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ABSTRACT 
 

In this study, the pitting corrosion susceptibility and its role on the hydrogen 

embrittlement behavior of AZ80 magnesium alloy were studied using slow strain rate 

testing (SSRT), electrochemical technique and immersion test method. The 

electrochemical and immersion tests in chloride-containing solution revealed severe 

pitting corrosion in the alloy. The SSRT results of the alloy under continuously-

exposed conditions in chloride-containing solution and in distilled water showed that 

the mechanical properties of the alloy deteriorated considerably in both the solutions. 

Pre-exposure of the alloy in distilled water did not show any considerable change in 

the mechanical properties of the alloy, however in chloride-containing solution a 

significant loss in the mechanical properties was noticed. Cleavage facets were 

observed in the vicinity of the localized attacked region of the alloy pre-exposed in 

chloride-containing solution. Interestingly, desiccating the pre-exposed (in chloride-

containing solution) samples reduced the loss in the mechanical properties, which 
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could be attributed to reversible hydrogen. Thus, the study suggests that pitting 

corrosion facilitates hydrogen entry into the alloy and causes hydrogen embrittlement.  

Keywords: Magnesium alloy; Hydrogen embrittlement; Stress corrosion; Pitting 

corrosion 

 
 
1. Introduction 
 

The environment-assisted cracking (EAC) behavior of magnesium and its 

alloys has been studied over the past years. Generally, the EAC in magnesium and its 

alloys has been attributed to anodic-dissolution assisted cracking, i.e., stress corrosion 

cracking (SCC) and to hydrogen-assisted cracking caused by hydrogen embrittlement 

(HE). The anodic dissolution tendency of magnesium in aqueous environments is due 

to its high electronegative potential and to the fact that the corrosion product/film 

formed on magnesium is not protective, especially in chloride-containing 

environment. Hence, magnesium and its alloys are susceptible to localized corrosion, 

such as pitting, and to SCC in chloride-containing environment [1-4].  

Magnesium dissolution in aqueous solution, an anodic reaction, is 

accompanied by a cathodic reaction, generally hydrogen evolution.  It is widely cited 

that hydrogen plays a major role in the EAC of magnesium alloys [1,5]. However, the 

HE mechanism(s) are not clearly established. Lynch and Trevena [6] believed that in 

pure magnesium, hydrogen diffusion ahead of the crack tip causes HE. Based on 

theoretical extrapolation, Atrens et al. [7] suggested that the hydrogen diffusion 

coefficient in magnesium at ambient temperature is sufficient to allow for significant 

hydrogen transport ahead of stress corrosion cracks. Stampella et al. [8] reported that 

hydrogen entry into the pure magnesium is only possible when the hydrogen 

evolution reaction occurs on a film-free magnesium surface. In other words, hydrogen 

entry through Mg(OH)2 passive film is highly unlikely. However, in the presence of 
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chloride ions the passive film is not stable, it dissolves [9].  Hence, presence of 

chloride ions in the solution can pave way for hydrogen entry into the alloy.  

A study by Meletis and Hochman [10] on the EAC behavior of pure 

magnesium suggested that EAC was accompanied by hydrogen evolution and that 

cracking was initiated at corrosion pits. However, in the aluminium-containing AZ 

series magnesium alloys which are commercially popular, the nature of the protective 

film is different than that in pure magnesium. Fairman and Bray [11] proposed that 

two Al3+ ions are incorporated into the tetrahedral Mg(OH)2 lattice by replacing three 

Mg2+ ions resulting in vacant lattice sites, and as a result a thicker film was formed on 

aluminium-containing magnesium alloy as compared to that in pure magnesium.  

Although aluminium addition to magnesium enhances the general corrosion resistance 

significantly, the pitting corrosion susceptibility is not completely inhibited [12]. 

Hence, in order to elucidate the role of pitting corrosion on the HE behaviour of 

magnesium-aluminium alloy, AZ80 magnesium alloy was examined using slow strain 

rate testing under different environmental conditions.   

