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Abstract - Techniques that provide a rapid and widespread assessment of crop properties equip industry decision makers with knowledge to
improve their farming environment, both tactically and strategically. An interdisciplinary approach that links the fields of hyperspectral remote
sensing, statistical data mining and sugarcane systems was undertaken to establish new relationships to determine variety type and crop age
of sugarcane plants. In contrast to commonly used sensors such as those occupied by Landsat satellites, images captured by hyperspectral
sensors can provide a more detailed assessment of crop status. Appropriate statistical analysis methods are needed to decode the multifaceted
information recorded in these hyperspectral images. A range of statistical approaches have been applied for analysis of an EO-1 hyperion
hyperspectral image from a major sugarcane growing region in Australia. Two rclatively new classification methods — support vector machines
and random forests - demonstrated superior performance in classifying sugarcane variety and crop cycle, e.g. the number of times that the
plant has grown back after harvest, when compared against traditional statistical methods. Assignment results were further enhanced when
classifications of pixels within sugarcane paddocks were aggregated to paddock classifications using paddock boundary information. Whilst
the analysis methods of the hyperspeciral data have been tested for the classification of variety and crop cycle, the potential application arenas
for this type of imagery is both extensive and relatively unexplored. This type of data coupled with appropriate analysis methods will play a
vital role in futuristic sustainable agriculture practices as this imagery becomes more accessible and as land managers and researchers become
more aware of the types of decisions that hyperspectral remote sensing data can aid.
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1. INTRODUCTION

Satellite imagery can provide detailed spatial information
about an agro-ecological environment. The amount of detail
contained in the imagery is dependent on the attributes of
the satellite. Advancements in satellite imagery have provided
a mechanism for extracting complex information about crop
characteristics across a spatial domain. Previously, this level
of information could only be obtained from laboratory analy-
ses for point specific locations. To fully exploit the information
captured by these modern satellite apparatus, statistical anal-
ysis methods are needed to extract relevant information em-
bedded within the more volumuous image data, so that agri-
cultural managers can capitalise on this knowledge to improve
sustainable agronomic practices.

Satellite remote sensing instruments can measure and
record as a digital image, the intensity of the reflected elec-
tromagnetic radiation from agricultural vegetation like sugar-
cane. The digital image is made up of many smaller discrete
picture elements called pixels. Remote sensing instruments are
characterized by several attributes that influence the quality of
information recorded for each pixel in an image. Besides the
spatial resolution, another important attribute is the spectral
resolution. The spectral resolution of a satellite is determined
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by the number of bands (narrow portion of the electromag-
netic spectrum) and the spectral location and widths of these
bands. Low resolution sensors are constrained by the small
number of bands that measure reflected radiation. Hyperspec-
tral sensors however, are high resolution because they measure
reflected radiation from a large number of bands to provide a
more continuous like spectral signature. Embedded within the
spectral signature is detailed quantitative and qualitative infor-
mation about the medium being examined e.g. crop vegetation
(Lillesand and Kiefer, 2000; Thenkabail et al., 2002). Typi~
cally, analysis of spectral like data requires more sophisticated
statistical approaches. To explore the potential of hyperspec-
tral sensors and methods for analysing hyperspectral data, we
consider an example relevant to the Australian sugar industry.

Sugar is Australia’s second largest agricultural export com-
modity that contributes between 1 to 2 billion Australian dol-
lars to the nation’s economy. Sugarcane starls as a plant crop
and when mature is harvested (Fig. 1). The plant is then
allowed to regrow (or ratoon) for harvesting approximately
12 months later, depending on the region. This cycle typically
happens 4 to 5 times before the crop is completely ploughed
out and replanted as a new plant crop. A large proportion of
sugar produced by the sugarcane is exported to countries over-
seas. Therefore, advance knowledge of crop size is needed by
marketers to improve forward selling strategies of the com-
modity. Crop size is heavily dependent on variety and crop
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Figure 1. A picture of sugarcane variety 136 grown in the Mackay
region.

cycle. The ability to better predict these characteristics offers
the potential to improve yield forecasting models. It is also
important to recognise that some varieties are more suscepli-
ble to disease. The ability to accurately classify varieties can
help enormously to reduce negative impacts associated with
disease spread.

