This file is part of the following reference:

Access to this file is available from:

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact ResearchOnline@jcu.edu.au and quote http://eprints.jcu.edu.au/23758/
THE PROFITABILITY, GROWTH AND MEAT QUALITY OF GRAIN FINISHED ENTIRE MALE AND CASTRATED *Bos indicus* CATTLE FROM A NORTH AUSTRALIAN PRODUCTION SYSTEM

Thesis submitted by Steven Wainewright B.Ag

February 2012

In fulfilment of the requirements for the Degree of Master of Tropical Animal Science in the School of Veterinary & Biomedical Sciences at James Cook University, Australia
STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library, and via the Australian Digital Thesis network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place further restriction on access to this work.

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis

Steven Wainewright
October, 2012
STATEMENT ON THE CONTRIBUTION OF OTHERS

I, the author, wish to recognize that this thesis could not have been completed without the grateful assistance of the below mentioned individuals and organisations.

<table>
<thead>
<tr>
<th>Nature of Assistance</th>
<th>Contribution</th>
<th>Name and Affiliation of Co-contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual support</td>
<td>Statistical support and data analysis</td>
<td>Dr Sandy Clarke, The University of Melbourne, Statistical Consulting Centre</td>
</tr>
<tr>
<td>Financial support</td>
<td>Stipend</td>
<td>Meat and Livestock Australia</td>
</tr>
<tr>
<td></td>
<td>Research funds</td>
<td>James Cook University</td>
</tr>
<tr>
<td>Data collection</td>
<td>Research assistance</td>
<td>Prof. Lee Fitzpatrick, Assoc. Prof. Anthony Parker, Mr Christopher Coleman and Mr Peter Finlay; School of Veterinary and Biomedical Sciences James Cook University</td>
</tr>
<tr>
<td>Infrastructure external to JCU</td>
<td>Meat science laboratory and equipment</td>
<td>Dr Geert Geesink, Dept of Meat Science University of New England, Armidale</td>
</tr>
</tbody>
</table>
DECLARATION
I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Steven Wainewright
November, 2011

DECLARATION OF ETHICS
The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the James Cook University Statement and Guidelines on Research Practice (2001). The proposed research methods received clearance from the James Cook University Experimentation Ethics Review Committee.

Steven Wainewright
November, 2011

STATEMENT OF ACCESS
I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library, and via the Australian Digital Thesis network, for use elsewhere.
I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place further restriction on access to this work.

Steven Wainewright
November, 2011
ACKNOWLEDGEMENTS

The author of this thesis would like to acknowledge the financial support of James Cook University in allowing this project to be undertaken. A special thank you to the following people for their support and contributions to the design and execution of the project: Prof. Lee Fitzpatrick for his supervision and guidance over the past 3 years and most importantly, for providing me with the opportunity to be a post-graduate student and allowing me to be part of this exciting project and Mr. Chris Coleman for his expertise in everything to do with animal production. I am sure this project (and many others) would not have been possible without his knowledge and practical know-how. Mr. Peter Finlay for managing the cattle at Fletcherview and always having cattle available when needed, often at short notice. I thoroughly enjoyed visiting and staying at Fletcherview and will miss the hospitality of Peter and his wife Anne. Dr. Geert Geesink for his expertise in meat science. Dr. Geesink’s help in allowing me to complete my assays at the University of New England’s meat science laboratory is greatly appreciated. Mr. Bill Holmes for the introduction and guidance through the Breedcow software program. Bill’s assistance and questioning of the assumptions and data allowed me to successfully complete the economics chapter. Dr. Sandy Clarke for her expertise in statistical design and analysis. The statistical analysis was made possible by Sandy’s advice and support. Prof. Henry Zerby and Prof. Steven Moeller for their contributions to the original design of the project and for their ongoing technical support. The training that I received while visiting Ohio State University was invaluable to the successful completion of the project. Mrs. Lorraine Henderson for her expertise in formatting and editing the thesis. As a newcomer to the university system Lorraine was able to help and guide me through the system constantly advising me where to go and who to speak with. I would also like to acknowledge Assoc. Prof. Tony Parker who originally encouraged me to take the opportunity to work on this exciting project. Over the past 3 years Dr. Parker has guided me and overseen the direction of this project. Dr. Parker has been an outstanding supervisor and I will always be thankful for the support and also the friendship that he and his family have offered me from the very beginning. Finally I would like to acknowledge the wonderful support of my fiancée. Although I will receive the qualification for this work, much recognition needs to be given to for her ongoing understanding and encouragement. has experienced the highs and lows of this process as much as me and without her
commitment and her love this would not have been possible. From the bottom of my heart thank you.
ABSTRACT

