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Abstract

The evolutionary dissimilarity between communities (phylogenetic beta diversity PBD) has been increasingly explored by
ecologists and biogeographers to assess the relative roles of ecological and evolutionary processes in structuring natural
communities. Among PBD measures, the PhyloSor and UniFrac indices have been widely used to assess the level of turnover
of lineages over geographical and environmental gradients. However, these indices can be considered as ‘broad-sense’
measures of phylogenetic turnover as they incorporate different aspects of differences in evolutionary history between
communities that may be attributable to phylogenetic diversity gradients. In the present study, we extend an additive
partitioning framework proposed for compositional beta diversity to PBD. Specifically, we decomposed the PhyloSor and
UniFrac indices into two separate components accounting for ‘true’ phylogenetic turnover and phylogenetic diversity
gradients, respectively. We illustrated the relevance of this framework using simple theoretical and archetypal examples, as
well as an empirical study based on coral reef fish communities. Overall, our results suggest that using PhyloSor and UniFrac
may greatly over-estimate the level of spatial turnover of lineages if the two compared communities show contrasting levels
of phylogenetic diversity. We therefore recommend that future studies use the ‘true’ phylogenetic turnover component of
these indices when the studied communities encompass a large phylogenetic diversity gradient.
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Introduction

Phylogenies are increasingly used (i) to understand the origins
and histories of species within a community (i.e. alpha diversity),
(i) to assess the relative roles of environmental sorting, competitive
exclusion and evolutionary and biogeographical processes in
shaping community structure [1-3] (iii) to predict the level of
ecosystem functioning [4] and the delivery of services [5], and (iv)
to guide conservation prioritization [6,7]. These arguments have
recently been extended to phylogenetic beta diversity (PBD
hereafter) that measures the phylogenetic dissimilarity among
communities [8-10]. These authors argue that PBD allows a
better understanding of the mechanisms underlying current
biodiversity patterns by connecting local processes (e.g. biotic
interactions and environmental filtering) with more regional
processes, including trait evolution, speciation and dispersal.

To quantify PBD, numerous measures have been proposed
[11], and more particularly two indices that derive from the
taxonomic-based Sorenson and Jaccard’s dissimilarity indices,
namely the PhyloSor [8] and UniFrac [12] indices. These two
closely related indices belong to a family of phylogenetic diversity-
based dissimilarity measures, i.e. based on calculations using
branch lengths [13]. For instance, the Unilrac index is expressed
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as the total branch length unique to each community relative to
the total branch length linking all species in both communities and
hence measures the proportion of evolutionary history unique to
each community [12].

Numerous studies have employed the PhyloSor and Unikrac
indices to explore the spatial turnover of lineages over large spatial
scales [3,10,13-15]. However, these indices are fundamentally
based on ‘broad-sense’ measures of compositional beta diversity
(CBD) that do not adjust for differences in composition
attributable to richness gradients [16]. Consequently, the compo-
sitional differences arising from differences in species richness
(species loss or gain associated with nestedness) cannot be
distinguished from differences in species composition that are
independent of species richness (‘true’ species turnover that
involves species replacement) [17-19]. For instance, recent studies
showed that using ‘broad-sense’ measures of CBD could make it
difficult to tease apart the relative roles of neutral vs. niche-based
processes in shaping CBD patterns [20,21]. This is because spatial
turnover of species and nestedness of assemblages are two
antithetic phenomena that are caused by different processes
[18,20]. In that context, Baselga [19] proposed an additive
partitioning framework that consists in decomposing the pair-wise
Serensen’s dissimilarity index into two additive components
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accounting for (i) ‘true’ turnover of species and (ii) richness
differences between nested communities. Recent studies distin-
guishing between the ‘true’ turnover and nestedness components
of CBD provided new insights into the mechanisms that drive
CBD at large spatial scales [20-24].

