ResearchOnline@JCU

This file is part of the following reference:

Lou, Dong Chun (1992) Age specific patterns of growth and reproduction in tropical herbivorous fishes. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/24115/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/24115/</u>

Age specific patterns of growth and reproduction in tropical herbivorous fishes

> Thesis submitted by Dong Chun Lou BSc Hons (Shanghai) in June 1992

for the degree of Doctor of Philosophy in the Department of Marine Biology at James Cook University of North Queensland

ABSTRACT

Research of growth and reproduction was undertaken for scarids and acanthurids in coral reefs around Lizard Island, the Northern Great Barrier Reef, Australia. The study species were mainly the scarids *Scarus rivulatus* and *Scarus schlegeli*, and the acanthurids *Ctenochaetus binotatus* and *Ctenochaetus striatus*. The study focussed on the establishment of validated aging information for both scarids and acanthurids, and the age-specific patterns of reproduction of scarids.

Age and growth parameters were determined by enumerating growth increments within otolith microstructure for each species. Various mounting and grinding/polishing techniques were employed to reveal both fine lapillus growth rings in juveniles and sagitta growth bands in adults. Daily periodicity in otolith increments was demonstrated in 55 juvenile individuals in four of the main study species: *S.rivulatus* (20), *S.schlegeli* (21), *C.binotatus* (12) and *C.striatus* (2), and 28 individuals of other species within the two families. Ring periodicity was determined by staining the otoliths *in situ* with tetracycline, and maintaining the individuals in captivity to compare the rings laid down with the number of elapsed days. Double staining techniques were also employed to determine the rings laid down between stainings.

Annual periodicity in otolith bands was demonstrated by tag-recapture experiments in the both the aquarium and the field, and by otolith marginal increment analyses for the four study species. All recaptured specimens, including four *S.schlegeli* and four *C.striatus*, showed annual otolith bands. The otolith marginal development on regular samples over the year for *S.rivulatus* and *S.schlegeli* also

i

indicated that a single otolith band was formed during December to May.

By enumerating otolith increments and bands, age of the field captured individuals of each study species was estimated. The age of scarids ranged up to 8 years with the majority being younger than 5 years. The growth rate was increasing with age in days during the juvenile phase, and gradually decreased after that. The acanthurids lived for relatively long period in excess of 16 years, and the growth rate decreased with age after settlement. In addition, the age of settlement was estimated to be from 28 to 47 days for scarids and from 47 to 74 days for acanthurids.

Reproductive biology of scarids was studied by seasonal examination of gonads. The gonads were examined histologically to determine the sexual identity and maturity state of individuals. By using validated aging information, the dynamics of sexual transition was observed.

Mature gonads of the two species were found throughout the year. However, a pronounced spawning peak occurred between May and September in *S.schlegeli* while a relatively less pronounced spawning peak took place from September to January in *S.rivulatus*. These patterns were indicated by seasonal development of gonadosomatic index, seasonal distribution of mature gonads, oocyte length, and the proportion of mature stage oocytes within the gonads. The proportion of mature stage oocytes within mature ovaries of two species also suggested that these species were serial spawners. Enumerating mature oocytes within the subsamples of 20 individuals in each species showed positive relationships between fecundity and body length or age.

Both females and primary males of the two species reached sexual maturity at 2 years. Females started to change sex at 3 years, and the sexual transition of the

ii

population lasted for approximately another 3 years. Similarly, the primary males started changing color phase at 3 years. Growth rates appeared to be different between the initial phase and the terminal phase individuals, and the terminal phase individuals had a higher growth rate than that of the initial phase individuals of the same age.

The proportional liver weight in *S.rivulatus* and *S.schlegeli* changed over time, and this reflected the compositional states. Larger livers had high levels of lipids, which fact was indicated by the colour and lipid droplets. High proportional liver weight occurred immediately before spawning for both species, suggesting that the liver is an important energy storage organ providing lipids for the gonadal development. For the two species of scarids studied in similar microhabitats and similar physical environments both showed seasonal patterns of liver weight and gonadal development, but it varied in timing and magnitude.