 
2. Experimental procedure 
 

Extruded AZ80 alloy (Al-8.59, Zn-0.45, Mn-0.16, Fe-0.003, Mg – balance, all 

wt.%) was used in this study. The alloy was heat-treated to the F condition (stress 

relieved for 8 hours at 385C prior to extrusion, aged for 16 hours at 420C, cooled in 

air).  The microstructure of the alloy was examined using an optical microscope. The 

specimens for the optical microscopy were prepared by standard metallographic 

procedures and were etched in a solution containing 3.5 g picric acid, 6.5 ml acetic 

acid, 20 ml water and 100 ml ethanol. A detailed study of the secondary phase 

particles distributed in the alloys was done using a scanning electron microscope 

(SEM) and an energy dispersive X-ray (EDX) analyser. 



 4

Immersion tests were carried out on flat samples with the dimension 

20x20x5 mm. The samples were grinded with SiC paper up to 1200 grit and were 

cleaned with acetone prior to testing. The samples were immersed in 0.5 wt.% NaCl 

solution for 4 hours and 24 hours and then cleaned using chromic acid. Later, the 

samples were taken to SEM to identify the mode of corrosion.   

The electrochemical corrosion behaviour of the alloy was studied using the 

potentiodynamic polarization technique. The experiments were carried out using a 

potentiostat and a typical three electrode system with platinum gauze as counter 

electrode, saturated calomel electrode (SCE) as reference electrode and the specimen 

as the working electrode. The samples were polished with SiC paper up to 1200 grit 

and were cleaned with acetone prior to testing. Potentiodynamic polarisation was 

carried out in 0.5 wt.% NaCl solution and in distilled water. Post-corrosion analysis 

was carried out on these samples using SEM.  

The EAC behaviour of the alloy was studied using the slow strain rate testing 

(SSRT) method, according to ISO 7539-7 standard [13]. Round tensile specimens 

with gauge dimensions of 10 mm length and 5 mm diameter were used in this study. 

The sample preparation was similar to that for the electrochemical corrosion tests. In 

the SSRT tests, the samples were pulled at a strain rate of 10-6/s in different 

environmental conditions, i.e., air, distilled water, 0.5 wt.% NaCl solution, pre-

exposed to distilled water for different durations  (24 hours and 48 hours) and then 

tested in air, and pre-exposed to 0.5 wt.% NaCl solution for different durations (24 

hours and 48 hours)  and then tested in air. Fracture surface analysis on the failed 

samples was done using SEM to identify the mode of cracking. 

 
3. Results 
 
3.1 Microstructure 
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Optical microstructure of AZ80 alloy showed fine grains and some random 

clusters of secondary phase particles (Fig. 1a). A higher magnification of the clusters 

revealed a lamellar structure of the particles (Fig. 1b). The grain boundaries were also 

decorated by secondary phase particles. EDX analysis showed that the precipitates in 

the grain and at the grain boundaries were rich in magnesium and aluminium, 

corresponding to Mg17Al12 (β phase).  

 

 

3.2 Immersion test 
 

The SEM micrographs of the alloy after immersion in 0.5 wt.-% NaCl solution 

for two different durations are shown in Fig. 2. The alloy immersed for 4 hours 

showed pitting corrosion and also some attack along the grain boundaries (Fig. 2a). 

The pit size was similar to the grain size of the alloy, which suggests two possible 

mechanisms: (i) complete dissolution of grains, or (ii) continuous attack along the 

grain boundaries leading to the falling out of the grains. Although a few small pits 

were evident in the grains, the latter mechanism appears to be more likely in creating 

large pits since grain boundary attack was predominant. The grains containing 

lamellar structure of β-precipitates showed selective dissolution of only the -phase 

leaving behind the stable network of β-precipitates. The degree of attack in the alloy 

increased significantly when the alloy was immersed for a longer period, i.e., 24 hours 

(Fig. 2b). The pits had coalesced along the extrusion direction, creating trenches.  