As for their taxonomic-based relatives, the PhyloSor and
UnilFrac indices can be both considered as ‘broad-sense’ measures
of phylogenetic turnover (i.e. incorporating differences in evolu-
tionary history between communities attributable to phylogenetic
diversity gradients). Recently, Ives & Helmus [25] tackled this issue
by proposing a PBD metric that is independent of species richness
in communities. However, this PBD metric does not control for
differences in phylogenetic diversity between communities.

In the present study, we therefore extended the framework
proposed by Baselga [19,26] to PBD by decomposing the
PhyloSor and Unilkrac indices into two components accounting
for ‘true’ phylogenetic turnover and phylogenetic diversity
gradients, respectively. To illustrate this decomposition, we used
theoretical and archetypal examples. We also generated a large
number of simulated communities from two contrasted types of
phylogenetic tree, i.e. using either PDA (proportional-to-distin-
guishable arrangements) or Yule model. Finally, we used coral reef
fish as a biological model to exemplify the relevance of
distinguishing between ‘true’ phylogenetic turnover and phyloge-
netic diversity gradients when analysing large-scale patterns of
PBD with marked differences in species richness and phylogenetic
diversity.

Distinguishing between Phylogenetic Diversity
Gradients and Spatial Turnover of Lineages:
Formulations

Using an additive partitioning framework, Baselga [19]
provided two separate components of species turnover and
nestedness underlying the total amount of CBD. Specifically, this
framework consists in decomposing the pair-wise Serensen
dissimilarity index (By.,) into two additive components accounting
for pure species turnover (Bg;m) and nestedness (Bqp.) patterns. The
Simpson’s dissimilarity index (Bg;,,) describes species turnover (or
species replacement) without the influence of richness gradients
[16,27-29]. Using basic operations on fractions, Baselga [19]
derived a Nestedness-resultant dissimilarity index (By,.) and
showed that B, is simply the difference between B, and Pgm
(i.e. Bsor = PsimtBsne)- Specifically, Bq,. reflects the increasing
dissimilarity between nested assemblages due to the increasing
differences in species richness [19]. These pairwise dissimilarity
indices are formulated as:

b+c
Bror 2a+b+c (1)
_ min(b,¢)
ﬂsim - a+min(b,c) (2)
_ max(b,c) —min(b,c) a

3)

sne

2a+b+c a+min(b,c)

where «a is the number of species common to both sites, b is the
number of species that occur in the first site but not in the second
and ¢ is the number of species that occur in the second site but not
in the first [19].
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Recently, Baselga [26] proposed a similar decomposition based
on the Jaccard’s dissimilarity index. The following pairwise
dissimilarity indices (formulas 5 and 6) represent, the turnover
and nestedness components of the Jaccard’s dissimilarity index

(Bjm' = Bthl+Bj11c): I‘eSpCCtiVCIYA

b+c
Bjac - m (4)
_ min(b,c)
ﬂsim - a+min(b,c) (5)
_ max(b,c) —min(b,c) a

ﬁjne - (6)

a+b+c a+2min(b,c)

Specifically, B, measures the proportion of species that would be
replaced between communities if both communities had the same
number of species, and hence accounts for species replacement
without the influence of richness difference [26]. In contrast, Bjm:
reflects the increasing dissimilarity between nested assemblages
due to the increasing differences in species richness. Baselga [26]
showed that the results obtained by the closely related Jaccard and
Serensen’s dissimilarity indices were roughly equivalent.
Considering two communities j and £ for which biodiversity can
be quantified in terms of phylogenetic trees (7; and 7 are the
subset of a rooted regional tree 7), we can express a as the sum of
lengths for branches that are shared between communities j and £,
b as the sum of lengths for branches that are present in community
J but not found in assemblage %, ¢ as the sum of lengths for
branches that are present in community £ but not found in
community j. We express b, ¢ and a using the phylogenetic diversity
index [30,31] that can be calculated as the total branch length of a
phylogenetic tree 7 that contains all species present in a
community. Each branch ¢ in the tree 7 has a length of w,

PD= Z wy (7)
T

PD,,, = Z w, (8)

