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Abstract

To understand the calcium-mediated signalling pathways underlying settlement and metamorphosis in the Scleractinian
coral Acropora millepora, a predicted protein set derived from larval cDNAs was scanned for the presence of EF-hand
domains (Pfam Id: PF00036). This approach led to the identification of a canonical calmodulin (AmCaM) protein and an
uncharacterised member of the Neuronal Calcium Sensor (NCS) family of proteins known here as Acrocalcin (AmAC). While
AmCaM transcripts were present throughout development, AmAC transcripts were not detected prior to gastrulation, after
which relatively constant mRNA levels were detected until metamorphosis and settlement. The AmAC protein contains an
internal CaM-binding site and was shown to interact in vitro with AmCaM. These results are consistent with the idea that
AmAC is a target of AmCaM in vivo, suggesting that this interaction may regulate calcium-dependent processes during the
development of Acropora millepora.
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Introduction

Scleractinian corals play important ecological roles, as they are

responsible for the underlying framework of coral reefs, one of the

most productive ecosystems on earth [1,2]. However, the

molecular mechanisms underlying many aspects of their biology,

including symbiosis, calcification and regeneration, are still poorly

understood. Calcium metabolism and homeostasis are of partic-

ular interest in corals in the context of calcification. Recent

microarray studies [3,4,5,6] suggest that calcium-dependent

signalling pathways may regulate metamorphosis, symbiosis and

skeleton deposition in scleractinian corals. Consistent with this,

clear counterparts of many of the molecules known to play key

roles in calcium signalling and homeostasis in vertebrates are

present in Acropora [7,8]. However, surprisingly little is known

about either calcium metabolism or calcium-dependent signalling

pathways in corals.

Eukaryotes use changes in intracellular calcium concentration

to regulate a diverse variety of cellular signalling pathways [9,10].

Calcium signalling is regulated by calcium itself via calcium-

modulating proteins, which are involved in all aspects of cell

function [11]. The EF-hand family is the most studied group of

intracellular calcium-binding proteins able to implement the

calcium signal or to buffer its cytosolic concentration [9,12].

Despite sequence and structural similarity, the responses of these

‘‘calcium sensors’’ to binding of calcium are diverse [13]. Upon

calcium binding, this group of molecules typically undergoes

topological changes within the EF-hand domain, a helix-loop-helix

motif [14], enabling interaction with specific target proteins

initiating a signalling cascade that will lead to specific cellular

responses [13].

Calmodulin (CaM) is considered the most versatile ‘‘calcium

sensor’’ due to its role regulating essential cellular processes such as

cell cycle and calcium homeostasis across eukaryotes [15,16]. CaM

sequences are known for several cnidarians [17,18,19,20] in-

cluding Hydra magnipapillata, Nematostella vectensis and Acropora species

[18] and CaM expression is up regulated during metamorphosis in

the coral Montastraea faveolata [5]. Although CaM has been

extensively investigated in the context of regulation of many

calcium dependent processes, little is known about its interactions

in early diverging metazoans and, as a key regulator of calcium-

dependent processes, the identification of CaM targets may shed

some light on the control of calcium carbonate deposition in corals

as well as other processes such as metamorphosis and symbiont

interactions. Furthermore, because Scleractinia represent an early

diverging animal phylum, unravelling the roles of calcium-

dependent process in corals may contribute to understanding the

broader evolutionary history of calcium-dependent cellular path-

ways.

A number of transcripts encoding putative calcium sensor

proteins were identified in the transcriptome of Acropora millepora

[21], amongst which an uncharacterized NCS protein known here

as Acrocalcin (AmAC) emerged as a putative AmCaM target as it

contains a predicted CaM-binding site. In this study, we

characterized AmCaM and AmAC expression profiles as well as

the ability of the AmCaM and AmAC proteins to interact in vitro.
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This interaction may be significant during settlement and meta-

morphosis.

Materials and Methods

Collection of Coral Life History Stage
Early coral life history stages were collected on Magnetic Island

(Queensland, Australia, GBRMPA Marine Park Permit G10/

33232.1) and maintained in fresh filtered seawater (1 mm) prior to

either snap freezing in liquid nitrogen (for RNA extraction) or

fixation in 4% formaldehyde (for in-situ hybridisation; [22]).

