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[1] The loads regression estimator (LRE) was introduced by Wang et al. (2011) as an
improved approach for quantifying the export of loads and the corresponding uncertainty
from river systems, where data are limited. We extend this methodology and show how
LRE can be used to analyze a 24 year record of total suspended sediment concentrations
for the Burdekin River. For large catchments with highly variable discharge such as that of
the Burdekin River, it is important to quantify loads and their uncertainties accurately to
determine the current load and to monitor the effect of changes in catchment management.
The extended methodology incorporates (1) multiple discounted flow terms to represent the
effect of flow history on concentration, (2) a term that captures sediment trapping and
spatial sources of flow in terms of the ratio of flow from above the Burdekin Falls Dam,
and (3) catchment vegetation cover. Furthermore, we validated model structure and
performance in relation to the application tested. We also considered errors in gauged flow
rates of 10% that were consistent with the literature. The results for the Burdekin site
indicate substantial variability in loads across years. The inclusion of vegetation cover as a
predictor had a significant impact on total suspended sediment (TSS) concentration, with
values up to 2.1% lower noted per increasing percentage of vegetation cover. TSS
concentration was up to 38% lower in years with greater proportions of flow from above the
dam. The extended LRE methodology resulted in improved model performance. The results
suggest that management of vegetation cover in dry years can reduce TSS loads from the
Burdekin catchment, and this is the focus of future work.
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1. Introduction
[2] Sediments and nutrients are high-priority river con-

taminants that can significantly affect freshwater and
receiving estuarine and marine environments [Brodie et al.,
2012; De’ath and Fabricius, 2010; Doney, 2010; Furnas,
2003]. In the Great Barrier Reef (GBR) catchment area in
northeastern Australia, a strong emphasis is placed on
quantifying pollutant loads (suspended sediments, nutrients
and pesticides) and their sources of uncertainty for the
purpose of detecting trends in loads [Reef Water Quality
Protection Plan Secretariat, 2009]. Estimates of loads with
associated uncertainty from monitoring data are therefore
required to determine current baseline exports, sources of

pollution and a means to assess progress toward Australian
and Queensland government ‘‘reef plan’’ targets. Although
this could be met by improvements to measurement pro-
grams that focus on frequent sampling, in reality monitor-
ing records will often contain gaps because of equipment
failure or impaired site access. Even where sampling is reli-
able and representative, in variable climates it is desirable
to utilize the available historical monitoring records of vari-
able sampling frequency for assessing long-term loads. For
monitoring current and future total suspended sediment
(TSS) loads, turbidity meters can provide an alternative to
statistical analysis of measured TSS concentrations, partic-
ularly in smaller channels where TSS concentrations can be
highly variable during runoff events. However, the cost of
deploying and maintaining these instruments means that
standard TSS monitoring continues to be used at many
sites. Furthermore, turbidity meters must be calibrated
against measured TSS concentrations in water samples
from the site. At large river cross sections variation with
depth in the suspended concentration of sand can be an
additional complication. For example, a transmissometer,
described in the paper by Mitchell and Furnas [2001] was
tested in the GBR catchment area. Because of the extreme
depth range of the Burdekin River between low flow
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(where depth was minimal) and high flow (tens of meters),
the probe was positioned near the bottom. However, a ro-
bust relationship between a transmissometer reading of tur-
bidity and TSS in mg L�1 could not be developed. For
several reasons therefore, a predictive load estimation tool
incorporating explanatory variables and providing some
diagnostic capability is useful for analyzing TSS concentra-
tions and loads in large, complex and highly variable river
systems.

[3] Estimating pollutant loads at river stations typically
requires models that predict temporal patterns of pollutant
concentration between sampling times [Asselman, 2000].
To date, methods used to calculate pollutant loads in the
GBR consist of the popular ratio estimators and linear
interpolation [Cooper and Watts, 2002; Letcher et al.,
2002; Littlewood and Marsh, 2005]. However, these esti-
mators lack flexibility as they cannot identify the major
contributors and sources of contaminants. They also do not
provide estimates of uncertainty in concentration and flow
rates and therefore do not incorporate those into standard
error calculations, if indeed they are provided. Further-
more, they cannot quantify the loads in years where pollu-
tant concentrations are poorly sampled or missing.

[4] Rating curves have been a widely used method for
estimating pollutant loads and quantifying the respective
uncertainty [Cohn, 1995; Cohn et al., 1992; Rustomji and
Wilkinson, 2008; Thomas, 1985, 1988; Thomas and Lewis,
1995; Walling, 1977; Wang et al., 2011]. The latest of
these approaches by Wang et al. [2011] provides estimates
of loads from monitoring data and has recently been used
to provide baseline estimates of loads for reporting [Kroon
et al., 2012] as well as provide a framework for sample size
estimation to determine the number of years of monitoring
data required to detect trends [Darnell et al., 2012]. The
method proposed by Wang et al. [2011], which we refer to
as the Loads Regression Estimator, hereafter termed LRE,
is based upon the traditional rating curve approach by Cohn
et al. [1992] but extends the methodology to incorporate
hydrological variables that attempt to mimic temporal char-
acteristics of a river system using a flexible generalized
additive modeling (GAM) framework. The method incor-
porates key measures of uncertainty: measurement error in
the sampled flow and concentration; model uncertainty
arising from a lack of understanding of the underlying
hydrological processes; and sampling uncertainty arising
from the way in which flow and concentration are sampled,
i.e., more frequently during high-intensity discharge events.
In addition to accommodating uncertainties in concentra-
tion, errors in flow rates can be directly incorporated into
the uncertainty calculation of the loads estimate. Further-
more, this framework develops a historical representation
of concentration and flow for the system, enabling the esti-
mation of loads for years where no monitoring data were
collected. Of course, the accuracy of the loads in these
instances is subject to how well the model captures the sys-
tem processes.

[5] In this paper we extend the LRE methodology pro-
posed by Wang et al. [2011] to cater for highly variable
river systems where monitoring data are limited. The LRE
methodology and its extensions are illustrated using a long-
term record of total suspended sediment sampled at the Ink-
erman Bridge site on the Burdekin River. As the Burdekin

catchment represents one of the driest and largest catch-
ments in the GBR catchment area, data captured at the Ink-
erman Bridge site are limited through the period 1986–
2010. The primary purpose of the LRE applied to this site
is to derive best estimates of past sediment yield to estab-
lish a baseline for assessing future changes.