TjUT

PD; = Z w, 9)

Ty

PD;= Z W (10)
T:
J

b=PDz, — PDy (11)
¢=PDr,—PD; (12)
a=PDy+PD;—PDy,, (13)
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PhyloSor
PDry— PD;+ PDr, — PDy
2(PD;+ PDy—PDry) + PDroy— PDj+ PDroy,— PDy. - (14)
_ 2PDg,— PD— PD;
- PDy.+ PD;

UniFrac

. PDTU,—PD,-+PDT(,[—PD,€
 PD;+PDy—PDry+PD1oy— PD;+ PDr, — PD; (15)
_ 2PDry— PD;— PD;

B PDr,

Overall, both the PhyloSor and UniFrac indices range from 0 (the
two communities are composed of similar species and hence share
the same branches in the rooted phylogenetic tree) to 1 (the two
communities are composed of distinct species that share no branch
in the rooted phylogenetic tree). The two indices differ only
because PhyloSor double weights the branch lengths shared by the
two communities (i.e. the denominator of PhyloSor corresponds to
the sum of phylogenetic diversity characterizing each community).

Following the formula (2), we obtained the turnover compo-
nents of the PhyloSor and UnikFrac indices, i.e. PhyloSory,,, and
UniFracry,,, respectively:

PhyloSory,,, =

min <PDT0, —PDy., PDTO,,PD].) (16)

PDy + PD;— PDy, +min(PDy,.— PDy, PD7,— PD;)

UniFracrym =

2 min(PDry — PDy,PD7o — PD)) (17)
PDy+ PD;— PD7,+2min(PD 7y — PDy,PDry — PD))

The phylogenetic diversity (hereafter PD) component of PhyloSor
is simply the difference between PhyloSor and PhyloSorry,, i.e.
PhyloSorpp = PhyloSor — PhyloSory,,,. It can be expressed using
the formula (3) and by replacing a, b and ¢ by the formula (10), (9)
and (8), respectively. Similarly, the PD component of UniFrac is
the difference between Unikrac and UniFracyy,.,, i.e. UniFracp.
p = UnilFrac — UniFracr,,,. It can be expressed using the formula
(6) and by replacing a, b and ¢ by the formula (10), (9) and (8),
respectively. All the analyses presented in this study were
performed using the R statistical and programming environment
[32]. The R code required to apply the additive partitioning
framework is provided as Supporting Information (File S1 and File
S2), together with the community dataset and the phylogenetic
tree used to exemplify our approach (File S3 and File S4,
respectively).

As a simple illustration of the proposed decomposition of PBD,
the figure 1 presents three different examples. The first two
examples (Fig. 1a and 1b, respectively) show two communities (A
and B) that have no species in common (Byor=Psm=1 and
Bsne = 0). However, communities A and B (example 1, Fig. 1a.)
display distantly related species, hence indicating locally phyloge-
netically clustered communities that have high PBD (PhyloSor =1,
i.e. the two communities compared do not share evolutionary
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Figure 1. Three simple examples of phylogenetic tree associ-
ated to a pair of communities. Each community is composed of four
species. All species are scored as present or absent in each example. All
branch lengths are set to one, except for the last example (c) for which
species 7 and species 8 display a branch length equal to 0.5. The three
examples show similar level of compositional beta diversity (i.e.
communities have no species in common) but differ in regards to the
level of phylogenetic beta diversity (see main text for more details).
doi:10.1371/journal.pone.0042760.9001

history). In contrast, communities A and B illustrating the example
2 (Fig. 1b) display closely related species, hence indicating locally
phylogenetically overdispersed communities that have little PBD
(PhyloSor = 0.4, i.e. the two communities share a large amount of
evolutionary history). For both examples, PhyloSor = PhySorr,,,
as PhySorpp = 0. For the first example, the PD component of PBD
is zero because the two communities do not share any branch
length and also display a similar level of PD (PD, =PDg =7, see
Fig. 1a). For the second example, the PD component of PBD is
zero only because the two communities compared display the
same level of PD (PD,=PDgy =10, see Fig. 1b). Indeed, if we
reconsider the example 2 with two communities having slightly
unequal levels of PD (Fig. 1c, PDo =10 and PDy =9), the overall
level of PBD (PhyloSor =0.421) is found to be different from the
turnover component of PBD (PhySor ., = 0.388). The difference
between the two indices (expressed as PhySorpp) quantifies the
amount of PBD caused by a difference in PD between the two
communities.

