100% 100% 100%
10 100% 97% 50% 52%
20 100% 97% 21% 62%

x10 25 1 82% 80% 82% 82%
10 71% 66% 41% 47%
20 71% 68% 17% 52%

50 1 100% 100% 100% 100%
10 97% 87% 48% 56%
20 97% 86% 21% 64%

75 1 100% 100% 100% 100%
10 100% 93% 49% 57%
20 100% 91% 23% 66%

100 1 100% 100% 100% 100%
10 100% 96% 52% 56%
20 100% 94% 24% 67%

x100 25 1 82% 82% 83% 82%
10 68% 66% 42% 50%
20 71% 68% 17% 54%

50 1 100% 100% 100% 100%
10 97% 87% 47% 55%
20 97% 84% 21% 64%

75 1 100% 100% 100% 100%
10 100% 93% 49% 54%
20 100% 91% 22% 65%

100 1 100% 100% 100% 100%
10 100% 96% 52% 55%
20 100% 93% 23% 66%
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Table 4.5: Final data placements for scheduling algorithms vs iterations (compute dominated)
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Table 4.6: Final data placements for scheduling algorithms vs iterations (data dominated).



Figure 4.11,  Figure 4.12,  Figure 4.13, and  Figure 4.14 show a comparison of the CPU 

efficiencies  of  the  various  scheduling  methods  under  increasingly  CPU  dominated 

workflows. All scheduling algorithms fail to efficiently use the CPUs in the data dominated 

scenario, as the data transfer time dominates the job run times. This is a worst case scenario,  

and  demonstrates  a  situation  where  there  is  an  excessive  number  of  compute  resources 

assigned to the application. This is best illustrated by the Neglected scheduler which isolates  

3 resources to perform a majority of the computational work.  As the workflows become 

more CPU intensive the Neglected scheduler outperforms the other schedulers in efficiency, 

until the workflow is completely CPU dominated. When the workflow is completely CPU 

dominated the contribution of data transfer to the makespan becomes insignificant, and the 

Compute-First scheduler slightly exceeds the performance of the Neglected scheduler. 
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Figure 4.11: CPU Usage Efficiency with increasing CPU dominance (x1).
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4.5. 
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Figure 4.12: CPU Usage Efficiency with increasing CPU dominance  (x5).

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 d1 d2 d3 d4 d5 c1 c2 c3 c4 c5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

x5 Operator efficiency

Compute first Greedy Neglected Sufferage

Figure 4.13: CPU Usage Efficiency with increasing CPU dominance  (x10).
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Figure 4.14: CPU Usage Efficiency with increasing CPU dominance  (x100).
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4.6.  Utilisation of Resource Parallelism
Resources with multiple CPUs or CPU cores have a distinct advantage when executing 

data  intensive  workflows,  as  the  data  transfer  penalty  can  be  immediately  exploited  by 

multiple  tasks.  Scheduling  for  resource  parallelism  is  achieved  here  using  a  secondary 

scheduling algorithm which is invoked immediately after a task is assigned to a resource.  

This secondary scheduler uses a minimum time selection across all  tasks based on their  

completion  time  on  the  host  as  if  all  the  newly  requested  data  are  now available.  To  

demonstrate this an experiment was conducted using a data dominated workflow run across 

20 CPU cores.  The distribution of the cores was varied from 20 individual  resources (0  

parallel hosts), to 10 dual-core resources (10 parallel hosts). 

The results, seen in Figure 4.15, show that the Greedy scheduler benefited significantly 

by  having  parallel  hosts.  While  the  Neglected  scheduler  also  benefited  significantly,  it  

133

Figure 4.15: Execution times for varying numbers of parallel arrangements of 20 
computational elements, running a data-intensive workflow.
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appears  that  the  greater  emphasis  on data  location selection had already made a  greater  

contribution.

4.7. Summary
The focus of this chapter has been the scheduling problem, as it relates to the efficient 

execution of data mining workflows. The scheduling problem is known to be NP-complete  

meaning optimal solutions to the problem are not computable in polynomial time, and are 

therefore  not  possible  in  practical  terms.  However,  the  application  of  heuristics  to  the 

scheduling problem is known to produce acceptable results. 

Applying the master-slave paradigm as the distributed computing framework introduced a 

range of existing heuristics which could be applied to the scheduling problem. A review of  

these heuristics led to the selection of the Greedy algorithm as the benchmark scheduler, due 

to its wide acceptance and application in the fields of Grid and distributed computing. The  

characteristics  of  the  Greedy  algorithm  were  established  across  a  range  of  workflow 

parameter  combinations,  and  particular  observations  were  made  which  led  to  the 

development  of  a  new  scheduling  heuristic,  Neglected,  which  seeks  to  optimise  the 

execution  schedule  of  data  intensive  applications.  The  performance  of  Neglected  was 

compared against  Greedy,  and through the experimental  results  it  could be seen that  the 

relative makespan performance varied from significant improvement to approximately equal. 

However, in all cases the final data distribution of Neglected showed a significant reduction 

in the data transfer volume. This in itself is significant when consideration is given to the 

cost of data transfer.

The work presented in this chapter has implications for many data intensive distributed 

computing  applications,  through its  potential  to  reduce  the  execution  makespan,  and  by 

reducing the data transfer costs. Further research into its application to execution scheduling 

using commercial resource may yield opportunities to minimise both the compute-time and 

data-transfer costs of an execution. 
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Chapter Five

5. Predictive modelling for human intestinal 
absorption of chemical compounds 

To be useful, new pharmaceutical drugs need to be effective on their bio-chemical target,  

and also need to be efficiently transported to the site where they are required. While there 

may be many candidate compounds that effectively target a particular condition, if they are 

not properly absorbed and transported then they will ultimately be ineffective. And while it 

may be possible to test a drug on a given target in isolation with some level of ease, it is  

many times more difficult to test a drug's transport through the many complex systems of the 

human body by any experiment other than clinical human trials. Clinical trials come at great 

cost in terms of time, money and patient risk, so need to be used sparingly. It is possible  

however to treat the absorption, distribution, metabolism and excretion (ADME) scenario 

described  here  as  a  Quantitive  Structural-Property  Relationship  (QSAR)  problem,  and 

through the use of robust data mining tools there is the possibility of producing accurate  

models for predicting the transport performance of a drug [101].

The  ADME  problem  space  is  typical  of  many  cheminformatic  problems  as,  due  to 

expense, there are typically relatively few experientially measured absorption rates, while  

there are many more candidate predictors available to describe the drugs. Predictors will  

include  molecular  descriptors  from  calculated  and  measured  data  sets  of  candidate 

compounds. Robust methods are required to reliably tease out relationships between these 

predictors and the ADME response variables due to the dimensionality of the data set, and 

should  include  robust  cross-validation  to  improve  the  confidence  in  the  predictive 

performance of the generated model [102].

This chapter presents a study comparing a number of popular data mining techniques,  

used  to  produce  a  predictive  model  for  the  human  intestinal  absorption  of  various 

pharmaceutical  drugs.  This  time  consuming  process  is  aided  by  the  use  of  distributed 
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computing, and demonstrates the utility of the eScience methodology to pharmaceutical drug 

development. In particular it demonstrates the workflow language and distributed execution 

framework, along with a prototype of a provenance collection system.

5.1. Introduction
The  effectiveness  of  orally  administered  pharmaceuticals  is  a  combination  of  the 

suitability  of  the  drug  to  work  at  the  target  site,  and  the  efficiency  of  the  transport 

mechanism via the stomach, through intestinal absorption, and then via blood pathways. This 

transport  efficiency  can  ultimately  determine  the  usefulness  of  the  drug,  so  accurately 

modelling the pathway prior to clinical trials can reduce the cost of pharmaceutical research 

by filtering poorly transported drugs before they are synthesised. To construct this model 

requires  a  data  set  consisting  of  clinically  measured  absorptions  of  pharmaceutical 

molecules. 

From  here  there  are  several  approaches  to  the  modelling  problem,  including  QSAR 

descriptor  based  models,  substructure  searching,  and  similarity  matching.  The  QSAR 

approach, which is used here, requires that a set of numerical and categorical descriptors of  

the molecules be calculated from a 2D or 3D model of the molecule, using various methods.  

This creates a new data set which can be used by a data mining method to fit a model. There 

are many existing data mining methods which can be applied in this situation, such as PLS, 

SVM, CART, etc. The existing body of knowledge around these methods gives confidence 

and understanding to the models they produce. 