2. Case Study: Inkerman Bridge, Burdekin
River
2.1. Catchment Characteristics

[6] The Burdekin River drains the second largest basin
(area �130,000 km2) draining to the GBR lagoon and it
represents the largest in terms of mean gauged annual dis-
charge and total annual sediment export to the GBR [Fur-
nas, 2003] (Figure 1). Cattle grazing represents the
dominant land use within the catchment (95%) with the
remaining 5% composed of other uses, including cropping
[Furnas, 2003]. The geology of the catchment is quite var-
ied containing igneous, sedimentary and metamorphic rock
provinces [Bainbridge et al., 2008] and a wide variety of
soil types. Precipitation within the catchment occurs pri-
marily within a well-defined, summer wet season with
higher falls near the coast and in the northern parts of the
catchment [Amos et al., 2004; Furnas, 2003]. The annual
discharge of northern Australian rivers is highly variable in
Australian and world terms [Petheram et al., 2008]. The
recorded annual discharge of the Burdekin River at Inker-
man Bridge (water year: October 1 to September 30) ranges
from 247,110 ML (1930/1931) to 54,066,311 ML (1973/
1974) over the 90 year record to 2010. Development of the
catchment by European settlers began in the mid-1800s with
the introduction of sheep and cattle [Lewis et al., 2007] and
the commencement of alluvial mining. It is generally
accepted these activities would have increased the annual
average flux of sediment to the GBR lagoon [Belperio,
1979; McKergow et al., 2005] and trace element analysis of
coral cores has provided evidence in support of that proposi-
tion [Lewis et al., 2007; McCulloch et al., 2003].

[7] Several attempts have been made to estimate the cur-
rent ‘‘annual average’’ suspended sediment export and the
‘‘natural’’ (pre-European settlement) load for the Burdekin
River. The first estimate was reported by Belperio [1979],
who used a regression-based sediment rating curve approach
to calculate an annual average load of 3.45 � 106 t using
monitoring data from the 1970s. Since then annual average
suspended sediment load estimates (summarized by Brodie
et al. [2009, Table 5]) have been derived using monitoring
data (estimates range between 3.8 and 4.6 �106 t) and catch-
ment models (2.4–9.0 �106 t yr�1) with some models also
predicting ‘natural’ loads (0.48–2.1 � 106 t). We note that
no previous load calculations have included an estimate of
the uncertainty apart from the recent work by Kroon et al.
[2012] that used a base LRE model to obtain average annual
estimates of loads.

2.2. TSS Sampling at Inkerman Bridge on the
Burdekin River

[8] TSS data were collected from the Inkerman Bridge
site on the Burdekin River between 1986 and 2010 (692
samples spanning 24 water years). This site is 20 river km
upstream of the river mouth, with a catchment area of
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Figure 1. Map of the Burdekin catchment showing the Inkerman Bridge sampling site where total sus-
pended sediment (TSS) samples were taken for this study. Flow samples were collected at the Inkerman
gauge at Ayr.
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�130,000 km2. TSS samples were collected from the sur-
face of the river (top 50 cm of water column). Samples
were collected from the center of the channel flow over the
rising, peak and falling stages of the flow hydrograph as
well as during base flow conditions. Particle size analysis of
the routine surface TSS samples as used in this study show
that they are predominantly silt and clay size fractions, with
a small amount of sand which is generally less than 10% of
total mass [Bainbridge et al., 2012]. Measurements of sus-
pended sediment across the cross section and through the
depth profile of the Burdekin River in the vicinity of Inker-
man also found that sand composes less than 10% of the
TSS concentration at the surface [Belperio, 1979, Figures 5
and 6; Amos et al., 2004, Figure 8]. Further, these two latter
studies show that the surface concentrations of silt and clay
in the Burdekin River are representative of the entire cross
section, and thus the load estimates in the present study are
considered representative of the combined silt-clay size
fractions. While the concentration of sand transported in
suspension does increase with depth below the water sur-
face [Belperio, 1979], sand load is not of interest for assess-
ing TSS impacts beyond its point of deposition near the
river mouth.

[9] The samples were cooled and transported to the labo-
ratory for analysis. The samples have been collected
through a number of programs and research providers over
the 24 year period by the Australian Institute of Marine Sci-
ence, the Queensland Department of Environment and
Resource Management (DERM: both surface water data
archive and GBR Loads Monitoring programs), University
of Queensland and North Queensland Dry Tropics NRM.

The sampling design for most of these programs was devel-
oped to calculate suspended sediment export from the Bur-
dekin River and as such samples collected were biased
toward high flows, when the vast majority of annual flow is
discharged. However, the data archive in the DERM pro-
gram targeted baseline flows. Figure 2 shows the TSS sam-
ples collected along with the temporal coverage of flow
spanning 24 years of monitoring at the Inkerman Bridge
site on the Burdekin catchment.

[10] While TSS analysis was performed at a number of
laboratories, the same standard method was applied. Sam-
ples were filtered through preweighed filter membranes,
oven-dried and reweighed to determine the dry TSS weight
as described by American Public Health Association
[2005]. TSS (in mg L�1) was calculated by dividing the
mass of the retained matter (in mg) by the volume of sam-
ple filtered (in L).

[11] Figure 3 shows the bias incurred from the sampling
of concentration and flow for the Inkerman Bridge site on
the Burdekin catchment. The relative bias in concentration
was calculated by dividing the average flow recorded at
concentration samples by the average flow recorded at reg-
ular time intervals. Note, if there are gaps in flow, the flow
record will need to be infilled to a regular time series using
a Hermite spline interpolation [Fritsch and Carlson, 1980]
or equivalent. Similarly, the relative bias in flow was
obtained by dividing the average observed flow by the av-
erage regularized flow. Since the flow was continuously
measured the bias between predicted and observed flows
was 1 (and thus no bias). Concentration however, is meas-
ured at irregular intervals with relative biases varying

Figure 2. Observed flow (gray line) overlayed with TSS samples (points) showing the temporal coverage
of data collected at Burdekin River at Inkerman Bridge between 1 October 1986 and 30 September 2010.
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between 0.01 and 26 across all water years, indicating sub-
stantial bias in concentration sampling, particularly during
the later years where monitoring was restricted to high-
flow discharge events only.

