ResearchOnline@JCU

This file is part of the following reference:

Sheaves, Marcus John (1995) Estuaries as juvenile habitats for lutjanid and serranid fishes in tropical northeastern Australia. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/24125/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/24125/</u>

ESTUARIES AS JUVENILE HABITATS FOR LUTJANID AND SERRANID FISHES IN TROPICAL NORTHEASTERN AUSTRALIA.

Thesis submitted by Marcus John SHEAVES BSc(Hons) (JCU) in January 1995

for the degree of Doctor of Philosophy in

the Department of Marine Biology at James Cook University of North Queensland

Lutjanus argentimaculatus sheltering amongst Rhizophora stylosa prop-roots.

I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance which I have obtained from it."

Beyond this, I do not wish to place any restriction on access to this thesis.

15/01/95

i

ACKNOWLEDGMENTS

I would like to thank the many people and organisations without whos' help and encouragement this work would not have been possible. This extends especially to the staff and students of James Cook University Department of Marine Biology. Particular thanks go to Prof. Howard Choat, Dr. Garry Russ and Dr. Dave Williams for their financial support and encouragement. Financial support from Merit Research Grants and Great Barrier Reef Marine Park Authority Augmentative Grants is also gratefully acknowledged. Special thanks to all the anglers who supplied fish, and particularly to the research staff from the Australian Institute of Marine Science Fish Biology Unit for their donations of samples of *Lutjanus russelli* from offshore waters. The careful reading, critical comments and encouragement of Dr. Brett Molony and Dr. Garry Russ is greatly appreciated also. The advise of Glenn De'ath on statistical matters was particularly valuable and is greatly appreciated. Finally, I thank my wife,

who's perseverance, encouragement and support made the course of this project immeasurably smoother.

ABSTRACT

A number of lutjanid and serranid fishes are thought to utilise tropical estuaries as juvenile habitats. However, little detailed biological or life-history information exists for any species, and the species compositions of these families inhabiting tropical estuaries, are poorly known. During this study, the species compositions and life-histories of lutjanid and serranid fishes inhabiting estuaries along the north-eastern coast of tropical Australia were investigated. Using fish-traps, estuary faunas were compared to those inhabiting near-shore reefs. Additional samples were donated by anglers and collected from estuaries by angling. The reproductive statuses, and size and age structures of two serranids (*Epinephelus coioides* and *E. malabaricus*) and two lutjanids (*Lutjanus russelli* and *L. argentimaculatus*), in estuaries were compared to those of the same species from offshore. Fish-traps were also used to obtain data on the distribution and abundance by size of *L. russelli*, *E. coioides* and *E. malabaricus* from three estuaries - Cattle, Barramundi and Alligator Creeks - over a two year period.

Far fewer species of lutjanids and serranids were trapped from estuaries than from nearshore reefs. While fish-trap and angling collections from estuaries produced 9 species of serranids and 5 species of lutjanids, most were collected in low numbers. Only two serranids (*Epinephelus coioides* and *E. malabaricus*) and two lutjanids (*Lutjanus russelli* and *L. argentimaculatus*) were common in either trap or angling catches. All fish of each of these species from estuaries were found to be much smaller and younger than the largest and oldest fishes of these species from offshore waters. Furthermore, all fish of each species from estuaries were found to be in prereproductive condition. This implies that the estuarine populations of these species consist of juveniles, and that they undergo migrations to offshore adult habitats. Thus they possess three distinct life-history stages (pelagic larvae, estuarine juveniles, offshore adults) that correspond to major habitat shifts . L. russelli were common in all estuaries and distributed throughout the three estuaries studied in detail. The probability of capturing L. russelli was similar in seaward areas of Cattle, Barramundi and Alligator Creeks, remained similar upstream areas of Barramundi Creek, but fell markedly in upstream parts of Cattle Creek. Spatial differences in the size of L. russelli (both within and between estuaries) were small, however, there was a strong pattern of seasonal change in the size of L. russelli in all estuaries. This seasonal pattern was apparently a product of the interaction between recruitment, mortality and migration. Studies in Alligator Creek showed that L. russelli demonstrated a strong preference for structurally complex habitats provided by fallen timbers and mangrove roots.