RNA Extraction and Virtual Northern Blotting
Total RNA was extracted from the following key stages of

Acropora millepora development: 1) the pre-gastrulation

‘‘prawnchip’’ (PC) stage, 2) late gastrula ‘‘sphere’’ (S), 3) early

planula ‘‘pear’’ (Pea), 4) planula larva (Pla) and 5) settled

juvenile polyps (Post). RNA extractions were performed using

Ambion RNAwizTM RNA isolation Briefly,1 mg samples of total

RNA were used from each sample to synthesise first strand

cDNA, 300 ng aliquots of which were subjected to limited PCR

amplification using the SMART PCR cDNA synthesis kit as

described previously [23]. To generate virtual northern blots,

2 ml aliquots of the resulting double-stranded (stage specific)

cDNA samples were loaded into independent wells on agarose

gels and transferred to nylon membranes (Hybond-N+, Amer-

sham) by capillary blot transfer and hybridised as described

[24]. Because the amount of starting material (RNA) is uniform

and subject to PCR within the range where amplification is

directly proportional to the number of cycles performed,

hybridisation signals detected after virtual northern analysis

are directly comparable and reflect levels of transcript present at

each developmental stage.

Generation of Radioactive Probes
Radioactive probes were prepared by random oligonucleotide-

primed synthesis (oligolabelling) using a-32P dATP (Geneworks).

Linear DNA (25 ng) was radioactively labelled using the

Megaprime oligolabelling kit (Amersham Biosciences). Mem-

branes were exposed to Phosphorimager screens (Molecular

Dynamics) for 5 h.

Expression of Recombinant Proteins
Complete coding sequences of AmCaM and AmAC were

cloned into pGEX-6P (GE-Healthcare) or,pProEX HTb (Invitro-

gen) respectively, allowing expression in E. coli BL21 of fusion

proteins carrying either GST- (pGEX-6P) or 66His (pProEX) tags

at their N-termini. To induce expression of the fusion proteins,

IPTG was added to cultures of optical density 0.5–0.8 at 600 nm

to a final concentration of 1 mM. Three hours after IPTG

treatment, cells were harvested by centrifugation at 4000 rpm for

15 min at 4uC. Pellets were suspended in 10 ml aliquots of ice cold

PBS and lysed by sonication. Cell debris was pelleted by

centrifugation at 10,000 rpm for 5 min and supernatants sub-

jected to affinity chromatography on the appropriate ligand. Using

the manufacturers’ recommended protocols.

Affinity Purification of Recombinant Proteins
To 0.25 ml of either equilibrated 50% Glutathione Sepharose

4B suspension beads (Pharmacia Biotech) or Ni-NTA resin

(QIAGEN) recovered supernatants were added and purifications

were carried out according to the manufacturers’ protocols. Eluted

samples were subjected to standard protein electrophoresis on

a 10% acrylamide gel according to [24]. Gels were stained with

Coomassie brilliant blue and the sizes of recombinant proteins

estimated by comparison with standard commercial protein

standards.

Protein Interaction Experiments Using Affinity
Chromatography
Aliquots (0.5 ml) of sonicated soluble fractions of GST-AmCaM

and His-AmAC preparations were incubated with 0.25 ml of Ni-

NTA resin for one hour at 4uC with shaking in the presence of

either 1 mM CaCl2 or 5 mM EGTA. Mixtures were then loaded

onto a protein purification column and treated with wash and

elution buffers containing either 1 mM CaCl2 or 5 mM EGTA.

Eluted and flow through samples were subjected to standard

protein electrophoresis to test for co-localization of GST-AmCaM

and His-AmAC proteins within the same fraction.