Alternative approaches include substructure searching and similarity matching, typically 

utilising the 2D or 3D structure of the molecule directly. These approaches either require a 

database of known active substructures to test against, or require a database of full molecules 

and an algorithm to compute their similarities. Both these methods are known to produce 

good results, but require specialised algorithms to perform the core comparison work. Using 

numerical descriptors enables the use of general purpose data mining methods, and will be 
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applied in this investigation.

5.2. Materials and methods
The goal of data mining is to produce a predictive or descriptive model of a system. The 

system under investigation here is the absorption of a molecule through the human intestine, 

into the blood. Through clinical experiments a data set has been developed of molecules and 

their absorptions.

This data set is presented by Hou in  [103] contains 552 compounds and their  human 

intestinal  absorption  (HIA)  value.  The  compounds  are  presented  as  3D models  in  SDF 

format – a file format used for the interchange of molecular structures. As seen in Figure 5.1 

the responses are heavily skewed to the high end of the scale, which may have consequences  

for any model fitting the data. 

137

Figure 5.1: Frequency of response variables in Hou data set.



This  exact  data  set  has  been  analysed  several  times,  and  will  be  the  focus  of  this 

investigation. In [103] Hou used a genetic algorithm to select from a set of descriptors, then 

using MARS, available in Cerius2[104]. This produces a linear model which contains spline 

functions. Using this model they achieved an r2 of ~ 0.81 on the test set. Following on from 

this  Yan,  Wang  and  Cai[105] calculated  two  separate  descriptor  sets  using 

ADRIANA.Code[106] and  Cerius2.  They  performed  variable  selection  using  a  genetic 

algorithm and PLS program genetic-PLS[107], selecting the best 6 descriptors of each data 

set. Each reduced data set was split into a single test and training set using a Kohonen's self-

organising Neural  Network (KohNN),  and used to  fit  a  Support  Vector  Machine (SVM) 

model  and  a  Partial  Least  Squares  (PLS)  model.  This  was  repeated  using  the  9  best 

descriptors from a combined descriptor set. 

The results of this can be seen in Table 5.1. It should be noted that the two investigations 

reported in this table used different test/training sets, making direct comparison harder.

Descriptors Method Results (testset R)

ADRIANA.Code PLS 0.83

ADRIANA.Code SVM 0.87

Cerius2 PLS 0.83

Cerius2 SVM 0.89

ADRIANA.Code + Cerius2 PLS 0.83

ADRIANA.Code + Cerius2 SVM 0.88

See Hou ibid GA+MARS 0.9

Table 5.1: Previous performance results for predictive models based in the HIA data 
set.

It is clear from this discussion that there is a wide selection of descriptor sets available, in 

addition to a wide selection of techniques available to analyse those descriptors. Selecting 

the  appropriate  descriptor  set,  along  with  appropriate  learning  technique  is  required  to 

achieve good results. And variations in the test/training set makes it hard to directly compare 

results. However, the type of geometric optimisation performed on the model before it is  

passed  to  the  descriptor  calculating  application  can  affect  the  values  of  the  calculated 
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descriptors and thus the performance of the techniques.  In nature molecules will  change 

shape to achieve their lowest energy shape. Estimations of these shapes can be made, and the 

accuracy of these estimations will impact on the values of some calculated descriptors.

 The more complex the molecule is, the harder it is to calculate what this shape will be. 

As with descriptor calculations, there is a number of algorithms and applications available to 

optimise a molecule, which will not always produce the same results. The origins of the 3D 

models in this investigation are not  clear either from the original paper, or the SDF file  

metadata.  For  the  purposes  here  they  will  be  assumed to  have  been  optimised  with  an  

unknown algorithm. For comparison in this context, the models will be re-optimised with the 

CORINA[108] software, then these molecular models will be used as inputs to calculate the 

suite of descriptors provided by the eDRAGON[109] software,  which calculate physical, 

topological  and  electrical  attributes  of  molecules.  In  addition,  the  two  descriptor  sets 

provided by Yan, et al. will be also used in comparison.

In contrast to those investigations discussed above, this investigation employs a different  

validation  technique,  monte  carlo  cross  validation  (MCCV)[32].  MCCV offers  a  more 

representative  estimation  of  the  predictive  power  of  the  model,  based  on  a  correlation 

coefficient which is calculated and averaged over many equal partitions of the data set into  

test and training subsets[29]. The drawback of this technique is that it requires many models 

to  be  fitted,  which  can  be  computationally  challenging  if  the  model  takes  a  significant 

amount of time to compute.

This  investigation  will  compare  three  popular  QSAR  models,  the  linear  technique 

SIMPLS[110],  and  the  non-linear  techniques  SVM[35] and  Random  Forests[34].  These 

techniques are selected due to their acceptance within the QSAR community, and because 

they can be used for prediction and interpretation. In the case of PLS this is a matter of  

inspecting  the  latent  variable,  for  SVM  Ustun,  et  al[111] have  produced  an  inspection 

technique, and random forests can be interpreted by inspecting the individual trees in the  

forest. 
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Due to the high dimensionality of the data set two variable reduction techniques will be 

applied  to  remove  unimportant  variables,  improving  predictive  performance.  This  will 

include  using  the  genetic  algorithm  with  PLS  method  to  select  the  most  promising  10 

variables, and also by using random forests to again select the 10 most important variables.

GA-PLS restricts the total number of attributes, p, in any model so it is within the limits 

of what PLS can fit. Many models, m, are initially constructed using a random subset of  

attributes,  and  are  evaluated  for  their  cross  validated  performance.  Selection  based  on 

performance  weighted probability  occurs  with  n of  the  m models  surviving to  form the 

parent population. This selection technique is used in preference to the top n, to reduce the  

rate at which the pool becomes homogeneous. Pairs of parent models are then randomly 

selected, and their attributes, genes, are combined to result in a new model. Mutation then 

occurs on randomly selected models, with two random genes being flipped. The combined 

parent and child pool is combined and evaluated, and the process starts over. The stopping 

criteria was 100 generations. Other parameters were selected as follows: p = 10 to allow PLS 

to clearly and efficiently fit the model, m = 500 to give enough models for each attribute to 

be considered at least once, n = 100. This model was implemented using the plsr module in 

R 2.7.1.

SVM benefits from variable reduction, but as it works on the separation of feature space 

by a hyper plane it  is more robust to noise variables than MLR. Further,  SVM-R better  

captures  non-linearity  as  it  uses  a  kernel  function  to  project  the  predictors  onto  an  m-

dimensional  feature  space,  which  transforms  the  non-linear  relationships  into  linear 

relationships in the feature space. This model was implemented using the “e1071” 1.5-19 

library in R 2.7.1.

Random forests is an ensemble technique which combines many small trees, allowing it 

fit non-linear responses in a robust way. Each of the m models is created using a bootstrap  

sample of the available training set. At each split of the tree ntry variables are considered as 

the splitting criteria. The default value for ntry is p/3, and in this investigation a range from 
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p/3 to p2/3 will be evaluated, with m values of 500, 600, 700, 800, 900 and 1000 being used. 

This model was implemented using the “randomforest” 4.5-28 library in R 2.7.1.

Of interest in this investigation is the overall performance of the method in predicting the 

HIA value of the molecule, and the computational time required to compute the model. By 

using a distributed computing framework it is possible to robustly evaluate the performance 

of computationally intensive methods, and further evaluate if there is significant value in  

committing the resources in this class of problem. 

5.2.1. Experiment
To ensure consistency across the comparisons the following workflow will be used. The 

experiment starts with a data set which has been collected and published independently of  

this  experiment.  The  data  set  consists  of  N  compounds  3D  structures'  and  laboratory 

measurements of their human intentional absorption characteristics. It is assumed that the  

data  was  collected  in  a  way consistent  with  best  practice,  and  this  itself  would  require 

provenance  data  to  confirm.  Unfortunately,  without  access  to  the  original  group  this 

information will need to be assumed. 

The format  of this  initial  data set  is  a  set  of  SDF 3D model  files.  This data  mining  

investigation requires molecular descriptors of each of these compounds to be calculated. 

