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INTRODUCTION

Ecology is deeply concerned with understanding
the processes that drive the predictable patterns we
see in species, assemblages and communities. The
very complexity of nature means that we must make
the task manageable by breaking down the diversity
of life, its interacting links, the systems that support it
and the physical environment in which the support-
ing processes are set, into smaller logical units. For
many purposes, the logical subdivision is the ecosys-
tem (Tansley 1935), a biotic community or assem-
blage and its associated physical environment in a
specific place.

The ecosystem concept is critical to everyday eco-
logical practice. The idea of an ecosystem as a unit
with defined properties (Lamont 1995, O’Neill 2001)
forms the implicit basis for extrapolating understand-
ing of processes and functions from one example of
an ecosystem to another. The importance of such
extrapolation is apparent when considering how
often ideas, models, values, etc., derived from a par-
ticular ecosystem in one part of the world, are used as
a basis for understanding a ‘similar’ ecosystem in
other parts of the world. This ranges from the extrac-
tion of parameters for ecological models, through
explanations of pattern and process, to support or
refutation for alternative explanations for observa-
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tions; things we have all done many times. However,
valid extrapolation requires an assumption of ecosys-
tem equivalence, i.e. that the different examples of
the ecosystem in question are actually similar in
regard to the understanding being extrapolated.
Obviously, we must be clear about the limits of our
understanding whenever we extrapolate (Rothchild
2006). This becomes more of an imperative when that
extrapolation involves ecosystem units that may be
thousands of kilometres apart. Despite the impor-
tance of ensuring that such extrapolations are valid,
there are few examples where the assumption of
ecosystem equivalence has been evaluated or even
explicitly stated. Most studies that have touched on
ecosystem equivalence have done so while pursuing
other specific aims, and the implications of their
results for equivalence are varied. For instance, Bell-
wood (1996) showed global consistency in taxonomic
composition of coral reef fish fauna when he devel-
oped his reef fish consensus list, and Fuentes (1976)
found ecological convergence between taxonomi-
cally unrelated lizard communities in Chile and Cal-
ifornia. In contrast, Smith et al. (1989) detected global
variations in mangrove propagule predation, while
Winterbourn et al. (1981) showed that the function-
ing of New Zealand streams was not consistent with
the river continuum concept (Vannote et al. 1980)
that was the dominant paradigm for North American
streams at the time. There are other relevant exam-
ples, but together, they do not represent a significant
body of work compared to what is required to vali-
date or invalidate the practice of extrapolating
understanding of processes and functions among
spatially disparate examples of ecosystem types.

Equivalent ecosystems would need to function sim-
ilarly, contain habitats that provide similar services to
biota, and have similar roles performed by the taxo-
nomic and functional groups that occupy them. At a
more tractable level, ecosystem equivalence assumes
the occurrence of similar biotic components; biolo-
gists talk about the avifauna of boreal forest ecosys-
tems (e.g. Cheng et al. 2010) or the benthic epifauna
of abyssal plain ecosystems (e.g. Amaro et al. 2010),
under the tacit understanding that we are consider-
ing functionally and largely taxonomically equiva-
lent assemblages in each case. This assumption
seems reasonable because the idea of an ecosystem
type suggests a particular set of underlying processes
and functional roles (O’Neill 2001), so it seems logical
that this particular set of roles is most likely to be ful-
filled by similar organisms.

But how consistent are ecosystem-specific faunal
assemblages? What do any differences mean for

ecosystem function? I address these questions using
the example of the fish assemblages of mangrove
ecosystems. Similar functions are attributed to man-
grove ecosystems throughout the world, but recently,
the global applicability of one critical function, the
provision of nursery grounds for nekton (Nagel-
kerken et al. 2000, Sheaves et al. 2006), has come
into question (Dorenbosch et al. 2005, Hammer-
schlag et al. 2010), making the mangrove ecosystem
an interesting test subject. Specifically, I deal with 4
questions: (1) Is there a characteristic global man-
grove fish assemblage, and if so, what are its charac-
teristic components, patterns of dominance and func-
tional attributes? (2) Is there substantial systematic
variation in mangrove fish assemblages or their func-
tioning around the world, and if so, what is the pat-
tern of variation? (3) What do these similarities and
differences mean for ideas of faunal equivalence and
an identifiable ‘mangrove ecosystem’? (4) What are
the implications for extrapolation of functional
understanding from one ecosystem unit to another?