3. Quantifying Loads in the Burdekin River
[12] The LRE is built around a four-step process consist-

ing of estimation steps for flow, estimation steps for con-
centration, estimation of the load including evaluation of
model structure and calculation of the variance that incor-
porates errors in both concentration and flow [Wang et al.,
2011]. As flow at the Inkerman Bridge site is measured at
regular intervals (hourly) from the Clare gauge (120006B)
15 river km upstream of Inkerman Bridge, no interpolation
of the flow record is necessary and we concentrate on esti-
mation steps for concentration and the corresponding load
and variance estimates. Furthermore, we focus on the
extensions of the LRE that are applicable for the case study
presented.

3.1. A Predictive Model for Concentration

[13] The LRE methodology fits a GAM [Wood, 2006] to
concentration (on the log scale) over the duration of the
monitoring data. The model incorporates key hydrological
processes of a river system (some of which are highlighted
by Morehead et al. [2003]), through terms created from flow
data with the aim of reducing the unexplained variance. The

GAM introduces flexibility into the model by way of tempo-
rally smooth terms that are driven by the data.

[14] The GAM is composed of two components. The first
includes terms that enter into the model linearly, while the
second incorporates flexible (smooth) terms driven by the
data. The model is considered semiparametric because of
the inclusion of smooth terms in the model (second summa-
tion) and is represented mathematically as

log ðciÞ ¼ �0 þ
Xp

k¼1

�kxki þ
Xm

k¼1

skðzkiÞ þ "i (1)

where xki and zki are covariates measured at the ith sample
and sk(�) represents a spline that fits a flexible function to
the data. The basic suite of terms we consider in any base
model include linear (x1i) and quadratic terms (x2i) for
flow, to capture nonlinearity in the relationship between
flow and concentration; a rising or falling limb term (x3i),
represented by a categorical variable that reflects concen-
tration differences between the rising (þ1), falling (�1) or
stable (0) sections of hydrograph cover of an event; a
cyclic term (z1i) that captures seasonal effects throughout a
water year; and a smooth discounting term (z2i) that repre-
sents the effect of recent prior flow volume on concentra-
tion as an attempt to mimic exhaustion and hysteresis
properties of the hydrological system. These base terms are

Figure 3. Summary of biases in flow (dashed line) and concentration (solid line) in TSS across water
years for the Inkerman Bridge site in the Burdekin from 1973 to 2009. Sample sizes for each water year
are shown beneath the x axis labels. Values above and below 1 indicate biases upward and downward,
respectively.
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all described by Wang et al. [2011]. Although arbitrary
trend terms could be explored [Wang et al., 2011] and these
often explain considerable amounts of unexplained varia-
tion in the data, we suggest they be omitted from the analy-
sis and include only terms that have a direct interpretation.
That is, terms that could be interpreted easily by managers
(e.g., changes to vegetation, land use and land structure)
and therefore be used to determine necessary changes to
the landscape that may reduce loads.

[15] In developing a predictive model for the Burdekin
end of river site, we begin with the suite of base terms high-
lighted by Wang et al. [2011] and identify those terms im-
portant in describing the relationship between concentration
and flow, which lead to the final predictive model. Although
these terms have been described elsewhere [Wang et al.
2011], we provide a brief description of their meaning in
the context of the case study presented here for ease of
interpretation and highlight differences to the Wang et al.
[2011] implementation where necessary.

3.1.1. Linear and Quadratic Terms for Flow
[16] The relationship between concentration and flow on

the log scale is often linear or quadratic in terms of its
shape and has been explored in the literature [Belperio,
1979; Cohn, 1995; Cohn et al., 1992]. Figure 4 shows the
relationship between TSS concentration and flow (log scale)
for 692 samples taken at the Inkerman Bridge site on the
Burdekin River. A loess smoother is overlayed to highlight
linear and quadratic features of the relationship between

concentration and flow, showing more than 2 orders of
magnitude (log units) increase in concentration as the size
of the flow increases. Inclusion of a quadratic term for flow
in the model is therefore important.

3.1.2. Rising-Falling Limb
[17] The rising and falling limbs are periods of increase

or decrease of flow over time during an event. The move-
ment of concentration can behave differently during these
flow stages and can be higher on either the rise or the fall,
the nature and timing of the event and hydrological charac-
teristics of the catchment [e.g., Nistor and Church, 2005;
Morehead et al., 2003]. Larger events have the capacity to
move higher TSS concentrations, and can display more sys-
tematic concentration differences between rising and fall-
ing limbs (Figure 5). Therefore, we represent rising-falling
limb behavior for events peaking above the 90th percentile
flow in each water year, as shown in Figure 6a. On average,
at the Burdekin site 67% of flow volume occurred above
the 90th percentile in each water year. The 90th percentile,
q90 is used as a trigger for the rising-falling limb term, x5i

which is a categorical variable as shown in equation (2) that
indicates flow on the rise (þ1), fall (�1) or flat (0), where
the latter may also be an indication of base flow conditions.
Figure 6b shows the resulting contribution of TSS concen-
tration for the Inkerman Bridge site (estimate and 95% con-
fidence intervals) from samples located on the rise or fall of
an event in the Burdekin River and indicates a lack of sig-
nificance as both bars cross the baseline at 1. Although this

Figure 4. Relationship between TSS and flow for the Burdekin site at Inkerman Bridge with a loess
smoother overlayed across the points.
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term can be important in a baseline model for many river
systems, for the Burdekin, it is shown to be insignificant.

x3i ¼
1 if q̂i > q̂i�1 and qi > q½90�

�1 if q̂i < q̂i�1 and qi > q½90�

0 otherwise

8>><
>>:

(2)