This study suggests that scarids, which have relatively fast growth rates and short lifespans, are more suitable candidates for intensive fisheries than the lowgrowth and long-lifespan acanthurids. However, as the population dynamics of scarids is complicated by the protogynous hermaphroditism, comprehensive management is required in scarid fisheries.

iii

ACKNOWLEDGMENTS

I am very grateful to my supervisor, Prof. Howard Choat, for his constant guidance, enthusiasm and encouragement; also for his assistance in the sample collection. I would also like to make especial mention of two persons: Dr Kendall Clements, whose constant help in the field work, making a great contribution to this project; and Dr George Jackson, who made improvement on the earlier manuscript.

I would also like to thank:

The Chinese government for providing an initial financial support; James Cook University of North Queensland for supporting my research with a James Cook University Postgraduate Scholarship Research Award, and an ARC grant to Prof. J.H. Choat and Dr. G. Russ;

the staff of the Lizard Island Research Station;

the technical staff of the School of Bioscience, James Cook University, especially Leigh Winsor and Zolly Florian;

Dr David Bellwood, Brigid Kerrigan, Mark McCormick, Alison Green, Lida Axe, Beatrice Ferreira for additional help in the field.

Mark McCormick, Natalie Moltschaniwskyj, Mark Hearnden, Orpha Bellwood, Bodle Hendrarto, Frank Hoedt, Pat Vance, and Ann Sharp for help with production, computing, sampling design and analysis;

Phil McGuire, Jim Darley and L. R. Reilly for help with experiments and photograph;

Finally, I am grateful to my wife, for her love and support throughout this study.

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

V

D.C. Lou 30 June 1992

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance which I have obtained from it."

10/7/92

(date)

Beyond this, I do not wish to place any restriction on access to this thesis.

(signature)

TABLE OF CONTENTS

Abstract	i
Acknowledgments	iv
Declaration	v
Statement of Access	vi
Table of Contents	vii
List of Figures	xiv
List of Tables	xix
List of Plates	xxiii
CHAPTER 1: GENERAL INTRODUCTION	1
CHAPTER 2: GENERAL METHODS	7
2.1 Study species	7
2.2 Study area	8
2.3 Sampling and preserving methods	9
2.4 Terminology	14
2.5 Colour phase and sexual identity of scarids	15
CHAPTER 3: VALIDATION OF AGING TECHNIQUE FOR JUVENILE ACANTHURIDS AND SCARIDS	16
3.1 INTRODUCTION	16
3.2 MATERIALS AND METHODS	18
3.2.1 Juvenile collection	18
3.2.2 Validation experiments	18
3.2.3 Otolith preparation	19
3.2.4 Otolith increment counting and its consistency test	22
3.3 RESULTS	23

3.3.1 General structures	23
3.3.2 Validation of daily otolith increments	24
3.3.3 Consistency test in increment counting	31
3.4 DISCUSSION	31
3.4.1 Daily otolith increments	34
3.4.2 Counting procedure	36
CHAPTER 4: VALIDATION OF AGING TECHNIQUE FOR ADULT ACANTHURIDS AND SCARIDS	37
4.1 INTRODUCTION	37
4.2 MATERIALS AND METHODS	38
4.2.1 Specimen collection	38
4.2.2 Analysis of otoliths	39
4.2.2.1 Whole otoliths	39
4.2.2.2 Transverse section	39
4.2.3 Validation of periodicity of otolith growth bands	41
4.2.3.1 Tagging experiment	41
4.2.3.2 Analysis of otolith marginal increments	42
4.2.4 Scale analysis	42
4.3 RESULTS	46
4.3.1 Analysis of otoliths	46
4.3.1.1 Whole sagittae	46
4.3.1.2 Transverse sections	47
4.3.2 Validation of the periodicity of band formation	64
4.3.2.1 Tagging recapture	64
4.3.2.2 Analysis of otolith marginal increments	65

.