MATERIALS AND METHODS

I reviewed the international literature relating to
mangrove ecosystems. I considered studies in which
the system in question was described as a mangrove
system or could be identified as such. I collected data
from all available studies that appeared to report
complete fish species lists, either directly or as part of
auxiliary material. The resulting data set comprised
studies from around the world. However, its diverse
derivation presented a range of difficulties, some of
which were addressed at least partially by the inclu-
sion of explanatory variables and some that required
specific assumptions (see Supplement S1 at  www.
int-res.com/articles/suppl/m461p137_supp.pdf). Over-
all, there were many sources of random or unex-
plained variation. It was assumed that any variation
that could not be accounted for with explanatory
variables would have the effect of making underly-
ing patterns less distinct, so the expectation was that
any strong patterns that were detected would indi-
cate robust outcomes despite the masking variation.

Data analyses

Data were collected on the number of species in
each family from 76 studies (Table 1; see Supple-
ments 2 & 3 at www.int-res.com/articles/suppl/
m461p137_ supp.pdf) that fit the criteria of (1) relat-
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ing to mangrove ecosystems and (2) reporting com-
plete fish species lists. These data were standardised
by the total number of species per study to produce a
dependent variable data set comprising the propor-
tion of the total species pool for each study contri -
buted by each family. The 76 studies covered 32
countries (Fig. 1) and provided 99 independent data
sets. The studies were grouped into 22 areas (Table 1)
based on geographic proximity to produce a spatial
explanatory variable set compact enough for analy-
sis. In most cases, these formed natural groups within
a radius of ~1000 km. Where there was a continuum
rather than a natural split, differentiation was based
on recognised geographic divisions (e.g. north -
eastern Australian sites separated into tropical and
sub-tropical at the Tropic of Capricorn). These were
reasonably consistent with the ‘large marine ecosys-

tems’ of Sherman & Aquarone (2004) but were often
smaller in spatial extent.

Patterns of similarity and difference

The similarities of mangrove fish assemblages
around the world, regional grouping structure and
the importance of additional explanatory variables
were analysed with a multivariate classification and
regression tree (mCART) (De’ath 2002), based on
Bray-Curtis dissimilarity using the mvPART package
in R software (De’ath 2012). The dependent variables
were the relative number of species per family (i.e.
percentage of total numbers of species for each of the
99 data sets) for families occurring in >5% of the data
sets. The selection of the final tree models was con-
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Country Area Area Code Data sets FG

Brazil North Brazil N Brazil 3 EC Atlantic
Brazil Southeast Brazil SE Brazil 1 EC Atlantic
Mexico West Mexico Mexico 1 EC Atlantic
Benin West Africa W Africa 1 EC Atlantic
Gambia Northwest Africa NW Africa 8 EC Atlantic
Nigeria West Africa W Africa 2 EC Atlantic
Senegal Northwest Africa NW Africa 2 EC Atlantic
Australia Northwest Australia NW Australia 2 Australasian
Australia Tropical Northeast Australia TN Australia 10 Australasian
Philippines East Asia E Asia 2 Australasian
S Africa South East Africa SE Africa 2 Australasian
Singapore Indochina Indochina 1 Australasian
Taiwan East Asia E Asia 3 Australasian
Thailand Indochina Indochina 2 Australasian
Vietnam East Asia E Asia 1 Australasian
Belize Belize Belize 2 Caribbean
Curacao Caribbean Caribbean 2 Caribbean
Lesser Antilles Caribbean Caribbean 1 Caribbean
Puerto Rico Caribbean Caribbean 3 Caribbean
USA Southeast USA USA 11 Caribbean
Australia Subtropical Australia ST Australia 10 Central Indo-Pacific
Bangladesh Indian subcontinent India 1 Central Indo-Pacific
Sri Lanka Indian subcontinent India 1 Central Indo-Pacific
A Samoa Pacific Island Countries PIC 1 Central Indo-Pacific
Borneo Borneo (Sulawesi) Borneo (Sulawesi) 1 Central Indo-Pacific
Fiji Pacific Island Countries PIC 1 Central Indo-Pacific
Kenya East Africa E Africa 6 Central Indo-Pacific
Madagascar Madagascar Madagascar 1 Central Indo-Pacific
New Caledonia Pacific Island Countries PIC 1 Central Indo-Pacific
PNG Papua New Guinea PNG 5 Central Indo-Pacific
Solomon Pacific Island Countries PIC 1 Central Indo-Pacific
Sulawesi Borneo (sulawesi) Borneo (Sulawesi) 2 Central Indo-Pacific
Tanzania East Africa E Africa 1 Central Indo-Pacific
W Samoa Pacific Island Countries PIC 1 Central Indo-Pacific
Australia Southeast Australia SE Australia 3 Central Indo-Pacific
Papua New Guinea West Papua W Papua 3 Central Indo-Pacific