Protein Interaction Experiments Using
Immunoprecipitation
Aliquots (0.5 ml) of sonicated soluble fractions of GST-AmCaM

and His-AmAC preparations were mixed and incubated at 4uC for

1 h with shaking in the presence of either 1 mM CaCl2 or 5 mM

EGTA. After this time, an aliquot (50 ml) of agarose-conjugated
mouse antibody to human calmodulin, raised against amino acids

1–149 of the full length human Calmodulin I (CaM-I; Santa Cruz

sc-5537 AC) in a 500 mg/ml stock solution, was added and

incubation continued for another 1 h at 4uC with shaking, prior to

collection of immunoprecipitates by centrifugation and washing of

the pellets (X3) with 0.5 ml aliquots of PBS containing either

1 mM CaCl2 or 5 mM EGTA. The resulting immunoprecipitates

and supernatants were analysed by protein electrophoresis

followed by western blotting [24].

In situ Hybridization
The template for riboprobe production was generated from

mixed stage cDNA by PCR using the following primer pair:

forward (59-GCACGAGTGGCACTGTACG) and reverse (59-

TGAAATTCTAGCTCACGGAAAA) and the product cloned

into pGEM-T (Promega). Antisense and control sense strand

RNA-probes were generated, and in situ hybridization performed

as previously described [22], with the exception that clearing and

photography were carried out as described by [25].

Results

Identification and Characterization of EF-hand Proteins
A predicted protein set derived from early stage A. millepora

cDNA libraries was scanned for the presence of EF-hand domains

(Pfam Id: PF00036). Several cDNAs encoding putative calcium

sensor proteins were identified; two of these clearly corresponded

to widely distributed proteins - a canonical calmodulin (CaM)

protein, designated here as AmCaM and an uncharacterised

member of the Neuronal Calcium Sensor (NCS) family of proteins

known here as Acrocalcin (AmAC).

AmCaM encodes an acidic protein of 149 AA with predicted

molecular weight (MW) of ,17 kDa and isoelectric point (pI) of

4.15. The AmCaM protein (corresponding to Cluster 043479;

Fig. 1A) has a high level of similarity with canonical CaM

molecules from other species, e.g. 100% identity to sequences

from Acropora muricata and A. digitifera (ACA51013.1, and

aug_v2a.01102.t1 respectively), approximately 99% identity with

Nematostella XP_001638581.1 and 97% identity to the human

CaM (NP_001734.1). Interestingly, we were unable to identify

a canonical calmodulin in the genome of the sponge

NCS-Protein - Calmodulin Interaction in Coral
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Amphimedon, although clear orthologs were present in two other

sponges, Suberites domuncula and Halicondria okadi, the former of

which is included in the alignment shown as Fig. 1A. The

canonical CaM protein is remarkably similar across the

eukaryotes, the yeast (Schizosaccharomyces) sequence having 73%

identity with the coral sequence. AmCaM is typical in terms of

structure; the protein contains four EF-hand motifs (each of

,13 AA), each of which fulfils the criteria for Ca2+-binding

activity.

The coral NCS protein AmAC (corresponding to Cluster

013002) (Fig. 1B) encodes a protein of 190AA with a predicted

MW of ,22 kDa and predicted pI of 5.03. BlastP significance

and identity values against the canonical NCS-B proteins

Neurocalcin from Drosophila (NP_788543.1, E= 3e2116 and

85% identity) and Hippocalcin from the mosquito Aedes aegypti

(XP_001648788.1, E= 6e2116 and 84% identity) identify the

AmAC protein as an uncharacterised NCS-B class member

[26]. Like some other NCS-B proteins, AmAC contains three

EF-hand motifs and an N-terminal myristoylation site (MGK).

This modification allows the association of NCS proteins with

targets that are usually membrane associated or directs them to

specific subcellular compartments in a calcium dependent

manner [10,26].

After Gastrulation AmCaM and AmAC Genes are Co-
expressed during Coral Development
Northern blotting revealed that the developmental profiles of

the transcripts encoding the two Acropora EF-hand proteins

differed. Whilst AmCaM transcripts (,1500 bp) were present at

relatively uniform levels across each of the developmental stages

examined (prawn chip to post settlement; Fig. 2A), the (,2500 bp)

AmAC transcript was first detected at late gastrulation and was

present higher levels from the pear stage through to post

settlement (Fig. 2B). In situ hybridization with AmAC probes

revealed a faint, salt-and-pepper like pattern of expression in the

gastrula (donut) (Fig. 2C: b), expression becoming uniform but

restricted to the endoderm from the early planula (sphere) stage

through to post-settlement (Fig. 2C, c–g). No staining was detected

prior to gastrulation (Fig. 2C, a) or when using the sense probe

(Fig. 2C: b9, c9 and e9). In situ hybridization with various probes

implied that AmCaM was expressed ubiquitously throughout

development (data not shown).