 
3.3 Potentiodyanamic polarisation 
 

The polarization curve of the alloy obtained in 0.5 wt.% NaCl solution is 

shown in Fig. 3. The anodic curve of the alloy showed a break-down potential just 
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50 mV above the corrosion potential (Ecorr). Generally, an observation of a break-

down potential in the anodic curve is related to passive-film breakdown/pitting 

corrosion of the alloy. In order to confirm this, AZ80 alloy was tested in distilled 

water. The alloy showed no break-down potential in distilled water (Fig. 3), thereby 

confirming that the breakdown potential was an indication of the alloy`s susceptibility 

to pitting corrosion in chloride-containing environment. Further, the SEM 

micrographs of the sample after polarisation in 0.5 wt.% NaCl also showed large pits 

(Fig. 4a). A higher magnification of the corroded sample revealed a large number of 

small pits and coalescence of pits (Fig. 4b).  

 
3.4 Slow strain rate testing 
 

The SSRT data of AZ80 alloy tested in different environments, i.e., in air, 

distilled water and in 0.5 wt.-% NaCl solution is shown in Fig. 5. The alloy exhibited 

a strain to failure, f, of 25 % and an UTS of 350 MPa when tested in air. In the tests 

in distilled water, the alloy showed significantly lower mechanical properties: f = 11 

% and UTS = 320 MPa. The mechanical properties further decreased in the presence 

of chloride (i.e., 0.5 wt.% NaCl): f = 7 % and UTS = 290 MPa.   

The SSRT data of AZ80 alloy tested in air after pre-exposure to distilled water 

and in 0.5 wt.-% NaCl for 24 hours period is shown in Fig. 6.  The alloy pre-exposed 

to distilled water did not show any noticable difference in the mechanical properties 

from that of the air tested samples; accordingly, the pre-exposed alloy exhibted: f = 

25 % and UTS = 355 MPa. However, the alloy pre-exposure to 0.5wt.% NaCl 

solution showed a drastic loss in the mechanical properties. Thus, the alloy pre-

exposed to 0.5wt.% NaCl solution exhibited: f = 8 % and UTS = 300 MPa. In order 

to see whether there was any influence of increasing pre-exposure period, the samples 
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were pre-exposed to distilled water and 0.5wt.% NaCl solution for 48 hours. The alloy 

pre-exposed to distilled water did not show any significant change in the mechanical 

properties, i.e. f = 24 % and UTS = 350 MPa, as compared to the 24 hours pre-

exposed alloy. However, the mechanical properties of the alloy decreased marginally 

when pre-exposed to 0.5wt.% NaCl solution for 48 hours as compared to that of the 

24 hours pre-exposed alloy. The pre-exposed alloy for 48 hours exhibited:  f = 7 % 

and UTS = 290 MPa.   

 
3.5 Fractography 
 

Fig. 7 shows representative fractographs of the SSRT samples tested in air, 

distilled water and in 0.5wt.% NaCl solution. As expected, the alloy tested in air 

showed typical ductile fracture features (Fig. 7a). In contrast, the alloy tested in 

distilled water showed a brittle failure (Fig. 7b). A higher magnification of the 

fracture surface revealed predominantly transgranular cracking with some secondary 

cracks (Fig. 7c). The alloy tested in 0.5 wt.% NaCl solution showed a different mode 

of failure. Noticeably, the edge of the fracture surface exhibited significant pitting 

corrosion (Fig. 7d). The circumference of the failed tensile sample revealed localized 

corrosion attack (Fig. 7e) similar to that of the flat samples immersed in 0.5wt.% 

NaCl solution for 24 hours (Fig. 2b). The fracture surface revealed a mixed-mode of 

failure, i.e. brittle features and a few fine dimples (Fig. 7f).  

The fractographs of the alloy pre-exposed to distilled water and to 0.5 wt.% 

NaCl solution for 48 hours are shown in Fig. 8. Similar to the air tested sample (Fig. 

7a) the fracture surface of the alloy which had been pre-exposed to distilled water 

showed typical ductile fracture features (Fig. 8a). However, the fracture surface of the 

alloy pre-exposed to 0.5 wt.% NaCl solution showed two distinct regions, i.e. 
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localized corrosion attack at the edge of the fracture surface and some brittle feature 

(Fig. 8b). Typical cleavage facets were observed in the vicinity of localized corrosion 

region (Fig. 8c,d).  