Table 1. Spatial distribution of studies and faunal group (FG) structure determined using multivariate classification and 
regression tree (mCART) analysis. EC: eastern central
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ducted using 10-fold cross validation, with the 1-SE
tree (the smallest tree with cross validation error
within 1 standard error [SE] of that of the tree with
the minimum cross validation error) selected as the
final tree model, a procedure that produces valid,
biologically interpretable trees (Breiman et al. 1984,
De’ath 2002). The impact of each variable on model
structure was evaluated by its occurrence in the final
1-SE tree. Additionally, the ‘relative importance’ of
variables was assessed to ensure variables that had
high overall importance, but were not the best pre-
dictors for particular splits, were not overlooked.
Importance is determined by using each variable at
each branching of the final tree, with the best overall
classifier given a relative importance of 100%. The
predictor variables were: area, mangrove system
type (estuarine [small proportion of area freshwater
influenced], riverine [includes large area of fresh -
water influenced mangroves and possibly non -
mangrove areas], coastal, bar-built lagoonal, reefal,
mixed or undefinable), tide range (calculated from
database courtesy J. Chittleborough, Australian
National Tidal Centre), sampling target (mangroves
only vs. whole-of-mangrove system), system scale
(small, medium, large or very large), and sampling
gear type (e.g. gill nets, seine nets, beam trawls or
stake nets).

The mCART analysis defined 4 distinct faunal
groups (FGs). Families that discriminated among the
4 mangrove fish FGs defined by the mCART were
assessed using indicator analysis (Dufrene &
Legendre 1997), with the significance of indicator
groups tested using 1000 Monte Carlo permutations.

A family that was a perfect indicator (i.e. an indicator
value [IV] of 100%) of an FG would be one that
occurred only in that FG and in all data sets from that
FG. Families with maximum indicator values (mIVs)
≥30% (all significant at p ≤ 0.04) were considered
‘indicative’ of an FG. Family summaries by Froese &
Pauly (2010) were used to establish whether indica-
tive families had widespread (recorded as occurring
in most parts of the world where mangroves are
found) or restricted distributions. Homogeneity of
proportions were compared across the FGs using a
randomisation test of independence (RTI) (McDonald
2009), a simple permutation test (1000 iterations)
using a χ-statistic.

The primary non-mangrove ecosystem affinities
(freshwater, coastal, reef) of common mangrove fam-
ilies (occurring in >25% of studies in any FG) were
assessed based on information reported by Froese &
Pauly (2010). Again, ambiguities were accounted for
with reference to the body of literature reviewed. The
homogeneity of proportions of common mangrove
families in each FG with the various non-mangrove
affinities were compared using RTI (McDonald
2009). To further investigate the degree to which
mangrove fish families overlapped with families
characteristic of coral reefs, the occurrence of com-
mon mangrove families in Bellwood’s (1996) coral
reef fish family consensus list were evaluated for
each FG. Bellwood’s (1996) consensus list represents
one of the few attempts to define a characteristic
marine fauna and provides a useful reference point
because it relates to families characteristic of another
dominant shallow water tropical marine ecosystem.
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Fig. 1. Locations of mangrove fish studies (f) and the 22 area groupings (ellipses) 
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Functional comparisons among the FGs

Patterns of trophic dominance among FGs were
evaluated for common mangrove families. Trophic
role assessment was based on the dominant role
of the family reported by Froese & Pauly (2010).
Where a range of trophic roles was reported, the
evaluation was modified in line with information
from the literature reviewed that was specific to the
genera inhabiting mangroves. The homogeneity of
proportions of common families in 7 trophic cate-
gories (feeders on macrobenthos, microinvertebrates,
nekton, phyto-detritus, plankton, algae and/or  micro -
invertebrates or coral) across the FGs was evaluated
using an RTI (McDonald 2009). The main habit
(benthic: sedentary bottom associated; demersal:
active bottom associated; bentho-pelagic: occurring
at a range of depths but not predominantly pelagic
or demersal; pelagic: consistently found in surface
or midwater) of each common mangrove family was
evaluated in a similar way, and the homogeneity of
proportions was compared among the FGs using an
RTI (McDonald 2009).