This requires using an application called eDRAGON and supplying the original data file to 

produce  outputs  containing  the  descriptors.  In  this  case  there  are  several  options  for 

computing  the  descriptors,  and  the  outputs  are  split  into  different  files  with  extra  data 

preceding the first  records  in  each file.  These files  are  combined into a  single  data  file  

suitable for the data mining component of this experiment. Next the data set is cleaned of 

any constant variables, and highly collinear variables (r > 0.9) leaving 47 predictor variables.  

The two other data sets were used as supplied.

Monte carlo cross validation is  used to validate the process of variable selection and 

model building, so for consistency the test sets are generated at the start of the experiment so 
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that each combination of variable selection and model building uses the same set of testsets.  

Then, for each testset, data set, and variable selection technique combination the variable  

selection process is executed. Following this,  for each testset,  data set,  variable selection 

technique  and  model  combination  the  predictive  model  is  computed,  and  predictive 

performance calculated. 

5.3. Results and discussions
Discussing the results of the investigation some of the uncertainties of the data need to be 

highlighted. The primary issue is that the finer details of how this data was collected are not  

available. In particular, it is not clear what procedure was used to measure the HIA for each 

compound  reported  here.  Possibilities  would  include  measuring  the  availability  of  the 

compound found in the blood or body fat, or measuring the quantity of the compound which 

is excreted, and thus not absorbed. Further it is not clear how many times each absorption 

experiment was performed, and how an aggregate HIA value was arrived at. This uncertainty 

requires that the confidence in the accuracy of the data set be considered in the analysis of 

the results. 

The second artefact of this data set is that the distribution of response variable is heavily 

biased towards high HIA values, compared to low HIA values, at a ratio of approximately 

10:1.  This  reduces  the  confidence  that  a  representative  sample  of  low  HIA yielding 

compounds are available to fully model mechanisms which regulate the HIA value.

ADRIANA.Code GA-PLS Cerius2 GA-PLS

Nrule5 (X..ViolationsRo5) Nrule5 ()

Hdon (HDON) Nrot (ROTLBOND)

LogS (LOGS) LogP (LOGP)

MW (WEIGHT) Hdon (HBOND_DO)

TPSA (TPSA) Jurs-FNSA3 (Jurs_FNSA_3)

Acorr_Sigchg_3 (X2DACorr_SigChg_3) Jurs-RPCG (Jurs_RPCG)

Table 5.2: Top 6 most frequently selected variables by data set using GA-PLS as  
reported by Hou.
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Where  Cerius2  and  ADRIANA.Code  have  the  same  descriptors  the  following 

discrepancies were observed:

1. Hdon for Mesna (ADRIANA.Code = 1 ; Cerius2 = 2)

2. Hacc from ADRIANA.Code does not equal HBOND_AC from Cerius2

3. No Rule of 5 violations were not available from Cerius2, despite this being reported.

4. Molecular weights do not match by an average of 0.0023

The results  of  the  variable  selection process  using Random Forests  and GA-PLS are 

shown in Table 5.3 and Table 5.4 respectively. All three variable selection sets for Random 

Forests contained a TPSA and LogP values, which ended up in the selected set of descriptors. 

Another similarity between the original GA-PLS variable selector and the Random Forest 

variable  selector  is  the  inclusion  of  the  HDON and  HBOND_DO descriptors  from  the 

ADRIANA.Code and Cerius2 descriptors respectively. As explained by Hou in [103] TSPA 

and the hydrogen donors are highly correlated, and can possibly explain the electrostatic  

surface charges of molecules which prevents absorption.

EDRAGON Random 
Forests

ADRIANA.Code Random 
Forests

Cerius2 Random Forests

TPSA.Tot. TPSA ALOGP98

ALOGPS_logP HDON LOGP

T.O..O. XLOGP HBOND_DO

BAC X2DACorr_TotChg_4 Jurs_TPSA

T.N..O. LOGS FOCT

ALOGPS_logS X2DACorr_TotChg_2 Jurs_FNSA_2

Table 5.3: Top 6 variables selected using random forests variable importance  
measure.

Comparisons  between  the  original  GA-PLS  variables  (Table  5.2)  and  the  variables 

selected inside the MCCV (Table 5.4) reveals a reordering of some of the selected variables, 

and  the  replacement  of  others.  In  the  ADRIANA.Code  data  set  Nrule5,  MW  and 

Acorr_Sigchg_3 were replaced with IsViolatingRu5, MW and Acorr_PiChg_2; and in the 

Cerius2 data set Nrule5 and Jurs-FNSA3 were replaced with ALOGP98 and Jurs-FNSA2. 
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While,  comparisons  between  the  GA-PLS  and  Random  Forests  within  MCCV 

ADRIANA.Code  differ  Acorr_TotChg_2  and  ACorr_TotChg_4  are  replaced  with 

IsViolatingRo5 and Acorr_PiChg_2; and Cerius2 Jurs_TPSA and FOCT are replaced with 

ROTLBOND  and  Jurs_RPCG.  The  eDRAGON  data  set  shows  even  greater  variability 

between selection techniques with, T.O..O, BAC and ALOGPS_logS replaced with PCD, 

MW and Mor01M. As there is at least a 50% crossover of the most important  variables 

between each selection technique it is possible that these account for most of the predictive 

power of the models, and the remaining variables contribute little to the model. 

EDRAGON GA-PLS ADRIANA.Code GA-PLS Cerius2 GA-PLS

ALOGPS_logP LOGS ROTLBOND

TPSA.Tot. IsViolatingRo5 HBOND_DO

PCD XLOGP LOGP

MW TPSA Jurs_RPCG

Mor01m. HDON ALOGP98

T.N..O. X2DACorr_PiChg_2 Jurs_FNSA_2

Table 5.4: Top 6 variables selected using GA-PLS across the MCCV variable  
selection.

The results of the combinations of data set and modelling method are shown in Table 5.5 

and Table 5.6. The results include the training set and test set values for R2 and RMSE, as 

well as the standard deviation of these values across the population of MCCV results. When 

comparing these results  to previously reported results  it  is important  to acknowledge the 

different cross validation techniques used. Previous investigations used a single training/test  

split, which may have led to an overestimation of the true predictive performance. The more 

robust  MCCV validation  technique,  as  argued  by  Konovalov,  et  al.  [29],  gives  a  more 

accurate estimation of performance. 
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data set Method R2 R2 prediction RMSE RMSEP

EDRAGON PLS 0.61 (0.09) 0.45 (0.14) 21.82 (2.09) 27.68 (5.16)

EDRAGON SVM 0.82 (0.02) 0.76 (0.03) 16.12 (0.98) 18.78 (1.26)

EDRAGON RF 0.96 (0.01) 0.77 (0.03) 8.55 (0.69) 18.11 (0.95)

ADRIANA.Code PLS 0.69 (0.03) 0.68 (0.04) 19.90 (0.92) 20.78 (1.08)

ADRIANA.Code SVM 0.85 (0.03) 0.74 (0.04) 15.01 (1.32) 19.20 (1.33)

ADRIANA.Code RF 0.95 (0.01) 0.76 (0.03) 8.84 (1.06) 18.35 (0.97)

Cerius2 PLS 0.68 (0.05) 0.66 (0.04) 20.32 (1.14) 21.14 (1.05)

Cerius2 SVM 0.85 (0.03) 0.76 (0.04) 15.05 (1.10) 18.77 (1.47)

Cerius2 RF 0.96 (0.01) 0.76 (0.04) 8.52 (0.75) 18.13 (1.20)

Table 5.5: Mean predictive performance of HIA data set descriptors using PLS, SVM 
and RF predictive models using variables selected by Random Forest.

data set Method R2 R2 prediction RMSE RMSEP

EDRAGON PLS 0.58 (0.13) 0.42 (0.12) 22.28 (2.63) 28.07 (6.54)

EDRAGON SVM 0.81 (0.03) 0.74 (0.04) 16.64 (1.33) 19.51 (1.45)

EDRAGON RF 0.96 (0.01) 0.74 (0.04) 8.95 (1.16) 18.81 (1.40)

ADRIANA.Code PLS 0.55 (0.13) 0.51 (0.15) 22.82 (2.50) 24.12 (2.77)

ADRIANA.Code SVM 0.87 (0.02) 0.73 (0.03) 14.38 (1.06) 19.65 (1.37)

ADRIANA.Code RF 0.97 (0.01) 0.77 (0.03) 7.87 (0.70) 17.79 (0.97)

Cerius2 PLS 0.66 (0.12) 0.63 (0.12) 20.49 (2.40) 21.55 (2.71)

Cerius2 SVM 0.87 (0.02) 0.76 (0.03) 14.27 (0.97) 18.79 (1.39)

Cerius2 RF 0.97 (0.01) 0.77 (0.03) 8.07 (0.56) 17.89 (1.10)

Table 5.6: Mean predictive performance of HIA data set descriptors using PLS, SVM 
and RF predictive models using variables selected by GA-PLS.

