Successful malaria elimination strategies require interventions that target changing vector behaviours
Russell, Tanya L., Beebe, Nigel W., Cooper, Robert D., Lobo, Neil F., and Burkot, Thomas R. (2013) Successful malaria elimination strategies require interventions that target changing vector behaviours. Malaria Journal, 12 (2). p. 56.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (175kB) |
Abstract
BACKGROUND: The ultimate long-term goal of malaria eradication was recently placed back onto the global health agenda. When planning for this goal, it is important to remember why the original Global Malaria Eradication Programme (GMEP), conducted with DDT-based indoor residual spraying (IRS), did not achieve its goals. One of the technical reasons for the failure to eliminate malaria was over reliance on a single intervention and subsequently the mosquito vectors developed behavioural resistance so that they did not come into physical contact with the insecticide.Hypothesis and how to test it: Currently, there remains a monolithic reliance on indoor vector control. It is hypothesized that an outcome of long-term, widespread control is that vector populations will change over time, either in the form of physiological resistance, changes in the relative species composition or behavioural resistance. The potential for, and consequences of, behavioural resistance was explored by reviewing the literature regarding vector behaviour in the southwest Pacific.
DISCUSSION: Here, two of the primary vectors that were highly endophagic, Anopheles punctulatus and Anopheles koliensis, virtually disappeared from large areas where DDT was sprayed. However, high levels of transmission have been maintained by Anopheles farauti, which altered its behaviour to blood-feed early in the evening and outdoors and, thereby, avoiding exposure to the insecticides used in IRS. This example indicates that the efficacy of programmes relying on indoor vector control (IRS and long-lasting, insecticide-treated nets [LLINs]) will be significantly reduced if the vectors change their behaviour to avoid entering houses.
CONCLUSIONS: Behavioural resistance is less frequently seen compared with physiological resistance (where the mosquito contacts the insecticide but is not killed), but is potentially more challenging to control programmes because the intervention effectiveness cannot be restored by rotating the insecticide to one with a different mode of action. The scientific community needs to urgently develop systematic methods for monitoring behavioural resistance and then to work in collaboration with vector control programmes to implement monitoring in sentinel sites. In situations where behavioural resistance is detected, there will be a need to target other bionomic vulnerabilities that may exist in the larval stages, during mating, sugar feeding or another aspect of the life cycle of the vector to continue the drive towards elimination.
Item ID: | 24907 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 1475-2875 |
Related URLs: | |
Funders: | Bill and Melinda Gates Foundation, National Institutes of Health for the International Center of Excellence in Malaria Research in the southwest Pacific |
Date Deposited: | 07 Feb 2013 23:30 |
FoR Codes: | 06 BIOLOGICAL SCIENCES > 0603 Evolutionary Biology > 060303 Biological Adaptation @ 50% 11 MEDICAL AND HEALTH SCIENCES > 1117 Public Health and Health Services > 111799 Public Health and Health Services not elsewhere classified @ 50% |
SEO Codes: | 96 ENVIRONMENT > 9604 Control of Pests, Diseases and Exotic Species > 960405 Control of Pests, Diseases and Exotic Species at Regional or Larger Scales @ 50% 92 HEALTH > 9205 Specific Population Health (excl. Indigenous Health) > 920599 Specific Population Health (excl. Indigenous Health) not elsewhere classified @ 50% |
Downloads: |
Total: 1184 Last 12 Months: 8 |
More Statistics |