The application of hyperspectral imagery in sugar indus-
tries world wide is limited. The only use of hyperspectral sen-
sor data for the Australian sugarcane industry was conducted
by Apan et al. (2003) who used discriminant function analysis
to monitor the disruption of a sugarcane disease called orange
rust. For the Brazilian sugarcane industry Galvio et al. (2005,
20006) reported success in using the EO-1 hyperion to classify
sugarcane varieties. Our investigation has extended the appli-
cation of classifying sugarcane varieties using the EO-1 hype-
rion to the Australian continent and to identify if this imagery
can also be used to classify the crop cycle (i.e. number of times
the crop has ratooned or grown back after harvesting). Variety
and crop cycle are classified at two levels. The first level of
classification is at a pixel level and the second level is at the
paddock scale. Since several pixels will occupy a sugarcane
paddock where crop variety and crop cycle are typically uni-
form, the classification approach is applied at a paddock level.

Spectral signatures, like those obtained from hyperspectral
imagery can be quite similar for different sugarcane varieties
and crop cycles. Thus, modern statistical data mining tech-
niques offer the potential to better discriminate spectral char-
acteristics. The term "high (low) dimensional classifiers” is
typically reserved for classifiers suited to datasets with highly
correlated variables where the ratio of observations to vari-
ables is small (large). The ill-posed problem caused by lim-
ited observations relative to the number of variables has been
referred to as the Hughes phenomena (Hughes, 1968) and is
frequently encountered with spectral data. To overcome the
low observation-to-variable ratio and strong correlations, tra-
ditional methods that involve maximum likelihood and linear
discriminant analysis methods have tended to use vegetation
indices and feature extraction steps such as a stepwise band
selection, principal components and wavelet transforms (Hsu
and Tseng, 1999) to incorporate a small number of influential

features into the model. The performance of low and high di-
mensional statistical classifiers for the hyperspectral imagery
was considered in this investigation. These included — support
vector machines, random forests, penalised discriminant anal-
ysis and linear discriminant analysis.

Linear discriminant analysis is more recognised as a low di-
mensional classifier in contrast to penalised discriminant anal-
ysis which is considered a high dimensional classifier. Appli-
cations of linear and penalised discriminant analysis methods
have been applied to hyperspectral imagery with varying de-
grees of success (see for example Yu et al., 1999 and Gong
et al., 1998). Applications of random forests to hyperspec-
tral data are however more limited. Random forests (Breiman,
2001) is modern method capable of classifying (or regress-
ing) objects from data sets with a relatively large number of
variables. The random forest method does not use all the vari-
ables at the same time. Integrated within this technique is an
“in-house” variable selection method. Compared to random
forests, literature describing applications of support vector ma-
chines for classifying hyperspectral data is more abundant.
Support vector machines are a high dimensional classifier.
Compared to traditional classifiers, support vector machines
offer a distinct advantage for classifying hyperspectral data of
different land cover types (Gualtieri and Chettri, 2000; Camps-
Valls et al., 2003, 2004; Huang et al., 2002; Lennon et al.,
2002; Mercier and Lennon 2003; Shah et al., 2003; Wilson
et al., 2004). The success of this method can be attributed to
the ability of support vector machines to suppress information
in the spectral signature that is not useful (noisy or redundant)
for discriminatory purposes (Camps-Valls et al., 2004). The
next section of this paper explains these statistical methods in
more detail.

2. STATISTICAL BACKGROUND
2.1. Fisher’s Linear Discriminant Analysis (LDA)

Fisher’s linear discriminant analysis (Fisher, 1936) is a clas-
sical statistical approach for classifying samples whose group
membership is unknown, based on training samples from ¢
known classes (supervised learning). Fisher’s linear discrimi-
nant analysis searches for a linear combination(s)

Z=a1x +an + ot dpip

of the p independent variables xi, xs, ..., xp. that maximise
the ratio of the between-group sum-of-squares to the within-
groups sum-of squares in the discriminant space. The weights
in the linear combination(s) are the eigenvectors of W™!B,
where W and B are the within- and between-groups covariance
matrices, respectively. The eigenvector associated with largest
eigenvalue has the largest discriminatory power, the eigenvec-
tor associated with the next largest eigenvalue, produces the
next largest disciminant criterion and is uncorrelated with the
first discriminant function, and so on. The maximum number
of discriminant functions is equal to min(g-1, p). A new ob-
servation is assigned to the group that it lies nearest to in the
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discriminant space. Refer to Johnson and Wichern (1988), for
a morc comprehensive account of Fisher’s linear discriminant
analysis.