Regardless of the data set used there is a clear pattern of predictive performance between 

PLS,  SVM  and  random  forests.  In  all  situations  the  mean  RMSEP of  random  forests  

outperforms PLS and SVM. As well, the standard deviation of RMSEP for random forests is 

also smallest for all data sets and variable selection methods, with one exception, indicating 

that  the  performance of  random forests  is  the  most  stable  for  these data  sets  across  the 

MCCV iterations. 

Overall,  the best  predictive performance measured by R2 was achieved using random 
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forests with the EDRAGON descriptors and RF variable selection,  random forests using  

ADRIANA.Code  descriptors  and  GAPLS  variable  selections,  and  random  forests  using 

Cerius2 descriptors and GAPLS variable selection. The standard deviation of each of these  

values is 0.03 or 0.04, indicating that they are all effectively equivalent. Measured by RMSE 

the  model  produced  the  same  combinations  of  methods  performed  best,  and  again,  the 

standard deviation of the RMSE indicates that the methods are equivalent.

5.4. Workflow and provenance
The workflow for this experiment shown in  Figure 5.2 is expressed here as the entire 

investigation, first generating the testsets (1-3), then performing variable selection for each 

group  of  test  sets  (4-8),  and  finally  computing  the  predictive  models  (9-15).  In  this 

investigation all work is performed using R or MATLAB, using the modules described in  

Chapter 5.2.

This workflow was executed using a number of resources available from the James Cook 

University High Performance and Research Computing department. These included 2 small 

AMD Opteron 2356 SMPs each of which contributed 8 cores, and 2 AMD Opteron 2593 

cluster nodes that each contributed 2 cores. The workflow was executed from the cluster 

head-node as it was the only point which could directly connect to all the resources involved 

in the execution. 
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Figure 5.2: Workflow for HIA investigation.

Operation Total Time (s)

Generating testsets 2s

Computing Random Forest variable selection 2,422s = 40.4m

Computing GA-PLS variable selection 26,238s = 437.3m

Computing PLS model 381s = 6.35m

Computing SVM model 427s = 7.1m

Computing Random Forest model 1,327s = 22.1m

Total (linear time) 30,797s = 513.3m

Table 5.7: Amount of time (serial) spent performing each step of the workflow.

The parallel execution took 27.9 minutes (1,674s) to compute, with a majority of the time 

being spent computing the GA-PLS variable selection in MATLAB. A speedup factor of  

18.40  was  obtained  across  the  20  cores  involved,  which  demonstrates  a  high  efficiency 

parallel execution.  Table 5.7 shows a breakdown of the total amount of time spent in each 
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1. foreach id in inputdata
2.   generate_testsets(data_file_name=id.data_file_name, 

testsets=testsets)
3.   write to testsets(inputdata=id.data_file_name, 

testset=testsets)
4. foreach id in inputdata
5.   foreach ts in testsets[inputdata=id.data_file_name]
6.     foreach vs in variable_selectors
7.       ${vs.variable_selector}(data_file_name=id.data_file_name,

              testset=ts.testset, variables=variables)
8.       write to variable_selected(variables=variables,

              variable_selector=vs.variable_selector,
              inputdata=id.data_file_name, testset=ts.index) 

9. foreach id in inputdata
10.   foreach ts in testsets[inputdata=id.data_file_name]
11.     foreach vs in variable_selectors
12.       foreach vars in 

variable_selected[inputdata=id.data_file_name,
              variable_selector=vs.variable_selector,
              testset=ts.index]

13.         foreach m in methods
14.           ${m.method}(data_file_name=id.data_file_name,

                  variables=vars.variables,
                  testset=ts.testset,
                  model_file_name=model)

15.           write to filestore(method=m.method, 
                  testset=ts.index,
                  variable_selector=vs.variable_selector,
                  model=model,
                  variables=vars.variables) 



step of the execution and the total  compute time.  The time required to fit  the predictive 

models  increased  with  predictive  performance  of  those  models,  with  random  forests 

exhibiting the best predictive performance and requiring the longest time to fit, followed by 

SVM and finally PLS. This illustrates an important point regarding the trade off between 

execution time and performance of predictive models. While the time penalty for using an 

extremely computationally expensive method such as GA-PLS may not be justified by its 

performance relative to other method, there are also situations where investing extra time  

fitting a model will produces a significantly improved model, as demonstrated by random 

forests  in  this  experiment.  This  illustrates  the  importance of  properly understanding and 

evaluating the methods used to ensure they are appropriate for the situation. This evaluation 

of method may also take into account other considerations such as the degree to which the  

model can be interpreted or visualised.

5.5. Conclusion
Screening of potential pharmaceuticals for their suitability to human use at early stages of  

their development offers an excellent opportunity to reduce the costs and development times 

for  new  drugs.  Cheminformatic  QSAR  methods  are  an  extremely  useful  tool  in  this 

endeavour, however the large number of potential input data sets, data mining methods and 

the need for robust  validation can make the exercise computationally prohibitive. In this  

chapter it was found that some computationally expensive methods are required to produce 

high-quality results, while others may not prove so valuable. In order to usefully evaluate 

and then use candidate methods distributed computing was utilised. Distributed computing 

allowed a highly parallel workflow to be executed quickly, using the resources available.

The ability to execute the workflow quickly allowed the experiment to include many 

computationally expensive methods, and also allowed a far more robust method of cross-

validation to be employed. Future work on these data sets should include the expansion of 

the input data set to include a wider range of molecules which includes a better spread of 

148



HIA values. This in itself may improve the performance of the candidate models, and may 

also allow the most important contributors of human intestinal absorption to be more clearly 

identified. This experiment reinforced the results of previous experiments which found TSPA 

and hydrogen donor bonds, which contribute to the polarisation of molecules are significant 

contributors to human intestinal absorption. By refining future data sets it may be possible to 

calculate new descriptors which are related to TSPA and HDON which better capture the 

properties  responsible.  However,  this  will  surely  be  another  computationally  expensive 

operation, and will again employ distribute computing and eScience methods.
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Chapter Six

6. Conclusions and Future Work
The use of information technology (IT) in scientific investigations is now commonplace, 

and with its use has come improved ways of managing, organising and processing data. The 

use of IT has become necessary due to the increasingly large and complex nature of data sets 

being collected during scientific investigations, as  well as the growing libraries of these data  

sets. These libraries are often available not only to the original researcher, but to the wider 

research community through government and institutional policy, and groups like the Open 

Science movement. Great opportunities and challenges are posed by the analysis of these  

data  sets,  and  through the  use  of  modern  analysis  techniques  such  as  data  mining  it  is  

possible to unlock the information within them. 

The project reported in this thesis specifically explored the application of workflows for  

expressing experiments, the collection of provenance data for organising investigations, and 

distributed computing for reducing the time-to-solution of experiments. The project builds 

on and contributes to the fields of eScience, distributed computing, and data mining to in 

turn improve the uptake and effectiveness of IT in research.

6.1. eScience: Workflow and Provenance
The eScience  paradigm has  developed to  provide  tools  and  techniques  that  assist  in 

handling the process of analysing large and complex data sets, and so large scale data mining 

benefits from advances in eScience.

At an abstract level the process of data mining is relatively straight forward. It involves 

the  preparation  of  the  data  sets,  the  repeated  application  of  a  data  mining  method,  and 

summarising  the  results  from that  process.  Variations  on  this  process  are  common,  and 

mostly  involve  the  repeated  testing  of  different  combinations  of  methods  and data  sets. 

Practitioners invest large amounts of time exploring parameter spaces, and developing new 
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methods to improve on previous results. It is possible to abstract away the high level data 

mining process from the actual method implementation, and this approach was demonstrated 

in this project using an extended parameter sweep workflow language. 