The profitability, growth, carcass and meat quality from high grade; grain fed *Bos indicus* entire male and castrated cattle that were either positively or negatively homozygous or heterozygous for the calpastatin gene from a vertically integrated north Australian production system were investigated. Preliminary analysis into the profitability of producing entire vs. castrated male cattle for the domestic market using Breedcow herd budgeting software was undertaken based on a hypothetical breeding herd of 1200 cows. Although entire males had higher gross margins compared to castrates during the finishing phase, they were unable to make up the earlier losses of $24.04/AE at weaning. There were no differences in performance between entire males and castrates prior to the onset of puberty in the on-farm experiment. Following the onset of puberty and combined with an energy dense finishing ration, entire males grew 27% faster than castrates. There were no differences in temperament between the castrates and entire males (P > 0.05). Entire males produced carcasses that were heavier (P = 0.005), had less marbling (P = 0.001) and were more mature (P = 0.007) compared to carcasses from castrates. Both entire males and castrates that were negatively homozygous or heterozygous produced carcasses that were heavier than carcasses from animals that were positively homozygous for the calpastatin gene (P < 0.05). All but one entire male carcass qualified as gain fed yearling beef (GFYG) under the Ausmeat selection criteria and consequently were awarded a similar price per kg compared to castrates. The price combined with the heavier carcass weights resulted in entire males being $50 more profitable per carcass compared to castrates. Entire males produced tougher samples of the *M. Longissimus dorsi* after aging for 14 days (P = 0.001) and 28 days (P = 0.005) compared to castrates. Selecting animals that were either positively or negatively homozygous or heterozygous for the calpastatin gene didn’t affect *M. Longissimus dorsi* meat tenderness. In conclusion entire male cattle can be managed and produced for the domestic trade, profitably, in accordance with Ausmeat selection criteria. In addition, meat tenderness in *Bos indicus* castrated or entire male cattle was unable to be improved by selecting against the calpastatin gene.
Table of contents

ABSTRACT ... iv
LIST OF TABLES .. viii
LIST OF FIGURES .. ix
LIST OF ABBREVIATIONS ... ix
LIST OF PUBLICATIONS .. xi

CHAPTER 1: Introduction ... 1

CHAPTER 2: A review of the i) development of the Australian meat grading model
ii) the use of entire males in an Australian production system and iii) meat quality

2.1 Development of standards .. 4
 2.1.1 History of the Australian beef industry ... 4
 2.1.2 Consumption of beef in Australia .. 4
 2.1.3 The need for an Australian meat grading system ... 6
 2.1.4 Development of the grading model ... 7

2.2 The use of entire males in an Australian production system 9
 2.2.1 New Zealand beef production from entire males .. 9
 2.2.2 Average daily gain ... 10
 2.2.3 The effect of castration method on performance .. 12
 2.2.4 Behaviour and management of entire males ... 14
 2.2.5 Meat quality of entire males .. 16
 2.2.6 Growth implants in entire males .. 19
 2.2.7 Production of short scrotum males .. 21