4.3.3 Analysis of scales	75
4.3.4 Comparison of otolith and scale methods	76
4.4 DISCUSSION	76
4.4.1 Otolith aging method	76
4.4.2 Scale aging method	89
CHAPTER 5: AGE AND GROWTH IN SCARIDS AND ACANTHURIDS	92
5.1 INTRODUCTION	92
5.2 MATERIALS AND METHODS	93
5.2.1 Estimation of age and growth for juveniles	93
5.2.2 Settlement checks	94
5.2.3 Estimation of age and growth for adults	94
5.2.3.1 Growth functions and curves	95
5.2.4 Growth comparison	96
5.2.4.1 Between species	96
5.2.4.2 Between locations	97
5.3 RESULTS	98
5.3.1 Age and growth in scarids	98
5.3.1.1 SL-WT relationship	98
5.3.1.2 Juvenile growth	98
5.3.1.3 Age structure and growth in adults	99
5.3.2 Age and growth in acanthurids	110
5.3.2.1 SL-WT relationship	110
5.3.2.2 Juvenile growth	110

ix

5.3.2.3 Age structure and growth in adults	111
5.3.3 Settlement age	121
5.3.4 Comparison on growth between acanthurids and scarids	121
5.3.4.1 Juveniles	121
5.3.4.2 Adults	122
5.3.5 Growth differences between locations in Scarus rivulatus	122
5.3.5.1 Magnetic Island	122
5.3.5.2 Arlington & Thetford Reefs	128
5.3.5.3 Growth comparison	128
5.4 Discussion	131
5.4.1 Juvenile growth	131
5.4.2 Adult growth	132
5.4.3 Growth comparison	135
CHAPTER 6: REPRODUCTIVE BIOLOGY OF SCARIDS	137
6.1 INTRODUCTION	137
6.2 MATERIALS AND METHODS	138
6.2.1 Specimen collection and processing	138
6.2.2 Histological examination of gonads	138
6.2.2.1 Classification of gonads	139
6.2.2.1.1 Female and secondary male	139
6.2.2.1.2 Primary male	146
6.2.2.1.3 Distinction between $1^{\circ}\sigma^{\dagger}\sigma^{\dagger}$ and $2^{\circ}\sigma^{\dagger}\sigma^{\dagger}$	146
6.2.2.2 Pilot study on oocyte sampling	146
6.2.2.3 Ovary examination	147

. •

6.2.3 Gonadosomatic index	149
6.2.4 Fecundity	149
6.2.5 The relationship between sex and growth rate	150
6.3 RESULTS	150
6.3.1 Anatomical features of the gonads	150
6.3.2 General sexual structure	151
6.3.3 Distribution of sexual and colour patterns	151
6.3.3.1 Scarus rivulatus	154
6.3.3.2 Scarus schlegeli	155
6.3.4 Seasonal pattern of gonad activities	162
6.3.4.1 Temporal distribution of gonad development classes	162
6.3.4.1.1 Scarus rivulatus	162
6.3.4.1.2 Scarus schlegeli	163
6.3.4.2 Seasonal variation in oocyte size and relative abundance of mature stages in the gonad	164
6.3.4.2.1 Pilot sampling program	164
6.3.4.2.2 Distribution of mature oocytes and their sizes	170
6.3.4.2.2.1 Scarus rivulatus	170
6.3.4.2.2.2 Scarus schlegeli	171
6.3.4.3 Multiple spawning and fecundity	178
6.3.5 Size at age among sexes and color phases	181
6.4 DISCUSSION	182
6.4.1 Anatomical features of the gonads and sexual transformation schedule	182
6.4.2 The breeding season, multiple spawning, and fecundity	191