3.1.3. Cyclic Seasonal Terms
[18] Intra-annual variations in concentration can be im-

portant aspects of behavior in many climate zones, includ-
ing tropical rivers like the Burdekin River. Here, tropical
weather systems are prevalent during summer months, pro-
ducing heavy rainfall that causes sediment erosion and
transport through the watershed, resulting in the bulk of an-
nual suspended sediment export to the GBR lagoon. We fit
a seasonal term using a cyclic cubic regression spline to
ensure that a smooth function of time fit across the year
does not change discontinuously at the end of the year
[Wood, 2006]. Note, this is a different representation to that
used by Wang et al. [2011] that is more flexible, allowing
the data to define the peaks and troughs through seasons.
The cyclic spline was achieved by positioning 10 spline
knots (locations in time where a change in concentration is
likely to occur), equally spaced across the 12 months of the
year to estimate the contribution of the seasonal term in the
GAM as shown in Figure 7 using data from the Inkerman
Bridge site. Peaks in TSS concentration are noted for No-
vember–December and April–May with declines noted
between July–September. The decline from December to
February occurs during the wet season when the majority
of large events occur. This indicates dilution of concentra-
tion by volume of water, and/or exhaustion of the sediment
supply from within the catchment. Concentrations in the
Bowen River tributary of the Burdekin River also illustrate

such a decline during the middle of the wet season (Figure 5).
Inclusion of such a term in the final model for concentration
is therefore advantageous.

3.1.4. Smooth Discounted Flow
[19] The discounted flow term z2i represents a simple ex-

ponential weighting of flow history designed to allow the
recent prior flow volume to influence concentration predic-
tions. The term is expressed as

z2i ¼ sflog ½yið�Þ�g;
�ið�Þ ¼ d�i�1 þ ð1� �Þq̂i�1; (3)

and �i ¼
Xi

m¼1

q̂m for discount factor �; where �i represents

the cumulative flow up to the ith day. As the discount vari-
able � approaches 1, the discounting term, � becomes a cu-
mulative summation of flow over the entire monitoring
period. Conversely, as � approaches 0, � mimics the origi-
nal flow time series. Choosing a value for � between 0 and
1 therefore produces a discounting term that represents a
mixture of the original flow series and a cumulative one,
where � represents the level of mixing or smoothing
between the two (Figure 8). Including more than one dis-
counting term in the model can therefore capture complex
processes like hysteresis between events, where the move-
ment of concentration at a particular point in time is related
to past events and therefore exhibits a lag, for example,
higher concentrations occurring following a dry period.
The movement of concentration can also be affected by
periods of exhaustion, where multiple large events reduce
TSS availability into the system. Table 1 presents a range
of discounting levels and shows that as the discount
decreases, past events have little bearing on the current
event. Figure 9 shows the contribution of four discounting

Figure 5. Total suspended solid concentration as estimated by a turbidity probe calibrated to measured
concentrations, plotted against flow depth, for the Bowen River at Myuna, a tributary of the Burdekin
River (location shown in Figure 1). The event peak concentrations declined through the wet season, sug-
gesting decline or exhaustion of sediment availability. In events above the 2 m stage, concentration was
consistently higher on the rising limb than on the falling limb.
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Figure 6. Construction of the rising-falling limb term and its contribution to sediment concentration in
the loads regression estimator (LRE) model. (a) The rising-falling limb overlayed on top of a flow record
(log scale) based on a 90th percentile cutoff determined for each water year between 1995 and 2000 to
capture large events. (b) The estimated contribution (circles) of concentration from the fall or rise of an
event with 95% confidence intervals. Baseline levels are indicated by a dashed gray line drawn at 1.
Levels of increase or decrease are reported at the top of each bar.
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terms fit in the one model for TSS concentration at the Ink-
erman Bridge site in the Burdekin River. In Figure 9a for
example, TSS concentration increases linearly with increas-
ing flow assuming a small flow discounting term. However,
as �! 1, flow accumulates producing a decrease in pre-
dicted TSS concentration at high flow (Figure 9d). The
inclusion of more than one discounting term may therefore
be appropriate and should be tested in the model. For the
Burdekin model, all four terms were included.

3.1.5. Additional Covariates
[20] As is often the case, the base model may not be suf-

ficient for every type of river system encountered, particu-
larly if multiple years are being examined. Complex
relationships may exist, particularly in variable river sys-
tems like the Burdekin where drought breaking years are
not uncommon. In these instances, additional terms need to
be investigated to explain the temporal variations in con-
centration. These variables may represent additional terms
extracted from the hydrograph such as the rate of change
(representing a surrogate for the rainfall intensity), or pollu-
tant sources (e.g., total flow or proportion of flow arising
from subcatchments), spatial structures (e.g., a dam) or terms
that capture antecedent conditions and possible management
intervention (e.g., ground cover and vegetation). Although
the inclusion of such terms may only explain a small propor-
tion of the variance in a model, their input can be valuable
because of their ability to explain complex processes.

[21] To accommodate the complex features inherent in
variable river systems like the Burdekin, we incorporated

two additional covariates. The first of these investigated the
ratio of flow from above and below the Burdekin Falls
Dam, as the contributions from various subcatchments in
the Burdekin can lead to considerably different suspended
sediment loads because of different geology and soil types,
stream and catchment characteristics (e.g., slope, bank
heights, vegetation types, gully density, etc.), and the effect
of the dam on trapping sediment from upstream. We
obtained hourly flow data from the Burdekin River at Hydro
site (gauge 120015A) which represents the flow contribu-
tion from the catchment area (115,000 km2) above the Bur-
dekin Falls Dam. We computed the ratio of this flow with
the total flow occurring at the Burdekin River at Clare
gauge, which represents the end-of-catchment site. This ra-
tio is sometimes greater than 1 as some water is lost because
of water offtake for irrigation in the lower Burdekin sugar-
cane industry during the relatively dry water years.

[22] The second covariate considered was dry-season
vegetation cover for the catchment as it is well known that
poor vegetation ground cover can lead to an increase in soil
erosion [McIvor et al., 1995; Scanlan et al., 1996] and
therefore an increase in TSS loads. Vegetation ground cover
data (Scarth et al. [2006]), in the form of an annual (end of
dry season) ground cover index (GCI) for 52 subcatchments
of the Burdekin were obtained from the Department of Envi-
ronment and Resource Management (Queensland Remote
Sensing Centre). The GCI estimates the percentage of plant
material (dead or alive) that is covering underlying soil or
rock material, through a known statistical relationship between
measurements of cover made by satellite sensors calibrated to

Figure 7. Seasonal term with 95% confidence intervals (shaded) showing the variation in TSS concen-
tration (log scale) over a water year (October–September) at the Inkerman Bridge site in the Burdekin
River.
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field-based observations [Schmidt et al., 2010]. We extracted
the median GCI value across the Burdekin catchment for each
year of the study period to be used as an input into the model.

