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The flow behaviour associated with the cooling of an initially quiescent isothermal
Newtonian fluid with Prandtl number Pr less than unity in a rectangular container by
unsteady natural convection with an imposed lower temperature on vertical sidewalls
is investigated by scaling analysis and direct numerical simulation. The flow is
dominated by two distinct stages of development, i.e. the boundary-layer development
stage adjacent to the sidewall and the subsequent cooling-down stage. The first stage
can be further divided into a start-up stage, transitional stage, and steady-state stage.
The parameters characterizing the flow behaviour are the boundary-layer thickness,
the maximum vertical velocity within the boundary layer, the time for the boundary
layer to reach the steady state, the Nusselt number across the sidewall at the boundary-
layer development stage, the time for the fluid in the container to be fully cooled
down, and the average fluid temperature over the whole volume of the container.

1. Introduction
The cooling or heating a body of fluid in an enclosure via natural convection

with an imposed temperature difference or heat flux on the enclosure boundary is
widely encountered in nature and in engineering settings, and the understanding
of the transient flow behaviour of such a body of fluid is of fundamental interest
and practical importance. In the past decades extensive experimental, numerical,
and analytical studies have been conducted on this issue, although mainly on the
more specific case of a rectangular cavity with differentially heated sidewalls; see for
example the studies reviewed by Catton (1978), Ostrach (1982), Gebhart et al. (1988),
and Hyun (1994) and those regularly summarized in the annual literature reviews on
heat transfer (for example Goldstein et al. 2003).

Patterson & Imberger (1980) carried out an investigation of the transient behaviour
that occurs when the opposing two vertical sidewalls of a two-dimensional rectangular
cavity are impulsively heated and cooled by an equal amount. They devised a
classification of the flow development through several transient flow regimes to one of
three steady-state types of flow based on the relative values of the Rayleigh number
Ra, the Prandtl number Pr, and the aspect ratio A of the cavity. Hyun (1984, 1985)
carried out a numerical study which elucidated the flow and temperature structures
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of, and the effect of Pr on, the heat-up process of an initially homogeneous fluid in a
cylinder with a linearly heated sidewall using a finite-difference model. Patterson (1984)
investigated the transient natural convection in a cavity driven by internal buoyancy
sources and sinks distributed linearly in the horizontal and uniformly in the vertical
direction using a scaling analysis and found that there are a number of possible
transient flow regimes. Nicolette & Yang (1985) made a numerical and experimental
investigation into the two-dimensional transient natural convection of single-phase
fluids inside a completely filled square enclosure with one vertical wall cooled and
the other three walls insulated. Otis & Roessler (1987) conducted an experimental
investigation into the development of stratification in a gas in a cylindrical enclosure,
provided experimental support for the existence of internal waves, and revealed
several time constants that characterize the process. Schladow, Patterson & Street
(1989) conducted a series of two- and three-dimensional numerical simulations of
transient flow in a side-heated cavity and their simulations generally agree with
the results of the scaling arguments of Patterson & Imberger (1980). Patterson &
Armfield (1990) conducted detailed experimental and numerical investigations into
the presence of travelling-wave instabilities in the vertical-wall boundary layers and
horizontal intrusions, revealing the existence of a rapid flow divergence in the region
of the outflow of the intrusions and the presence of cavity-scale oscillations caused
by the interaction of the intrusion with the opposing vertical boundary layer. Kwak,
Kuwahara & Hyun (1998) conducted a numerical study on the transient natural
convective cool-down process of a fluid in a cylindrical container, with emphasis on
the flow patterns when the maximum-density temperature is reached.

More recently, Lin (2000) and Lin & Armfield (1999, 2001, 2004) investigated
the transient processes in the cooling of an initially homogeneous fluid by natural
convection in a vertical circular cylinder and in a rectangular container. The results
show that vigorous flow activities are concentrated mainly in the vertical thermal
boundary layer along the sidewall and in the horizontal region comprising the
lower part of the domain where the cold intrusion flow is created. The transient
flow patterns at the unsteady and quasi-steady stages were analysed, including the
activities of the travelling waves in the vertical thermal boundary layer along the
sidewall, the cold intrusion movements in the horizontal region, the stratification
of the fluid, and the long-term behaviour beyond full stratification. Various scaling
relations characterizing the flow evolution at these distinct development stages were
developed by scaling analysis; these were then verified and quantified by extensive
direct numerical simulations under different flow situations in terms of Ra, Pr, and A.

The majority of the past studies have focused on fluids with Pr � 1. Studies of
natural convection flows with Pr < 1 resulting from the heating or cooling of vertical
boundaries, especially those in which the long-term behaviour and the effect of Pr
variation are examined, have been few. The scarcity of studies on small-Pr fluid flows
can be illustrated, as an example, by the seemingly contradictory statements made in
the books of Incropera & DeWitt (1996, p. 319), Tritton (1995, p. 170), and Gebhart
et al. (1988, p. 53). It is stated in the first two books that the viscous boundary layer
should be much thinner than the thermal boundary layer when Pr � 1 whereas in
the third book it is argued that both boundary layers should have approximately the
same thickness for Pr < 1, and even for Pr as small as 0.01. This scarcity, together
with the apparently incomplete understanding of Pr � 1 flows, motivates the current
study, in which flows with Prandtl numbers in the range 0.01 � Pr � 0.5 are examined.
This includes the important cases of gases (Pr ≈ 0.5) and liquid metals (Pr ≈ 0.01). In
addition to obtaining the behaviour of flows at specific Prandtl numbers, examining
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Figure 1. (a) The physical system considered and (b) the appropriate computational domain
used for the subsequent numerical simulations. In (a), T0 is the temperature of the fluid at
t =0.

and comparing the results for a range of Prandtl numbers will elucidate the governing
physics associated with Prandtl-number variation in flows of this type.