2.2. Penalised Discriminant Analysis (PDA)

Penalised discriminant analysis (Hastie et al., 1995) is sim-
ilar to Fisher’s linear discriminant analysis in that linear com-
binations of predictor variables are produced that best discrim-
inate the different classes. Penalised discriminant analysis dif-
fers from Fisher’s linear discriminant method by attempting
to overcome problems associated with high dimensional data.
These include the high correlation between variables and the
low observation to variable ratio which both contribute to in-
stabilities in estimating W1, Hastie et al., (1995) added the
penalty term (£2) to the within-group covariance matrix W to
improve the performance of Fisher’s linear discriminant anal-
ysis by reducing instabilities associated with calculating W'
Thus, W is replaced by Wpe; = W + Q in penalised discrimi-
nant analysis.

2.3. Random Forests (RF)

Random forests (Breiman, 2001) extend upon the principles
of CART - classification and regression trees (Breiman et al.,
1984). A classification tree recursively partitions the data into
homogenous subsets. Terminating nodes that contain observa-
tional units are produced when a rule that ceases further par-
titioning has been -activated. The class of the terminal node
is determined by a majority vote of class membership of the
observations within that terminal node. To improve this ap-
proach, the random forest method incorporates bagging (boot-
strap aggregating of randomly sampled cases) and random
variable selection to improve predictive accuracy (Breiman,
2001). The random forest method can perform well when the
number of variables is much larger than the number of sam-
ples (Breiman, 2001), a frequent occurrence in hyperspectral
data. One ountput provided by the random forest method is a
variable importance list. The random forest methed can pro-
vide information about the influence that variables have on
model performance (Truong et al., 2004). This can be helpful
if a researcher is interested in gaining a better understanding
about which variables, or parts of the spectral signature are
most useful for classification. Our study was primarily inter-
ested in raising awareness of the potential hyperspectral im-
agery and outlining different methods for analysing this type
of data, consequently, the variable importance list was not con~
sulted.

2.4. Support Vector Machine (SVM)

The support vector machine is a statistical learning method
for solving supervised classification and nonlinear regression
problems. Like Fisher’s linear discriminant analysis, penalised

discriminant analysis and random forests, support vector ma-
chines require no assumption about the population distribu-
tion from which the sampled data were drawn. Support vector
machines seek an optimal separating surface between groups
of data. When two classes (g = 2) are present, support vec-
tor machines partition the two groups using a linear separat-
ing hyperplane. The optimal hyperplane is located where the
margin between the two classes is maximised and the error
is minimized. When linear hyperplanes cannot be found to
separate the classes without misclassifications, support vector
machines can be generalised to calculate nonlinear decision
surfaces. For multiple class classification problems 2 binary
classifier is constructed for each pair of classes. The appropri-
ate class is then found by a voting scheme within the system.
For more details about support vector machines the reader is
referred to Boser et al. (1992), Burgess (1998), Bruzzone and
Melgani (2002) and Vapnik (1998).

2.5. Accuracy Assessment

There exists many ways that the performance of different
models can be validated. These techniques range from the use
of independent training and testing data to cross-validation
techniques (Kohavi, 1995). In this paper, the v-fold cross-
validation method with v = 10 has been used to assess the clas-
sification accuracy of each statistical method. In p-{old cross-
validation, the data are divided into v subsets of approximately
equal size. The model is trained and fitted v times, each time
leaving out one of the subsets from training. Only the omit-
ted subset is predicted to derive a correct classification rate
(CCR). Ten-fold (v = 10) cross-validation has been shown to
have a better combination of low bias and low variance over
leave-one-out cross-validation (Kohavi, 1995). Ten-fold cross-
validation offers advantages when small data sets do not per-
mit separate training and testing data and when the data con-
sists of highly unbalanced classes (both cases in this research).