Capturing  configuration  of  the  experiment  using  a  workflow  language  allows  the 

practitioner to interchange methods and data set while ensuring the actual process remains 

consistent. It also has the benefit of exposing the flow of data and parameters, which allows 

the  workflow  to  be  broken  into  discrete  tasks.  These  tasks  can  then  be  independently 

executed  using  distributed  computing,  the  principal  benefit  of  which  is  to  decrease  the 

makespan  of  the  experiment.  Quicker  solutions  enable  the  investigator  to  perform 

increasingly more thorough experiments, reduce costs, and tackle larger problems.

Another benefit of expressing an experiment as a workflow is that it forms documentation 

of  the  experiment  process,  and  assists  in  the  collection  of  provenance  information. 

Provenance  information  describes  where  data  comes  from,  and  in  the  context  of  an 

experiment it describes, what processes and transformations have occurred on the data.

6.2. Distributed Computing
Distributed computing is the process of using independent computers, connected via a 

network,  to  solve  a  single  computational  problem.  The  application  or  workflow  being 

executed must be broken down into discrete tasks which are either independent, or have all 

their data dependencies available. Tasks are executed on the resources in the system, with 

data either transferred or reported centrally so that it becomes available for the user, or other  

tasks in the system.

The  amount  of  time  taken  between  starting  the  first  task  and  the  final  task  being 

completed is affected by the order that tasks are run, and where they are executed. This is  

known as a scheduling problem and to solve it many aspects of the tasks, computers, data 

networks and data need to be considered. In a simple scenario where there is very little data 

and fast networks, only the size of the tasks and the speed of the resources are important, and 
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strategies exist for scheduling such tasks in quite an efficient manner.

When the size of data of a computational problem become significant network bandwidth 

and data location become critical to scheduling decisions. Many large scale schedulers use 

simple objective functions for a greedy algorithm to produce a schedule of tasks to run on 

resources. Extending the greedy algorithm, which optimises for job runtime, to include a  

data  transfer  term  fails  to  produce  a  satisfactory  schedule.  This  is  because  the  greedy 

algorithms take a short sighted view of the problem in order to solve the larger problem. In 

this case, tasks mapped by a greedy approach tend to be those requiring data sets that are 

already prevalent within the network, as these may be individually quicker to execute.

A new scheduling algorithm, Neglected, is described in this thesis that better evaluates 

the location of data, and prevents the unnecessary transfer of data. The consequence of this is 

to reduce the runtime for the application or workflow, and also to use the computational 

resources more efficiently. 

The Neglected algorithm was evaluated against the greedy algorithm, and others, in a 

number of scenarios with varying sizes of data, thus investigating different impacts from the 

data  location  problem.  Neglected  outperformed the  greedy scheduling  in  all  cases,  with 

significant improvement when the data sizes were large. Thus, Neglected can be used as a 

general replacement for the greedy algorithm when scheduling distributed systems.

6.3. Benefits to Data Mining Applications
The research questions addressed in this thesis resulted from the application of eScience  

and Distributed computing to the data mining application area. This need was identified due 

to  long  execution  times  (makespan)  when  contemporary  data  mining  techniques  were 

applied to large data sets.  The strong similarities between data mining and the eScience  

paradigm meant that common eScience techniques could be readily applied, such as the use 

of workflows and the collection and cataloguing of provenance information. The resulting 

research questions surrounded the workflow language, and the scheduling of the workflow 
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onto distributed resources. The data mining applications, which performed a number of data 

mining  investigations,  used  the  R  and  MATLAB  languages  to  perform  the  actual  

computations. These were reported to demonstrate the application of the eScience paradigm, 

and  emphasise  the  importance  of  applying  these  techniques  to  computer  based 

experimentation.  The  case  study involved the  analysis  of  a  data  set  of  human intestinal 

absorption of  pharmaceuticals,  and has  been previously analysed in  several  papers.  This 

particular  study  is  pertinent  as  the  data  supplied  is  a  molecular  model,  which  is  then 

processed to produce the numerical input to the actual data mining methods. Without careful 

reporting  of  each  step  of  this  process  it  is  impossible  to  reproduce  the  results  reported 

previously, thus to properly evaluate the merit or deficiencies of the reported analysis.

6.4. Outcomes and Contributions
This thesis makes several contributions to the fields of eScience and data mining. These  

are summarised as follows:

1. This  thesis  provided  an  analysis  of  some  typical  data  mining  workflows  and 

developed  a  general  template  for  these  investigations  that  captures  the  common 

constructs of the data mining process. The template exposes parallel computational 

components of the workflow, and enables the understanding of the computational 

and data requirements for supporting the execution of these investigations

2. This thesis presented a workflow model that addresses the requirements developed 

from the general template of data mining, and the design and implementation of a 

workflow engine to execute this workflow model.

3. This  thesis  developed  a  contemporary  master-slave  scheduling  algorithms  to 

efficiently schedule tasks derived from the workflow. Simulation studies conducted 

using  the  GridSim  toolkit,  investigating  the  performance  of  the  scheduling 

algorithms on a number of different network topologies.
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6.5. Future Work
From the contributions of this thesis it is possible to improve the baseline processes of  

many practitioners working with data mining and in silico experiments. Adoptions of such 

changes is  typically  problematic  due to  issues  around legacy applications  and engrained 

practices. Facilitating the integration of legacy codes in the workflow overcomes the former 

issue, and the increased computational scalability which provides real incentives to adopt an 

e-Research methodology such as the one presented here overcomes the latter issues.

6.5.1. Resource Scheduling
Data  transfer  and  location  is  a  critical  component  when  scheduling  data  intensive 

workflows on heterogeneous resources.  Future research topics in this field could include 

researching the impact of data queuing and transport schemes and their interactions with 

various  task  scheduling  algorithms.  For  instance,  data  transfers  can  either  be  centrally 

coordinated, or each slave agent could locate its own data sources. Data transfers could be  

queued to give maximum bandwidth to a single transfer, or bandwidth could be shared with 

multiple concurrent  transfers.  Queuing could occur at  the sender or receivers end of the 

transfer, as outgoing and incoming bandwidth are equally important. Further, using multiple 

data sources concurrently such as what is done with the BitTorrent protocol may provide a 

more reliable transfer time optimisation than a single source.

Similar  to  the  potential  investigation  into  data  transfer  scheduling,  research  into  the 

impact of data transfer estimates would provide an important insight into the stability of a 

scheduling  algorithm.  Improving  mechanisms  for  estimating  data  transfer  times,  and 

possibly  providing  limits  on  the  estimated  transfer  time  could  provide  a  more  robust  

scheduling outcome.

The provision of tasks from the workflow also offers many opportunities for optimisation 

research. In particular, improving the way the task segmenter handles dependencies would 

allow the segmenter to gradually release tasks as input data becomes available, instead of 
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only segmenting complete iterator groups. This would then allow critical path analysis to be 

performed on the tasks, improving the availability of tasks and reducing task starvation.

Improvements to the system's implementation from a research project to a more robust  

product could allow this system to be applied to more real world application, and would 

inform future research paths involving the workflow language and provenance systems. This 

may require improvements and extensions to the data handling system, workflow debugging, 

and language integration to allow the early detection of invalid workflows and the testing of 

operators in isolation. The testing of operators in isolation would also provide important 

quality control  information by executing test  cases on each operator to  validate that  the 

operator performs as expected.

6.5.2. Applications
The project  documented in  this thesis provides  a framework for  performing eScience 

experiments,  utilising distributed resources,  and addresses  a  number  of  problems around 

these topics. This work can now be applied to a wider range of real-world situations that will  

support researchers in their scientific investigations. The workflow language separates the 

applications  being  used  in  an  investigation  from the  process  that  the  investigation  will  

follow. This high level view of the investigation could be constructed and managed via a web 

portal type environment, and by also moving the researchers data to institutional repositories,  

the  entire  investigation  process  would  become  an  “online  workbench”.  This  model  of 

application delivery is becoming popular, particularly for some business applications such as  

email and document editing, as it becomes accessible from anywhere and not reliant on the 

practitioners resources.

Moving eScience investigations into a framework like the one described in this thesis 

allow the practitioner to utilise a larger number of computational resources than would be  

available  had  they  simply  continued  using  stand  alone  applications.  Grid  and  Cloud 

resources, as described in Chapter 2, are becoming more common in research institutions,  
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and more commonly available on the internet in general. If it is easy to utilise these resources 

then they can provide a cost effective way of improving the throughput or time-to-solution of  

investigations.  Cloud  resources  in  particular  may  not  provide  any  guarantees  on  the 

bandwidth between resources, or the computational power at the resource, so to utilise them 

effectively the scheduler needs to be able to respond to the real-world measurements of  

bandwidth  and  processing  power.  The  Neglected  algorithm  is  a  good  candidate  for  

scheduling such resources.