In this study, the cooling of an initially quiescent isothermal Newtonian fluid with
Pr < 1 in a two-dimensional rectangular container by unsteady natural convection
with an imposed lower temperature at the vertical sidewalls is investigated by scaling
analysis and direct numerical simulation. The scaling analysis is carried out in § 2 in
order to develop scaling relations for the parameters characterizing the flow behaviour
at different stages of flow development. These scaling relations are then validated and
quantified in § 3 by a series of direct numerical simulations with selected values of
A, Ra, and Pr in the ranges 1/3 � A � 3, 106 � Ra � 1010, and 0.01 � Pr � 0.5. Finally,
our conclusions are summarized in § 4.

2. Scaling analysis
Under consideration is the flow behaviour resulting from the cooling of a quiescent

isothermal Newtonian fluid with Pr < 1 in a two-dimensional rectangular container
by unsteady natural convection due to an imposed fixed lower temperature on the
vertical sidewalls. The physical system considered in this study and the appropriate
computational domain used for the numerical simulations are schematically depicted
in figure 1. The container has height H and half-width W . It is assumed that the fluid
cools as a result of the imposed fixed temperature Tw on the vertical sidewalls, that
all the remaining boundaries are adiabatic, that all boundaries including the sidewalls
are non-slip, and that the fluid in the container is initially at rest and at a uniform
temperature T0 (T0 >Tw). It is also assumed that the flows are laminar and that
symmetry allows one-half of the physical domain to be chosen as the computational
domain, as shown in figure 1(b).

The governing equations of motion are the Navier–Stokes equations with the
Boussinesq approximation for buoyancy, which together with the temperature
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transport equation can be written in the following two-dimensional form:

∂U

∂X
+

∂V

∂Y
= 0, (2.1)

∂U

∂t
+

∂(UU )

∂X
+

∂(V U )

∂Y
= − 1

ρ

∂P

∂X
+ ν

(
∂2U

∂X2
+

∂2U

∂Y 2

)
, (2.2)

∂V

∂t
+

∂(UV )

∂X
+

∂(V V )

∂Y
= − 1

ρ

∂P

∂Y
+ ν

(
∂2V

∂X2
+

∂2V

∂Y 2

)
− gβ(T − T0), (2.3)

∂T

∂t
+

∂(UT )

∂X
+

∂(V T )

∂Y
= κ

(
∂2T

∂X2
+

∂2T

∂Y 2

)
. (2.4)

Here U and V are the horizontal (X-direction) and vertical (Y -direction) velocity com-
ponents, t is the time, P is the pressure, T is the temperature, g is the acceleration due
to gravity, and β , ν, and κ are the thermal expansion coefficient, kinematic viscosity,
and thermal diffusivity of the fluid, respectively. Gravity acts in the Y -direction.

It is found from the numerical simulations that the flow considered here is
dominated by two distinct stages of development, i.e. a boundary-layer development
stage and a cooling-down stage. The typical flow development is illustrated in figure 2,
where numerically simulated temperature contours in half the container are shown
for the two stages for the specific case of Ra =108, A= 1 and Pr= 0.1, where Ra, Pr,
and A are defined as follows:

Ra =
gβ(T0 − Tw)H 3

νκ
, Pr =

ν

κ
, A =

H

W
.

In this case the boundary-layer development is seen in the temperature contours
adjacent to the right-hand cooled wall; the boundary-layer development is complete
by around τ = 10, where τ is the time made dimensionless by H/V0. Here V0 is the
characteristic velocity, which will be defined in (3.5) below. The cooled fluid ejected by
the boundary layer acts to fill and stratify the domain from τ =35 to 125, the average
temperature gradually reducing in the subsequent cooling-down stage of the flow, at
τ > 225. In this section, scaling relations will be developed for the relevant parameters
characterizing the flow behaviour at these respective stages of flow development.

2.1. Boundary-layer development stage

With the initiation of the flow, a vertical boundary layer is developed adjacent to
the cooled sidewall. It will experience a start-up stage dominated by one-dimensional
conduction, followed by a short transitional stage at which the one-dimensional
conduction transits to a two-dimensional convection, and finally a steady-state stage.
The parameters characterizing the flow behaviour at the boundary layer’s development
stage are predominantly the thermal boundary-layer thickness ∆T , the maximum
vertical velocity Vm within the boundary layer, the time ts,Y for the boundary
layer at location Y to reach the steady state, the local Nusselt number NuY , and
the global Nusselt number Nu along the whole sidewall, as illustrated in figure 3,
where typical numerically simulated time series for δT = ∆T /H , vm =Vm/V0, the local
Nusselt number Nuy at height y = 0.5, and the global Nusselt number Nu along the
whole sidewall are presented. The thermal boundary-layer thickness ∆T is defined as
the horizontal distance between the sidewall and the location where the fluid
temperature reaches 0.01(Tw − T0). The time τs,y for the boundary-layer development
to reach the steady state, which is made dimensionless by H/V0, is determined by the
moment when ∆T ceases to change with time: the criterion for the determination of
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Figure 2. Numerically simulated temperature contours at the boundary-layer development
stage (top row) and at the cooling-down stage (middle and bottom rows), for Ra = 108, A = 1,
and Pr = 0.1; τ is made dimensionless by H/V0.

τs,y used in the numerical simulations was that the difference between ∆T (τs,y) and
its value at the previous time step had dropped to 0.01 %.

Scalings for these quantities may be developed as follows. Heat is initially
transferred out through the vertical wall from the fluid by pure conduction
immediately after the initiation of the flow, resulting in a one-dimensional vertical
thermal boundary layer adjacent to the wall. Consider first the temperature equ-
ation (2.4). The unsteady term is O(	T/t), where t is the time scale and 	T = Tw −T0.
The convective terms are O(V 	T/H ) and the conduction terms are O(	T/∆2

T ), where
∆T is the horizontal length scale for the thermal boundary layer.

