ResearchOnline@JCU

This file is part of the following reference:

Calija-Zoppolato, Vanja (2004) *Evaluation of alternative* sugarcane selection strategies. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/23837/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/23837/</u>

Evaluation of alternative sugarcane selection strategies

Thesis submitted by

Vanja Calija-Zoppolato BSc(Hons) UK

in June 2004

for the degree of Doctor of Philosophy in the Mathematics and Statistics and Tropical Plant Science within the Schools of Mathematical and Physical Sciences and Tropical Biology James Cook University of North Queensland

Statement of Access

I, Vanja Calija-Zoppolato, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries.

All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without consent of the author, and to make proper written acknowledgment for any assistance, which I have obtained from it

Beyond this, I do not whish to place any restrictions on access to this thesis.

16-08-2005

Vanja Calija-Zoppolato

Date

Abstract

The international competitiveness and success of the Australian sugar industry, which is one of the world's largest exporters of raw sugar depends on increased cane yield and advanced farming practices. One of the key drivers for a sustainable sugar industry is therefore, to increase cane yield through designing efficient breeding programs, that aim at producing new and improved varieties of cane. Selection for superior genotypes is the most important aspect of sugarcane breeding programs, and is a long and expensive process. It consists of a number of stages where at each stage some genotypes are chosen for further selection and some are discarded from future selection. Designing a selection system is a complex task, with varying parameters at each stage. While studies have investigated different components of selection independently, there has not been a whole system approach to improve the process of selection.

The aim of this research was to develop a tool for the optimisation of selection systems. The problem of designing an efficient selection system has two components: firstly, evaluating the performance of selection systems and secondly, deciding on a combination of selection variables that will select the most promising genotypes. These two components were designated sub-objectives, one and two respectively.

To address the first sub-objective, data on previous selection trials was collected and used to predict gain for different selection designs. The value that is used to compare the performances of different selection systems is what was called in this thesis, the genetic gain for economic value \tilde{G} , a measure based on the estimate of a potential economic value of a genotype if planted as a cultivar. The connection between \tilde{G} and choice taken for selection variables at various stages is complex and not expressible by a simple set of formulas. Instead, a computer based stochastic simulation model SSSM (Sugarcane Selection Simulation Model) was developed.

To eliminate as many simplifying assumptions as possible and bring the study as close to real life as possible, the quantitative genetics of sugarcanes relevant to selection was studied. Furthermore, a specific sugarcane-breeding region was targeted, the Burdekin region (Australia). To ensure the accuracy of the SSSM, it performance was verified and the sensitivity analysis was performed to identify those variance parameters to which it is most sensitive.

By, developing the SSSM this study approached the problem as an integrated system, where if one parameter changes the state of the whole system changes. Furthermore, by creating an accurate selection simulation model a new methodology for evaluating alterative sugarcane selection strategies was obtained. A new methodology that tests the performance of different selection designs prior to their field trials and also tests the impact any change in the estimated variance components may have on selection, will be a potential money saver for the industry. Furthermore, the SSSM can be directly applied to any region targeted by sugarcane breeding programs or to other clonally propagated crops.

The second sub-objective was addressed by the development of the optimisation algorithm called ASSSO (Algorithm for the Sugarcane Selection Simulation Optimisation), a combination of dynamic programming and branch-and-bound. The ASSSO was applied to the Burdekin region to identify selection designs that maximise selection outputs. Apart from providing a new approach to the problem of optimising selection system, the ASSSO also presents a new application of dynamic programming and branch-and-bound.

The ASSSO identified a number of alternative selection systems that are significant improvements to the practices currently used in the Burdekin region. Nevertheless, the purpose of this research was not to suggest that the intuitions and experiences of plant breeders can be replaced by the set of guidelines obtained using a computer simulation,

iv

but rather to validate the benefits of a joint venture between mathematicians and plant breeders.

Acknowledgments

First of all I wish to thank my family for helping me through all difficulties I encountered during this research. I am grateful to my supervisory team: Dr Leone Bielig, Prof Dr Danny Coomans, Dr Andrew Higgins and Dr Phillip Jackson. Their contribution to this research and constant guidance has been invaluable.

I would like to thank Professor Bob Lawn personally as well as the entire CRC Sugar for their help and support. I also wish to thank Mr Mike Cox and Mr Terry Morgan for their expertise and comments throughout the research. I would like to express my great appreciation to both past and present members of the Mathematics and Statistics staff at the JCU, above all to Dr Trevor Waechter, Dr Christine Ormond and Dr Michael Steel.