Let now consider 6 different communities sharing only two
species (species 2 and 3 in Fig. 2). The phylogenetic diversity
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Figure 2. An example of six communities associated to a
hypothetical phylogenetic tree. All species are scored as present or
absent in each example and all branch lengths are set to one.
Phylogenetic beta diversity (PBD) values were computed for several
pairs of communities according to the PhyloSor and UniFrac indices and
their respective turnover and phylogenetic diversity components (see
Table 1 and main text for more details).
doi:10.1371/journal.pone.0042760.g002

unique to community A remains constant while the phylogenetic
diversity unique to the other communities increases from B to F.
Comparisons between the community A and the other commu-
nities (B to I, see Table 1) show that the increasing phylogenetic
beta diversity (PhyloSor and UniFrac) is entirely caused by an
increasing contribution of the PD component (PhySorpp and
UniFracpp), while the turnover component remains constant
across comparisons (PhySort,,,, = 0.166 and UniFracr,,, = 0.286).

It is worth noting that PhyloSorpp = PhyloSor (or UniFracp.
p = Unil'rac) when the two communities compared are completely
nested in regards to their taxonomic composition (see Fig. 2 and
Table 1). For instance, the community B has no unique species
and hence the branch length unique to community B is zero.
Comparisons between the community B and the other commu-
nities (C to F, see Table 1) show that the increasing phylogenetic
beta diversity (PhyloSor and UniFrac) is entirely caused by an

Decomposition of Phylogenetic Beta Diversity

increasing contribution of the PD component while the turnover
component remains equal to 0.

Overall, the above examples (Fig. 1 and 2, Table 1) emphasize
that PhyloSory,,, and UniFracy,, are two ‘narrow-sense’
measures of PBD (i.e. ‘true’ measures of phylogenetic turnover)
that are independent of total branch length difference between the
two compared communities (see Fig. 2 and Table 2). Specifically,
PhyloSor,, and UniFracr,,,, measure the relative magnitude of
gain and loss of unique lineages between communities that is not
attributable to their difference in PD (i.e. phylogenetic turnover
expected if the two communities display similar levels of PD). In
contrast, PhyloSorpp and UniFracpp measure the amount of PBD
caused by PD differences between phylogenectically nested
communities (i.e. communities sharing at least one branch within

a rooted phylogeny).

Theoretical Examples Using Simulated
Communities

We simulated pairwise comparisons of communities by taking
random values of a, 4 and ¢ matching components (see formula 1
to 6) from uniform distributions between 1 and 100, where a is the
number of species common to both communities, 4 is the number
of species that occur in the first community but not in the second
and ¢ is the number of species that occur in the second community
but not in the first. The regional species pool is thus composed of
100 species. 10 000 local communities were generated.

For each pairwise comparison, we quantified the corresponding
PBD (i.e. using PhyloSor and Unikrac), and we applied the
proposed decomposition of PBD. To do so, we simulated the
phylogenetic relatedness among species by creating two types of
regional phylogenetic trees [33], the former being generated from
the PDA (proportional-to-distinguishable arrangements) model
and the latter generated from the Yule model (see Fig. SI).
Specifically, we aimed at testing the influence of phylogenetic tree
structure (i.e. balanced vs. unbalanced trees) on the turnover and
PD components of PBD. A phylogenetic tree generated under
PDA (proportional-to-distinguishable arrangements) model tends
to be more unbalanced than observed phylogenies because all
trees with the same number of tips (i.e. species) are equally likely
and the majority of potential arrangements are uneven [34,35].
Reversely, a Yule model tends to produce more balanced
phylogenetic trees than empirical ones because it assumes a