6.4.3 Growth among sexes and color phases	192
CHAPTER 7: LIVER AND HEPATIC LIPIDS OF TROPICAL SCARIDS	195
7.1 INTRODUCTION	195
7.2 MATERIALS AND METHODS	195
7.2.1 Liver collection	196
7.2.2 Histological examination	196
7.2.2.1 Process	196
7.2.2.2 Hepatic lipid measurement	196
7.3 RESULTS	197
7.3.1 General structure	197
7.3.2 Hepatisomatic index	201
7.3.2.1 Distribution by SL and age	201
7.3.2.2 Seasonal distribution	208
7.3.2.2.1 Scarus schlegeli	208
7.3.2.2.2 Scarus rivulatus	208
7.3.3 Hepatic lipids	209
7.3.3.1 Lipid droplets	209
7.3.3.2 The relationship between liver colour and HLI	212
7.3.3.3 Distribution of HLI	212
7.3.3.3.1 Scarus rivulatus	216
7.3.3.3.2 Scarus schlegeli	216
7.4 DISCUSSION	219
CHAPTER 8: GENERAL DISCUSSION AND CONCLUSIONS	223
8.1 GENERAL DISCUSSION	223

8.2 CONCLUS	SIONS	229
References	••••••••••••	232

,

LIST OF FIGURES

Chapter T		
Fig. 2.1	The map of Lizard Island showing all sampling sites	10
2.2	The maps of Arlington & Thetford Reefs and Magnetic Island	11
Chapter T	hree	
Fig. 3.1 R of days for	egressions of otolith increments counted against number individuals maintained after tetracycline staining	29
Chapter F	our	
Fig. 4.1	Sagitta diagrams	45
Fig. 4.2 dimensions	Ctenochaetus binotatus. Relationships between otolith and fish length (SL)	52
Fig. 4.3 dimensions	Ctenochaetus striatus. Relationships between otolith and fish length (SL)	53
Fig. 4.4 dimensions	Scarus rivulatus. Relationships between otolith and fish length (SL)	54
Fig. 4.5 S dimensions	Scarus schlegeli. Relationships between otolith and fish length (SL)	55
Fig. 4.6 I growth rate	Relationships between fish length (SL) and relative es (RG) of otolith dimensions	56
Fig. 4.7 S margins by	Scarus rivulatus. Percent of otoliths with opaque each sampling occasion	72
Fig. 4.8 S margins by	Scarus schlegeli. Percent of otoliths with opaque each sampling occasion	72
Fig. 4.9 (opaque mar	Ctenochaetus binotatus. Percent of otoliths with rgins by each sampling occasion	73
Fig. 4.10 C opaque mar	Ctenochaetus striatus. Percent of otoliths with gins by each sampling occasion	73
Fig. 4.11 F	Relationships between scale radius (SR) and fish length (SL) .	82
Fig. 4.12 S	Schematic diagram of parrotfish scale	83

Page

Chapter Five

Fig. 5.1Scarus rivulatus. The relationship between standardlength and body weight106
Fig. 5.2Scarus schlegeli.The relationship between standardlength and body weight106
Fig. 5.3 Scarus rivulatus. The growth curve of juveniles 107
Fig. 5.4 Scarus schlegeli. The growth curve of juveniles 107
Fig. 5.5 Scarus rivulatus. Means of observed SL versus age and means of back-calculated SL
Fig. 5.6Scarus schlegeli.Means of observed SL versus ageand means of back-calculated SL108
Fig. 5.7 Scarus rivulatus. The overall theoretical growth curves 109
Fig. 5.8 Scarus schlegeli. The overall theoretical growth curves 109
Fig. 5.9 Ctenochaetus striatus. The relationship between standardlength and body weight117
Fig. 5.10 Ctenochaetus binotatus. The relationship between standardlength and body weight117
Fig. 5.11 Ctenochaetus striatus. The growth curve of juveniles 118
Fig. 5.12 Ctenochaetus binotatus. The growth curve of juveniles 118
Fig. 5.13 <i>Ctenochaetus striatus</i> . Means of the observed SL versus age and means for back-calculated SL
Fig. 5.14 Ctenochaetus binotatus. Means of the observed SL versusage and means of back-calculated SL119
Fig. 5.15 Ctenochaetus striatus. The overall theoretical growth curves 120
Fig. 5.16 Ctenochaetus binotatus. The overall theoretical growth curves . 120
Fig. 5.17 The juvenile growth curves of Ctenochaetus binotatus,C.striatus, Scarus rivulatus and S.schlegeli126
Fig. 5.18 Otolith increment width series from ten juveniles 127
Fig. 5.19 von Bertalanffy growth curves for Ctenochaetus binotatus, C.striatus, Scarus rivulatus and S.schlegeli