3.2. A Model for Inkerman Bridge

[23] We fitted the base LRE model to data from the Ink-
erman Bridge site on the Burdekin River and investigated
significant model terms using backward elimination. Addi-
tional discounting terms and covariates consisting of a vege-
tation term and the contribution of flow from above the dam
were fit after the base model was identified and their signifi-
cance was evaluated using the generalized cross-validation
criterion (GCV) and p values for each term. Terms were

eliminated that had the largest p value and therefore,
decreased the GCV. The GCV is a criterion similar to ordi-
nary cross validation but with better computational proper-
ties. It is used in this instance to evaluate the performance
of spline-based terms in a GAM to identify the optimal set
of knots and therefore the level of smoothness required to
achieve a good fit without creating a model that is too
complex.

[24] Diagnostics were then examined to determine the fit
of the model and whether there were any serious departures
from normality. Among the standard diagnostics, we exam-
ined stationarity. That is, whether the residuals were autocor-
related and if present, we refitted the model with an AR1
term to capture the correlation between sampling times (i.e.,
how much of the concentration at time t is related to the con-
centration measured at t � 1) using generalized least squares
[Pinheiro and Bates, 2000] and estimated the variance-co-
variance matrix accordingly. The LRE model was fit using
the R programming language [R Development Core Team,
2005], making use of the mgcv [Wood, 2006] and nlme
[Venables and Ripley, 1998] packages. Details regarding the
code can be obtained from the first author.

[25] The values of each term in the final model, which
explained approximately 71% of the variation in the data
are shown in Table 2 and include linear and quadratic terms
for flow, vegetation cover, the ratio of flow above the dam,

Figure 8. Illustration of different levels of discounting of flow, q̂ for a sample water year (1986/1987)
collected at Inkerman Bridge in the Burdekin River using discounts of (a) � ¼ 0.1 (equivalent to the orig-
inal flow), (b) � ¼ 0.5 (minimal smoothing), (c) � ¼ 0.75 (moderate smoothing), and (d) � ¼ 0.99 (equiv-
alent to the cumulative flow over the water year). The discounted term �(�) is overlayed as a black line.

Table 1. Summary of Discounting Values Used in the Exponen-
tial Weighting of Flow History That Can Be Chosen to Reflect
How Much Weight of the Current Flow Is due to Flows That
Occurred in the Past

Discount Percent
Days Until 50% of
Weight of Current

Days Until 5% of
Weight of Current

99% 69 >100
95% 14 59
90% 7 29
75% 3 11
50% 1 5
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a seasonal term and multiple discounting terms to capture
hydrological features of the system. In this example, the
correlation estimated from the autoregressive process is
estimated to be 0.97, indicating quite strong correlation
between concentration measurements taken from one time

point to another. As the rising-falling limb term was not
significant (p value >0.05) it was therefore not included in
the final model. Table 3 shows a subset of models explored
before identifying the optimal model. Model 1 fits all the
terms in the model, while models 2–4 represent additional
fits from a backward elimination that omits the term that
contributes the least in terms of the percent variation
explained and GCV value. These models are compared
with the Wang et al. [2011] model (model 5) and a simple
representation of concentration and flow (model 6). The
results indicate the large contributions made by the inclu-
sion of the hydrological terms outlined in Wang et al.
[2011] (17.5%) and the inclusion of additional discounting
terms (12.1%) introduced in this paper. The addition of veg-
etation cover and the contribution of flow from upstream
sites provide an additional 4%.

[26] Of major interest in this model are the two addi-
tional covariates. The inclusion of vegetation cover indicated
a significant decrease in TSS concentration as vegetation
cover increases (i.e., 2.1% decrease per percentage increase
in vegetation cover). Furthermore, for every unit increase in
flow above the dam, we observe a significant decrease in
TSS concentration (up to 38%). Although the inclusion of
these terms explains only an additional 4% of the variation,
they provide an explanation of the decrease in loads observed
during the 1996/1997 and 1997/1998 water years, when con-
sistent high volumes of flow entered the system but a much
smaller load resulted in the latter of the two years. Similarly,

Figure 9. Smooth discounting terms fit to TSS concentrations (log-scale) at the Inkerman Bridge site
in the Burdekin River computed for (a) � ¼ 0.1, (b) � ¼ 0.75, (c) � ¼ 0.95, and (d) � ¼ 0.99. Shaded
regions in each figure indicated 95% confidence bounds on the estimates. A rug plot is shown at the base
of each plot to indicate the distribution of data available.

Table 2. Parameter Estimates for the Fixed Effects, Smooth
Terms, and Correlation Term Resulting From the Fitted Loads
Regression Estimator (LRE) Model to the Inkerman Bridge Site in
the Burdekin Catchment

Parameter Estimate Standard Error p value

Intercept 12.280 1.195 <0.001
Log(flow)

Linear �1.464 0.249 <0.001
Quadratic 0.111 0.014 <0.001

Vegetation cover �0.021 0.003 <0.001
Ratio of flow above dam �0.977 0.186 <0.001

Smooth Terms
Effective Degrees

of Freedom p value

Seasonal
s(month) 4.252 0.014

Discounting terms
s(d ¼ 0.1) 1.001 <0.001
s(d ¼ 0.75) 6.073 <0.001
s(d ¼ 0.95) 8.763 <0.001
s(d ¼ 0.99) 8.035 <0.001

Correlation (AR1(�)) 0.9723
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the load estimated in the 2008/2009 water year was 27%
lower when compared to the load estimated in 2007/2008 de-
spite the annual flows being within 6%.