Table 1. Numerical examples showing the decomposition of the total amount of phylogenetic beta diversity into two
components accounting for ‘true’ turnover of lineages and difference in phylogenetic diversity, respectively.

a b [4 PhyloSor PhyloSorrym PhyloSorpp UniFrac UniFracrym UniFracpp

A-B 5 1 1 0.166 0.166 0 0.286 0.286 0

A-C 5 1 4 0.333 0.166 0.167 0.500 0.286 0.214
A-D 5 1 5 0.375 0.166 0.209 0.545 0.286 0.259
A-E 5 1 7 0.444 0.166 0.278 0.615 0.286 0.329
A-F 5 1 8 0.474 0.166 0.308 0.643 0.286 0.357
B-C 6 0 3 0.2 0 0.2 0.333 0 0.333
B-D 6 0 4 0.25 0 0.25 0.400 0 0.400
B-E 6 0 6 0.333 0 0.333 0.500 0 0.500
B-F 6 0 7 0.368 0 0.368 0.538 0 0.538

doi:10.1371/journal.pone.0042760.t001
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The decomposition was based on the PhyloSor and UniFrac indices according to different pairwise comparisons involving the phylogenetic tree presented in Fig. 2. a:
branch length shared by the two communities; b and c: branch length unique to the two communities compared, respectively.
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constant speciation/extinction rate along the tree [36,37].
Consequently, the Yule model induces a higher degree of
phylogenetic similarity between species than PDA model does.
The two simulated phylogenetic trees (see supplementary figures
S2) were created using the R package “apTreeshape” [38].
When considering the PhyloSor index and the PDA phyloge-
netic tree (see Fig S2), results showed that both the turnover and
PD components of PBD displayed a positive triangular relation-
ship with PhyloSor (Fig. 3a and 3c), with an upper bound (first
bisectrix) corresponding to the situation where PhyloSort,,, =-
PhyloSor (Fig. 3a) and PhyloSorpp =PhyloSor (Fig. 3c). Phylo-
Sorrym = PhyloSor when the two communities compared had the
same phylogenetic diversity, whereas PhyloSorpp = PhyloSor
when the two communities were completely nested in regards to
their taxonomic composition (see also Fig. 2 and Table 1). When
comparing PhyloSorpp and PhyloSoryy,, together, we found a

Decomposition of Phylogenetic Beta Diversity

negative triangular relationship with an upper bound (first
bisectrix) corresponding to the cases where PhyloSor = PhyloSor-
TurntPhyloSorpp = 1. Similar results were obtained when consid-
ering Unikrac (Fig. 3b, 3d and 3f). Overall, these relationships
based on simulated communities allow verifying the additive
property of the proposed decomposition of PBD. Baselga [19]
found similar triangular relationships when considering taxonomic
beta diversity.

We hypothesized that phylogenetic tree topology (i.e. balance
vs. unbalanced trees) may influence the observed patterns of PBD.
Results showed high levels of correlation (Pearson’s correlation
coefficient: 7,>0.95) between PBD values (PhyloSor and UniFrac)
obtained using the Yule and PDA phylogenetic trees (Fig. S2).
This was also verified when analysing the turnover and PD
components of PBD (Fig. S2), while the levels of correlation were
found to be lower (Pearson’s correlation coefficient: 7,~0.8). This
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Figure 3. Relationships between phylogenetic beta diversity (PBD) and its turnover and phylogenetic diversity components. These
relationships are shown according to the PhyloSor index (a, ¢, ) and the UniFrac index (b, d, f). Values of PBD were calculated according to simulated

communities (see main text for more details).
doi:10.1371/journal.pone.0042760.g003
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suggests that the shape of phylogenetic trees may have a weak
influence on PBD and its turnover and PD components. However,
a deeper work covering a wider panel of tree topologies [39] is
needed to fully investigate the influence of phylogenetic tree shapes
on PBD measurements.