2.3 Meat quality .. 23
 2.3.1 Meat tenderness .. 22
 2.3.2 Breed / Genotype effect on meat quality .. 24
 2.3.3 Differences in calpain and calpastatin activity between genotypes 25
 2.3.4 Heritability of calpastatin ... 26
 2.3.5 Growth path and its effect on meat quality .. 27
 2.3.6 Animal age affecting meat quality ... 28
 2.3.7 Pre-slaughter handling effects on meat quality ... 30
 2.3.8 Physiological responses to pre-slaughter stressors .. 30
2.3.9 Pre-slaughter stressors in north Australian cattle production... 30
2.3.10 Transportation... 31
2.3.11 Social remixing... 32
2.3.12 Lairage... 32
2.3.13 Marketing method.. 33
2.3.14 Post slaughter affects on meat quality.............................. 34
2.3.15 Aging... 34
2.3.16 Hormone implantation affecting aging............................ 36
2.3.17 Controlled chilling.. 37
2.3.18 Hanging method... 39
2.3.19 Electrical stimulation.. 40
2.3.20 Calcium chloride muscle injection................................. 42
2.3.21 Profitability of producing entire males vs. castrates........... 42

2.4 Conclusion... 44

CHAPTER 3: An economic case study of entire male grain fed beef from a North West Queensland production system
3.1 Abstract... 45
3.2 Introduction.. 46
3.3 Materials and Methods.. 47
 3.3.1 Breeding phase... 50
 3.3.2 Backgrounding phase... 51
 3.3.3 Feedlot phase... 51
3.4 Results.. 52
3.5 Discussion... 54
3.6 Conclusion... 56

CHAPTER 4: The on-farm performance of entire male and castrated Bos indicus cattle in a north Australian production system
4.1 Abstract... 57
4.2 Introduction.. 58
4.3 Materials and Methods.. 59
 4.3.1 Animals and treatments... 59
 4.3.2 Data collection... 61
 4.3.3 Statistical design and analysis...................................... 61
4.4 Results.. 65
4.5 Discussion...65
 4.5.1 Genotype...66
 4.5.2 On-farm performance..66
 4.5.3 Behaviour...69
4.6 Conclusion...71
CHAPTER 5: The classification, quality and profitability of carcasses produced
by entire male and castrated Bos indicus cattle in a north
Australian production system
5.1 Abstract...73
5.2 Introduction...74
5.3 Materials and Methods..75
 5.3.1 Slaughter protocol and sample collection..........................75
 5.3.2 Laboratory analysis...76
 5.3.3 Statistical design and analysis..77
5.4 Results..77
5.5 Discussion..83
 5.5.1 Tenderness...83
 5.5.2 Temperament...85
 5.5.3 Carcass parameters...85
 5.5.4 Grading and profitability...89
5.6 Conclusion..91
CHAPTER 6: Discussion..93
 6.1 Preliminary investigation...93
 6.2 Perception...95
 6.3 Growth, meat quality and profitability.................................97
 6.4 Management..98
CHAPTER 7: References..100
APPENDIX 1...xii
APPENDIX 2...xiii
APPENDIX 3...xiv
APPENDIX 4...xv
APPENDIX 5...xvi
APPENDIX 6...xvii
APPENDIX 7...xviii
APPENDIX 8...xix
LIST OF TABLES

Table 3.1. The Breedcow model assumptions for the breeding, backgrounding and feedlot finishing phases of the production system..47

Table 3.2. The breeding herd structure calculated by the Breedcow model at weaning..48

Table 3.3. The economic status of the herd at the breeding, backgrounding and feedlot finishing phases of the production system when entire male progeny are valued at the entire male market price (i) or at the castrated male market prices (ii) and castrates are valued at the castrated male market price..50

Table 3.4. A break even analysis upon feedlot exit assuming entire males are (i) marketed at entire male grid prices and (ii) marketed at castrates grid values and castrates valued at castrated male grid value..51

Table 4.1. The mean liveweight of entire and castrated males that are either – homozygous, heterozygous or + homozygous for the calpastatin gene over time..59