To investigate the consistency of functional at -
tributes of mangrove fish assemblages, the dis -
tribution of feeding strategies of one trophic group,
nekton feeders, was compared among FGs. Four
broad strategy  categories (see Supplement S4 at
www. int-res. com/articles/ suppl/ m461p137_ supp. pdf)
were defined: ambush predators (either attacking
from cover, e.g. buried in sediment, or using cam-
ouflage), foragers (predators, primarily associated
with benthic environments, that move freely search-
ing for prey, which they catch more by stealthy
approach, followed by a short attacking burst,
rather than by running down their prey), cursorial
(usually pelagic or mid-water predators that pre-
dominantly feed on prey in open water that they
actively chase and capture) and static habituators
(remain motionless or very slow moving in open
water in a non-threatening manner, allowing prey
to approach to a point where a rapid lunging attack
is initiated). This is, of course, a very approximate
definition of predatory strategies because a range
of strategies may be employed within a family or
even a species. The evaluation was based on in -
formation reported by Froese & Pauly (2010) with
ambiguities accounted for with reference to the
 literature reviewed. Analysis was again based on
common mangrove families. The homogeneity of
proportions of nekton feeders in the 4 strategy cat-
egories across the FGs was evaluated using an
RTI (McDonald 2009).

RESULTS

The 99 data sets include a total of 170 families of
fish (see Supplement S3 at www.int-res.com/articles/
suppl/m461p137_supp.pdf). Despite the many po -
tential sources of variation in the data set, mCART
produced a final 4-leaf tree that explained 43% of
the total variation in the data set (Fig. 2). All of the
splits in the final tree were due to ‘area’, with no
other predictor variables contributing to model ex -
planation. Area also had the highest relative im -
portance (by definition 100%), with tidal range the
next most important (65%). Other potential sources
of variation had low relative importance (gear type:
52%, system scale: 37%, system type: 18%, sampling
target: 8%), indicating that the patterns in family
structure were robust despite these potentially com-
plicating factors.

Patterns of similarity and difference

There was a major separation in mangrove fish
fauna between ocean basins. The initial mCART split
segregated all of the Indo-Pacific areas, except the
single sample from Mexico’s Pacific seaboard, from
all of the Atlantic sites (Figs. 2 & 3). Subsequent
splits delineated 4 FGs: Eastern Central Atlantic (EC
Atlantic), Caribbean, Central Indo-Pacific (Central
IP) and Australasian. The inclusion of western Mexi-
can area as part of the EC Atlantic FG must be inter-
preted with caution; the Mexican data come from a
single study, so there was no opportunity for it to
group with other geographically similar sites, mak-
ing it impossible to infer any particular meaning from
its grouping with the Atlantic sites.

The 2 Atlantic FGs were spatially separated (ex -
cept for the inclusion of Mexican sites in the EC
Atlantic FG) (Fig. 3) and featured discrete groups of
indicator families (IVs > 30%) usually having low
indicator values for other FGs or being totally absent
from them (Fig. 4). The EC Atlantic FG was charac-
terised by Families Sciaenidae, Cichlidae, Elopidae,
Polynemidae, Eleotridae, Ariidae, Clupeidae, Pristi-
gasteridae, Mugillidae and Cla ro teidae, while the
Caribbean FG (Fig. 4b) featured high indicator
 values for Cyprinodontidae, Scaridae, Lutjanidae,
 Gerreidae, Pomacentridae, Poeciliidae, Haemulidae,
Sparidae and Chaetodontidae. The Indo-Pacific FGs
showed more complex relationships: rather than
forming single spatially discrete areas, the FGs
formed a mosaic of patches. This complexity was
reflected by considerable overlap among the indica-
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tor groups (Fig. 4c,d), with the Australasian and Cen-
tral IP FGs having similar compliments of families but
differing in the strength of indication of those fami-
lies. The Australasian FG included tropical Australia,
mainland south-east Asian and south-east African
sites, with 8 families showing high indicator values
(Fig. 4c): Leiognathidae, Ambassidae, Terapontidae,
Scatophagidae, Sillaginidae, Platycephalidae, Gobi-
idae and Siganidae. The Central IP group comprised
sites from across the central part of the Indo-Pacific
region (Fig. 3) including most island sites together
with eastern African, Indian and sub-tropical and
temperate Australian sites. There were only 4 fami-
lies with high indicator values (Fig. 4d): Apogonidae,