Compare the magnitudes of the first and third terms on the left-hand side of (2.4):

unsteady term

convection term
∼ 	T/t

V 	T/H
∼ H

V t
. (2.5)
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Figure 3. The three distinct substages in the boundary-layer development stage, seen in the
numerically simulated typical time series of (a) the local thermal boundary-layer thickness
δT = ∆T /H at height Y = 0.5H ; (b) the local maximum vertical velocity vm = Vm/V0 at
Y = 0.5H ; (c) the local Nusselt number Nuy at Y = 0.5H ; and (d) the global Nusselt number
Nu along the vertical sidewall, for the specific case Ra = 108, Pr =0.1, and A = 1; τ is made
dimensionless by H/V0.

We can always find a time t small enough that H/(V t) � 1, so that the appropriate
balance becomes

∂T

∂t
∼ κ

∂2T

∂X2
, (2.6)

giving

	T

t
∼ κ

	T

∆2
T

(2.7)

or

∆T ∼ κ1/2t1/2. (2.8)

This is valid until the convective term becomes important or the steady state is
reached.

Now consider the vertical momentum equation (2.3). The unsteady term is
O(V/t), the advection terms are O(V 2/H ), the viscous terms are O(νV/∆2

T ), and
the forcing term is O(gβ	T ). The ratio of the unsteady and advection terms
is (V/t)/(V 2/H ) ∼ H/(V t) and the ratio of the unsteady and viscous terms is
(V/t)/(νV/∆2

T ) ∼ ∆2
T /(νt) ∼ 1/Pr. We can always find a t small enough that the

unsteady term is larger than the advection term, and the other ratio depends on the
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value of Pr. For Pr � 1 the viscous term is much larger than the unsteady term,
and the correct balance is between the viscous term and the buoyancy term gβ	T

(Patterson & Imberger 1980). For Pr � 1 the unsteady term is much larger than the
viscous term, and the correct balance is between the unsteady and buoyancy terms. If
Pr ∼ O(1) then the unsteady and viscous terms are of the same order and both need
to be included in a balance with the buoyancy term.

The unsteady term is O(V/t) and the viscous term is O(PrV/t), so these two terms
together are O((1+Pr)V/t) and now the balance in the vertical momentum equation
is

(1 + Pr)
V

t
∼ gβ	T, (2.9)

giving

Vm ∼ gβ	T t

1 + Pr
. (2.10)

Now consider the time taken to get to the steady state. The approach is to find the
time when convection is important, i.e. when

Vm

∂T

∂y
∼ ∂T

∂t
, (2.11)

so that at location Y we have

Vm

	T

Y
∼ 	T

ts,Y
, (2.12)

or

Vmts,Y ∼ Y. (2.13)

From (2.10), this gives

gβ	T ts,Y

1 + Pr
ts,Y ∼ Y, (2.14)

so that

ts,Y ∼ Y 1/2(1 + Pr)1/2

(gβ	T )1/2
, (2.15)

i.e.

ts,Y ∼ Y 1/2H 3/2(1 + Pr)1/2

Ra1/2Pr1/2κ
. (2.16)

The result for Y ∼ H , i.e. the final steady state for the boundary layer, is obtained by
putting Y ∼ H in (2.16), to get

ts,H ∼ H 2(1 + Pr)1/2

Ra1/2Pr1/2κ
. (2.17)

So, the steady state in the boundary layer occurs at ts,H . At that time the thermal
boundary layer at height Y is, from (2.8), given by

∆T,Y ∼ κ1/2t
1/2
s,Y ∼ H 3/4Y 1/4(1 + Pr)1/4

Ra1/4Pr1/4
, (2.18)

and at the steady state for the whole boundary layer, i.e. when Y ∼ H , we have

∆T,H ∼ H

Ra1/4

(
1 + Pr

P r

)1/4

. (2.19)
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As the upper limit of ∆T,H is W , this requires

H

Ra1/4

(
1 +

1

Pr

)1/4

< W, (2.20)

which in turn requires

Pr >

(
Ra

A4
− 1

)−1

. (2.21)

This is the lower limit of Pr that will guarantee the validity of the scaling relations
obtained in this scaling analysis. As all these scaling relations are obtained under the
assumption Pr< O(1), the upper limit of Pr is then O(1), leading to the requirement
that Ra >A4.

The steady vertical velocity at distance Y is, using ts,Y from (2.13),

Vm,Y ∼ Y

ts,Y
∼ Y 1/2Ra1/2κ

H 3/2

(
Pr

1 + Pr

)1/2

. (2.22)

Again the whole boundary layer is steady when Y ∼ H and

Vm,H ∼ κRa1/2

H

(
Pr

1 + Pr

)1/2

. (2.23)

A scaling for the viscous boundary-layer thickness may be developed in a manner
analogous to that of ∆T,Y . From (2.3), ∆v ∼ (νt)1/2 and from (2.8) it is found that

∆vi,Y = Pr1/2∆T,Y , (2.24)

indicating that for Pr< 1 the region over which there is a balance between the vertical
acceleration and viscous diffusion of momentum, i.e. the near-wall region, is smaller
than the corresponding thermal-conduction region; the subscript i denotes this inner
region. The vertical velocity boundary layer therefore comprises two regions, a near-
wall region governed by the wall conditions (2.24) and an outer region in which the
flow is governed by a balance between vertical acceleration and buoyancy determined
by the extent of the thermal boundary layer, i.e.

∆vo,Y ≈ ∆T,Y . (2.25)

The inner boundary-layer width ∆vi is the region selected by Incropera & DeWitt
(1996, p. 319) and Tritton (1995, p. 170) to represent the velocity boundary-layer
width, while the outer boundary-layer width ∆vo is the region selected by Gebhart
et al. (1988, p. 53) to represent the velocity boundary-layer width.