Chapter Six

Fig. 6.1 Summary of the pilot study on oocyte measurements	148
Fig. 6.2 The schematic diagrams showing morphological change of testes in $1^{\circ}\sigma^{*}\sigma^{*}$ and $2^{\circ}\sigma^{*}\sigma^{*}$ with age	153
Fig. 6.3 Proportions of each sexual type in successive 20 mm SL groupings of <i>Scarus rivulatus</i> from Lizard Island	160
Fig. 6.4 Proportions of each sexual types in each age group of <i>Scarus rivulatus</i> from Lizard Island	160
Fig. 6.5 Proportions of each sexual type in successive 20 mm SL groupings of <i>Scarus schlegeli</i> from Lizard Island	161
Fig. 6.6 Proportions of each sexual type in each age group of <i>Scarus schlegeli</i> from Lizard Island	161
Fig. 6.7 Number of individuals of <i>Scarus rivulatus</i> in each ovary development class	165
Fig. 6.8 Distribution of average mature ovary indices (GSI) from <i>Scarus rivulatus</i>	165
Fig. 6.9 Number of individuals of <i>Scarus rivulatus</i> in each testes development class	166
Fig. 6.10 Average mature testes indices (GSI) from IP male <i>Scarus rivulatus</i>	166
Fig. 6.11 Number of individuals of <i>Scarus schlegeli</i> in each ovary development class	167
Fig. 6.12 Average mature ovary indices (GSI) from Scarus schlegeli	167
Fig. 6.13 Number of individuals of <i>Scarus schlegeli</i> in each testes development class	168
Fig. 6.14 Average mature testes indices (GSI) from IP male Scarus schlegeli	168
Fig. 6.15 Distribution of the different stage oocytes from testing specimens of <i>Scarus schlegeli</i>	174

,

Fig. 6.16 Distribution of the different stage oocytes from the testing specimens of <i>Scarus rivulatus</i>	175
Fig. 6.17 Average proportion of stage 4 and 3 oocytes for mature females of <i>Scarus rivulatus</i>	176
Fig. 6.18 Average oocyte length for mature females of Scarus rivulatus .	176
Fig. 6.19 Average proportion of stage 4 and 3 oocytes for mature females of <i>Scarus schlegeli</i>	1 77
Fig. 6.20 Average oocyte length for mature females of Scarus schlegeli .	177
Fig. 6.21 Distribution of the total number of vitellogenic oocytes by SL of <i>Scarus rivulatus</i>	179
Fig. 6.22 Distribution of the total number of vitellogenic oocytes by age of <i>Scarus rivulatus</i>	179
Fig. 6.23 Distribution of the total number of vitellogenic oocytes by SL of Scarus schlegeli	180
Fig. 6.24 Distribution of the total number of vitellogenic oocytes by age of <i>Scarus schlegeli</i>	180
Fig. 6.25 Mean lengths for successive age groups of females, IP 1° or or, TP 1° or or and 2° or of Scarus rivulatus	187
Fig. 6.26 Mean lengths for successive age groups of females, IP 1° or or, TP 1° or or and 2° or or of Scarus schlegeli	188
Chapter Seven	
Fig. 7.1 A schematic diagram of histological liver sections	198
Fig. 7.2 <i>Scarus rivulatus</i> . The distribution of hepatosomatic index (HSI) by SL in different sexual types and color phases	206
Fig. 7.3 Scarus rivulatus. HSI distribution by age classes in different sexual types and color phases	206
Fig. 7.4 <i>Scarus schlegeli</i> . HSI distribution by SL in different sexual types and color phases	207
Fig. 7.5 Scarus schlegeli. HSI distribution by age class in different sexual types and color phases	207