Hemiramphidae, Kyphosidae and Mul -
lidae; however, many families also
found in the Australasian FG had mod-
erate indicator values (20 to 30%).

Even though 4 FGs could be differen-
tiated on the basis of indicator fami -
lies that characterised the differences
among FGs, there were 41 families that
occurred in all 4 FGs (Fig. 5). Many of
these were reported from a substantial
proportion of studies in all FGs and
could be considered as a core group
typical of mangrove ecosystems around
the world.

There were clear differences in the
mixtures of widespread families and
families with restricted distributions
(χ2 = 14.51, df = 3, p = 0.0006) among the
FGs with high indicator values (mIV

≥ 30%). The EC Atlantic and Caribbean FGs showed
a dominance of widespread families and small con -
tribution from families with restricted distributions
(Fig. 6). Widespread taxa completely dominated the
small group of highly indicative families in the
 Central IP FG, but the situation was reversed for the
Australasian FG, where most of the highly indicative
families had restricted distributions.

Substantial differences (χ2 = 13.93, df = 6, p =
0.0234) in the non-mangrove affinities of the com-
mon mangrove families (occurring in >25% of stud-
ies in any FG) typical of the 4 FGs provide insight
into the faunal characteristics underlying differences
and similarities among FGs (Fig. 7). Despite taxo-
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Fig. 3. Spatial extents of the 4 faunal groups (FGs) defined by the mCART (Fig. 2). EC: eastern central, IP: Indo-Pacific
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Fig. 2. Structure of a 4-leaf multivariate classification and regression tree
(mCART) analysis for the relative number of species per family from sites
around the world. Predictor variables are area, mangrove system type, tidal
range, sampling target, system scale and sampling gear type. Area was the
only predictor that was influential in producing the tree solution. Areas that
group together are listed next to the branches. Numbers in brackets below
terminal branches indicate the number of data sets represented by each final
group. EC: eastern central, IP: Indo-Pacific, PIC: Pacific Island Countries, 

PNG: Papua New Guinea
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nomic differences highlighted by the mCART analy-
sis, the common mangrove families of the EC Atlantic
and Australasian FGs had similar affinities, with
major contributions from coastal families and the rest
comprising families with freshwater affinities. In con-
trast, substantial components of both the Caribbean
and Central IP FGs fauna had reef affinities, al -
though the importance of families with freshwater
affinities differed between these FGs. Comparison
to Bellwood’s (1996) coral reef fish consensus list
(Table 2) reinforces the pattern of non-mangrove
affinities. For common mangrove fish, families from
the consensus list only occurred regularly (>40% of
samples) in samples from the Caribbean (6/10) and
to a lesser extent in the Central IP (4/10) and Aus-
tralasian (3/10) FGs.

Functional comparisons among the FGs

Mangrove fish assemblages showed a consistent
trophic mix that did not vary substantially among

FGs (χ2 = 3.64, df = 18, p = 0.9998), with macro -
benthos and nekton feeding families dominating the
trophic structure (Fig. 8a). Similarly, there was a con-
sistent pattern across FGs (χ2 = 3.14, df = 9, p =
0.9597) for the assemblages to be dominated by dem-
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Fig. 4. Indicator values (% of perfect indication) of species indicative of the faunal groups defined by the mCART (Fig. 2). 
EC: eastern central, IP: Indo-Pacific