Cloud computing resources coupled with an “online workbench” provides a universally 

accessible platform for Cloud science, that can be accessed and monitored from anywhere, 

and  can  acquire  resources  when  required,  without  the  overhead  of  ownership  and 

maintenance  costs.  An  immediate  audience  for  this  service  would  be  cheminformatics 

practitioners from whom this project's  requirements were derived.  As data sets are made 

available  through  national  and  institutional  data  repository  projects,  they  can  be 

automatically processed using the tools developed in this project, with the results analysed 

by practitioners to then validate and act upon the outcomes. This platform could then be 

extended to capture more of the practitioner's workflow, further improving the efficiency of  

their work.

Many  other  scientific  domains  practise  methodologies  that  would  benefit  from  the 

outputs of this project. Computational biology, criminology, physics and others utilise data 

mining techniques and workflows that could utilise this technology. Also disciplines that  

produce computational models, such as economics and climate sciences would be able to  

execute and manage more simulations as a result of the work presented here.

The development of a produce a production system based on this work would require the 

consideration of several other real-world requirements which were beyond the scope of this 

work, such as:

1. Security and access control,

2. Fault tolerance, and
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3. Data retention and backup

6.6. Concluding remarks
Information technology tools have improved the quality and volume of research that can 

occur, through automation, consistent and improved practices. The project presented in this 

thesis has contributed significant insights and advancements that will continue to improve 

the impact that  IT has on many fields of research, and allow practitioners to exploit  the 

contemporary IT tools available to them.
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Nomenclature
Term Meaning

Data mining The process of identifying patterns and structures within data.

Experiment The  overall  investigation  including  the  process,  input  and 
output data.

Experiment process The steps involved in reproducing the experiment.

data set A collection of data relating to an experiment.

Variables Attributes or data points in the data.

Practitioner/Domain 
practitioner

A researcher in a field.

Computational resource A computer comprised of one of more computational elements.

Computational element A CPU or CPU core within a computer that is used to execute 
a program.

Distributed computing Using many geographically distributed computers to solve a 
single problem.

Network of workstations Using standard desktop workstations to perform batch mode 
computations.

SMP Symmetric multiprocessor, a computer with multiple identical 
CPUs.

Multi-core A CPU chip  which  has  multiple  processors  on  it.  Provides 
SMP on a single CPU chip.

Cluster A group of identical computers connected by a high speed, low 
latency  network.  Often  designed  for  high  performance 
scientific applications.

Cheminformatics The  study  of  chemical  systems  using  computational  and 
informatics methods.

Master-slave A  distributed  computing  paradigm  involving  centralised 
command and control.

Master The controlling node in a master-slave network.

Slave One  or  more  nodes  which  perform work  in  a  master-slave 
network.

SVM Support  Vector  Machine  –  a  modern  machine  learning 
technique for regression and classification.

PLS Partial Least Squares regression.

RMSEP Root Mean Squared Error of Prediction.

HIA Human Intestinal Absorption.

SDF Structured Data File – A file format used for describing the 3D 
structure of molecules.

MLR Multiple Linear Regression.

QSAR Quantitative Structure-Activity Relationship.
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MCCV Monte-carlo Cross-validation.

MARS Multivariate adaptive regression splines.

CART Classification and Regression Trees.
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Appendix A - Optimising Ensemble Predictions
This  appendix presents  a  data  mining  experiment  that  compares  various  data  mining 

techniques. It is intended to be viewed as an example of one of the types of experiment that  

this thesis focuses on. The study involves using ensemble methods to predict the penetration 

of  the  blood  brain  barrier  by  various  molecules.  This  is  an  important  attribute  for  the 

development of pharmaceuticals, as an otherwise promising molecule may not be delivered 

to its intended site if it cannot cross the blood brain barrier. An ensemble method combines 

the  predictions  of  many  individual  models  to  produce  a  single,  hopefully  more  reliable 

output.  This  approach  has  been  applied  to  trees  [34],  neural  networks  [112] and  more 

generally on any model type using techniques such as bagging [33] and boosting [113]. For 

ensembles to perform well  the there needs to be diversity among the models within the  

ensemble, meaning that their errors or residuals should not be correlated. That is, they should 

not be making the same mistakes. This is can be achieved by:

1. Using a variety of model types in the ensemble;

2. Supplying different starting parameters and random seeds to the models;

3. Sampling from the observations and variables; 

4. A combination of the above 3 approaches.

Smyth and Coomans  [42] compared many model  weighting and selection techniques, 

including  genetic  algorithms,  evolutionary  strategies,  lasso  and  quadratic  programming. 

They found that using the model selection to impose parsimony, reducing the number of  

models,  improves the predictive power  of  the  ensemble by removing poorly performing 

models from the set.

In  this  study  three  ensemble  techniques  will  be  compared  to  evaluate  their  fitting 

performance on a  large data  set,  and also their  running times.  These techniques  will  be 

Random Forests, bagged linear models with random variable selection, and a heterogeneous 

ensemble of linear models and trees, tuned by various means.
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The ensemble will be constructed by a weighted, linear combination of the component 

models.  The procedure for weighting the models will  be drawn from[115], and involves 

splitting the data set into 3 segments, a model training set, a weighting training set and a test  

set. The models will be trained on the first training set, then the second training set was used 

to calculate the appropriate weights for each model. The testset is then used to determine the  

fitting coefficients for the models, R2. 

A.1. Methods and materials
This  investigation  will  compare  the  predictive  and  computational  performance  of  a 

variety of ensemble models.  The ensembles will  include the well  known random forests 

technique, a heterogeneous ensemble composed of linear models and tree models, and an 

ensemble of linear models analogous to random forests. The heterogeneous ensembles will 

be  compared  as  is,  and  after  post-processing  using  genetic  algorithms  (GA),  a  pruning 

technique, and Lasso with evolutionary strategies to impose parsimony. 

A.1.1. Heterogeneous ensemble
The heterogeneous  ensembles  are  M models,  composed  of  simple  MLR models  and 

simple tree models. The MLR models are developed using a forward stepwise technique to 

limit the over-fitting, with a maximum number of variables set to 10. The particular stepwise  

technique used in this case will be Lasso, with the number of variables to use evaluated using 

internal  cross  validation.  The  tree  models  are  developed  using  the  rpart  3.1  recursive 

partitioning library in R to build regression trees. To establish diversity each model will be 

presented with a randomly selected subset of the available variables, 
p

10
. 

Mathematically, the ensemble is given by:

F x =∑
i=1

M

wi f i x 
 (1)
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where fi(x) is the output of the ith model given the vector x, and wi is a weighting given to 

the predictions of the ith model. In the simplest case w i=
1
M

, or the mean of the predictions 

is used. The post-processing techniques discussed next may adjust these weights to improve 

performance.

A.1.2. Lasso post-processing
Lasso  is  a  constrained  version  of  ordinary  least  squares  regression  which  improves 

prediction of linear models through shrinkage, reducing the coefficients of that model some 

of which are reduced to zero. This can be solved using quadratic programming, adjusting the 

shrinkage parameter, t, to improve the model. Alternatively a Lasso solution can be achieved 

using the Least  Angles Regression  [115] which can produce the Lasso solutions over M 

steps. 

For use as a post processing method Lasso is presented with a matrix of the predicted 

values from the ensemble models, and it will try to fit them to the response vector  y. The 

algorithm will produce a set of solutions along the Lasso path, and the optimum value is  

selected using the cross-validated R2.

A.1.3. Evolutionary strategies post-processing
Evolutionary strategies (ES) use concepts from evolutionary theory to optimise a problem 

expressed in real numbers. Solutions are encoded as chromosomes, which have real valued 

genes representing the parameters of the problem. There needs to be a fitness function which 

can evaluate the potential solutions presented in the population. In general a ES will perform 

the following steps repeatedly, until an exit condition is reached:

1. Combine pairs of solutions to produce a offspring solution;

2. Randomly mutate genes in the solutions; and

3. Evaluate the performance of each solution and select  from the pool  for the next  
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generation.