The major developmental stages of embryonic development

until early settlement of Acropora together with an approximate

timeline are summarized in [27]. The embryo at ‘‘prawn chip’’

stage (Figure 2C-a) consists of an irregularly shaped cellular

bilayer. During the next stage ‘‘donut’’ (Figure 2C-b and –b9), the

Figure 1. Primary structure of the coral EF-hand proteins. (A) As in the canonical calmodulins of a wide range of other eukaryotes, the AmCaM
protein contains four predicted EF-hand motifs, each of which fulfils the criteria for activity. Genbank identifiers for the sequences: Acropora Cluster
043479; Nematostella XP_00163858.1; Homo NP_001734.1; Drosophila NP_523710.1; Aedes XP_001662431.1; Suberites O97341; Trichoplax EDV29861.1;
Monosiga XP_001749021.1; Schizosaccharomyces XP_002175972. (B) The coral Acrocalcin (AmAC) protein is a typical member of the NCS-B class,
possessing an N-terminal myristoylation site (MGK, orange box), three EF-hand motifs (indicated by red boxes) and a predicted CaM-binding site (blue
box). Genbank identifiers for sequences: Acropora Cluster 013002; Nematostella1 XP_001639634.1; Nematostella2 XP_001639635.1; HS (Homo sapiens)
hippocalcin NP_002140.2; HS (Homo sapiens) neurocalcin NP_114430; Drosophila NP_788543.1; Aedes XP_001648788.1; Amphimedon
XP_003386697.1; Trichoplax EDV23214.1; Monosiga EDQ90181.1.
doi:10.1371/journal.pone.0051689.g001
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morphogenetic movements of gastrulation result in the formation

of the two germ layers, ectoderm and endoderm with a cell-free

mesoglea between. At about 28–36 hrs the embryo becomes

spherical (Figure 2C-c and –c9) with a closing blastopore marking

the end point of gastrulation and the embryonic life. At the start of

larval life, the larva becomes ‘‘pear’’-shaped (Figure 2C-d), cilia

develop and an oral pore appears at the posterior end, as defined

by the direction of swimming. In the later larval stages the planula

elongates to a ‘‘spindle’’ (Figure 2C-e and e9) with numerous

differentiated cell types [22,27,28]. On receipt of appropriate

settlement cues, e.g. crustose coralline algae [29], the coral planula

attaches to the substrate by the aboral end, contracts along the

oral-aboral axis forming a flattened disc that becomes radially

subdivided by mesenteries during the process of permanent

settlement (Figure 2C-g) and metamorphosis (Figure 2C-f) into

a juvenile coral polyp [6,23,30]. Associated with metamorphosis

from planula to polyp and the start of calcification of the complex

species-specific aragonite exoskeleton is dramatic reorganisation of

certain tissues [30,31].

Note that the calmodulin studied here (AmCaM) is clearly

distinct from the A61 calmodulin previously reported [23]; the

proteins encoded by these loci have only 48% identity. AmCaM

and A61 have very different temporal expression patterns, the

former being ubiquitously expressed in all stages, whereas in the

latter expression was restricted to larval stages (see Fig. 2 in [23]).

Given the complexity of early coral development, the requirement

for multiple EF-hand proteins with overlapping patterns of

expression is consistent with complex roles for calcium in

regulating a wide range of processes [10,16,32].