Contents

Access	ii
Abstract	iii
Acknowledgments	v
Table of Content	vi
List of Figures	xi
List of Tables	xiv
List of Acronyms	xxi
List of Symbols	xxii
Statement of sources	xxiv
List of Publications	XXV

1	Intro	duction	1
	1.1	Sugarcane breeding programs	3
		1.1.1 An example of a sugarcane selection system:	
		the Burdekin region	6
		1.1.2 Selection variables	8
	1.2	Rationale for the study	9
	1.3	Aim of the thesis	12
	1.4	Structure of thesis	13
2	Select	tion systems in sugarcane breeding programs	16
	2.1	Introduction	16
	2.2	Partition of phenotypic variance	17
		2.2.1 Heritability and the response to selection	20

2.3	The re	lationship between measured traits and selection design	
	variabl	es	22
	2.3.1	Individual selection versus family selection	22
	2.3.2	Plot size and the affect it has on the relationship between	
		the genetic effect and the competition effect	23
	2.3.3	Number of sites and its impact on the interaction	
		between genotype and environment	24
		2.3.3.1 Ratooning performance	26
	2.3.4	The number of replicates and its effect on error	27
	2.3.5	Selection index	27
	2.3.6	Selection intensity	29
	2.3.7	The size of the starting population	30
	2.3.8	The number of stages	30
	2.3.9	Phenotypic correlation and genetic correlation between	
		traits	30
	2.3.10	Effects of plot size	31
2.4	Estima	ation of statistical parameters	34
	2.4.1	Experimental design, analysis and summary of results	
		for the plot size experiment – data set A	35
	2.4.2	Experimental design, analysis and summary of results	
		for the advanced stage variety trial – data set B	40
	2.4.3	Breeders' judgement of the required estimates and	
		the estimates used in the simulation model SSSM	46
	2.4.4	An illustration of the parameter computations for a	
		selection stage	50
Simulatio	on of sel	ection systems	53
3.1	Introd	uction	53
3.2	Overal	ll concepts and structure of the Sugarcane Selection	
	Simula	ation Model (SSSM)	54
	3.2.1	SSSM flow chart	55
	3.2.2	SSSM application manual	57

3.

		3.2.3	Generation of phenotypic effects	59
			3.2.3.1 Generation of the error effect and the genotype by	
			environment interaction effect	59
			3.2.3.2 Generation of the genotype and the competition	
			effects	61
			3.2.3.3 Re-calculation of the competition effect	63
			3.2.3.4 In illustration of the generation of populations of	
			effects	64
		3.2.4	Selection of genotypes	65
	3.3	Definin	ng genetic gains and determining costs	66
		3.3.3	Genetic gain for economic value	66
		3.3.4	Costs of selection systems	69
	3.4	Examir	nation of some basic results from the SSSM when applied	
		to the I	Burdekin region	71
		3.4.1	Variation between simulations	73
		3.4.2	Sensitivity analysis of the SSSM	75
	3.5	Applic	ation and limitations of the simulation model	80
4	Optin	mising s	election systems	82
	4.1	Introd	uction	82
	4.2	Optim	isation techniques used in the study	83
	4.3	Formu	lation of the selection system optimisation problem	
		85		
		4.3.1	Definition of the decision variables	
			87	
		4.3.2	Constraints on the problem	89
			4.3.2.1 Cost constraint	89
			4.3.2.2 Planting material constraint	90
			4.3.2.3 Last stage testing constraint	91
			4.3.2.4 Population size constraint	91
	4.4	Applic	cation of dynamic programming and branch-and-bound	
		to the	selection system optimisation	92

		4.4.1	Definition of the upper bound	95
		4.4.2	The budget and the comparison of the node limits	97
5	Identi	ifying a	n optimal selection system for the Burdekin region	99
	5.1	Introd	uction	99
	5.2	Analys	ses methods used	100
		5.2.1	Selection system representation	102
		5.2.2	Summary of the three selection systems from the	
			Burdekin region to which the ASSSO results were	
			compared to	104
	5.3	Sensit	ivity analysis of changing parameters	
			10	4
	5.4	A gen	eral analysis of convergence	
			10	7
	5.5	Comp	arison to selection systems developed by breeders	
			11	1
	5.6	An an	alysis to identify characteristics of a favourable selection	
		systen	n	114
	5.7	A con	parison between individual and family selection	119
	5.8	Propo	sed selection designs for the Burdekin region	123
6	Concl	usion a	nd future directions	125
	6.1	Future	e directions	127
Refer	ences			129