3. DATA AND PRE-PROCESSING PROCEDURES

The hyperspectral data was acquired from the NASA Earth
Observing 1 (EO-1) satellite’s Hyperion imaging spectrometer
(NASA, 2003). The Hyperion sensor has a spatial resolution
of 30 m? and a speetral resolution of 400 nm to 2500 nm in
242 near continuous 10 nm bandwidths. The study area rep-
resents a portion of the Mackay sugarcane growing region in
Queensland, Australia. The image, approximately centered on
149° 04’ Eand 21° 15” S was captured on April 2nd, 2002 con~
tains some 400000 pixels covering approximately 7.5 km X
45.6 km. The image was originally captured for a study on
discriminating “orange rust” disease in sugarcane from hy-
perspectral data (Apan et al., 2004). This research makes use
of the same processed image from Apan et al. (2004). The
242 bands were reduced to 150 bands by eliminating bands
that displayed non-uniformities after formal remote sensing
calibration procedures were implemented. The 150 bands were
given variable names of x1, xa, ..., X150.
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Figure 2. Spectral signatures of nine different sugarcane varieties.

Table L Distribution of the 2402 pixels and 84 paddocks by variety
and crop cycle (ratoon).

Variety Cycle
Paddocks pixels Paddocks pixels
20 5 101 1 25 637
121 2 36 2 20 615
124 35 889 3 11 248
135 13 322 4 5 28
136 10 578 5 12 345
138 7 133 6 5 163
139 1 13 7 1 36
185 7 185 8 3 209
190 4 145 9 2 51

Nine varieties of sugarcane across 84 paddocks have been
recorded. These 84 paddocks contained 2402 pixels. Figure
2 shows the spectral graphs of the different sugarcane vari-
eties (randomly selected pixel observations) and the associated
band numbers. The varicties are referred to as variety — 20,
121,124, 135, 136, 138§, 159, 185 and 190. Figure 1 shows va-
riety 136 sugarcane stalks grown in the Mackay region. Variety
20 represents mixed varieties. This occurs for example when
growers gradually introduce new varieties released by plant
breeding authorities into their paddocks. Additional informa-
tion about the crop cycle had been recorded for the 84 pad-
docks. The crop cycles have been labeled with values of 1 to
9 (1 = plant cane, i.e. cane that was planted for the first time
following the previous harvest, 2 = 1st ratoon, 3 = 2nd ratoon,
.., 9 = Bth ratoon). Table I details the distribution of pixels and
paddocks for variety and crop cycle.

Hyperion pixel spectral data were linked with GIS (geo-
graphical information system) vector data for each paddock in
the farm survey. A mask was created for each paddock that
deleted pixels that extended 5 m or more past paddock bound-
aries. This was done to reduce and/or remove edge effects.
Paddocks were then selected if they contained 10 or more pix-
els per paddock. The decision of 10 or more pixels was an
iterative process based on classification accuracies.

Y.L. Everingham et al.

Table 11, Overall correct classification rates for the (a) 2402 pixels
and (b) 84 paddocks.

{a) Per pixel classification accuracy (%)
Method Variety Cycle
LDA Stepwise 76.4 574
1L.DA 76.8 57.0
PDA 79.7 623
RF 87.5 80.4
SVM 90.0 839
(b) Per paddock classification accuracy (%)
Method Variety Class
LDA Stepwise 82.7 639
LDA 86.9 68.7
PDA 85.7 77.1
RF 100.0 97.6
SVM 98.8 100.0

4. METHODS

Stepwise Fisher’s linear discriminant analysis, Fisher's
linear discriminant analysis using all the variables, penalised
discriminant analysis, random forests and support vector ma-
chines were used to predict the categorical responses of sugar-
cane variety and cycle. The statistical programming package R
was used to implement each of these techniques. The methods
were compared by a correct classification rate derived from
10-fold cross-validation.