Fig. 7.6 Average HSI from Scarus schlegeli	210
Fig. 7.7 Average HSI from Scarus rivulatus	210
Fig. 7.8 Distribution of hepatic lipid droplets in four measuring areas (DO, VE, PR and CE) in 276 Scarus rivulatus	215
Fig. 7.9 Distribution of hepatic lipid droplets in four measuring areas (DO, VE, PR and CE) in 289 Scarus schlegeli	215
Fig. 7.10 An overall distribution of hepatic lipid index (HLI) by HSI for <i>Scarus rivulatus</i>	217
Fig. 7.11 An overall distribution of hepatic lipid index (HLI) by HSI for <i>Scarus schlegeli</i>	217
Fig. 7.12 Seasonal distributions of hepatic lipid index (HLI) for female, male and immature <i>Scarus rivulatus</i>	218
Fig. 7.13 Seasonal distributions of hepatic lipid index (HLI) for female, male and immature <i>Scarus schlegeli</i>	218

LIST OF TABLES

Page

Chapter Two

Table 2.1 Summary of samples from various sites around Lizard Island .	12
Table 2.2 Scarus rivulatus collected from the other sites	13
Chapter Three	
Table 3.1 The details of validation experiments at Lizard Island	20
Table 3.2 Results of Chi-square tests of the validation experiments at Lizard Island	28
Table 3.3 Results of ring counts between left and right otoliths	32
Table 3.4 Results of otolith ring counts between readers	33

Chapter Four

Table 4.1 Details of sampling for the otolith marginal analysis in surgeonfishes	43
Table 4.2 Details of sampling for the otolith marginal analysis in parrotfishes	44
Table 4.3 Ctenochaetus striatus. Comparison between otolith dimensions and fish length (SL)	48
Table 4.4 Ctenochaetus binotatus. Comparison between otolith dimensions and fish length (SL)	49
Table 4.5 Scarus rivulatus. Comparison between otolith dimensions and fish length (SL)	50
Table 4.6 Scarus schlegeli. Comparison between otolith dimensions and fish length (SL)	51
Table 4.7 Comparison of two counts on otolith bands from surgeonfishes	66
Table 4.8 Comparison of two counts of the otolith bands from parrotfishes	67
Table 4.9 Results of otolith band counting between two readers in Scarus rivulatus	68