The instantaneous local Nusselt number at distance Y on the wall during the
boundary-layer development stage is

NuY ∼ (∂T /∂X)X=0

	T /W
∼ W

	T

	T

∆T

∼ W

κ1/2t1/2
. (2.26)

At steady state, from (2.16) the local Nusselt number becomes

Nus,Y ∼ WRa1/4

H 3/4Y 1/4

Pr1/4

(1 + Pr)1/4
. (2.27)

The average steady-state Nu for the whole boundary layer is given by

Nus ∼ 1

H

∫ H

0

Nus,Y dY ∼ W

H
Ra1/4

(
Pr

1 + Pr

)1/4

. (2.28)
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2.2. Cooling-down stage

Once the boundary layer is fully developed, the fluid in the container is gradually
stratified by the cooled fluid ejected from the boundary layer, starting from the
bottom of the container, and this cooling-down stage continues until the whole body
of fluid has the same temperature as that imposed on the sidewalls. The appropriate
parameters to characterize this cooling-down stage are the time tf for the fluid to be
fully cooled down, the average fluid temperature Ta(t) over the whole volume of the
container per unit length at time t , and the average Nusselt number at the cooling
wall.

Let us consider any specific moment t during the cooling-down stage. At that
moment, the fluid inside the container can be assumed to consist of two layers with
the location Y = Yi as the interface. The top layer has the original temperature,
T0, whereas the bottom layer has the wall temperature Tw . Mass conservation then
requires

W
d(H − Yi)

dt
∼ Vm,Yi

∆T,Yi
, (2.29)

which, with (2.18) and (2.22), gives

dYi

Y
3/4
i

∼ −κRa1/4

WH 3/4

(
Pr

1 + Pr

)1/4

dt. (2.30)

Using the facts that Yi = H when t = 0 and Yi = 0 when t = tf , the solution to the
above equation is

Yi ∼ κ4Ra

W 4H 3

(
Pr

1 + Pr

)
(tf − t)4, (2.31)

which gives

tf ∼ HW

κRa1/4

(
1 + Pr

P r

)1/4

. (2.32)

The average fluid temperature Ta(t) is given by

Ta(t) =
(H − Yi)Tw + YiT0

H
= Tw + (T0 − Tw)

Yi

H

= Tw + (T0 − Tw)Cf

κ4Ra

W 4H 3

(
Pr

1 + Pr

)
(tf − t)4, (2.33)

where Cf is a constant of proportionality which will be determined below from the
numerical results.

It is apparent from (2.28) that the instantaneous global Nusselt number Nu at the
cooling-down stage is

Nu ∼
(

Yi

H

)
Nus,Yi

, (2.34)

which, from (2.27) and (2.31), gives

Nu ∼ κ3Ra

AW 3H 3

(
Pr

1 + Pr

)
(tf − t)3. (2.35)

3. Numerical results
In this section, the scaling relations obtained above will be validated and quantified

by a series of direct numerical simulations with selected values of A, Ra, and Pr in
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Run no. A Ra Pr

1 1 106 0.1
2 1 107 0.1
3 1 108 0.1
4 1 109 0.1
5 1 1010 0.1
6 1 108 0.01
7 1 108 0.05
8 1 108 0.5
9 1/3 108 0.1

10 1/2 108 0.1
11 2 108 0.1
12 3 108 0.1

Table 1. Values of A, Ra, and Pr for the 12 DNS runs.

the ranges 1/3 � A � 3, 106 � Ra � 1010, and 0.01 � Pr � 0.5. A total of 12 DNS runs
were carried out for this purpose, as shown in table 1. Specifically, runs 1–5 with
Ra = 106, 107, 108, 109, and 1010, keeping A= 1 and Pr = 0.1, were carried out to show
the dependence of the scaling relations on Ra; runs 6, 7, 3, and 8 with, respectively,
Pr= 0.01, 0.05, 0.1, and 0.5, keeping Ra =108 and A= 1, were carried out to show the
dependence on Pr; and runs 9, 10, 3, 11 and 12 with, respectively, A= 1/3, 1/2, 1, 2,
and 3, keeping Ra =108 and Pr= 0.1, were carried out to show the dependence on A.

3.1. Governing equations, initial and boundary conditions, and scaling relations
in dimensionless form

The governing equations (2.2)–(2.4) can be expressed in the following dimensionless
forms:

∂u

∂x
+

∂v

∂y
= 0, (3.1)

∂u

∂τ
+

∂(uu)

∂x
+

∂(vu)

∂y
= −∂p

∂x
+

Pr

Ra1/2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (3.2)

∂v

∂τ
+

∂(uv)

∂x
+

∂(vv)

∂y
= −∂p

∂y
+

Pr

Ra1/2

(
∂2v

∂x2
+

∂2v

∂y2

)
− Prθ, (3.3)

∂θ

∂τ
+

∂(uθ)

∂x
+

∂(vθ)

∂y
=

1

Ra1/2

(
∂2θ

∂x2
+

∂2θ

∂y2

)
, (3.4)

Here x, y, u, v, τ , p, and θ are respectively the dimensionless forms of X, Y , U , V , t ,
P , and T :

x =
X

H
, y =

Y

H
, u =

U

V0

, v =
V

V0

, τ =
t

(H/V0)
, p =

P

ρV 2
0

, θ =
T − T0

T0 − Tw

with V0, H , H/V0, ρV 2
0 respectively the characteristic velocity, length, time, and

pressure scales. From (2.23), it is natural to choose

V0 = κRa1/2/H (3.5)

as the appropriate characteristic velocity scale.
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The appropriate initial and boundary conditions are

u = v = 0, θ = 0 at all x, y for τ < 0;

u = 0,
∂v

∂x
= 0,

∂θ

∂x
= 0 at x = 0, 0 � y � 1;

u = v = 0, θ = −1 at x = A−1, 0 � y � 1;

u = v = 0,
∂θ

∂y
= 0 at 0 � x � A−1, y = 0;

u = v = 0,
∂θ

∂y
= 0 at 0 � x � A−1, y = 1, for τ � 0.