The numbers of both species of *Epinephelus* in trap catches declined in upstream areas of the three estuaries considered in detail. However, this reduction was much more marked for *E. coioides* than *E. malabaricus*, and while in downstream areas, the numbers of *E. coioides* were similar to or greater than those of *E. malabaricus*, in upstream areas *E. malabaricus* dominated. This suggests that the two species differ in their abilities to access or remain in upstream areas of estuaries. There was a strong negative correlation between the maximum deviation of salinity from 'normal' seawater levels and catches of both species of *Epinephelus*, suggesting that long-term salinity variation may be important in determining the distribution and abundance of *Epinephelus* spp. within estuaries.

The occupation of specific habitats during particular periods of development must be considered in the development of management strategies for these fishes. The use of estuaries as juvenile nursery grounds underlines the importance of maintaining the quality of estuarine habitats. More data from localities further afield (both within Australia and overseas) are needed to determine if the reproductive patterns found here apply to these species in other areas or to related species.

TABLE OF CONTENTS

CHAPTER 1. General Introduction	1
1.1 Importance of Tropical Estuaries as Habitats for Juvenile Fishes	1
1.2 Lutjanids in Estuaries	4
1.2.1 Lutjanus argentimaculatus	5
1.2.2 Lutjanus russelli	8
1.3 Epinepheline Serranids in Tropical Estuaries	9
1.3.1 Confusion as to identity of E. coioides and E. malabaricus	10
1.3.2 Epinephelus coioides and Epinephelus malabaricus	11
1.4 Conclusion	13
CHAPTER 2. Comparison of Lutjanid and Serranid Faunas in Estuaries to those	on
Nearshore Reefs	15
2.1 Introduction	15
2.2 Methods	15
2.3 Results	18
2.4 Discussion	21
CHAPTER 3. Size, Age and Growth of Lutjanus argentimaculatus, L. russe	elli,
Epinephelus coioides and E. malabaricus in Estuaries in Tropical Nor	th-
Eastern Australia	23
3.1 Introduction	23
3.2 Methods	24
3.2.1 Collection of samples	24
3.2.2 Comparison of size structures estuary/offshore	25
3.2.3 Growth from mark-recapture	25
3.2.4 Age determination using otoliths	26
3.3 Results	27
3.3.1 Comparison of size structures estuary/offshore	27
3.3.2 Growth from mark-recapture	29
3.3.3 Age determination using otoliths	32
3.3.3.1 Estuary samples	39
3.3.3.2 Offshore samples	39
3.4 Discussion	39

CHAPTER 4. Reproductive status of L.argentimaculatus, L.russelli, E.coioides an	d
E.malabaricus in estuaries of tropical northeastern Australia 45	;
4.1 Introduction	5
4.2 Methods	5
4.2.1 Collection of samples 46	5
4.3 Results	7
4.3.1 Fish from estuaries	3
4.3.2 Fish from offshore	;
4.4 Discussion	\$
CHAPTER 5. Habitat preferences of L. russelli and E. coioides in Alligato	r
Creek)
5.1 Introduction)
5.2 Methods)
5.2.1 Study area)
5.2.2 Habitat definition)
5.2.3 Trap design and sampling protocol	2
5.2.4 Sampling design	2
5.2.5 Data analysis	;
5.3 Results	ł
5.4 Discussion)
CHAPTER 6. Spatial and Temporal Patterns in the Distribution, Abundance and Siz	e
of L. russelli in three Estuaries in Tropical Australia	l
6.1 Introduction	l
6.2 Methods	?
6.2.1 Study sites)
6.2.2 Biological sampling protocols	5
6.2.3 Physical sampling 80)
6.2.4 Data analysis 80)
6.2.4.1 Analysis of the Distribution of L. russelli 82	2
6.2.4.2 Analysis of the Fork Length of L. russelli 83	;