Appendix A	Derivation of the correlation from MANOVA output	138
Appendix B	A detailed illustration of the simulation of the selection system from the Burdekin region	140
Appendix C	The experimental matrix for the SSSM screening process	157
Appendix D	ASSSO pseudo code	159
Appendix E	An illustration of the optimisation node storage file	163
Appendix F	The graphical representation of the hierarchical clustering process	174

List of Figures

1.1	Diagram outlining the general structure of sugarcane breeding programs.	
	Firstly, varieties with desired characteristics are crossed, and secondly,	
	progeny seedling varieties from those crosses that possess desired	
	properties are selected (stages 1,2,3,,n)	2
1.2	Map of the major Australian sugarcane growing regions accessed from the	
	http://www.sri.org.au/sugarindustry1.html	3
1.3	Diagram outlining the typical sugarcane selection system from the Burdekin	-
	breeding region	7
1.4	Diagram outlining the flow of information between the Sugarcane Selection	
	Simulation model (SSSM) and the Algorithm for Sugarcane Selection	
	System Optimisation (ASSSO)	14
2.1	Outline of the experimental design used in the field trial that produced the	
	data set A. Within each block, genotype i was planted once in six row and	
	two row plots and twice in a one row plots. These plots were represented	
	with one, two and six vertical lines	36
2.2	Outline of the planting design for the final selection stage in the Burdekin	
	region. Genotype i was planted in four row plots (represented by four	
	vertical lines), at each of four sites, and within each of two blocks at each	
	site	41
2.3	Predicted values of CCS versus residuals in the trial 1995-1 indicating that	
	the model assumptions were suitable to the data	44
2.4	Q-Q plot for CCS from the 1995-1 trial indicating the normality of the data	45

3.1	The flow-chart of the SSSM, where: g_i is the genotype effect of genotype	
	<i>i</i> ; c_{ik} is the competition effect of genotype <i>i</i> being planted in plot size <i>k</i> ;	
	x_{ij} is the genotype by environment interaction effect of genotype <i>i</i> being	
	planted in environment j ; e_{ijk} is the error effect; n the number of stages;	
	k the number of families; f the number of genotypes per family; p_z plot	
	size, s_z number of sites, r_z number of replicates, d_z selection index, t_z	
	selection intensity used at a stage z	56
3.2	The SSSM interface that allows the definition of the new selection system	57
3.3	The SSSM interface that gives main selection simulation results	58
3.4	An example of a z-score $z_0 = 0.84$ and the corresponding area $\xi = 0.7995$	
	under the standard normal curve	60
3.5	The population of correlated pairs (g_i, c_{ik}) was generated from within the	
	ellipse (cross section) with major and minor axis being defined by $\kappa \sqrt{\lambda_1}$	
	and $\kappa \sqrt{\lambda_2}$ respectively	62
3.6	The change in the expected standard errors for the genetic gain for	
	economic value \widetilde{G} with the change in the number of simulations	73
4.1	The flow-chart of the ASSSO for the family selection	93
5.1	The box-plot for the populations of the genetic gains for economic value \widetilde{G}	
	showing the convergence characteristics of the solution, with the x-axis	
	representing the branching node number and the y-axis representing the \widetilde{G}	
	values	108
5.2	The error bars for the populations of the \widetilde{G} for the alternative selection	
	systems to the typical selection system currently practiced in the Burdekin	
	region (Section 1.1.1), with the x-axis representing the branching node	
	number and the y-axis representing the \widetilde{G} values	109
	147 - 147 - 147	

F.1 Graphical representation of the process of hierarchical clustering 174

List of Tables

1	List of acronyms used throughout thesis	xx
2	List of symbols frequently used throughout thesis	xxi
2.1	Summary of parameters estimated on the basis of: data set A (parameters	
	estimated that depend on plot size) and the data set B (those that do not	
	depend on plot size)	35
2.2	Summary of the point and 95% confidence interval (in parenthesis) estimates	
	of the genotype variance σ_g^2 and error variance σ_e^2 respectively, for CCS	
	and cane yield (TCH), in three plot sizes, the small plot size was repeated	
	twice in the trial	38
2.3	Summary of the point and 95% confidence interval estimates (in parenthesis)	
	for the genetic correlation $\hat{\rho}_{g,g+c}$ between small (two replicates), medium and	
	large plots in CCS and cane yield (TCH)	39
2.4	Summary of the point and 95% confidence interval estimates (in parenthesis)	
	of the correlation $\hat{\rho}_{\rm g,c}$ between genotype and competition for CCS and cane	
	yield (TCH) in small (two replicates), medium, and large plots	40
2.5	Summary of the point and 95% confidence interval estimates (in parenthesis)	
	of the phenotypic correlation between CCS and cane yield (TCH), $\hat{\rho}_{_{CCS,TCH}}$ in	
	small, medium and large plots	40
2.6	Summary of the point and 95% confidence interval estimates (in the	
	parenthesis) for genotype variance σ_g^2 , genotype by environment interaction	
	variance σ_x^2 , and error variance σ_e^2 , for CCS and cane yield (TCH) in each	
	of the six trial independently, together with the average values across trials	43