AmCaM and AmAC Proteins Interact in vitro
Use of the Calmodulin Target Database [33] allowed the

identification of a potential CaM-binding site (13AA) between

motifs EFI and EFII in the AmAC protein (Fig. 1B), suggesting

Figure 2. Expression of calmodulin and Acrocalcin during coral development. (A) The canonical calmodulin AmCaM is expressed at
a relatively constant level during development as a , 1500 bp transcript. (B) The ,2500 bp Acrocalcin (AmAC) transcript is present at low levels at
the late gastrulation stage, after which levels are relatively constant from the pear stage through to post-settlement. An early and a late pear stage
were tested for AmCaM and AmAC transcripts. (C) The faint salt-and-pepper pattern visible at gastrulation reflects AmAC expression in the endoderm
(b). A relatively constant expression level was observed from late gastrulation onward, sphere through post-settlement (c–g). No staining was
detected in corresponding controls incubated with sense RNA probes (b9, c9, e9). Nucleic acid markers (asterisks). Pre-gastrulation (prawn chip, a).
Gastrulation (donut, b). Late gastrula (sphere, c). Early planula (pear, d). Planula (e). Settlement and metamorphosis (f). Settled polyps (g). Control
stages (b9, c9, e9), respectively.
doi:10.1371/journal.pone.0051689.g002
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that the AmAC and AmCaM proteins might interact in vivo. The

AmAC CaM binding motif (LSVTSRGSLEKKL) seems to be

a novel structure combining characteristics of canonical IQ and 1-

8-14 motifs [34]. Although this site lacks some canonical IQ

residues, the terminal residues (KKL) are characteristic of IQ

motifs from neurite growth related proteins and the internal RG

sequence is commonly associated with the IQ motifs of myosin

molecules [34]. Furthermore, the presence of flanking and internal

bulky hydrophobic residues such as leucines (L) resembles the

structure of 1-8-14 motifs [33] with the difference that the

anchoring residues of the calmodulin binding site are in position 1-

9-13.

Virtual northern blotting experiments (Fig. 2A, B) showed that

AmCaM and AmAC are both expressed during late larval

development, when metamorphosis and settlement occur and

calcification is initiated. As CaM transcript levels are relatively

constant through development, the interaction may be regulated

by the availability of AmAC [12,35]. To test the ability of AmCaM

to interact with AmAC, affinity chromatography and immuno-

precipitation experiments were conducted in the presence of

available calcium (1 mM CaCl2) or in its absence (5 mM EGTA).

For this purpose, recombinant GST-AmCaM (,42 KDa) and

His-AmAC (,24 KDa) proteins were produced and purified

(Fig. 3A).

Affinity chromatography confirmed the interaction of the

AmCaM and AmAC proteins predicted on the basis of sequence

analysis. After incubating the fusion-proteins together in the

presence or absence of calcium, the resulting protein complexes

were subjected to chromatography using the His-tag affinity ligand

Ni-NTA (Fig. 3C). As can be seen in the right panel of Fig. 3C, in

the presence of Ca2+, GST-AmCaM was retained on the Ni-NTA

affinity column via its interaction with AmAC (which carries the

poly(His) affinity tag), as the two proteins are eluted together in E1

and E2. In the absence of Ca2+ (left panel of Fig. 3C), neither

protein was retained by the column, because the interaction of the

affinity (poly-His) tag with the column is prevented in the presence

of EGTA.

The observed discrepancies in size of the fusion-proteins (GST-

AmCaM and His-AmAC) between the 5 mM EGTA and the

1 mM CaCl2 treatments (Fig. 3C), is explained by topological

changes experienced in Ca2+-binding molecules under denaturing

gel electrophoresis. In the presence of calcium, CaM molecules are

known to migrate faster on the SDS gels, thus having smaller

apparent molecular weights than in the absence of calcium [36,37]

(Fig. 3C, black arrow heads). The same phenomenon was

observed during denaturing gel electrophoresis of the calcium-

binding protein AmAC (Fig. 3C, red arrow heads).

To test whether the AmAC/AmCaM interaction occurs in the

absence of Ca2+, the recombinant proteins were incubated

together in medium containing 1 mM CaCl2 or 5 mM EGTA

and then subjected to immunoprecipitation using anti-human

calmodulin. The anti-human CaM-I antibody detected specifically

the Acropora CaM (Fig. 3B). As can be seen in Fig. 3D, AmAC was

co-precipitated with AmCaM in both the presence and absence of

Ca2+, implying that the AmAC/AmCaM interaction occurs in

a calcium-independent manner in vitro.