Table 4.10 Results of otolith band counting between

Table 4.11 Results of tag-recapture experiments70Table 4.12 The results of counts on the fine increments71Table 4.13 Scarus rivulatus. The age composition of samples71Table 4.13 Scarus schlegeli77Table 4.14 Scarus schlegeli. The age composition of samples77Table 4.15 Comparison between scale radius (SR) and fish length (SL)79Table 4.16 Scarus rivulatus. Comparison of age estimates80Table 4.17 Scarus schlegeli. Comparison of age estimates81Table 4.18 Otolith annual bands of the other tetracycline mark-recapture parrotfishes from the Great Barrier Reef (GBR)91	two readers in Scarus schlegeli	69
Table 4.12 The results of counts on the fine increments in otoliths of tag-recaptured Scarus schlegeli71Table 4.13 Scarus rivulatus. The age composition of samples used in the otolith marginal analysis77Table 4.14 Scarus schlegeli. The age composition of samples used in the otolith marginal analysis78Table 4.15 Comparison between scale radius (SR) and fish length (SL)79Table 4.16 Scarus rivulatus. Comparison of age estimates from otoliths and scales80Table 4.17 Scarus schlegeli. Comparison of age estimates from otoliths and scales81Table 4.18 Otolith annual bands of the other tetracycline mark-recapture parrotfishes from the Great Barrier Reef (GBR)91	Table 4.11 Results of tag-recapture experiments	70
Table 4.13 Scarus rivulatus. The age composition of samples used in the otolith marginal analysis77Table 4.14 Scarus schlegeli. The age composition of samples used in the otolith marginal analysis78Table 4.15 Comparison between scale radius (SR) and fish length (SL)79Table 4.16 Scarus rivulatus. Comparison of age estimates from otoliths and scales80Table 4.17 Scarus schlegeli. Comparison of age estimates from otoliths and scales81Table 4.18 Otolith annual bands of the other tetracycline mark-recapture parrotfishes from the Great Barrier Reef (GBR)91	Table 4.12 The results of counts on the fine increments in otoliths of tag-recaptured Scarus schlegeli	71
Table 4.14 Scarus schlegeli. The age composition of samples used in the otolith marginal analysis	Table 4.13 Scarus rivulatus. The age composition of samples used in the otolith marginal analysis	77
Table 4.15 Comparison between scale radius (SR) and fish length (SL)79Table 4.16 Scarus rivulatus. Comparison of age estimates from otoliths and scales80Table 4.17 Scarus schlegeli. Comparison of age estimates from otoliths and scales81Table 4.18 Otolith annual bands of the other tetracycline mark-recapture parrotfishes from the Great Barrier Reef (GBR)91	Table 4.14 Scarus schlegeli. The age composition of samples used in the otolith marginal analysis	78
Table 4.16 Scarus rivulatus. Comparison of age estimates from otoliths and scales80Table 4.17 Scarus schlegeli. Comparison of age estimates from otoliths and scales81Table 4.18 Otolith annual bands of the other tetracycline mark-recapture parrotfishes from the Great Barrier Reef (GBR)91	Table 4.15 Comparison between scale radius (SR) and fish length (SL) .	79
Table 4.17 Scarus schlegeli. Comparison of age estimatesfrom otoliths and scales81Table 4.18 Otolith annual bands of the other tetracyclinemark-recapture parrotfishes from the Great Barrier Reef (GBR)91	Table 4.16 Scarus rivulatus. Comparison of age estimates from otoliths and scales	80
Table 4.18 Otolith annual bands of the other tetracyclinemark-recapture parrotfishes from the Great Barrier Reef (GBR)91	Table 4.17 Scarus schlegeli. Comparison of age estimates from otoliths and scales	81
	Table 4.18 Otolith annual bands of the other tetracyclinemark-recapture parrotfishes from the Great Barrier Reef (GBR)	91

Chapter Five

Table 5.1 Length-weight relationships for Scarus rivulatusand S.schlegeli between males (M) and females (F)	101
Table 5.2. Scarus rivulatus. Comparison between the mean of observed SL and the predicted SL	102
Table 5.3 Scarus schlegeli. Comparison between the mean of observed SL and the predicted SL	103
Table 5.4 Scarus rivulatus. Back-calculated lengths for each age group .	104
Table 5.5 Scarus schlegeli. Back-calculated length (mm) for each age group	105
Table 5.6 Ctenochaetus striatus. Comparison between the mean of observed SL and the predicated SL	113
Table 5.7 Ctenochaetus binotatus. Comparison between the mean of observed SL and the predicted SL	114