[27] An interesting feature in Figure 10b is a possible
cyclic pattern observed in the annual mean concentration,
showing higher TSS loads in 1987/1988, 1996/1997, 2004/
2005 and 2005/2006. Although we could not explicitly
explain the higher loads during these periods with specific
climatic terms in the model e.g., effects due to El Niño or La
Niña cycles, it was hypothesized that major cyclones cross-
ing the North Queensland coast, affecting areas around Innis-
fail (1986, 2006: Tropical Cyclones Winifred and Larry),
Bowen (1988: Tropical Cyclone Charlie), Cairns/Townsville
(1997: Tropical Cyclone Justin) (Bureau of Meteorology,
Previous tropical cyclones, http://www.bom.gov.au/cyclone/
history/index.shtml2011) and therefore impacting on the
Burdekin catchment, could be the main contributor.

3.3. Estimating the Load and Quantifying the
Variance

[28] The estimation of load in each water year involves
multiplying the flow measured at regular time intervals by
the concentration predicted at each regularized flow value
and then summing over the water year. An expression of
the load in any one water year is

L̂ ¼ K
XM
m¼1

ĉmq̂mexp ð�mÞ (4)

where K is a unit conversion constant for producing a load
in tons given concentration is measured in milligrams per
liter (mg L�1) for TSS and flow is measured in cubic meters
per second, q̂m and ĉm represent predicted regularized flow
and concentration at regular time, m, and exp (�m) repre-
sents the standard bias correction term for operating on the
log scale. See Wang et al. [2011] for details.

[29] The expression shown in equation (5) incorporates
errors in the flow rates that the user can provide in the form
of a coefficient of variation, �1 and �2 [Wang et al. 2011].

var ðL̂jĈ; Q̂Þ ¼ tracefvar ð�̂ÞX T PPT Xg

þ�2
1

X
m

l̂
2

mf1þ @f =@log q̂mg
2 þ �2

2f1þ @f =@log q̂mg
2 (5)

For completeness, we outline the components of the var-
iance expression. In equation (5), P ¼ ð̂l1; l̂2; . . . ; l̂MÞ, rep-
resents a vector of loads estimated for each regular time

interval, m, l̂m ¼ Kĉmq̂mexp ð�mÞ and f ðQ̂Þ ¼ �X , where M
represents the maximum number of time intervals. The sec-
ond term in equation (5) represents an error due to the spa-
tial positioning of the gauge, while the third term represents
a relative measurement error in the flow rate. A brief sum-
mary of the variance calculation is provided by Wang et al.
[2011], however, the complete derivation of this expression
is contained in the auxiliary material.1 The calculation of
the ð1� �Þ% confidence intervals can then be achieved in

the usual way by taking exp
�

L̂ 6 v�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðL̂Þ

q �
where �

represents the significance value that you wish to attain and
v�=2 represents the percentage point from a normal distribu-
tion for a given level of significance.

[30] The loads methodology produces a total load, in
tons, for each water year. To facilitate the comparison of
loads through time a method of standardizing the load to
provide an annual flow-weighted mean concentration is
required. We derive the flow-weighted concentration along
with an expression of the variance.

[31] Let L̂w represent the load in millions of tons calcu-
lated for a water year, w using the expression shown in
equation (5) and let F̂w represent the total volume of flow
in mega liters occurring in a water year. We constructed an
annual flow-weighted mean concentration, Aw by dividing
the total load by the total volume of flow and multiplying
by the necessary constant 	 to obtain a result in mg L�1,

Aw ¼ 	L̂w=F̂w (6)

with corresponding variance

VarðAwÞ ¼
	2

F̂
2

w

VarðL̂wÞ (7)

Confidence intervals can be computed accordingly
[32] The resulting estimates of loads are shown in Figure

10 and Table 4. Figure 10a shows the TSS load estimates
(squares) and 80% confidence intervals for each water year,
accompanied by the total volume of flow observed in that
water year as a bar plot to the right. Annual flow weighted
mean concentrations and associated 80% confidence inter-
vals are shown in Figure 10b.

Table 3. Comparison of a Subset of Models Fit to the Inkerman Bridge Site, Burdekin Rivera

Model Explanation GCV
Percent Variation

Explained
Percent

Contribution

1. Intercept þ flow terms þ limb þ seasonal þ flow discount
terms þ vegetation cover þ ratio of flow above dam

Base model (5) þ additional
discounting terms and covariates

0.409 71.3% 0.2%

2. Intercept þ flow terms þ seasonal þ flow discount terms
þ vegetation cover þ ratio of flow above dam

Model 1 � limb 0.409 71.1% 2.0%

3. Intercept þ flow terms þ seasonal þ flow discount terms
þ ratio of flow above dam

Model 1 � limb � vegetation cover 0.445 69.1% 2.0%

4. Intercept þ flow terms þ seasonal þ flow discount terms Model 1 � limb � vegetation cover
� ratio of flow above dam

0.472 67.1% 12.1%

5. Intercept þ flow terms þ limb þ seasonal þ flow discount term Base model [Wang et al., 2011] 0.607 55.0% 17.5%
6. Intercept þ flow terms Simple flow representation 0.808 37.5% –

aEach model is accompanied by the generalized cross-validation (GCV) score, the percentage of variance explained by the model, and the percent con-
tribution from the inclusion or exclusion of particular terms in each model. Model 2 is the final model used.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011WR011080.
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[33] As a secondary analysis, we also recalculated the
load estimates assuming errors in the flow rates; in particu-
lar, a 10%, 30% and 50% error related to the spatial posi-
tioning of the gauge and the measurement of flow. As
expected, the results showed no change in the best estimate
of load in each water year. However, the CV of load
estimates in each year increased with increasing uncer-
tainty in flow, as expected (Figure 11).