The scaling relations given in § 2 can be made dimensionless using H and V0.
During the start-up stage of boundary-layer development the scaling relations (2.8),
(2.10), and (2.26) can be written in dimensionless form as

δT =
∆T

H
∼ τ 1/2

Ra1/4
, (3.6)

vm =
Vm

V0

∼
(

Pr

1 + Pr

)
τ, (3.7)

Nuy ∼ W

(κt)1/2
∼ W

HδT

∼ Ra1/4

Aτ 1/2
, (3.8)

and at the steady-state stage of boundary-layer development the scaling relations
(2.16)–(2.18), (2.22), (2.24), (2.25), (2.27), and (2.28) can be written in dimensionless
forms as

τs,y =
ts,Y

H/V0

∼
(

1 + Pr

P r

)1/2

y1/2, (3.9)

τs,1 =
ts,H

H/V0

∼
(

1 + Pr

P r

)1/2

, (3.10)

δT,y =
∆T,Y

H
∼

(
1 + Pr

P r

)1/4
y1/4

Ra1/4
, (3.11)

vm,y =
Vm,Y

V0

∼
(

Pr

1 + Pr

)1/2

y1/2, (3.12)

δvi,y =
∆vi,Y

H
∼ Pr1/2δT,y ∼ Pr1/4(1 + Pr)1/4

y1/4

Ra1/4
, (3.13)

δvo,y =
∆vo,Y

H
≈ δT,y ∼

(
1 + Pr

P r

)1/4
y1/4

Ra1/4
, (3.14)

Nus,y ∼ Ra1/4

Ay1/4

(
Pr

1 + Pr

)1/4

, (3.15)

Nus ∼ Ra1/4

A

(
Pr

1 + Pr

)1/4

. (3.16)

Equations (3.6)–(3.8) clearly show that during the start-up stage the boundary-layer
development on the vertical sidewalls is one-dimensional and independent of y, owing
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to the dominance of pure conduction. However, at the steady-state stage, as shown
by (3.11), (3.12), and (3.15), the boundary-layer development and the heat transfer
across the vertical sidewall become two-dimensional and y-dependent as the flow is
now dominated by convection.

The scaling relation (2.32) for the cooling-down time tf can be written in di-
mensionless form as

τf =
tf

H/V0

∼
(

1 + Pr

P r

)1/4
Ra1/4

A
, (3.17)

and the decay of the average dimensionless fluid temperature θa(τ ), becomes from
(2.33)

θa(τ ) = Cf

A4

Ra

(
Pr

1 + Pr

)
(τf − τ )4 − 1. (3.18)

From (2.35), it is found that the instantaneous global Nusselt number Nu at the
cooling-down stage is

Nu ∼ Ra1/4

A

(
Pr

1 + Pr

)1/4(
1 − τ

τf

)3

. (3.19)

3.2. Numerical method

Detailed information about the numerical algorithm and numerical accuracy tests
can be found in Lin & Armfield (1999) and Lin (2000). Only a brief description is
given here.

The governing equations are discretized on a non-staggered mesh using finite
volumes, standard second-order central-difference schemes being used for the viscous,
pressure-gradient, and divergence terms. The QUICK third-order upwind scheme was
used for the advective terms (Leonard 1979). The second-order Adams–Bashforth
scheme and the Crank–Nicolson scheme were used for the time integration of the
advective terms and the diffusive terms, respectively. To enforce the continuity, the
pressure-correction method was used to construct a Poisson equation, which was
solved using the preconditioned GMRES method. Detailed descriptions of these
schemes are given in Armfield (1991) and Armfield & Street (1999), and the code has
been widely used for the simulation of a range of buoyancy-dominated flows (see e.g.
Patterson & Armfield 1990; Armfield & Debler 1993; Javam, Imberger & Armfield
1999; Lin & Armfield 2000, 2001, 2002, 2003, 2004).

Owing to the large variation in length scales it is necessary to use a computational
mesh that concentrates points in the boundary layer and is relatively coarse in the
interior. In this study, the meshes used for all runs were constructed using a stretched
grid, with nodes distributed symmetrically with respect to the half-width and half-
height of the computational domain represented by figure 1(b). The basic mesh used
for runs 1–8 had 299 × 299 grid points and the nearest grid point was located 0.0001
from the domain boundaries. Subsequently, the mesh was allowed to expand at a
fixed rate of 4.01 % up to x = y = 0.1 in both x- and y-directions. After that, the
mesh-size expansion rate decreased at a rate of 10 % until it reached zero, resulting in
a constant coarser mesh in the interior of the domain. The meshes for runs 9–12 were
constructed in a similar fashion but with different mesh-size expansion rates in the
y-direction, i.e. 6.05 %, 6.1 %, 4.01 %, and 4.1 %, resulting in 399 × 299, 297 × 299,
249 × 299, and 219 × 299 grid points, respectively.
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To determine whether any three-dimensional or asymmetric effects were present,
three-dimensional solutions were also obtained on the full domain with 0 � x � 2,
0 � y � 1, and 0 � z � 1, where z is the spanwise direction. The three-dimensional
solutions were obtained with a non-uniform grid of 228 × 194 nodes in the x- and
y-directions. Both the periodic and wall-boundary conditions (zero velocity and zero
normal temperature gradient) were applied to the spanwise boundaries z =0, 1. The
smallest grid sizes in the x- and y-directions were 	x = 	y = 5 × 10−4 with a mesh-
size expansion rate of 4 %. For the periodic boundary conditions, 50 uniformly
spaced nodes were used in the z-direction; for the wall boundaries a non-uniform
grid was used with minimum grid spacing 5 × 10−4 at the walls and a mesh-size
expansion rate of 4 %, giving 194 nodes in the z-direction. The time-step size was
	τ = 2 × 10−4. The use of a coarser grid and a larger time step for the three-
dimensional simulations, as compared with the two-dimensional simulations, was
necessary, owing to computational limitations, to enable results to be obtained in a
reasonable time. The specific case Ra = 1010, A= 1, and Pr = 0.1 was chosen, as in
this extreme case the asymmetrical and/or three-dimensional effects, if they exist, will
most likely occur. The solution with periodic boundary conditions was found to have
no spanwise, z, variation and to be symmetric about the plane x = 1. The solution
with wall-boundary conditions on the spanwise boundaries is three-dimensional as
a result of the boundary layers generated on the spanwise walls. These boundary
layers have a negligible effect on the natural-convection boundary layers that form
on the cooled walls, and lead to the generation of some three-dimensional structures
in the filling flow in the interior of the container. Although this affects the detailed
structure of the filling flow, the scaled quantities examined here, such as the natural-
convection boundary-layer start-up time, the boundary-layer thickness, and the total
filling time, are not affected. Similar results were obtained when an initial random
perturbation was included in the solution. The use of two-dimensional and symmetric
simulations to validate the scaling relations and provide scaling constants is therefore
appropriate. The code was further validated against the one-dimensional transient
natural-convection boundary-layer solution of Goldstein & Briggs (1964) and against
the two-dimensional steady-state similarity solution of Ostrach (1952), for small
Prandtl number; it was shown to accurately predict these flows.