-

vi

. ·

. ·

-

6.3 Results	85
6.3.1 Analysis of the Distribution of L. russelli	87
6.3.2 Spatial and Temporal Comparisons of Size of L. russelli	92
6.3.3 Physical data	103
6.4 Discussion	114
6.4.1 Spatial differences in abundance and size of L. russelli	115
6.4.2 Temporal differences in abundance and size of L. russelli	117
6.4.3 The physical environment of Cattle, Barramundi and Allig	gator
Creeks	118
6.4.3 Conclusion	119
CHAPTER 7. Spatial and Temporal Patterns in the Distribution, Abund	ance
and Size of E. coioides and E. malabaricus in three Estuaries in Trop	oical
Australia	120
7.1 Introduction	120
7.2 Methods	121
7.2.1 Data analysis	121
7.2.1.1 Size	121
7.2.1.2 Distribution and Abundance	122
7.2.1.3 Physical variables	123
7.3 Results	124
7.3.1: Size	124
7.3.2 Distribution and Abundance	132
7.3.3 Relationship between physical variability and catches	138
7.4 Discussion	140
7.4.1 Comparison of size structures	140
7.4.2 Comparison of distribution and abundance	141
CHAPTER 8. General Discussion	145
8.1 The Composition of Lutjanid and Serranid Faunas of Estuaries in Trop	oical
North-Eastern Australia	145
8.2 Lutjanids and Serranids: Juveniles in Tropical Estuaries	146
8.3 Spatial and Temporal Patterns of Distribution of L. russelli, E. coio	ides
and E. malabaricus in estuaries	150

•

.

vii

8.4 Implication	S	•	 •		•	 •		•	• •			•••	•				• •	•	•	 	•	•			152
BIBLIOGRAPHY		• •	•••	• •	•	 				•••	•	•••	•		•		•	•	•	 •	•••	•	 •	•••	153
APPENDIX I				• •		 	•				•		•				• •	•	•	 •	• •	•	 •		166
APPENDIX II					•	 •••	•		•		•			• •		•		•		 		•	 •		169

viii

LIST OF FIGURES

-

Figure 2.1: Sampling sites for the collection of lutjanid and serranid fishes 16
Figure 3.1: The relationship between growth of <i>E.coioides</i> and time at liberty 31
Figure 3.2: The relationship between growth of <i>E.malabaricus</i> and time at liberty 31
Figure 3.3: The relationship between growth of L. argentimaculatus and time at liberty33
Figure 3.4: The relationship between growth of L. russelli and time at liberty 33
Figure 3.5: Transverse sections of sagittal otoliths
Figure 3.6: Transverse sections of tetracycline-treated sagittal otoliths
Figure 3.7: Diagrammatic representation of sectioned, tetracycline-treated sagittal otoliths of
(a) E. malabaricus and (b) E. coioides
Figure 3.8: Diagrammatic representation of sectioned, tetracycline-treated sagittal otoliths of
(a) L. argentimaculatus and (b) L. russelli
Figure 3.9: The relationship between fork length and sagittal otolith counts for E .
<i>coioides</i>
Figure 3.10: The relationship between fork length and sagittal otolith counts for E .
malabaricus
Figure 3.11: The relationship between fork length and sagittal otolith counts for L .
argentimaculatus
Figure 3.12: The relationship between fork length and sagittal otolith counts for L .
<i>russelli</i>
Figure 3.13: The relationship between fork length and sagittal otolith counts for L. russelli
from estuaries
Figure 4.1: Changes in relative gonad size and stage over time for L. russelli 50
Figure 4.2: Transverse sections of the ovaries of the largest female a) L. argentimaculatus,
b) L. russelli, c) E. coioides and d) E. malabaricus collected from estuaries 52
Figure 5.1: Diagrammatic representations of four habitat types in Alligator Creek 61
Figure 5.2: The probability of capture of a) L. russelli and b) E. coioides in four habitats of
Alligator Creek
Figure 5.3: The probability of capture of a) E. coioides and b) L. russelli in Alligator Creek

.