Previous empirical studies emphasized that CBD and PBD may
be highly correlated [3,8]. Our simulation-based approach
confirmed that both the PhyloSor and UniFrac indices were
highly correlated with the Sorensen (Pearson’s correlation
coefficient: 7, =0.933, Fig. 4a) and Jaccard dissimilarity (Pearson’s
correlation coefficient: 7,=0.942, Fig. 4b) indices, respectively.
This was also verified when analysing the turnover and PD

Decomposition of Phylogenetic Beta Diversity

components of PBD that showed high levels of correlation with the
turnover and nestedness components of CBD (Pearson’s correla-
tion coefficient 7, ranging from 0.80 to 0.84, see Fig. 4c,d,ef). It is
worth noting that the phylogenetic diversity component of PBD is
not trivially related to the nestedness component of CBD (see
Fig. 4a,b). For example, when two communities are non-nested
(i.e. Bone or Bine =0), values of PhyloSorpp and Unikracpp can be
higher than 0. This highlights that PhyloSorpp and UniFracpp
measure the amount of PBD caused by PD differences for both
nested and non-nested communities. Overall, these results
emphasize that appropriate null models are required to analyze
patterns of PBD and underlying processes. For instance, using
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PhyloSor (or Unifrac) and its turnover and PD components, one
can test whether two communities are phylogenetically more or
less dissimilar than what is expected given their taxa dissimilarity
(CBD). This can be achieved by comparing the phylogenetic
dissimilarity of the observed communities to a null expectation
obtained by randomizing species across the tips of regional
phylogenies while holding species richness and CBD constant
(3,8].

Empirical Patterns of Phylogenetic Beta Diversity
Between Coral Reef Fish Communities

We illustrated the relevance of partitioning PBD into ‘true’
phylogenetic turnover and PD components by exploring patterns
of PBD among local communities of coral reef fishes belonging to
the family Labridae. The Labridae is a species rich fish family,
circa 600 species [40], that is characteristic of coral reef fish faunas
around the world [41]. We compiled labrid fish species
occurrences for 6 sites distributed along a longitudinal gradient
(from the Indian Ocean to the Eastern Pacific passing by the Indo-
Australian Archipelago, hereafter IAA, see Table S1). At each site,
species occurrences were based on 12 x20-min. timed swims (four
locations x three habitats; the reef slope, crest and flat), to provide
an overview of the local labrid fauna (census details are provided in
[42]). This gradient spanned almost the entire Indian and Pacific
Oceans, and encompassed the major physical factors that are
thought to affect the global distribution of reef fishes [42]. To

Decomposition of Phylogenetic Beta Diversity

explore PBD, we used a labrid reef fish phylogeny (108 coral reef
fish species recorded from the 6 locations) that was constructed
using a genetic algorithm approach based on a maximum
likelihood criterion and dated using Bayesian Inference [43].

The PhyloSor index showed low levels of PBD between sites (i.e.
values of PhyloSor ranging from 0.16 to 0.44, Table 2), except for
the pairwise comparisons involving Panama where high levels of
PBD were found (e.g. values of PhyloSor ranging from 0.74 to
0.82, see Table 2). Using UniFrac index provided similar results
(Table 2). Arguably, one might conclude that high turnover of
lineages occurs between Panama (East Pacific) and the other sites
located in the Indian Ocean (Mauritius) and the IAA (Great
Barrier Reef, Moorea, Togian and Vanuatu). However, distin-
guishing between the turnover and PD components of PBD
showed that the level of phylogenetic turnover was roughly low for
each pairwise comparison (e.g. values of PhyloSory,,, ranging
from 0.07 to 0.35, see Table 2). In fact, the high level of PBD
found between Panama and the other sites was mostly explained
by their difference in PD, as shown by the PhyloSorpp index that
ranged from 0.42 to 0.49 (Table 2, Fig. 5a). This result can be
explained by the fact that Panama differs greatly from the other
sites due to its low level of PD that is directly related to a low
species richness (see Table S1). In contrast, the PD component of
PBD showed rather low values for each between-site comparison
excluding Panama (i.e. values of PhyloSorpp ranged from 0.01 to
0.17, Table 2, Fig. 5b), as these sites displayed comparable levels of
PD (i.e. from 11.9 to 17.7, Table S1). These results suggest that
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Figure 5. Phylogenetic relationships between two regional poo
comparison are presented (a: Great Barrier Reef vs. Panama, and b: Great Ba