3.3. Numerical validation and quantification of the scaling relations

3.3.1. Boundary-layer development stage

Numerical results showing the scaling relations at the steady-state stage of the
boundary-layer development, i.e. (3.9), (3.11), (3.12), (3.15), and (3.16), are presented
in figures 4 and 5, where it is seen that these direct numerical simulation results
agree very well with the scaling relations for A, Ra, and Pr in the ranges 1/3 � A � 3,
106 � Ra � 1010, and 0.01 � Pr � 0.5, except for the data set of run 8 at y = 0.5 in
figure 4(c), which deviates slightly from the scaling law (3.12) owing to the fact
that run 8 is for Pr= 0.5 and therefore does not sufficiently meet the requirement
Pr <O(1) made in the scaling analysis. As can be seen the results fall approximately
onto a straight line in all cases, showing that the scaling relations are providing a
good representation of the boundary layer in the steady state for these ranges of the
control parameters. The numerically quantified forms of these scaling relations are as
follows:

τs,y = 1.988

(
1 + Pr

P r

)1/2

y1/2, (3.20)
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Figure 4. (a) τs,y plotted against [(1 + Pr)/Pr]1/2y1/2; (b) δT,y plotted against

[(1 + Pr)/Pr]1/4y1/4/Ra1/4; (c) vm,y plotted against [Pr/(1 + Pr)]1/2y1/2; and (d) Nus,y plotted

against [Pr/(1+Pr)]1/4Ra1/4/y1/4, for all 12 runs. �, run 1, y = 0.5; �, run 2, y = 0.5; �, run 3,
y = 0.1; �, run 3, y = 0.3; �, run 3, y =0.5; �, run 3, y = 0.7; �, run 4, y = 0.5; ×, run 5,
y = 0.5; �, run 6, y = 0.5; �, run 7, y = 0.5; �, run 8, y = 0.5; 	, run 9, y = 0.5; �, run 10,
y = 0.5; 
, run 11, y = 0.5; �, run 12, y = 0.5. Solid line, linear fit.

δT,y = 5.076

(
1 + Pr

P r

)1/4
y1/4

Ra1/4
, (3.21)

vm,y = 0.698

(
Pr

1 + Pr

)1/2

y1/2, (3.22)

Nus,y = 0.529
Ra1/4

Ay1/4

(
Pr

1 + Pr

)1/4

, (3.23)

Nus = 0.692
Ra1/4

A

(
Pr

1 + Pr

)1/4

. (3.24)
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Figure 5. Nus plotted against [Pr/(1 + Pr)]1/4Ra1/4 for all 12 runs. �, run 1; �, run 2; �,
run 3; �, run 4; �, run 5; �, run 6; �, run 7; �, run 8; �, run 9; �, run 10; 	, run 11; 
,
run 12. Solid line, linear fit.

The numerical results for δT /δT,y , vm/vm,y , Nuy/Nus,y , and Nu/Nus are plotted
against (τ/τs,y)

1/2, τ/τs,y , (τ/τs,y)
−1/2, and (τ/τs,1)

−1/2 in figures 6 and 7 respectively.
The results for τ/τs,y < 1 and τ/τs,1 < 1 fall onto straight lines, showing the validity
of the scaling relations at the start-up stage of the boundary-layer development.
For τ/τs,y � 1 and τ/τs,1 � 1 the results fall onto horizontal lines, showing no time
dependence, as is expected. The numerically quantified scaling relations are therefore

δT = 1.090δT,y

(
τ

τs,y

)1/2

= 3.924
τ 1/2

Ra1/4
, (3.25)

vm = 1.229vm,y

τ

τs,y

= 0.858

(
Pr

1 + Pr

)
τ, (3.26)

Nuy = 0.695Nus,y

(
τ

τs,y

)−1/2

= 0.518
Ra1/4

Aτ 1/2
, (3.27)