Table 5.8 Ctenochaetus striatus. Back-calculated length

for each age group	115
Table 5.9 Ctenochaetus binotatus. Back-calculated lengths for each age group	116
Table 5.10 Summary of settlement patterns for the species studied	123
Table 5.11 Growth performance indexes (\emptyset) of the species studied \ldots	124
Table 5.12 Mean SL of Scarus rivulatusfrom different parts of the GBR	129
Chapter Six	
Table 6.1 Stages of scarids' oogenesis	141
Table 6.2 Stages of scarids' spermatogenesis	141
Table 6.3 Frequency of sexual types, color phase ineach 20-mm size class for Scarus rivulatus	156
Table 6.4 Frequency of sexual types and color phase ineach age group of Scarus rivulatus	157
Table 6.5 Frequency of sexual types and color phase ineach 20-mm size class for Scarus schlegeli	158
Table 6.6 Frequency of sexual types and color phase in each age group of Scarus schlegeli	159
Table 6.7 Results of ANOVA on the data of oocyte length for Scarus schlegeli in the pilot study	172
Table 6.8 Results of ANOVA on the data of oocyte length for Scarus rivulatus in the pilot study	173
Table 6.9 Mean SL \pm s.d. (sample size) of <i>Scarus rivulatus</i>	183
Table 6.10 Mean SL \pm s.d. (sample size) of <i>Scarus schlegeli</i>	184
Table 6.11 Means of gonad weight (g) \pm s.d. (sample size) of <i>Scarus rivulatus</i>	185
Table 6.12 Means of gonad weights (g) \pm s.d.(Sample size) of Scarus schlegeli	186

Chapter Seven

Table 7.1 Means \pm s.d. of HSI between sexual types, color phases in each 20-mm size class for <i>Scarus rivulatus</i>	202
Table 7.2 Means \pm s.d. of HSI between sexual types, color phases in each age class for <i>Scarus rivulatus</i>	203
Table 7.3 Means \pm s.d. of HSI between sexual types, color phases in each 20-mm size class for <i>Scarus schlegeli</i>	204
Table 7.4 Means \pm s.d. of HSI between sexual types, color phases in each age class for <i>Scarus schlegeli</i>	205
Table 7.5 Relationship between liver colour and hepaticlipids in Scarus schlegeli	213
Table 7.6 Relationship between liver colour and hepatic lipids in Scarus rivulatus	214

LIST OF PLATES

Chapter Three

Plate 3.1 Microstructure of lanilli of the invenile	
surgeonfish and parrotfish	25
Plate 3.2 Validated daily increments on the lapilli of surgeonfishes	26
Plate 3.3 Validated daily increments on the lapilli of parrotfishes	30
Chapter Four	
Plate 4.1 <i>Ctenochaetus binotatus</i> . Otolith transverse sections with the various number of bands	57
Plate 4.2 <i>Ctenochaetus striatus</i> . Otolith transverse sections with the various number of bands	58
Plate 4.3 <i>Scarus rivulatus</i> . Otolith transverse sections with the various number of bands	59
Plate 4.3 Cont	60
Plate 4.4 <i>Scarus schlegeli</i> . Otolith transverse sections with the various number of bands	61
Plate 4.4 Cont.	62
Plate 4.5 Otolith transverse sections of tag-recapture specimens from both field and the aquarium	74
Plate 4.6 Parrotfish scales	84
Chapter Five	
Plate 5.1 Settlement checks (SC) on the lapillus	125
Chapter Six	
Plate 6.1 Scarus rivulatus. Photomicrographs of ovary development classes 1 through 4	142
Plate 6.2 <i>Scarus schlegeli</i> . Photomicrographs of ovary development classes 1 through 4	143
Plate 6.3 Photomicrographs of gonad development for male <i>Scarus rivulatus</i> and <i>S.schlegeli</i>	144

Plate 6.4 The gonads of transitional and 1° or individuals	145
Plate 6.5 The testes of 2° d'd' individuals	152
Chapter Seven	
Plate 7.1 General structure of a transverse section of scarid liver from 230 mm <i>Scarus schlegeli</i>	200
Plate 7.2 Comparison between the normal histological liver sections and the liver-extracted sections in the scarids	211

,

xxiv