4. Validation of Model and Load Estimates
[34] We used k-fold cross validation [Efron and Tibshir-

ani, 1993], where k ¼ 10 to investigate the predictive per-
formance of the model for the Burdekin data set. Cross
validation is performed by dividing the data into k subsets
of approximately equal size, fitting the LRE model k times,
each time leaving out one of the subsets and predicting on

Figure 10. A summary of model estimates from fitting the LRE model to the Inkerman Bridge site in
the Burdekin River showing (a) estimated TSS loads (Mt) and 80% confidence intervals produced for
each water year with a corresponding bar plot showing the total volume of flow to the right and (b) the
annual mean concentration (mg L�1) and associated 80% confidence intervals.
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Table 4. Load Estimates Produced for Each Water Year From the Inkerman Bridge Site in the Burdekin River Using LREa

Water Year w Total Flow (ML) L̂w (Mt) SE CV (%) n L̂
0:1

w L̂
0:9

w Âw (mg L�1) Â
0:1

w Â
0:9

w

1986/1987 656,326 0.103 0.02 22.9 18 0.077 0.138 157 117 211
1987/1988 3,978,072 4.574 2.12 46.4 14 2.526 8.285 1150 635 2083
1988/1989 9,181,633 4.376 1.25 28.6 8 3.032 6.317 477 330 688
1989/1990 9,348,329 3.272 0.96 29.3 10 2.247 4.766 350 240 510
1990/1991 40,289,050 15.741 4.45 28.3 6 10.955 22.617 391 272 561
1991/1992 530,578 0.009 0.00 24.4 3 0.006 0.012 16 12 22
1992/1993 554,509 0.004 0.00 19.7 4 0.003 0.005 7 5 9
1993/1994 2,927,424 0.385 0.11 28.2 2 0.269 0.553 132 92 189
1994/1995 774,658 0.048 0.01 22.9 2 0.036 0.065 63 47 84
1995/1996 2,162,926 1.450 0.60 41.2 24 0.855 2.460 671 395 1137
1996/1997 8,679,227 8.371 2.53 30.2 79 5.686 12.324 965 655 1420
1997/1998 9,045,261 5.006 2.47 49.4 39 2.658 9.427 553 294 1042
1998/1999 6,007,503 1.605 0.30 18.4 73 1.268 2.033 267 211 338
1999/2000 13,849,068 5.232 1.62 30.9 122 3.521 7.775 378 254 561
2000/2001 8,765,625 0.283 0.07 23.8 2 0.209 0.384 32 24 44
2001/2002 4,485,247 2.141 1.16 54.3 8 1.067 4.296 477 238 958
2002/2003 2,092,792 0.755 0.28 36.6 10 0.472 1.207 361 226 577
2003/2004 1,516,142 0.384 0.12 31.4 18 0.256 0.574 253 169 378
2004/2005 4,328,213 4.338 2.31 53.3 23 2.192 8.585 1002 506 1983
2005/2006 2,199,683 0.884 0.32 36.0 23 0.557 1.401 402 253 637
2006/2007 9,768,650 7.195 3.35 46.6 52 3.960 13.073 737 405 1338
2007/2008 27,502,587 14.806 4.82 32.6 53 9.757 22.469 539 355 817
2008/2009 29,352,221 10.855 3.47 31.9 52 7.208 16.346 370 246 557
2009/2010 7,787,247 2.485 0.68 27.5 47 1.747 3.535 319 224 454

aEach load estimate is accompanied by the total flow (ML), the standard error (SE) of the load estimate, the coefficient of variation (CV) expressed as a

percentage, the sample size (n) and lower and upper bounds (L̂
0:1

w and L̂
0:9

w ) corresponding to an 80% confidence interval. The average mean concentration
(Âw) and associated 80% confidence intervals are also presented in the last three columns and are reported to the nearest mg L�1 since laboratory measure-
ments are only reported to this level of precision.

Figure 11. Coefficient of variation for the predicted loads at each water year shown for a model assum-
ing no errors (solid line), 10% errors (dashed line), 30% errors (dotted line), and 50% errors (dot-dashed
line) in the measurement and spatial location of flow gauges.
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the omitted subset of data. The choice of k is typically ten-
fold so as to optimize the variance-bias tradeoff with values
of either 10 or 20 optimally used [Kohavi, 1995]. For the
Burdekin case study, this involves randomly selecting
observations, stratified by water year to avoid unrealistic
sampling scenarios where samples occur in 1 year. The
LRE model was fit to the k � 1 subsets of data with predic-
tions formed on the k th subset. The approach has been
shown to be superior to split-sample validation and is popu-
lar in machine learning and statistics applications for explor-
ing the prediction error, a measure that determines how well
a model predicts the response of a future observation. The
prediction error is calculated as the expected squared differ-
ence between a future response and its prediction from the
model [Efron and Tibshirani, 1993]. Therefore, if yi repre-
sents the i th observed response and ŷ

�kðiÞ
i represents the fit-

ted value for the i th observation with the kðiÞ th subset of
data removed, then the cross-validated prediction error can

be represented as PECV ¼ 1

n

Xn

i¼1

�
yi� ŷ�kðiÞ

i

�2
. Errors close

to 0 indicate robustness of the model to unseen observations.
[35] We implemented tenfold cross validation to the Bur-

dekin example and produced a cross-validated prediction

error in observed instantaneous concentrations of 0.464,
indicating low prediction error and suggesting that the
model is robust to new observations. Note, this is compara-
ble to the GCV estimate produced for the model for the
complete data set (GCV ¼ 0.409) and reflects the close
relationship between predicted and observed TSS concen-
trations as shown in Figure 12 (i.e., points are scattered
along the diagonal).

5. Discussion and Conclusions
[36] The LRE model presents a methodology for model-

ing concentration to provide estimates of river pollutant
loads with uncertainties with application to the Inkerman
Bridge site on the Burdekin River. The method’s ability to
capture complex characteristics of this river system pro-
vides the ability to explain the sources of concentration
changes over time and how this impacts on loads.

[37] Unlike standard methods for calculating loads, such
as linear interpolation, ratio estimators and rating curves,
the LRE methodology contains temporally dynamic terms
which provides more credible estimates compared to steady
state rating curve approaches. This is true for loads over
short time periods, such as individual years, and variable

Figure 12. Results from performing tenfold cross validation showing the observed and predicted con-
centration in each water year.

W04533 KUHNERT ET AL.: REGRESSION ESTIMATOR TOOL FOR POLLUTANT LOADS W04533

15 of 18



climates where concentration is poorly predicted by flow
alone. Multiple discounting terms help to represent hystere-
sis and exhaustion behavior evident in observed concentra-
tions in many river systems as demonstrated by the
Burdekin River. The inclusion of additional terms repre-
senting the spatial source of runoff and vegetation cover
indicates that catchment conditions in 1 year influenced
(reduced) the sediment load in the subsequent year. Further,
the method can be applied to data independent of the sam-
pling regime. We have also demonstrated methods for eval-
uating whether the terms included in the model describe the
hydrological processes and adequately capture the variation
and complex relationships exhibited by the system.