3.3 Description of the selection system simulated on SSSM, where f is the starting number of families, k is the number of genotypes per family to start selection, z is the stage number, p_z the plot size used at stage z, s_z number of sites and r_z number of replicates per site used at stage z, and d_z and t_z selection index and intensity respectively used at stage z

72

5.1	Summary of the typical selection system practiced in the Burdekin region (B)	
	together with the two selection systems proposed by breeders to be the	
	optimal for the region (PB1, PB2), where f is number of families, k	
	genotypes per family, p_z are plot sizes, s_z number of sites, r_z number of	
	replicates pre site, t_z selection intensity and d_z selection index used at stages	
	z , \widetilde{G} is genetic gain for economic value and \overline{C} the cost	104
5.2	An example of the change in the \widetilde{G} with the change in the selection intensity	
	t at stage one	105
5.3	An illustration of the change in the \tilde{G} with the change in selection index d	
	for stage one and stage four	107
5.4	The selection system designs that are significant improvement to the typical	
	selection system currently practiced in the Burdekin region (Section 1.1.1)	
	ordered by gain where f is number of families, k number of genotypes per	
	family, p_z are plot sizes, s_z number of sites, r_z number of replicates per site,	
	t_z selection intensity and d_z selection index used at stages z , \widetilde{G} is genetic	
	gain for economic value and \overline{C} the cost	110
5.5	Agglomeration schedule for the alternative selection systems (Table 5.4)	116
5.6	The highest yielding systems that select individual genotypes, where k is	
	number of genotypes, p_z are plot sizes, s_z number of sites, r_z number of	
	replicates pre site, t_z selection intensity and d_z selection index used at stages	
	z , \widetilde{G} is genetic gain for economic value and \overline{C} the cost	120
A.1	Example of the Between-group SSCP (Sum of Squares Cross Product)	
	matrix for CCS between large plot size measurements and the competition	
	(difference between the large plot and small plot measurements), data set A	138
A.2	Example of the tests of between-groups effects for CCS between large plot	
	measurements and the competition (difference between the large plot and	
	small plot measurements), data set A	138

- B.1 Starting population of two hundred families of stage one generated in SSSM, where g_i is the genetic effect, c_{ik} competition effect, x_{ij} genotype by environment interaction effect, e_{ijk} error effect, and G_i the genetic gain for economic value for a family *i* planted in environment *j* and plot size *k* ¹³⁹

- B.5 Some of the one thousands and eight hundred generated and selected genotypes (Table B.3 and Table B.4), from within selected families (Table B.2), where g_i is the genetic effect, c_{ik} competition effect, x_{ij} genotype by environment interaction effect, e_{ijk} error effect, and G_i the genetic gain for economic value for a family *i* planted in environment *j* and plot size $k \dots 148$

List of Acronyms

Table 1

List of acronyms used throughout the thesis		
ASSSO	Algorithm for Sugarcane Selection System,	
	Optimisation	
BSES	Bureau of Sugar Experiment Station	
CCS	Commercial Cane Sugar	
CSIRO	Commonwealth Scientific and Industrial Research	
	Organisation	
CSR	formerly known as Colonial Sugar Refinery and today	
	the name of a privately owned sugar research company	
DP	Dynamic Programming	
MANOVA	Multivariate Analysis of Variance	
NMG	Net Merit Grade	
OR	Operations Research	
SRDC	Sugar Research and Development Corporation	
SSSM	Sugarcane Selection Simulation Model	
ТСН	Tonnes Cane per Hectare - cane yield	
TSH	Tonnes Sugar per Hectare - sugar yield	