Predictions were initially made on a per-pixel basis. The
initial factor attributes of the paddocks were assigned to the
individual pixels. Predictions were then re-evalvated to pro-
duce a per-paddock prediction. This was feasible since pad-
docks usually contain only one sugarcane variety of a partic-
ular cycle. Predicting on a per paddock basis incorporates an
object-based classifier approach (de Wit and Clevers, 2004)
using paddock vector boundaries supplied by Mackay Sugar
Limited. For variety and cycle, a majority or modal statistic
was applied to the predicted pixels within a specific paddock.
Accuracies were then assessed by comparing the predicted
paddock response with the actual response. Predicting on a
per-paddock basis minimizes the effect of spectral variability
that occurs within any crop paddock. Pixel spectral variabil-
ity in any paddock is related to, among others, variations in
soil moisture condition, nutrient limitations and/or disease (de
Wit and Clevers, 2004). As expected, studies by Turker and
Arikan (2004), and de Wit and Clevers (2004) have shown the
per-paddock classification method significantly improves the
overall classification accuracies when considering & homoge-
nous land cover type such as agricuitural crops.

5. RESULTS AND DISCUSSION

Table II shows the overall 10-fold correct classification
rate for classifying crop variety and cycle using stepwise
Fisher’s linear discriminant analysis, Fishers linear discrimi-
nant analysis, penalised discriminant analysis, random forests
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Table 1L Cross-validated varictal predictions for the (a) 2402 pixels and (b) 84 paddocks using the support vector machine procedure.
(a) Actual Predicted varietal group using the 2402 pixels data set
Variety 20 121 124 135 136 138 159 185 190 % Correct

20 72 0 1 12 5 1 0 8 2 71.3
121 0 33 2 0 0 0 0 0 1 91.7
124 3 0 862 12 3 3 0 2 4 97
135 2 0 18 256 17 11 0 12 g 79.5
136 2 0 2 17 550 4 0 1 2 95.1
138 5 0 4 10 4 107 0 2 1 80.5
159 g o 0 0 4] 0 12 1 0 923
185 6 0 1 9 8 3 1 152 5 82.2
190 0 1 4 12 8 3 0 1 116 30

(b) Actual Predicted varietal group using the 84 paddocks data set

Variety 20 121 124 135 136 138 159 185 190 % Correct

20 5 0 0 4] 0 0 0 0 0 100
121 0 2 0 0 0 0 0 0 0 100
124 0 0 34 0 0 0 0 0 0 100
135 0 0 0 13 0 0 0 0 0 100
136 0 0 0 0 10 0] o 0 0 160
138 0 0 0 0 0 7 0 0 0 100
159 0 0 0 0 0 0 1 0 0 100
185 0 Q 0 ¢] 1] 0 ¢ 7 0 87.5
190 0 0 0 0 0 0 0 1 4 100

and support vector machines derived from the (a) per-pixel and
(b) per-paddock prediction approach. Support vector machines
and random forests produced the highest correct classification
rates of the techniques considered. With the exception of pad-
dock variety classification, support vector machines tended to
outperform the random forest technique. Since support vector
machines performed well, Tables III and IV show the confu-
sion mairices resulting from the support vector machine vari-
ety and crop cycle classifications, respectively.

Table la shows that varicty 20 has the worst classification
rate which was partially compounded from the mixed varieties
in paddocks. The distribution of misclassification rates show
that varieties 135, 138, 185 and 190 are the most spectrally
confused with other varieties. However, much of this confu-
sion diminishes when the modal statistic is applied to the pix-
els within the paddocks (Tab. IIIb).

Table IVa shows the class confusion matrix using the sup-
port vector machine method for the 2402 pixels where the dif-
ferent class levels are ordinal. Cycle 1 is the newly planted
crop, cycle 2 is the first ratoon of the crop, etc. A majority of
misclassifications occur just off the down-diagonal elements.
An example is between the plant crop and the first ratoon. It
is understandable that a first ratooning crop would be more
spectrally associated with a plant crop as opposed to an 8th ra-
tooning crop. Table 4b shows the class confusion matrix using
the support vector machine for the 84 paddocks from the 2402
pixel data set. Again, the modal statistic removes extreme pixel
predictions to more accurately predict paddock cycle.

To investigate the effects of class sample size, Figure 3 de-
tails the overall classification accuracies of the different classi-
fiers for the variety factor along with the number of pixels per
variety vsed in the models. The lower performance of Fisher’s

linear discriminant analysis can be linked to the sample size,
which in turn directly effects the calculation of the inverse of
the within covariance matrices this procedure relies on. The
support vector machines and random forest procedures were
to a large degree unaffected by sample size, with high accu-
racies achieved across all varieties. Both Fisher’s linear dis-
criminant analysis and penalised discriminant analysis meth-
ods have large variations in accuracies with respect to sample
sizes. Variety 121 had the highest accuracies for a relatively
small sample size. In general, Fishers linear discriminant anal-
ysis and penalised discriminant analysis methods displayed in-
creased accuracy when the sample size increased.