Is of labrid reef fish species. Two examples of between-region
rrier Reef vs. Togian). Red color shows branch length shared by the two

communities compared. Green and blue colors represent the total branch length unique to each community.

doi:10.1371/journal.pone.0042760.9g005
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using ‘broad-sense’ measures of PBD such as the PhyloSor index Overall it appears that the IAA lies at the heart of a
may greatly over-estimate the level of spatial turnover of lineages if phylogenetic radiation, with the broader Indo-Pacific exhibiting
the two sites show contrasting levels of phylogenetic diversity. a high degree of nestedness. In many ways this reflects the
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Figure 6. Flow chart of the main steps to quantify standardized effect size of phylogenetic beta diversity.
doi:10.1371/journal.pone.0042760.9006
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taxonomic similarities seen in both fishes and corals across the
domain [44], most of the Indo-Pacific being a low diversity subset
of the JAA. A marked departure from this pattern was only found
in geographically marginal locations of the East Pacific, such as
Panama, where a history of isolation and species loss has resulted
in an unusual low and unique diversity of coral reef fish species
[44]. In addition, the development of a complex mosaic of reef
habitats in the IAA during the Oligocene/Miocene has been
shown to be a significant driver of cladogenesis in several coral reef
fish families such as Labridae [43], hence explaining the high level
of PD found in the IAA compared to Panama. Our results suggest
that the high levels of PBD between Panama and the other sites is
not a result of its historical association with the west Tethys [41]
but with a more recent history of isolation and decline [45].
Recent approaches exploring PBD allowed the differentiation of
historical (e.g. speciation and dispersal) vs. niche-based processes
(e.g. environmental filtering and niche similarity) in shaping
assemblage structure at both local and regional scales [3,9,14].
These studies compared observed values of PBD with those
obtained by a null model where random assemblages are drawn
from the overall species pool (Fig. 6). For instance, if observed
values of PBD at the regional scale do not differ from what would
be expected by chance alone, phylogenetic structure of regional
assemblages is unlikely to be the result of historical processes [14].
In addition, as discussed above, CBD and PBD are highly
correlated and an appropriate null model is therefore required to
determine whether PBD is higher or lower than expected given
CBD. We therefore used a null model approach (see Fig. 6) similar
to that applied by Graham et al. [3] and Swenson e al. [46].
Specifically, a null distribution of PBD values was generated by
randomizing species across the tips of the labrid phylogeny 9999
times while holding species richness and CBD constant. A
standardized effect size (SES) was then calculated for the PhyloSor
index and its turnover and PD components using the mean and
standard deviation of the null distribution as follows [47]:

Xobs - Xnull

SES= ,
s.d.(Xoun)

where X, is the observed PhyloSor value, Xpun the mean of the
null distribution and s.d.(X,,;) the standard deviation of the null
distribution. SES values greater than 1.96 indicate a higher PBD
than expected by CBD while SES values below -1.96 indicate a
lower PBD than expected by CBD. Specifically, we aimed at
exploring whether PBD measures that account for differences in
PD (PhyloSor) showed similar SES values than PBD measures that
do not account for PD differences (PhyloSoryy,,).