List of Symbols

Table 2

List of the symbols frequently used throughout the thesis

	List of the symbols nequently used throughout the thesis
k	starting number of genotypes in the case of clonal selection or starting number of
f	genotypes per family in case of family selection; number of families to start selection;
b	family selection to be used in stage one $\in \{TRUE, FALSE\};$
n	number of stages;
p_z	plot size for each stage $z = 1, 2,, n$;
S _z	number of sites (locations) for each stage $z = 1, 2,, n$;
r_z	number of replications per location for each stage $z = 1, 2,, n$;
d_z	selection index for each stage $z = 1, 2,, n$;
tz	selection intensity for each stage $z = 1, 2,, n$;
${\cal Y}_{ijk}$	phenotypic (observed) value of a genotype i being planted in the environment j
μ	in plot size k ;
μ g_i	grand mean of the trait observed; genetic effect of genotype <i>i</i> ;
si V _{ii}	environmental effect of genotype i being planted in environment j
c _{ik}	competition effect of genotype i being planted in plot size k ;
x_{ij}	genotype by environment interaction effect of genotype i being planted in environment j ;
e_{ijk}	error effect;
σ_P^2	phenotypic variance;
σ_{g}^{2}	genetic variance (true yield);
	between-family genetic variance;
$\sigma_{_{f}}^{^{2}} \ \sigma_{_{w}}^{^{2}} \ \sigma_{_{v}}^{^{2}}$	within-family genetic variance;
σ_v^2	environmental variance;
σ_x^2	genotype by environment interaction variance;
σ_c^2	competition variance;
$\sigma_{ au}^2$	genotype by competition interaction variance;
σ_e^2	error variance;
$\sigma_{\scriptscriptstyle A}^2$	additive genetic variance (breeding value);
$\sigma_{\scriptscriptstyle D}^2$	dominance part of the non-additive genetic variance;
σ_l^2	epistasis part of the non-additive genetic variance;
$\operatorname{cov}(g,v)$	covariance between genotype and environment;
cov(g,c)	covariance between genotype and competition;
H^2	broad sense heritability of a trait;
5464 C C	

h^2	narrow sense heritability of a trait;
R	response to selection;
S	selection differential;
δ	proportion of the genetic variability attributable to the between families;
$ ho_{g,g+c}$	genetic correlation between a plot size and pure stand;
$ ho_{g,c}$	genetic correlation between genotype and competition;
$ ho_{ccs, tch}$	phenotypic correlation between CCS and cane yield (TCH);
E_{i}	economic value of genotype i;
R_i	return from sugar produced when growing genotype i commercially;
C_i	costs associated with growing genotype i commercially;
G_i	genetic effect for economic value of genotype i ;
\overline{G}	mean genetic effect for economic value of a population;
\widetilde{G}	genetic gain for economic value;
G_i \overline{G} \widetilde{G} \widetilde{G}_o \widetilde{G}_o	the highest genetic gain for economic value given all optimisation constraints;
\widetilde{G}_z	the highest genetic gain for economic value obtained through stages $1,2,3,,z$;
U_{z,P_0}	upper bound for selection stage z given the starting population of genotypes P_0 ;
A_{z}	alternative combination of parameters to be used at stage z ;
\overline{B}	budget available to perform selection system;
C_z	cost of stage z ;
$ \begin{array}{c} A_z \\ \overline{B} \\ C_z \\ \overline{C}_z \\ N \\ \widehat{M}_z \\ \widetilde{M}_z \end{array} $	cost of stages 1,2,3,, z;
N	the total number of nodes to be branched;
\widehat{M}_{z}	planting material required to plant stage z ;
\breve{M}_z	planting material available for stage z ;
P_z	population of genotypes selected through stages $1, 2, 3,, z$;

Statement of Sources

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Vanja Calija-Zoppolato

16.08.2005

Date

Publications Arising From the Thesis

Referred International Journal Publications

V. Calija, A.J. Higgins, P.A. Jackson, L.M. Bielig, and D. Coomans, An Operations Research Approach to the Problem of the Sugarcane Selection, Annals of Operations Research 108 (2001) 123-142.

Refereed Conference Papers

V. Calija, P. Jackson, A.J. Higgins, L. Bielig, and D. Coomans, Simulating and optimising sugarcane selection In: *Proceedings of the 15th National Conference of the Australian Society of Operations Research Inc. ASOR Queensland Branch and ORSJ Hokkaido Chapter Joint Workshop on Operations research from theory to real life: Contributed papers*, Ed. E. Kozan, School of Mathematical Sciences, Queensland University of Technology, Brisbane Vol. I (1999) 260-268

V. Calija, P. Jackson, A. Higgins and L. Bielig, Simulating and optimising selection systems, 11th Australian Plant Breeding Conference, Adelaide, SA, April 19-23, 1999