6. CONCLUSION

Motivated, by limited research investigating hyperspectral
imagery for agricultural systems, the performance of several
discriminant methods was assessed for the purpose of discrim-
inating sugarcane crop variety and cycle. Despite the close
spectral resemblances, the random forest and support vector
machines methods outperformed traditional methods and were
shown to be effective on small and unbalanced class sample
sizes.

Previous literature has demonstrated support vector ma-
chines to be a robust and accurate classification tool for broad
vegetation class discrimination in other hyperspectral studies.
This was reinforced in our investigation. Random forests also
performed well and, if required, has the added benefit of ob-
taining a variable of importance measure that identifies which
bands of the spectral image arc most responsible for discrimi-
nating between different responses of the sugarcane crop. Qut-
comes from this rescarch support further investigations of the
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Table ¥V. Cross-validated sugarcane crop cycle predictions for the (a) 2402 pixels and (b) 84 paddocks using the support vector machine

procedure.
(a) Actual Predicted crop cycle using the 2402 pixels data set
crop cycle 1 2 3 4 5 6 7 8 g 9 Correct

1 557 66 1 1 2 1 0 8 1 87.4
2 48 530 10 1 8 ] 0 15 3 86.2
3 6 i6 185 5 31 5 0 4] 0 74.6
4 3 4 3 67 16 3 0 0 0 68.4
5 3 8 19 13 290 10 0 0 2 84.1
6 4 1 7 4 13 132 0 0 2 81
7 0 2 1 0 0 0 32 1 0 88.9
8 3 16 0 0 0 g i 188 1 89.5
9 1 6 0 0 1 5 0 1 37 72.5

(b) Actual Predicted crop class using the 84 paddocks data set

crop class 1 2 3 4 5 6 7 8 9 % Correct

1 24 ¢ 0 0 4} 1] 0 6] 0 100
2 0 20 0 0 Q 0 0 0 0 100
3 0 0 11 0 Q 0 0 0 0 100
4 0 0 0 5 0 0 0 0 0 100
5 0 0 0 0 12 0 0 0 0 100
6 O 0 0 0 0 5 0 0 0 100
7 0 0 0 0 Q 0 I 0 0 100
8 0 0 ¢ 0 0 0 0 3 0 100
9 0 (¢} 0 0 0 0 4} 0 2 100

Accuracy
Number of Pixels

Variety

Figure 3. Accuracies of classification methods by number of pixels in
cach variety. The left vertical axis is the overall correct classification
rate of the different classifiers and the right vertical axis is the number
of pixels in each varicty {bar graph). Accuracies have been derived for
the 2402 pixel data set. The classifiers examined are support vector
machines {(svm), random forests (rf), penalised discriminant analysis
(pda), Fisher’s linear discriminant analysis (Ida) and stepwise Fisher’s
linear discriminant analysis (Ida-s).

advantages that hyperspectral imagery can bring to sustainable
agricultural practices. For example the type of information
embedded in hyperspectral signatures could greatly improve
nitrogen, weed and irrigation management at the precision
farming level in similar ways that this technology has been ex-
plored for corn (Waheed et al., 2006) and cotton (DeTar et al.,
2006). Aided by global positioning systems installed on har-

vesting systems, the Australian sugar industry has seen an in-
crease in spatially rich data in recent years. This environment
would perfectly complement an extension to precision farming
activities in order to take advantage of hyperspectral satellite
sensors as this data becomes more accessible.

Limitations are recognised in this research approach.
Discrimination of crop features focused on homogenous crop
areas that are free from edge effects and mixed vegetation pix-
els. The context based classifier approach to improve accura-
cies is only applicable where detailed paddock vector data is
available. In addition, this is only one season of data to draw
conclusions on. Future research should focus on applying the
support vector machines and random forests to other areas
and multi-temporal images of sugarcane to check the consis-
tency of our findings. Lastly, this particular area of sugarcane
was well irrigated and the growing season did not suffer from
drought or flooding.
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