Fish family EC Australasian Caribbean Central 
Atlantic IP

Acanthuridae – – 47 31
Apogonidae – 48 – 64
Blenniidae – – – –
Carangidae 72 87 58 79
Chaetodontidae – – 42 –
Holocentridae – – – –
Labridae – – – –
Mullidae – 48 32 51
Pomacentridae – – 53 –
Scaridae – – 53 –

Table 2. Families from Bellwood’s (1996) coral reef fish fam-
ily consensus list that occurred in >25% of samples in partic-
ular mangrove fish FGs. EC: eastern central, IP: Indo-Pacific
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Fig. 6. Proportional contribution of families with widespread
(grey-shaded) and restricted (hatched) distributions to the
fish fauna of the 4 FGs. EC: Eastern central, IP: Indo-Pacific
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ersal species (Fig. 8b). Nekton predator strategies
were also conservative. A total of 64 families of nek-
ton predators occurred in at least 25% of FGs (see
Supplement S4). There was no evidence of differ-
ences in the strategy mix among the FGs (χ2 = 5.87,
df = 9, p = 0.7638), suggesting a commonality of func-
tional prey acquisition strategies despite regional taxo -
nomic differences. Foragers comprised the most com-
mon strategy across the FGs followed by ambushers,
cursorial feeders and static habituators (Fig. 9).

DISCUSSION

Despite the occurrence of distinct FGs in different
parts of the world, there was evidence of underlying
taxonomic equivalence among mangrove fish assem-
blages. The total suite of mangrove fish comprised
a restricted pool of 170 families, only about one-third
of the ~537 families currently recognised (Eschmeyer
2010). Within this pool, there were substantial
 similarities among fish assemblages of mangrove
ecosystems around the world, despite regional differ-
ences in faunal composition that are inevitable con-

sequences of biogeographic distribution patterns. A
total of 41 families were represented in all 4 man-
grove FGs (Fig. 5), with many occurring in a sub -
stantial proportion of studies in each FG. For exam-
ple, Gerridae, Gobiidae, Clupeidae, Tetraodontidae,
Mugi lidae, Carangidae, Sphyraenidae, Haemulidae,
Belonidae, Serranidae and Engraulidae were found
in at least 30% of studies from each FG. The consis-
tent occurrence of this core group of families was
impressive given the range of variation in the data
base (different sampling gears, sampling intensities,
scales of investigation and study foci as well as struc-
tural differences of the systems) that would be ex -
pected to add considerable noise to the data.

The idea of a core group of families typical of man-
groves around the world parallels the idea of a ‘con-
sensus list’ of coral reef fish families (Bellwood 1996)
that predictably occur in high species richness on
coral reefs around the world (Bellwood 1998). The
present study adds some perspective to the debate
flowing from the reef fish consensus list idea (Bell-
wood 1998, Robertson 1998). Bellwood (1998) con-
cluded that the consensus list actually defined a shal-
low tropical–subtropical benthic fish fauna. Except
in areas of the world where near-shore coral reefs are
plentiful, there is little overlap between the reef fish
consensus list and the common mangrove fish fami-
lies, even though both are major shallow tropical/
subtropical benthic fish assemblages. This implies
distinct ecosystem-based coral reef and mangrove
fauna rather than simply a single shallow tropical/
subtropical assemblage.

Although the global occurrence of a core man-
grove fauna supports the idea of faunal equivalence,
this is not the complete story. Despite the core taxo-
nomic similarity, it was possible to group mangrove
fish assemblages into distinct FGs, each differenti-
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ated by the occurrence of characteristic indicator
families. The 2 Atlantic FGs were spatially separated
and had distinctly different characteristic fauna. In
contrast, the Indo-Pacific FGs occurred as spatially
interspersed groups and were characterised by dif-
ferences in the importance of indicator families
rather than clear differences in assemblage struc-
ture. Both FGs had a similar mix of indicator families,
but most indicator values were substantially higher
for the Australasian FG than the Central IP FG. Indi-
cator values are a function of the uniqueness of
occurrence of a family in an FG and how regularly
the family occurs in samples from the FG. Conse-
quently, lower indicator values for the Central IP
than the Australasian FG for the families common to
both reflect less consistent occurrence in the Central
IP. This is presumably a reflection of the fact that the
Central IP includes many isolated sites, while most of
the Australasian sites occur mainly on continental
land masses.

