ResearchOnline@JCU

This file is part of the following reference:

Tobin, Andrew James (1998) Protandrous sex change in the tropical sparid Acanthopagrus berda and the implications of geographical variability. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/24130/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/24130/</u>

PROTANDROUS SEX CHANGE IN THE TROPICAL SPARID ACANTHOPAGRUS BERDA AND THE IMPLICATIONS OF GEOGRAPHICAL VARIABILITY.

Thesis submitted by Andrew James TOBIN BSc (UQ) in May 1998

for the degree of Doctor of Philosophy in the Department of Marine Biology at James Cook University of North Queensland I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm and other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance which I have obtained from it."

Beyond this, I do not wish to place any restriction on access to this thesis.

A. J. Tobin 11 May, 1998.

FRONTISPIECE. Tagging an *Acanthopagrus herda* as part of a tag-release study detailed in this dissertation.

ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisors Brett Molony and Marcus Sheaves for sharing unselfishly their time and knowledge with me. I would not be here without your help and encouragement and am sincerely grateful.

Thanks are also due to Professor Howard Choat for his generous advice and guidance given throughout this project.

Immeasurable thanks also are due to my mother and father and family for their continued support (both financial and emotional) throughout this rather lengthy exercise. I hope you enjoy the read.

Financial support from a Merit Research Grant is gratefully acknowledged.

Thanks to all those people who helped with my field work. Thank-you also to those recreational and commercial fishers who returned tagged fish.

Finally, special thanks (for the maintenance of my sanity!) are due for Renee SRE!, Fleur, April, Tom, Adam and Rosco - also Jan and Ross, Beery and Michelle, Nick and Ann, and Colton, Kerry and Finnula.

ABSTRACT

This study investigated the sex change of the tropical sparid, *Acanthopagrus berda*. A hierarchical approach incorporating multiple diagnostics was applied. Fish were collected from seven tropical estuaries (Blacksoil, Cocoa, Alligator, Cattle, Mendel and Meunga Creeks as well as Deluge Inlet) in North Queensland, Australia. Both length-and age-frequency distributions showed strong bimodality indicative of protandrous sex change. The smaller length-classes and younger age-classes (years) of all samples were dominated by male fish. Female fish dominated larger length-classes and older age-classes. Adult sex ratios for five of the seven estuaries were largely male biased, presenting further evidence that protandrous sex change may occur in *A. berda*.

The gonad structure of *A. berda* was investigated both macroscopically and microscopically through the complete annual reproductive cycle. In all gonads examined, the characteristic sparid ovotestis structure was observed. During the spawning period (June to September), male and female ovotestes were strongly dimorphic in structure. Ovotestis structures that may represent a transitional stage in a protandrous sex change process were observed during the three month post-spawning period (October to December). The location of sectioning position was found to influence the interpretation of sexual function of some gonad types. Sections need to be taken along the length of the gonad before sexuality can be determined conclusively.

Definitive evidence of protandrous sex change was provided by an in-field tagrelease experiment conducted in two estuaries. Fish were sexed in the field by a validated and non-intrusive technique before being tagged and released. The subsequent recapture of fish allowed the sexuality of individual fish to be monitored through time. Protandrous sex change was detected in 3 (6.1%) and 4 (7.8%) fish from Blacksoil Creek and Deluge Inlet respectively. Each of these fish were sexed as male at initial capture, and possessed functional female ovotestes at the time of recapture. Further evidence of protandrous sex change was provided by aquarium experiments in which a total of ten A. berda underwent protandrous sex change.

There was considerable geographical variation in the growth of *A. berda* among locations. The growth of *A. berda* in Deluge Inlet and Mendel Creek was considerably slower than the other 3 estuaries sampled (Blacksoil, Cocoa and Cattle Creeks). The comparison of male and female growth for each estuary suggested in most cases, differences between male and female growth were negligible.