This null model analysis showed non-random patterns of PBD
for 6 pairwise comparisons out of 14 (Table 2), particularly those
involving the GBR, Moorea, Togian and Vanuatu sites.
However, accounting or not for PD differences between sites
showed contrasting results for 3 pairwise comparisons (Maur-
itius-Togian, Moorea-Vanuatu, Togian-Vanuatu). For instance,
the PhyloSor index showed a higher PBD than expected given
CBD between the Togian and Vanuatu sites (SES=2.96, see
Table 2). This may be interpreted as a non-random spatial
turnover of lineages resulting from either past speciation and
extinction events or dispersal limitation of lineages or niche-
based processes or a combination of both. However, controlling
for PD differences between these two sites revealed a random
pattern of lineage turnover (SES=1.49). Conversely, using the
PhyloSor index did not show a higher or lower PBD than
expected by CBD between the Moorea and Vanuatu regions
(SES=1.04, see Table 2), while the PhyloSor,, index did
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(SES =2.05). Such discrepancies suggest that accounting for PD
differences between sites may lead to contrasting conclusions in
regards to the degree of phylogenetic structure in assemblage
composition. Here our aim was not to disentangle the relative
roles of ecological and evolutionary processes in shaping large-
scale patterns of phylogenetic structure in coral reef fish
communities. This would need analysing a larger dataset.
Instead, we were interested in showing how the choice of
including or not differences in PD to quantify PBD could lead to
contrasting results from a null model.

Concluding Remarks

Integration of phylogenetic information into a community
ecology framework has provided new insights into our under-
standing of the roles of ecological and evolutionary processes in
shaping patterns of community structure at local and regional
scales [1,2,9,48,49]. The present study participates to this
emerging field of research called “ecophylogenetics” [48].

Overall, our results suggest that PD gradients may distort
phylogenetic turnover patterns if the PBD measures (e.g.
PhyloSor or Unifrac) incorporate PD differences between
localities (or regions). This finding has important implications in
the context of hypothesis testing in community ecology and
biogeography [9]. For instance, one might test whether large-
scale patterns of PBD can be explained by an environmental
filtering process (or lineage filtering process), whereby local
communities experiencing different environments contain differ-
ent lineages [50]. However, these localities encompassing various
regions may greatly differ in their level of phylogenetic diversity
due to regional processes, e.g. regional differences in the amount
of time for speciation [51] and/or differential rates of immigra-
tion [52]. Using the PhyloSor (or UniFrac) index that incorpo-
rates PD differences may hence make it difficult to distinguish
between the relative roles of local-scale processes (e.g. environ-
mental filtering) and regional processes (e.g. time for speciation)
in shaping large-scale patterns of PBD. When the environmental
filtering hypothesis is to be tested, we therefore recommend the
use of the PhyloSor (or Unilrac) index in tandem with its ‘true’
phylogenetic turnover component (PhyloSor,,,,), so as to control
for the potential confounding effect of PD differences. Decou-
pling variation in beta diversity from variation in alpha diversity
has rapidly emergered as an important step towards a better
understanding of the drivers of community structure across
latitudinal and altitudinal gradients [53,54]. From a phylogenetic
perspective, our proposed decomposition of PBD into ‘true’
phylogenetic turnover and PD components participates to this
emerging biogeographical issue.

Recent studies aimed at determining the statistical indepen-
dence of several PBD metrics [11,25,55]. For instance, Swenson
[11] showed that many PBD metrics (e.g. PhyloSor, UniFrac and
two nearest neighbor metrics) were highly related, most of them
being able to detect basal vs. terminal PBD. As mentioned by
Swenson [11], future studies introducing new PBD metrics would
show how these metrics actually provide novel information and
strengthen the statistical toolkit of the phylogenetic community
ecologist. In line with a previous additive partitioning framework
of CBD [19,26], we provided new insights into a specific class of
PBD metrics that belongs to the family of phylogenetic diversity-
based dissimilarity measures. Specifically, we propose a new
phylogenetic turnover metric that is independent of variation in
PD between localities (or regions). We hope that our proposed
PBD metrics will help future studies to unravel the mechanisms
driving large-scale patterns of biodiversity.
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