It is notable that whether studies only considered
fish using mangrove forests themselves, or sampled
more broadly and included associated habitats (e.g.
seagrass beds and intertidal flats), was not an impor-
tant factor in differentiating assemblages. Conse-
quently, from a fish perspective, the ‘mangrove eco -
system’ appears to be defined at a whole-of mangrove
system level (i.e. the mangroves and associated habi-
tats) rather than the scale of the mangrove forest. This
accords well with the many fish studies that emphasise
strong links between mangroves and other habitats
(e.g. Robertson 1988, Nagelkerken & van der Velde
2002, Dorenbosch et al. 2005, Sheaves & Johnston
2008) and with studies showing high levels of faunal
similarity over meso-spatial scales (Ley 2005, Sheaves
2006, Sheaves & Johnston 2009). It also aligns with the
idea that, in a functional sense, mangrove forests are
part of a complexly interacting mosaic of habitats
(Sheaves 2009, Hammerschlag & Serafy 2010). The
occurrence of a whole-of-mosaic, highly mobile fish
assemblage implies that this fish assemblage performs
a crucial role in interlinking elements of this mosaic
into a functional mangrove ecosystem.

The fish indicative of FGs included families with
both restricted and broad geographic ranges. Conse-
quently, the among-region differences can be ex -
plained in part by differences in the balance between
families with broad and restricted geographic ranges
(i.e. by biogeographic patterns). However, that does
not appear to be the only factor. There were notable
differences in the non-mangrove affinities of com-
mon mangrove families. Both of the major groupings
of FGs (Indo-Pacific vs. Atlantic) comprised an FG

with only coastal and freshwater non-mangrove
affinities and an FG that included families with
reef affinities. The common mangrove families of
EC Atlantic and Australasian FGs had similar  non-
mangrove affinities, with major contributions from
coastal families and the rest comprising families with
freshwater affinities. Both FGs comprise mainly large
continental land masses with large rivers, so the con-
tribution of fish with freshwater affinities accords
with the ideas that the nature (Sheaves et al. 2007,
Packett et al. 2009) and productivity (Abrantes &
Sheaves 2010) of coastal and estuarine mangrove
environments as well as the compositions of man-
grove fish fauna (Sheaves 1996, 1998) and fisheries
(Dalzell et al. 1996) are influenced by the extent of
inputs from large rivers. The Caribbean FG also had
strong freshwater affinities, probably a reflection of
large riverine influences on continental mangrove
systems surrounding the Caribbean and the pres-
ence of large islands with substantial river systems,
but also had a considerable proportion of common
mangrove families with reef affinities. The common
fauna of the Central IP FG had coastal and reef affini-
ties but no families with freshwater affinities. The dif-
ference in fauna between the Central IP and Aus-
tralasian FGs can probably be attributed to quite
different environmental settings. The Indo-Pacific
islands, which compose much of the Central IP FG,
typically have extensive areas of coastal mangroves
with coral reefs often in close proximity (Ellison
2009), while the continental settings of most of the
Australasian FG include large areas of riverine man-
groves (Spalding et al. 1997).

The contrast between the coral reef affinities of
many characteristic families defining the Central IP
and Caribbean FGs and the lack of the characteristic
reef families characterising the Australasian and EC
Atlantic FGs implies the occurrence of 2 distinctly
different mangrove assemblages in both the Indo-
Pacific and Atlantic groups. The presence of con-
trasting assemblages highlights fundamental differ-
ences in the environmental settings of the different
FGs. This interaction between mangrove fish assem-
blages and environmental setting have been linked
to differences in the provision of ecological services
for particular cases (Dorenbosch et al. 2005). The
present study suggests that such interactions are
probably widespread, indicating that the fish assem-
blages of these contrasting FGs should be treated as
separate entities when the role of mangroves as nurs-
eries for coral reef fish is evaluated. This apparently
elementary difference in settings could not be con-
trolled for in the present study, in which the level of
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background information was very variable, but sug-
gests that detailed, coordinated, broad-scale assess-
ments of the impacts of geographic and geomorpho-
logic setting on mangrove fish assemblages, and
consequently on function, are needed.