The rate at which protandrous sex change occurs was modelled for each estuary. The rate of sex change for Cocoa and Cattle Creeks was modelled by logistic regression. For Blacksoil Creek, Mendel Creek and Deluge Inlet modelling required a combination of the logistic and linear regression models. Following the geographical variation detected in the age and growth of *A. berda*, the modelled rates of sex change also showed considerable variation between estuaries. While sex change was modelled to occur across 5 age-classes for Cocoa Creek, sex change in all other estuaries was modelled to occur across at least 8 age-classes.

Further research into the apparent plasticity of the protandrous sex change of A. berda is required. The estuaries sampled in this study represent a very small area of the geographical range of A. berda in Australian waters. Furthermore, the extensive international range of A. berda may also be characterised by more extensive variability in the protandrous sex change of A. berda than detected by this study.

TABLE OF CONTENTS

CHAPTER 1. General Introduction	1
1.1 Teleost Sex Change	2
1.2 Recognition of Sex Change	3
1.3 Sex Change in Fish of the Sparidae	6
1.4 The Importance of Recognising Sex Change	11
1.5 The Objectives of this Thesis	13
1.6 Specific Aims	16
CHAPTER 2. Traditional Indicators of Protandrous Sex Change Applied	
to Acanthopagrus berda	17
2.1 Introduction	17
2.2 Materials and Methods	18
2.2.1 Collection of Samples	18
2.2.2 Comparison of Length and Age Structures by Sex	20
2.3 Results	20
2.3.1 Length-frequency Analysis	20
2.3.2 Age-frequency Analysis	20
2.3.3 Sex Ratios	25
2.4 Discussion	26
CHAPTER 3. Gonad Structure : Further Indications of Protandrous	
Sex Change in Acanthopagrus berda	29
3.1 Introduction	29
3.2 Materials and Methods	32
3.2.1 Sample Collection	32
3.2.2 Macroscopic Description	33
3.2.3 Histology and Microscopic Description	33
3.2.4 Macroscopic vs Microscopic	34
3.3 Results	34
3.3.1 Macroscopic Gonad Description	34

3.3.2 Temporal Pattern of Macroscopic Gonad Types	40
3.3.3 Microscopic Gonad Description	41
3.3.4 Temporal Pattern of Microscopic Gonad Types	44
3.3.5 Macroscopic vs Microscopic Examination	48
3.3.6 The Effect of Sectioning Position on Structural	
Interpretation	49
3.4 Discussion	52
CHAPTER 4. Protandrous Sex Change in Individually Monitored	
Acanthopagrus berda	57
4.1 Introduction	57
4.2 Materials and Methods	58
4.2.1 In-field Sexing Technique and Validation	58
4.2.2 Aquaria Experiments	58
4.2.3 In-field Experiments	59
4.3 Results	59
4.3.1 Validation of In-field Sexing	59
4.3.2 Aquaria Sex Change	60
4.3.3 In-field Sex Change	64
4.3.4 Age and Length at Sex Change	65
4.3.5 Rate of Sex Change	71
4.4 Discussion	71
CHAPTER 5. Geographical Variability in the Age and Growth of	
Acanthopagrus berda	75
5.1 Introduction	75
5.2 Materials and Methods	76
5.2.1 Modelling Growth Curves	76
5.2.2 Comparison of Male and Female Growth	77
5.2.3 Comparison of Growth Curves Between Locations	78

5.3 Results	78
5.3.1 Growth of <i>A. berda</i>	78
5.3.2 Comparison of Male and Female Growth	78
5.3.3 Comparison of Growth Across the Geographical Scale.	83
5.4 Discussion	87
5.4.1 Comparison of Male and Female Growth	88
5.4.2 Evidence suggesting genetic sub-stocks of A. berda	90
5.4.3 Management Implications	93
CHAPTER 6. The Rate of Protandrous Sex Change in	
Acanthopagrus berda	95
6.1 Introduction	95
6.2 Materials and Methods	96
6.2.1 Collection of Samples	96
6.2.2 Data Analysis	97
6.2.2.1 Assumptions	97
6.2.2.2 Graphical Investigation	97
6.2.2.3 Regression Analysis	97
6.2.2.4 Comparing the Modelled Rates	98
6.2.2.5 Estimating the Rate of Sex Change	98
6.3 Results	98
6.3.1 Lowess Trends	98
6.3.2 Regression Modelling	99
6.3.3 Comparison of the Modelled Rates of Sex Change	104
6.3.3.1 Cocoa and Cattle Creeks	104
6.3.3.2 Blacksoil Creek, Deluge Inlet, Mendel Creek	108
6.3.4 Final Models	111
6.3.5 Estimating Rates of Sex Change	111
6.4 Discussion	115
6.4.1 Modelling the Rate of Sex Change	115
6.4.2 The Rate of Sex Change Modelled for A. berda	116