	during day and night trap soaks	,
	Figure 6.1: Map showing locations of Cattle, Barramundi and Alligator Creeks 73	5
	Figure 6.2: Aerial photographs of the seaward parts of a) Cattle, b) Alligator and c	;)
	Barramundi Creeks	ŕ
	Figure 6.3: Diagrammatic representation of the Antillean-Z fish traps used for)r
	sampling 76	
	Figure 6.4: Mans of a) Cattle b) Barramundi and c) Alligator Creeks showing the region	S
	defined for the study.	
	Eigen (5. Discontruction of the division of the seturation into semulin	~
	Figure 6.5: Diagrammatic representation of the division of the estuaries into samplin	g
	units	_
	Figure 6.6: Size frequency distribution of 2 223 L. russelli trapped in Cattle, Barramundi an	d
	Alligator Creeks	
	Figure 6.7: Relationship between the mean and variance for numbers of L. russelli caught in	n
-	traps	
	Figure 6.8: Probabilities of trapping at least 1 L. russelli in 4 regions of Cattle and	d
	Barramundi Creeks	
	Figure 6.9: Probabilities of trapping at least 1 L. russelli over 8 seasons in Cattle and	d
	Barramundi Creeks	
	Figure 6.10: Trend in the number of L. russelli caught per trap in 4 regions of Cattle and	d'
	Barramundi Creeks	
	Figure 6.11: Effect of the interaction of creeks and seasons on the number of L. russeli	i
	caught per trap in Cattle and Barramundi Creeks	
	Figure 6.12: Comparison of the fork lengths of L. russelli in regions of Cattle, Barramund	i
	Creeks and Alligator Creeks	
	Figure 6.13: Relative size-frequencies of L. russelli in four regions of Cattle and Barramund	i
	Creeks	
	Figure 6.14: The effect of the interaction of creeks and seasons on the fork length of L	
	russelli in Cattle and Barramundi Creeks	

· ·

•

1

.

.

Figure 6.15: The effect of the interaction of creeks and seasons on the fork length of L .
russelli in Cattle, Barramundi and Alligator Creeks
Figure 6.16: Relative size frequency of L. russelli in Cattle Creek over eight seasons . 100
Figure 6.17: Relative size frequency of L. russelli in Barramundi Creek over eight
seasons
Figure 6.18: Relative size frequency of L. russelli in Alligator Creek over eight
seasons
Figure 6.19. Relative size frequency of L. russelli in Cattle, Barramundi and Alligator Creeks
over two years
Figure 6.20. Periodogram of mean fork length data for L. russelli over 24 consecutive lunar
months
Figure 6.21. Cumulative periodogram of mean fork length data for L. russelli over 24
consecutive lunar months 105
Figure 6.22. Mean bottom temperatures in a) Cattle Creek, b) Barramundi Creek and c)
Alligator Creek over the course of the study 107
Figure 6.23. Mean bottom salinities in a) Cattle Creek, b) Barramundi Creek and c) Alligator
Creek over the course of the study 109
Figure 6.24. Comparison of bottom salinities at the most seaward and most landward
sampling sites in Cattle and Barramundi Creeks
Figure 6.25. The correlation between numbers of L. russelli captured in fish-traps and bottom
salinity 112
Figure 7.1: Comparison of size structures (fork length) of E. coioides and E. malabaricus
from estuaries
Figure 7.2: Differences in fork length of <i>E. malabaricus</i> over 2 years. Data are means $\pm 95\%$
confidence intervals 128
Figure 7.3: The effect of the interaction between creek and region on the fork length of E .
malabaricus in Cattle and Barramundi Creeks
Figure 7.4: Size frequency plots for the interaction between creek and region on the fork
length of <i>E. malabaricus</i> shown in figure 7.3 129

xi

- Figure 7.9: The interaction between species and region for the numbers of *E. coioides* and *E. malabaricus* in the four regions of Cattle and Barramundi Creeks 136
- Figure 7.11: The effect of the interaction between creek and region on the numbers of *Epinephelus* spp. in the four regions of Cattle and Barramundi Creeks 137
- Figure 7.12: The effect of the interaction between creek and region on the numbers of *Epinephelus* spp. in the two seaward regions of Cattle, Barramundi and Alligator Creeks
- Figure 7.13: The relationship between maximum salinity deviation [MSD] and numbers of *E. coioides* trapped per region in Cattle, Barramundi and Alligator Creeks ... 139
- Figure 7.14: The relationship between maximum salinity deviation [MSD] and numbers of *E. malabaricus* trapped per region in Cattle, Barramundi and Alligator Creeks 139

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

M. J. Sheaves

15 January 1995