There are many ways to achieve each of these steps, and to represent problem in the 

chromosome which are covered in more depth in  [116]. Briefly, the parents and offspring 

may either exist in the same population, so a successful solution can live on, or the offspring 

can completely replace the parent generation, reducing the chance of getting caught in a local 

minima. The number of solutions in the child or combined population generally sets the 

number  of  parallel  lines  of  enquiry,  but  with  the  penalty  of  increased  compute  time. 

Selection for reproduction can be random, weighted or ordered, resulting in slow, moderate 

or fast convergence. As well there are many strategies for computing the recombination and 

mutation operations.

Fitness  is  defined  as  the  mean  squared  error  (MSE)  of  the  fitting,  which  is  to  be 

minimised.  Recombination  is  achieved  using  line  recombination  [117],  which  produces 

offspring by randomly choosing a point, a, along a line drawn between the two parent values 

of each parameter. The interval,  d, is set to 0.25 allowing the offspring to fall outside the 

range of the parent weights.

w i
o
=wi

p1awi
p2
1−a 

a∈[−d ,1d ]
 (2)

Two mutation techniques are used in this case. The first  is the addition of a uniform 

random vector in the range of -0.001 and 0.001 to each solution. The second is a p=0.05  

chance of any gene being set to zero. This is intended to help pressure the population to  

reduce the number of models active in the ensemble. At the end of the  mutation step the  

weights are renormalised to sum to 1.

The stand alone evolutionary algorithms are run to 10,000 generations to allow time for 

convergence,  with  an  early  exit  condition  of  100  consecutive  generations  without 

improvement. Due to the random nature the technique is repeated 100 times to measure its  

average  performance.  This  is  a  very long running  technique,  but  has  performed well  in 
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previous experiments. However, it may be possible to shortcut the technique and supply it 

with a set of known good starting points in order to reduce the time to convergence via the 

early exit. To achieve this, half the starting population will be drawn from solutions around 

and including the optimum Lasso solution, with the remainder of the initial population being 

randomly selected as before.

A.1.4. Blood Brain Barrier (BBB) data set 
The data  set  under  investigation is  a cheminformatics  data  set  of  blood brain barrier 

transport  measurements  from [29] Table  S1  designated  KS289-logBB.   The  data  set 

consisted  of  structures  expressed  in  the  SMILES format,  a  textual  representation  of  the 

molecule structures, and  logBB values where logBB=log 
Cbrain

Cblood

 , Cbrain and Cblood are the 

concentration of the molecule in the brain and blood respectively [118]. The SMILES values 

were transformed into a 3D model using the CORINA [108] software, which was then used 

to  compute  values  for  chemical  descriptors  using  the  eDRAGON  [109] interface  to  the 

Dragon Descriptor software. After removing the constant columns the data set has  n=298 

observations and p=1502 variables.

A.1.5. Friedman1000
The Friedman1000 data set refers to the synthetic data set from [119] set that is used to 

generate 1000 observations. This data set contains 10 variables distributed uniformly over 

the interval [0,1], with only 5 actually used to produce the response variable. This data set  

was generated using the mlbench library for R. 

A.2. Results and discussion
The results of the four post processing techniques can be seen in  Table 1. One distinct 

difference between the data sets which can be observed from these results is that the BBB 

data set was far more prone to overfitting than was the Friedman1000 data set. This result 
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was most probably due to the larger number of unimportant variables present in the BBB 

data set, which tended to dominate even when filtered via the bootstrapping of the variables  

when building the ensembles. 

BBB Friedman1000

Method Training set Testset Runtime (s) Training set Testset Runtime (s)

ES 0.72 0.23 311519* 0.85 0.83 58777

ES+Lasso 0.78 0.18 181068* 0.7 0.67 34164

SA 0.62 0.58 73.28 0.8 0.8 11.8

Lasso opt 0.84 0.62 330.65 0.88 0.86 74.45

Table 1: R2 results of the ensemble post-processing techniques on the blood-brain 
barrier and Friedman1000 data sets.

Between the ES and non-ES post-processing it is clear that the ES tend to optimise too 

aggressively and make this overfitting phenomenon worse. This is particularly evident in the 

BBB data set. It can also be seen that the lasso post-processor performed best in both testset  

and  training  set  performance.  Lasso  explicitly  detects  colinearity  within  the  data  set,  

excluding colinear  components.  Also,  owing to its  stepwise nature,  only a  subset  of  the  

weights  will  be  non-zero  through most  of  the  optimisation.  This  ability  to  aggressively 

remove models from the ensemble is believed to be why the lasso approach outperformed 

the other approaches in both data sets. To confirm this, the experiment was re-run to inspect  

the model weightings.

In  comparison  to  others  who  have  analysed  these  data  sets  the  best  results  compare 

favourably. The BBB data set was also used by Deconinck, et al. [120] who applied PLS and 

boosted regression trees to model the data. They achieved an R2 of 0.64 using PLS, which 

only slightly outperforms the results here. It is also suggested by Abraham, et al, that the 

experimental error in the logBB measurement is approx 0.3, or 9.2%.

The Friedman1000 data set is a generated data set, so will differ every time it is used.  

However, its structure should remain relatively consistent and comparable. Smyth ibid used 

this data set in her original investigation, which inspired this work. In this she applied a 
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similar array of post-processing techniques, but not the ES + Lasso technique, which was the 

principal new work here. In her study she reported that ES performed best or equal best, with 

an R2 of 0.77 average and 0.79 selecting the best case. In this investigation ES, lasso and 

simple average both outperform these reported results,  but  lasso outperforms ES 0.86 to 

0.83. This margin is significant as Smyth reports ES outperforming lasso 0.77 to 0.72. 

The ES+Lasso post-processor was intended to force the ES technique to an earlier finish 

time, without jeopardising the performance. However, the approach taken did not achieve 

this.  Optimising the MSE appears to have overfitted the data,  and forced it  into a local  

minima through a biased starting position.

A.3. Conclusion
It is clear from the results presented in this investigation that attempts to bias the starting  

point of evolutionary strategies can achieve better runtime performance, but may jeopardise 

the predictive performance of the models. Further investigations are required to investigate 

techniques to reduce this bias, while still maintaining the computational performance gains.

It  is also clear that an ensemble weighting strategy which has the ability to eliminate 

models  can  significantly  improve  the  performance  of  the  ensembles  by  improving 

parsimony, as expressed by Smyth.
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Appendix B - Important Grid Agent Interfaces

B.1. IAgent.java
/**
 * The IAgent interface provides access to all the services
 * provided by the agent, that will be used by the workflow 
 * execution threads.
 * 
 * Possible implementations will return network enabled 
 * and local-only communications.
 */
public interface IAgent {

/**
 * Get the network address which the agent is listening on.
 * Can be null.
 * @return
 */
public String getIpAddress();

/**
 * Get the port the agent is listening on.
 * 
 * Can be 0.
 * @return
 */
public int getPort();

/**
 * Returns the tuple store appropriate for this agent.
 * @return
 */
public abstract ITupleStore getTupleStore();

/**
 * Returns a map of operators that are available on this 

agent.
 * @return
 */
public abstract OperatorMap getOperators();

/**
 * Returns the data access factory that is available from this 

agent.
 * 
 * The data access factory provides low-level access to the 

tuple space
 * @return
 */
public DataAccessFactory getDataAccessFactory();

/**
 * Return the service interface for file movement between the 

master
 * and the executing agent.
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 * @return
 */
public IFileMovement getFileMomement();

/**
 * Shuts the agent down, exiting the process.
 */
public void shutdown();

/**
 * Sets the experiment
 */
public void setExperiment(Reader source) throws SAXException, 

IOException, WorkflowException;

/**
 * Returns a populated status object
 * @return
 */
public IPeerStatus getStatus();

}

B.2. ITupleStore.java
/**
 * The object implementing the ITupleStore provides universal access 
to
 * data stored in the tuple space. Operations to get, put and locate 
tuples
 * are provided by this service interface.
 * @author nigel
 *
 */
public interface ITupleStore {

/**
 * Get size of tuple in store
 * @param storeName
 * @param index
 * @return
 */
public long getTupleSize(String storeName, int index) throws 

DataException;

/**
 * Returns a specific tuple.
 * @param storeName
 * @param index
 * @return
 */
public Map<String, Object> getTuple(String storeName, int 

index) throws DataException;

/**
 * Get the number of tuples in the particular store
 * @param storeName
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 * @return
 */
public long getLength(String storeName) throws DataException;