Nu = 0.743Nus

(
τ

τs,1

)−1/2

= 0.725
Ra1/4

Aτ 1/2
, (3.28)

and clearly validate the scaling relations (3.6)–(3.8).
The Prandtl-number scaling for the boundary-layer thicknesses at the steady state,

i.e. (3.11), (3.13) and (3.14), was examined in detail by plotting the horizontal profiles
of temperature and vertical velocity against x[Pr/(1 + Pr)]1/4, as shown in figure 8,
where both raw and scaled results are presented for a range of Pr. The scaling is
seen to perform well for the temperature profiles, all profiles collapsing almost onto
a single line. This scaling is also seen to work well for the overall thickness of the
viscous boundary layer, all results except for Pr = 0.01 having a scaled thickness of
approximately 0.04, slightly less than that of the thermal boundary-layer thickness.
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Figure 6. Numerical results for (a) δT /δT,y plotted against (τ/τs,y)
1/2; (b) vm/vm,y plotted

against τ/τs,y; and (c) Nuy/Nus,y plotted against (τ/τs,y)
−1/2. �, run 1, y = 0.5; �, run 2,

y = 0.5; �, run 3, y = 0.1; �, run 3, y = 0.3; �, run 3, y = 0.5; �, run 3, y = 0.7; �, run 4,
y = 0.5; ×, run 5, y =0.5; �, run 6, y =0.5; �, run 7, y = 0.5; �, run 8, y = 0.5; 	, run 9,
y = 0.5; �, run 10, y = 0.5; 
, run 11, y = 0.5; �, run 12, y = 0.5. Solid line, linear fit for the
start-up stage; dashed line, linear fit for the steady-state stage.

However, the scaling is seen to work poorly in the small-x, near-wall, region, a large
variation being seen between all profiles in the scaled results. This indicates that the
δT,y scaling is appropriate for δvo,y , which is in agreement with the scaling analysis,
but that it does not correctly represent the physics of the viscous boundary layer
in the near-wall region. The alternative scaling (3.13), which requires the scaling
xP r−1/4(1 + Pr)−1/4, was also examined for the vertical velocity profiles, with the
results shown in figure 9. This scaling is seen to perform better in the small-x region,
bringing the maximum-absolute-velocity locations close together; however, it performs
very poorly in the large-x region. It is therefore impossible to represent the behaviour
of the vertical velocity over δv using a single scaling. A further demonstration of this
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Figure 7. Numerical results for Nu/Nub plotted against (τ/τs,1)
−1/2. �, run 1; �, run 2; �,

run 3; �, run 4; �, run 5; �, run 6; �, run 7; �, run 8; �, run 9; �, run 10; 	, run 11; 
,
run 12. Solid line, linear fit.

multiple scaling and the way in which the momentum balances change over time is
seen in figure 10, where typical horizontal profiles at y = 0.5 of the vertical advection
terms u∂v/∂x, v∂v/∂y, the buoyancy term Pr θ , the viscous term Pr Ra−1/2∂2v/∂x2

and the vertical velocity v are plotted for τ =2, during the boundary-layer transition
(figure 10a), and for the fully developed flow at τ = 16 (figure 10b). The results are for
Ra =108, Pr = 0.1, and A= 1. At early times the buoyancy term reduces slowly with
the distance from the wall, whereas the viscous term reduces rapidly and is close to
zero at x = 0.01. Apart from the near-wall region, where the buoyancy and viscosity
terms are in balance, the velocity is clearly accelerated over the full width of the
thermal boundary layer by buoyancy, as predicted by (2.8). The advection terms at
this time are negligible, again as predicted by the scaling. At steady state the balances
have changed; buoyancy is again the primary driving force, acting over the full width
of the thermal boundary layer, balanced in the near-wall region by viscosity and away
from the wall by the advection terms. The width of the thermal boundary layer is
then determined by the convection–conduction balance in the temperature equation.
It is thus clear that the flow behaviour cannot be properly represented by a single
balance across the full width of the boundary layer.

It can therefore be seen that for small-Pr (Pr < 1) fluids the assertion of Incropera
& DeWitt (1996, p. 319) and Tritton (1995, p. 170) that the viscous boundary layer
should be much thinner than the thermal boundary layer is only valid if this viscous
boundary layer is interpreted as the inner viscous boundary layer. The claim is not
valid for the outer viscous boundary layer, as it has the same order of thickness as the
thermal boundary layer and the ratio of their thicknesses is approximately constant
for Pr < 1, which supports the claim made by Gebhart et al. (1988, p. 53).

3.3.2. Cooling-down stage

The time for complete cooling τf was determined as the time at which θa(τf ) =
−0.99. The τf results are plotted against [(1 + Pr)/P r]1/4Ra1/4/A in figure 11, which
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Figure 8. Numerical results for the horizontal profiles of temperature θ (x, 0.5) and vertical
velocity v(x, 0.5) at y = 0.5 for various Pr values: (a) θ (x, 0.5) plotted against x; (b) θ (x, 0.5)
plotted against x[Pr/(1+Pr)]1/4; (c) v(x, 0.5) plotted against x; (d) v(x, 0.5)/vm plotted against
x[Pr/(1 + Pr)]1/4 for Ra = 108 and A = 1. —, Pr = 0.01; · · · ·, Pr = 0.05; – – –, Pr =0.1; – · –
Pr = 0.5.

show that all results fall onto approximately the same line, described by

τf = 8.34

(
1 + Pr

P r

)1/4
Ra1/4

A
, (3.29)

confirming that this is the appropriate scaling for this phase of the flow. It may
be noted that the A= 1/3 result is slightly above the best-fit straight line. The
cooling-down time is determined by the heat flux through the natural-convection
boundary layer. The wave activity within the domain, resulting from the reflection of
the intrusion from the symmetry boundary, perturbs the boundary layer and acts to
increase the heat flux. For smaller aspect ratios the boundary layer is further removed
from the symmetry boundary and subjected to less associated wave activity, reducing
the heat flux and increasing the cool-down time in a manner not taken into account
in the scaling.
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Figure 10. Numerically simulated horizontal profiles of the horizontal advection term u∂v/∂x

(· · · · · ·), the vertical advection term v∂v/∂y (– · –), the viscous term PrRa−1/2∂2v/∂x2 (thin
solid line), the buoyancy term Prθ (– – –), and the vertical velocity v (thick solid line) at
height y = 0.5 for Ra =108, Pr = 0.1, and A = 1: (a) profiles for τ =2 (at the start-up stage
of the boundary-layer development) and (b) profiles for τ = 16 (at the steady state of the
boundary-layer development).