 

4. Discussion 
 

Specimens of AZ80 alloy showed drastic loss in the mechanical properties 

when being continuously immersed in distilled water during the SSRT test, whereas 

the alloy showed no significant change in the mechanical properties when the alloy 

was pre-exposed to distilled water and then SSRT tested. The reason for this different 

behavior of the alloy could be due to the pH change in the environment and the effect 

of slow-straining. Basically, dissolution of magnesium in aqueous solution increases 

the pH of the solution due to the reaction:  Mg + 2H2O   Mg(OH)2 + H2 [14].  The 

neutral aqueous solution becomes alkaline very rapidly, i.e., the pH of the solution 

quickly reaches 9 and then slowly further increases with time. According to the 

Pourbaix diagram, magnesium hydroxide is stable at alkaline pH (above 9) [15]. In 

the case of the pre-exposure test in distilled water the increase in the pH due to initial 

dissolution of magnesium protects the alloy from further corrosion and hence does not 

affect the mechanical properties during SSRT testing in air. However, in the case of 

continuous exposure of the sample in distilled water during the SSRT testing, 

although the pH of the solution increases due to the initial dissolution of magnesium, 

the straining of the sample breaks the passive film. The process of passivation and 

film break-down occurs repeatedly. But, it should be noted that for magnesium and its 

alloys the magnesium dissolution/passivation which is an anodic reaction is 

accompanied by a hydrogen reduction reaction. Hence, hydrogen is readily available 

for diffusion into the metal which can then lead to hydrogen embrittlement. 

Accordingly, the fracture surface of the continuously-exposed sample showed typical 
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transgranular fracture, which is widely related to hydrogen-induced cracking [1]. 

Further, the secondary cracking observed on the fracture surface is another indication 

of hydrogen embrittlement. Hence, it can be stated that the loss in mechanical 

properties observed for the AZ80 alloy when SSRT tested in distilled water is due to 

hydrogen embrittlment.  

In 0.5 wt.% NaCl solution the alloy showed a drastic loss in the mechanical 

properties in both continuously-exposed and pre-exposed conditions. The detrimental 

effect of chloride on the mechanical properties of the alloy was clearly evident when 

comparing the SSRT data of pre-exposed samples in 0.5 wt.% NaCl and in distilled 

water.  Increase in the pre-exposure time in 0.5 wt.% NaCl showed a further loss in 

the mechanical properties of the alloy. Song et al. [16] reported that the degree of 

embrittlement increased in AZ31 alloy with increasing the pre-exposure time in 

chloride-containing solution.  Winzer et al.[17] also reported that longer duration test 

produced larger SCC fracture surface as compared to shorter duration test for 

magnesium alloys. Stampella et al. [8] reported a grain size effect on the SCC 

behaviour of magnesium. They observed that fine-grained magnesium underwent 

transgranular cracking whereas larger grained magnesium exhibited a mixed-mode 

failure, i.e., transgranular and intergranular cracking. In the present study as well, 

AZ80 alloy, containing fine-grain size, underwent transgranular fracture.  

The fracture surface of the alloy tested in 0.5 wt.% NaCl solution showed 

evidence of pitting corrosion at the edge of the fractured surface. Immersion tests and 

electrochemical experiments results of the alloy in 0.5 wt.-% NaCl solution also 

confirmed that the alloy was susceptible to pitting corrosion. Pardue et al. [18] 

reported that corrosion pits in AZ61 alloy induced cleavage cracks. However, the role 

of hydrogen due to pitting was not discussed. In order to confirm the role of hydrogen 
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and its relation to pitting in the HE behaviour of AZ80 alloy, the alloy was pre-

exposed to 0.5 wt.-% NaCl for 24 hours (which was sufficient time for pitting 

corrosion to occur), then was desiccated for 7 days and then SSRT tested in air. The 

purpose of desiccating the samples was to allow some to the reversible hydrogen, if 

present, to diffuse out of the alloy. Interestingly, the alloy showed an increase in 

mechanical properties after the desiccated period as compared to the testing 

immediately after the pre-exposure in 0.5 wt.% NaCl. After desiccation, the alloy 

showed an f of 10% and an UTS of 325 MPa. This confirms hydrogen entry into the 

alloy as a consequence of the pitting corrosion of the alloy. Stampella et al. [8] 

suggested that atomic hydrogen in solid solution of magnesium facilitates cleavage 

fracture. Recently, Uematsu et al. [19] observed that the crack propagation rate of 