Table 4.2. The means of Rib fat (mm) measured at the 12th rib for entire and castrated cattle from day 113 to 512..60

Table 4.3. The means of Eye Muscle Area measurement (cm\(^2\)) for entire and castrated male cattle ..60

Table 4.4. The means of flight score (secs) for entire and castrated males at 12-14 months of age that were either – homozygous, heterozygous or + homozygous for the calpastatin gene..60

Table 5.1. The means and least squares difference for Warner Bratzler Shear Force measurements (kg) of the M. Longissimus dorsi from Bos indicus entire and castrated males measured after 7d, 14d and 28d of aging at 4° Celsius...72

Table 5.2. Carcass parameters (Mean ±SE) measured at the abattoir by MSA graders and in the laboratory by research staff..74

Table 5.3. The means and SEM of pH and temperature (°C) for Bos indicus entire and castrated males measured at one hourly time intervals for six hours post-slaughter to determine if there was any incidence of cold shortening ...75

Table 5.4. The number of animals graded into classes according to number of days on feed, dentition, fat depth, meat colour, fat colour and secondary sexual characteristics..75

Table 5.5. The $/kg and $/carcass means of entire and castrated males that were either – homozygous, heterozygous or + homozygous for the calpastatin gene...76
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The history of beef consumption per capita in Australia</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The history of beef price ($) / head in Australia</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The Achilles tendon hanging method (left) compared to the sacro-sciatic or tenderstretch method</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The cows and calves prior to weaning at the Fletcherview research station</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>The image of the eye muscle area as displayed on the ESAOTE Pie medical ultrasound using a 3.5MHz backfat probe</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The picture illustrates the physical development of the cattle at approximately 12-14 months of age</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Performing the Warner Bratzler Shear Force assays at The University of New England’s Armidale meat science laboratory</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Scatterplots of WBSF (kg) of the M. Longissimus dorsi and flight score (sec) at three aging periods (7, 14 and 28) for entire and castrated cattle</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>The development of entire and castrated males in the feedlot after 30 days on feed</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>This example illustrates the degree of intramuscular fat or marbling in a M. Longissimus dorsi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Terms</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>AE</td>
<td>Adult Equivalents</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BRD</td>
<td>Bovine Respiratory Disease</td>
</tr>
<tr>
<td>BF</td>
<td>Back Fat</td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>CWT</td>
<td>Carcass Weight</td>
</tr>
<tr>
<td>DE</td>
<td>Digestible Energy</td>
</tr>
<tr>
<td>DFD</td>
<td>Dark Firm Dry</td>
</tr>
<tr>
<td>EMA</td>
<td>Eye Muscle Area</td>
</tr>
<tr>
<td>ES</td>
<td>Electrical Stimulation</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GFYG</td>
<td>Grain Fed Yearling Beef</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin Releasing Hormone</td>
</tr>
<tr>
<td>HGP</td>
<td>Hormone Growth Promotant</td>
</tr>
<tr>
<td>HSCW</td>
<td>Hot Standard Carcass Weight</td>
</tr>
<tr>
<td>LWT</td>
<td>Live Weight</td>
</tr>
<tr>
<td>MLA</td>
<td>Meat and Livestock Australia</td>
</tr>
<tr>
<td>MQ4</td>
<td>Meat Quality 4</td>
</tr>
<tr>
<td>MSA</td>
<td>Meat Standards Australia</td>
</tr>
<tr>
<td>REML</td>
<td>Restricted Estimated Mixed Linear</td>
</tr>
<tr>
<td>RF</td>
<td>Rib Fat</td>
</tr>
<tr>
<td>SSB</td>
<td>Short Scrotum Bull</td>
</tr>
<tr>
<td>TBC</td>
<td>Tropical Breed Content</td>
</tr>
<tr>
<td>USMB</td>
<td>United States Marbling</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>WBSF</td>
<td>Warner Bratzler Shear Force</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