/**
 * Append data to a particular tuple store.
 * @param storeName
 * @return the index at which this was inserted.
 */
public int putTuple(String storeName, Map<String, Object> 

data) throws DataException; 

/**
 * Get a reference to the underlying store provider.
 * @param storeName
 * @return
 */
public IDataAccessInformation getTupleStore(String storeName);

/**
 * List all the variables of this tuple store.
 * @param store
 * @return
 */
public List<String> getTupleVariables(String store);

/**
 * Find the tuples where the contents of the attribute 

identified by field
 * matches the attribute supplied in criteria. This only 

accepts int[] and String[]
 * @param storeName
 * @param field
 * @param criteria
 * @return
 */
public int[] find(String storeName, String field, Object 

criteria);
}

B.3. IFileMovement.java
/**
 * The object implementing the IFileMovement interface is intended 
to
 * provide the ability to transfer files to and from the given agent
 * and master relative paths.
 * @author nigel
 *
 */
public interface IFileMovement {

/**
 * Copies a file resource from local disk to the master's disk
 * @param local
 * @param remote
 * @throws IOException
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 */
public abstract void uploadFile(String local, String remote)

throws IOException;

/**
 * Copies a file resource from the master's disk to local disk
 * @param remote
 * @param local
 * @throws IOException
 */
public abstract void downloadFile(String remote, String local)

throws IOException;
}

B.4. IPeerStatus.java
/**
 * IPeerStatus contains the basic information about a peer.
 * @author nigel
 *
 */
public interface IPeerStatus {

/**
 * Return the peers ID
 * @return
 */
public Integer getId();

/**
 * Get the total number of CPUs/threads
 * @return
 */
public int getCpus();

/**
 * Returns a string identifier for the CPU in use on this 

agent.
 * @return
 */
public String getCpuType();

/**
 * Get the CPU speed.
 * @return
 */
public int getCpuSpeed();

/**
 * Returns the total amount of RAM in bytes
 * @return
 */
public long getTotalMemory();

/**
 * Returns the total number of threads active on this agent
 * @return
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 */
public int getTotalThreads();

/**
 * Get the number of CPUs which are idle.
 * @return
 */
public int getIdleThreads();

}
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Appendix C - Workflow XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" 
targetNamespace="http://nigelsim.org/gridagents"

xmlns:tns="http://nigelsim.org/gridagents" 
elementFormDefault="qualified">

<element name="SIDAML" type="tns:sidamlType"></element>
<complexType name="sidamlType">

<sequence>
<element name="operators" type="tns:operatorsType" 

maxOccurs="1"
minOccurs="0"></element>

<element name="dataElements" 
type="tns:dataElementsType"

minOccurs="0" maxOccurs="1"></element>
<element name="workflow" type="tns:workflowType" 

maxOccurs="1"
minOccurs="0"></element>

</sequence>
<attribute name="name" type="string"></attribute>
<attribute name="version" type="string"></attribute>

</complexType>
<complexType name="operatorsType">

<sequence>
<element name="algorithm" 

type="tns:algorithmOperatorType"
maxOccurs="unbounded" 

minOccurs="0"></element>
<element name="callR" type="tns:rOperatorType" 

maxOccurs="unbounded"
minOccurs="0"></element>

<element name="application" 
type="tns:applicationOperatorType"

maxOccurs="unbounded" 
minOccurs="0"></element>

<element name="java" type="tns:javaOperatorType" 
maxOccurs="unbounded"

minOccurs="0"></element>
</sequence>

</complexType>
<complexType name="operatorType">

<sequence>
<element name="parameter" type="tns:parameterType" 

maxOccurs="unbounded"
minOccurs="1"></element>

<element name="depends" type="string" 
maxOccurs="unbounded"

minOccurs="0"></element>
</sequence>
<attribute name="name" type="string"></attribute>

</complexType>
<complexType name="algorithmOperatorType">

<complexContent>
<extension base="tns:operatorType">

<attribute name="version" 
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type="string"></attribute>
<attribute name="library" 

type="string"></attribute>
</extension>

</complexContent>
</complexType>
<complexType name="rOperatorType">

<complexContent>
<extension base="tns:operatorType">

<sequence>
<element name="script" 

type="string"></element>
</sequence>
<attribute name="script-uri" type="string" 

use="optional"></attribute>
</extension>

</complexContent>
</complexType>
<complexType name="applicationOperatorType">

<complexContent>
<extension base="tns:operatorType">

<sequence>
<element name="command" 

type="string"></element>
</sequence>

</extension>
</complexContent>

</complexType>
<complexType name="javaOperatorType">

<complexContent>
<extension base="tns:operatorType">

<sequence>
<element name="class" 

type="string"></element>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="parameterType">
<attribute name="name" type="string"></attribute>
<attribute name="property" 

type="tns:parameterPropertyEnum"></attribute>
<attribute name="type" type="string"></attribute>
<attribute name="direction" 

type="tns:directionType"></attribute>
</complexType>
<simpleType name="directionType">

<restriction base="string">
<enumeration value="in"></enumeration>
<enumeration value="out"></enumeration>
<enumeration value="inout"></enumeration>

</restriction>
</simpleType>
<simpleType name="parameterPropertyEnum">

<restriction base="string">
<enumeration value="data"></enumeration>
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<enumeration value="length"></enumeration>
</restriction>

</simpleType>
<complexType name="dataElementsType">

<sequence>
<element name="data" type="tns:dataType" 

maxOccurs="unbounded"
minOccurs="1"></element>

</sequence>
</complexType>
<complexType name="dataType">

<sequence>
<element name="format" type="tns:formatType" 

maxOccurs="unbounded"
minOccurs="1">

</element>
<element name="property" type="tns:propertyType" 

maxOccurs="unbounded"
minOccurs="0"></element>

</sequence>
<attribute name="name" type="string"></attribute>
<attribute name="type" type="string"></attribute>
<attribute name="role" type="string"></attribute>
<attribute name="uri" type="string"></attribute>

</complexType>
<complexType name="formatType">

<sequence>
<element name="variable" type="tns:variableType" 

maxOccurs="unbounded"
minOccurs="1"></element>

</sequence>
<attribute name="type" type="string"></attribute>
<attribute name="index" type="string"></attribute>

</complexType>
<complexType name="variableType">

<sequence>
<element name="value" type="string" 

maxOccurs="unbounded"
minOccurs="0"></element>

</sequence>
<attribute name="name" type="string"></attribute>
<attribute name="type" type="string"></attribute>
<attribute name="length" type="int"></attribute>

</complexType>
<complexType name="workflowElementType" abstract="true">
</complexType>
<complexType name="workflowContainerType" abstract="true">

<complexContent>
<extension base="tns:workflowElementType">

<sequence>
<element name="children" 

type="tns:workflowElementType"
minOccurs="0" 

maxOccurs="unbounded"></element>
</sequence>
<attribute name="name" type="string" 

use="required"></attribute>
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</extension>
</complexContent>

</complexType>
<complexType name="workflowType">

<complexContent>
<extension base="tns:workflowContainerType">
</extension>

</complexContent>
</complexType>
<complexType name="groupType">

<complexContent>
<extension base="tns:workflowContainerType">
</extension>

</complexContent>
</complexType>
<complexType name="iteratorType">

<complexContent>
<extension base="tns:workflowContainerType">

<attribute name="data" type="string" 
use="required"></attribute>

<attribute name="from" 
type="int"></attribute>

<attribute name="to" type="int"></attribute>
<attribute name="step" 

type="int"></attribute>
</extension>

</complexContent>
</complexType>
<complexType name="executeType">

<complexContent>
<extension base="tns:workflowElementType">

<sequence>
<element name="map" type="tns:mapType" 

maxOccurs="unbounded"
minOccurs="0"></element>

</sequence>
<attribute name="algorithm" 

type="string"></attribute>
</extension>

</complexContent>
</complexType>
<complexType name="mapType">

<attribute name="variable" type="string"></attribute>
<attribute name="parameter" type="string"></attribute>

</complexType>
<complexType name="writeType">

<complexContent>
<extension base="tns:workflowElementType">

<sequence>
<element name="map" type="tns:mapType" 

maxOccurs="unbounded"
minOccurs="0"></element>

</sequence>
<attribute name="data" 

type="string"></attribute>
</extension>

</complexContent>
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</complexType>
<complexType name="propertyType">

<attribute name="name" type="string"></attribute>
<attribute name="value" type="string"></attribute>

</complexType>
</schema>
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