AZ31 alloy increased with increase in hydrogen charging.  Cheng et al. [20] reported 

that hydrogen enrichment and hydride formation in the β phase of AZ91 alloy caused 

SCC. Meletis and Hochman [10] reported cleavage features in the SCC of pure 

magnesium, which they attributed to an accumulation of atomic hydrogen/magnesium 

hydride formation.  Winzer et al. [21] suggested that transgranular cracking in 

magnesium alloys is due to hydrogen concentration build up immediately behind the 

crack tip.  In this study, the AZ80 alloy exposed to 0.5 wt.% NaCl solution showed 

typical cleavage facets which confirms the role of hydrogen in the failure mechanism.  

To individually quantify the susceptibility of the alloy to EAC, HE and SCC 

(chloride-induced), their susceptibility indices were calculated as follows: IEAC = 

mechanical properties in chloride-containing solution/ mechanical properties in air; 

IHE = mechanical properties in distilled water/mechanical properties in air; ISCC = 

mechanical properties in chloride-containing solution/mechanical properties in 

distilled water. A low index (EAC/HE/SCC) suggests high susceptibility of the alloy 
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to a particular environment, and when the index approaches unity it means that the 

alloy is highly resistant to the particular environment. The calculated indices 

presented in Fig. 9 suggest that both chloride and hydrogen played a role in the EAC 

susceptibility of the alloy and that in fact they had a synergetic effect.  

 

5. Conclusions 
 

A systematic study on the EAC behaviour of AZ80 magnesium alloy using SSRT 

testing in air, distilled water and 0.5 wt.% NaCl solution showed that the pitting 

susceptibility of the alloy plays a crucial role in the SCC and HE behaviour of the 

alloy. Pitting corrosion not only initiates SCC in the alloy, but also induces hydrogen 

into the alloy leading to HE.  
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Fig. 1. Microstructures of AZ80 magnesium alloy: (a) optical micrograph shows the 

fine grains and clusters; and (b) a higher magnification SEM micrograph of the 

clusters reveal lamellar like structure of the particles.   
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Fig. 2. SEM micrographs of AZ80 magnesium alloy after immersion in 0.5 wt.% 

NaCl solution: (a) 4 hours immersion shows large pits ; and (b) 24 hours immersion 

shows coalescence of pits  forming trenches. 
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Fig. 3. Potentiodynamic polarisation of AZ80 magnesium alloy in 0.5 wt.% NaCl and 

in distilled water. 
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Fig. 4. Microstructures of AZ80 magnesium alloy after potentiodynamic polarization 

test in 0.5 wt.% NaCl solution: (a) large localized attack ; and (b) a large number of 

fine pits. 
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Fig. 5. SSRT data of AZ80 alloy exposed to different environments during the tests: 

(a) % Elongation and (b) Ultimate tensile strength. 



 19

 

 

Fig. 6. SSRT data of AZ80 alloy pre-exposed to different environments for two 

different period of time: (a) % Elongation and (b) Ultimate tensile strength. 
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Fig. 7. Fracture surfaces of AZ80 alloy: (a) air – ductile fracture; (b) and (c) distilled 

water – (b) brittle fracture and (c) transgranular cracking and secondary cracks; (d), 

(e) and (f)  0.5wt.% NaCl solution - (d) brittle fracture and localized attack along the 

edge, (e) surface of tensile sample showing high localized attack, and (f) exhibits 

transgranular cleavage and a few fine dimples.  
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Fig. 8. Fracture surface of pre-exposed AZ80 alloy for 48h: (a) distilled water – 

ductile rupture; (b), (c) and (d) 0.5 wt.% NaCl solution – (b) overall fracture surface, 

(c) localized attack along the edge of the sample (arrow), and (d) typical cleavage 

facets.  
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Fig. 9. Environmental assisted cracking, hydrogen embrittlement and stress corrosion 

cracking susceptibility indices for AZ80 alloy.   

 