From a taxonomic perspective, the evidence for
equivalence is somewhat ambiguous; there are com-
mon faunal components, but as noted in previous
comparisons of mangrove systems in different parts
of the world (Barletta & Blaber 2007), there are also
clear taxonomic differences among definable faunal
groupings. However, taxonomic similarity or dif -
ference is only one aspect of equivalence among
ecosystem units and for many purposes is only of
minor ecological importance compared to equiva-
lence of function, the focus of most of the profound
ecological questions (e.g. in the case of mangroves in
their role as nurseries). The faunal differences among
FGs suggest the potential for functional differences
among the mangrove fish assemblages of the differ-
ent regions. Notwithstanding, mangrove fish assem-
blages seemed to possess broadly homogeneous
functional attributes; besides strong differences in
affinities to other ecosystem types, there was no
 evidence of functional differences for any of the
 variables investigated. Across the data set, the fish
assemblages are characteristic of mangrove systems
as a whole rather than the mangrove forest per se,
comprise both globally distributed families and fami-
lies with local distributions and are dominated by fish
with demersal habits that are mainly feeders on
macro benthos and nekton, with nekton feeders pre-
dominantly using foraging and ambush prey capture
strategies (Baker & Sheaves 2006). Consequently,
despite taxonomic differences, mangrove fish assem-
blages demonstrate considerable functional equiva-
lence, at least within the resolution of the data. The
lack of functional change in the face of faunal varia-
tion suggests alternative taxa fulfilling roles deter-
mined by constraints of the ecosystem, rather than
functional change in response to biogeographic pres-
sures.

The circumglobal occurrence of a functionally con-
sistent fauna characteristic of a particular ecosystem
type implies ecosystem equivalence, which has
implications that reach far beyond the mangrove
ecosystem. At face value, it appears to provide a
degree of validity for extrapolating understanding of
processes and functions from one example of an
ecosystem to another. However, despite the implied
support for ecosystem equivalence, this is induction
at its most extreme (Hurlbert 2004, Rothchild 2006),
so great caution is needed when making any extrap-

olation from one instance to a general principal. This
is critical because ecologists regularly use informa-
tion and understanding derived from an ecosystem
unit in one part of the world to interpret the patterns
they find in another example of the ‘same’ ecosystem
type, often in an entirely different area. Accordingly,
support for the idea of ecosystem equivalence must
be set in context of the available data and limitations
of the present study. (1) The present study was case
specific; it only investigated one ecosystem type, so it
might represent an anomalous situation. (2) Only 1
metric (consistency of fish assemblage) was used to
measure ecosystem equivalence. The measuring tool
can be critically important. For instance, Jenkins &
Buikema (1998) found that taxonomic resolution was
an important determinant of whether differences
were detected among zooplankton assemblages, and
Smith et al. (1989), who used mangrove propagule
predation as their measure, found differences around
the world due to variations in forest type and seed
predator guild. (3) The present study only considered
1 spatio-conceptual scale set; it focussed on the man-
grove ecosystem (rather than, for instance, on its
component parts, such as roots, leaves, soft sub-
strates and channels), did not consider if the man-
grove system was a ‘natural unit’ in its own right
(rather than part of a larger ‘eco system’) and only
considered 1 level of resolution (family). Conse-
quently, there are still many important questions to
be asked, such as, ‘how consistent is this pattern for
other ecosystem types?’, ‘how sensitive is the pattern
to the way it is measured?’, ‘when would scientific
resolution be fine enough for taxonomic differences
to be important?’, ‘how consistent are similarities
when different spatio-conceptual scales are consid-
ered?’, and ‘how consistent does structure and func-
tion need to be to allow useful extrapolation of ideas,
processes and functions to other examples of an
ecosystem type?’ Clearly, although the example of
mangrove fish assemblages gives some support for
extrapolation among units of an ecosystem type, few
studies have investigated this question, and the
extensive and detailed body of work needed to sup-
port that practice does not exist. Many more studies,
and deep evaluation of the outcomes and implica-
tions, are needed before the tacit assumption of
equivalence can be confidently assumed. In fact, as
more extensive understanding develops, the issues
are more likely to move towards questions such as
‘under what circumstances can equivalence be
assumed?’ and ‘what limits should be placed on
extrapolation from one example of an ecosystem type
to others?’
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In depth evaluation of ecosystem equivalence is
urgently needed because this untested assumption is
central to the usefulness of every model based on
data from another part of the world and the validity
of every interpretation based on understanding
extrapolated from a distant location.
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