Equation (3.29) gives Cf =2.067 × 10−4. Therefore the full expression for θa , from
(3.18), is obtained as

θa(τ ) = 2.067 × 10−4

[
A

Ra1/4

(
Pr

1 + Pr

)1/4

(τf − τ )

]4

− 1. (3.30)

Figure 12 presents the numerically obtained θa(τ ) for all 12 runs to show the
dependence of the scaling relation (3.18) on the individual control parameters Ra,
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Figure 11. The time for complete cooling τf plotted against [(1 + Pr)/Pr]1/4Ra1/4/A for all
12 runs. �, run 1; �, run 2; �, run 3; �, run 4; �, run 5; �, run 6; �, run 7; �, run 8; �, run 9;
�, run 10; 	, run 11; 
, run 12. Solid line, linear fit.

A, and Pr. Figure 12(a) contains the raw data showing the time series of θa(τ ) for
Ra = 106, 107, 108, 109, and 1010 with A = 1 and Pr = 0.1. The scaling relation (3.18)

shows that the dependence of θa(τ ) on Ra goes as Ra− 1
4 , and the time series of θa(τ )

with this scaling are shown in figure 12(b), where it is seen that this scale brings all five

sets of data for different Ra together, indicating that Ra− 1
4 is the correct dependence

of θa(τ ) on Ra in the scaling relation (3.18). Similarly, figure 12(c) contains the raw
data showing the time series of θa(τ ) for A = 1/3, 1/2, 1, 2, and 3 with Ra = 108 and
Pr = 0.1. The scaling relation (3.18) shows that the dependence of θa(τ ) on A goes as
A, and the time series of θa(τ ) with this scaling are shown in figure 12(d), where, again,
it is seen that the scale brings all five sets of data for different A together, indicating
that A itself is the correct dependence of θa(τ ) on A in the scaling relation (3.18).
Figure 12(e) contains the raw data showing the time series of θa(τ ) for Pr = 0.01,
0.05, 0.1, and 0.5 with Ra = 108 and A = 1. The scaling relation (3.18) shows that
the dependence of θa(τ ) on Pr goes as [Pr/(1 + Pr)]1/4, and the time series of θa(τ )
with this scaling are shown in figure 12(f ), where all four sets of data for different Pr
overlay each other, clearly showing that [Pr/(1+Pr)]1/4 is the correct dependence of
θa(τ ) on Pr in the scaling relation (3.18).

The numerically obtained θa(τ ) is plotted against A[Pr/(1 + Pr)]1/4Ra−1/4τ in
figure 13(a) for all runs. The collapse of all sets of data onto approximately a single
curve again confirms that the scaling relation (3.18) is true. The scaling for the full
development of the average temperature is (3.30). This scaling was examined again by
plotting the results for the time development of θa(τ ) versus A4[Pr/(1+Pr)]Ra−1(τf −
τ )4 for all runs, as shown in figure 13(b). There is seen to be some variation in the
scaled development; however, it is seen that (3.30) provides a good description of the
overall development of θa(τ ).
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Figure 12. (a) Time series for the average dimensionless fluid temperature θa(τ ) and (b) θa(τ )
plotted against Ra−1/4τ , for Ra = 106 (——), 107 (· · · ·), 108 (– – –), 109 (– · –), and 1010 (– · · –)
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The numerical results showing the dependence of the instantaneous average Nusselt
number Nu on Ra, A, and Pr at the boundary-layer development stage and at
the cooling-down stage are respectively presented in figure 14(a) and figure 14(b).
The results in figure 14(a) confirm the scaling relation (3.8) at the boundary-layer
development stage, as represented by (3.27), whereas the results in figure 14(b) validate
the scaling relation (3.19) at the cooling-down stage, which is found to be quantified
by the following expression:

Nu = 2.708 × 10−5 Ra1/4

A

(
Pr

1 + Pr

)1/4 (
1 − τ

τf

)3

. (3.31)
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4. Conclusions
The cooling-down behaviour of a fluid contained in a two-dimensional rectangular

enclosure subjected to isothermal boundary conditions on the vertical walls has been
examined via scaling analysis and direct numerical simulation. Scaling relations have
been obtained for the properties of the initial vertical boundary-layer development
and of the cooling-down stage.

The numerical results have confirmed the scaling relations, provided scaling
constants, and illustrated the overall flow development. The results presented in
figure 8 show that the total (outer) vertical-velocity boundary-layer thickness has the
same scaling as that of the thermal boundary-layer thickness; however this scaling
performs poorly in the near-wall, inner, region. In this region the alternative scaling
xP r−1/4(1+Pr)−1/4 is appropriate. This scaling is obtained by assuming that buoyancy
balances the horizontal diffusion of vertical velocity in the vertical momentum
equation, which gives an inner-velocity boundary-layer thickness δvi that scales with
Pr1/2δT , the same scaling as that obtained for this quantity for Pr > 1 and, suggested
by Incropera & DeWitt (1996, p. 319) and Tritton (1995, p. 170) for small-Pr (Pr < 1)
fluids. However, for Pr < 1 this balance only exists in the near-wall region, where
∂2v/∂x2 is positive. In the outer region the flow is driven in the same direction via
viscous effects and buoyancy; these quantities have the same sign and a balance
will exist between them and inertia, providing a different scaling. It is therefore not
possible to obtain a single scaling for the velocity structure over the full velocity
boundary-layer width. Nonetheless it is clear that for Pr< 1 the overall (outer) velocity
boundary-layer thickness has the same scaling and approximately the same magnitude
as the thermal boundary-layer thickness, supporting the statement of Gebhart et al.
(1988).

Although numerical results have been presented only for two-dimensional
symmetric flow, three-dimensional results without the assumption of symmetry have
been obtained demonstrating that the two-dimensional symmetric assumption is
correct. The scalings obtained here can therefore be applied to the equivalent three-
dimensional flow.
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for all 12 runs.
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