Discussion

In eukaryotes, regulatory EF-hand proteins are the primary

mediators of calcium signalling pathways [38], and amongst these,

the Neuronal Calcium Sensor (NCS) protein family appear to have

a wide variety of roles [39,40]. Five classes (A-E) of NCS protein

are recognized based on sequence similarity [10,39].

While members of the NCS-A class, including NCS-1 and

frequenin [41,42], are widely distributed across eukaryotes, the

coral NCS protein reported here clearly belongs to the NCS-B

class, members of which were previously known only from

bilaterians [38,43]. Searching the database revealed the presence

of two uncharacterised genes encoding predicted NCS-B proteins

(Nv1: XP_001639634 and Nv2: XP_001639635) in the genome of

the sea anemone Nematostella vectensis genome [44]. Clearly related

NCS-B sequences are also present in the sponge Amphimedon

(XP_003386697.1) and the placozoan Trichoplax (EDV23214.1).

NCS proteins are also present in the choanoflagellate Monosiga, but

at this time it is unclear to which class the closest Monosiga match

(EDQ90181.1) belongs. Thus the NCS-B protein class clearly pre-

dates the Bilateria, but whether it predates the Metazoa is unclear.

Despite canonical calmodulins being highly conserved, they

participate in a diverse range of biological processes due to the

ability to interact with an enormous range of target proteins, many

of which are taxonomically restricted [12,35]. For example, in

another coral, Stylophora pistillata, CaM is thought to interact with

a calcium-ATPase, and this interaction may be relevant to the

regulation of skeleton deposition [45]. The presence of clear

counterparts of most of the key molecules involved in vertebrate

calcium signalling as well as a number of coral-specific calcium

sensors (in preparation) suggests that both conserved and coral-

specific calcium dependent signalling pathways function during

settlement and metamorphosis in A. millepora. Given the wide

phylogenetic distribution and sequence conservation displayed by

both calmodulin and NCS-B proteins, it is surprising that the

interaction identified here has not been previously reported,

however, we were unable to find precedents in the literature or the

String interaction databases [string-db.org] or IntAct [ebi.ac.uk/

intact].

The affinity chromatography and immunoprecipitation experi-

ments presented here demonstrate that AmCaM interacts with

AmAC in vitro in the presence of calcium (Figs. 3C and D)., and

immunoprecipitation experiments indicate that this interaction is

likely to also occur in the absence of calcium (Figure 3D, left

panel).

The temporal expression data (Fig. 2) are consistent with this

interaction occurring during late larval development in Acropora,

although the in situ data indicate that this is more likely to occur in

the endoderm than in the aboral ectoderm that is the site of

calcification initiation. The fact that the putative CaM binding site

is located between two EF-hand domains in the AmAC protein

suggests that cooperative coordination may occur between the

calcium binding motifs of the two proteins. For some target

proteins, CaM coordination is necessary to enable calcium binding

or to induce exposure of hydrophobic residues [10,46,47,48].

Most NCS family members are thought to be multifunctional

regulators of neuronal cellular processes [39,49], only NCS-A

types being known to function in both neuronal and non-neuronal

cell types [39,50,51]. Whereas NCS-B proteins have neuronal

functions in vertebrates, the broad endodermal expression pattern

observed for AmAC (Fig. 3) suggests a non-neuronal role during

coral development. Analogy with the vertebrate NCS proteins

neurocalcin and hippocalcin suggests possible roles in vesicle or

mRNA transport, regulation of cGMP intracellular levels and/or

apoptosis [38,52,53] in the larval endoderm.

Coral larvae accumulate calcium in endodermal lipid contain-

ing vesicles prior to skeleton deposition [54]. During the de-

velopment of Acropora larvae, endodermal tissue functions primar-

ily in the mobilisation of stored lipids for energy metabolism and

buoyancy control [31,55,56], presumably also releasing calcium

from endodermal lipid stores. AmAC might therefore have

NCS-Protein - Calmodulin Interaction in Coral
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a regulatory role during the calcium release process that

accompanies metamorphosis and skeleton deposition. Clarifying

the role of AmAC and the biological relevance of the AmAC/

AmCaM interaction will require the development of tools to allow

functional analysis of coral genes.
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