CHAPTER 7. General Discussion	121
7 1 Determining the Reproductive Strategy	
of Acanthopagrus berda	121
7.2 Geographical Variation in Growth and Rate of	
Sex Change	123
7.3 Implications for Management and Future Directions	
of Research	126
BIBLIOGRAPHY	128
APPENDIX I	143

LIST OF FIGURES

Figure 1.1 : Schematic representation of the sparid ovotestis	8
Figure 1.2 : The distribution range of A. berda in tropical northern	
Australia	15
Figure 2.1 : Location map showing the seven estuaries sampled in	
northeastern tropical Australia during the current study	19
Figure 2.2 : Length-frequency graphs showing the absolute frequencies of	
male and female A. berda sampled during the study	21
Figure 2.3 : Age-frequency graphs showing the absolute frequencies of male	
and female A. berda sampled during the study	23
Figure 3.1 : Schematic representation of the possible protandrous sex change	
process of sparid fish	30
Figure 3.2 : Semen running freely from a mature male captured during the	
height of the winter spawning period	36
Figure 3.3 : Macroscopic representation of active and inactive male	
ovotestes	37
Figure 3.4 : Macroscopic representation of active and inactive female	
ovotestes	38
Figure 3.5 : Medial surface of a possible transtional ovotestis	39
Figure 3.6 : Microscopic representation of active and inactive male	
ovotestes	42
Figure 3.7 : Microscopic representation of active and inactive female	
ovotestes	45
Figure 3.8 : Transverse section through the mid-region of a transitional	
ovotestis	46
Figure 3.9 : Transverse sections through an indeterminate type ovotestis	47
Figure 3.10 : A comparison of macroscopic and microscopic ovotestis	
classification	50

Figure 3.11: The effect of sectioning position on the interpretation of
ovotestis structure
Figure 4.1 : Transverse sections taken through the ovotestis of a sex changed
fish from the first aquarium experiment
Figure 4.2 : Transverse sections taken through the ovotestes of two sex
changed fish from the second aquarium experiment
Figure 4.3 : The well developed female ovotestis dissected from a sex changed
fish
Figure 4.4 : Length increment data collected from the aquarium
experiments
Figure 4.5 : Length increment data collected from the Blacksoil Creek in field
experiment
Figure 4.6 : Length increment data collected from the Blacksoil Creek in field
experiment
Figure 5.1 : The modelled growth trajectories showing considerable variation
between locations sampled
Figure 5.2 : A comparison of the growth trajectories modelled for male and
female A. berda
Figure 5.3 : The growth curves of this study plotted against that of Samuel
and Mathews (1987)
Figure 5.4 : The location of Deluge Inlet and Mendel Creek within
Hinchinbrook Channel
Figure 6.1 : Fitted LOWESS regressions identifying trends in the proportional
scatterplots
Figure 6.2 : Logistic regression fitted to Cocoa and Cattle Creeks
Figure 6.3 : Logistic regression fitted to the initial Blacksoil Creek, Mendel
Creek and Deluge Inlet data
Figure 6.4 : Linear regressions fitted to the latter age data of Blacksoil Creek,
Deluge Inlet and Mendel Creek
Figure 6.5 : Scree-plots identifying those breakpoint age-classes minimising
the residual sum of squares of the complete models

-

х

Figure 6.6 : The variation present between the individual models before	
comparison	107
Figure 6.7 : The final models after comparison	112
Figure 6.8 : Location map showing the relationship between estuary location	
and model type	113

•

.

DECLARATION

I declare that this thesis is my own work and has not been submitted in any other form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

A. J. Tobin11 May, 1998.