[38] The reliability of the model was examined through
the GCV score, examination of residuals to test for statio-
narity and cross validation, the latter providing an estimate
similar to GCV that indicates the model’s ability to predict
future observations accurately. The results from tenfold
cross validation indicated that the model provided a reason-
able fit to the data. Despite this, the load calculations in
Figure 10 showed variability in loads spanning the 24 year
period, with wide 80% confidence intervals for those water
years exhibiting large discharges due to large rainfall
events. These wide confidence intervals are the result of
unexplained variation in the model. In fact, the large varia-
tions in loads and quantified uncertainties are a clear indi-
cation that the Burdekin River is a highly complex and
variable river system, subjected to drought-breaking floods
that lead to increases in sediment transport to the GBR
lagoon [McCulloch et al., 2003].

[39] Compared to the commonly used linear interpola-
tion method, the load calculations presented by LRE are
similar for the years calculated in Table 5, apart from one
calculation in 2005/2006, where the linear interpolation
estimate is at the lower bound the LRE 80% confidence
interval. Table 5 provides some reassurance that the loads
estimated by LRE are in line with standard methods but
provides improved explanatory and predictive power in
addition to providing confidence intervals to determine the
variability in loads among years.

[40] The LRE methodology is unbiased by gaps in flow
and concentration monitoring data as it uses a regularized
flow record to predict concentration for a given regression
model and to calculate the loads accordingly. In the case of
the Burdekin River, flow was recorded at regular hourly
intervals, but this is not the case at all sites. The regulariza-
tion method currently implemented in LRE deals with small
gaps efficiently using a Hermite spline interpolation. How-
ever, one limitation of the method is the interpolation of
large gaps in the flow record. In these instances, the spline
interpolation does not work well. Pagendam and Welsh
[2011] have developed an approach that provides a realiza-
tion of the flow series that has the potential to infill large
gaps in flow data more efficiently and accurately, provided
that the covariates characterizing the mean has a strong rela-
tionship with flow. The method can also provide estimates
of uncertainty in the flow record that could be used to inform
the errors in flows and input into the LRE model. We are
currently investigating this approach as a method for flow
regularization in flow records that exhibit large gaps in flow.

[41] A second limitation of the approach is the ability of
the model to predict concentration and to compute an accu-
rate estimate of the load. We included two additional terms
in the model to capture some of the complex features of the
concentration-flow relationship for the Burdekin River.
Other more complex covariates could have been consid-
ered. For instance, instead of just breaking flow up into
‘‘above dam’’ and ‘‘below dam’’ as we do here, we could
have included a much more complex breakup into, say, six
flow regions based on rainfall in each of the major sub-
catchments: Bowen, Belyando, Suttor, upper Burdekin,
Cape, and the lower Burdekin. However, the creation of
these terms becomes challenging as the detailed location of
major rainfall gauges is not always known and this infor-
mation has marked effects on load. Of course the model is
only as good as the data and covariates that are used to de-
velop it. If the data are not representative of the system,
then the calculated loads will not adequately reflect the
movement of pollutants at the site. Even if we have the best
data and covariates included in the model, sampling bias
may still be an issue. In these instances, provided that we
have covered enough of the hydrological conditions to
ensure the prediction errors are minimized, the model can
still be confidently used to predict concentrations and esti-
mate loads. To facilitate this, diagnostic checks that exam-
ine the predictive performance of the model need to be
performed to ensure the final model is representative of the
system being studied. It is important to acknowledge that
the methodology presented here is not intended to replace
monitoring programs but complement them by using histor-
ical data to establish baselines against which to assess
future change. Of course where significant future changes
are likely, these will need to be monitored independently as
they will not be represented by the model and any predic-
tions from the model are likely to be underestimated. Fur-
thermore, the uncertainty associated with baseline estimates
may make it virtually impossible to comment scientifically
on changes incurred by the implementation of management
strategies. Although not an ideal outcome, this highlights
the complexity of quantifying sediment fluxes.

[42] The application of the method to other water quality
data sets [Kroon et al., 2012] for broader management

Table 5. Comparison of LRE and Linear Interpolation Loads
Estimates for Years Spanning 1995–2000 and 2004–2010a

Year
Total Discharge

(106 ML)

TSS (106 t)

LRE 80%
Confidence

Intervals

Linear
Interpolation LRE Lower Upper

1995/1996 2.16 1.5 1.45 0.86 2.46
1996/1997 8.66 6.8 8.37 5.69 12.32
1997/1998 8.97 3.5 5.01 2.66 9.43
1998/1999 5.98 1.4 1.61 1.27 2.03
1999/2000 13.32 4.0 5.23 3.52 7.78
2004/2005 4.27 2.7 4.34 2.19 8.59
2005/2006 2.00 0.5 0.88 0.56 1.40
2006/2007 8.50 6.1 7.20 3.96 13.07
2007/2008 26.50 12.3 14.81 9.76 22.47
2008/2009 29.20 9.0 10.86 7.21 16.35
2009/2010 7.79 1.9 2.49 1.75 3.54

aOnly years where linear interpolation could be applied are listed. Total
discharges for each water year are also listed. TSS, total suspended
sediment.
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purposes shows promise as a tool for quantifying pollutant
loads with associated uncertainties. Recent examples of
LRE implementation have included that of Kroon et al.
[2012], where pollutant baseline loads were estimated for
all GBR end-of-catchment sites having adequate monitor-
ing data. Estimates of a catchment-wide sediment budget
for the Burdekin is another example, where LRE methodol-
ogy was used to provide estimates of loads with uncertain-
ties for each water year from 2005–2010 for five river
stations within the Burdekin catchment. These estimates
were then combined and the uncertainties propagated to
give sediment trapping estimates for the Burdekin Falls
Dam during each year monitored by S. E. Lewis et al.
(manuscript in preparation), to identify years where trap-
ping was highest, and compare results with standard reser-
voir trapping algorithms developed for more temperate
climates.

[43] Load estimates with attached confidence intervals
from LRE are complementary to, and potentially useful for
constraining, deterministic and spatially resolved models of
pollutant delivery through river networks such as the Sed-
Net conceptual process model of pollutant sources and
transport [Wilkinson et al., 2009], and land use concentra-
tion-based models of pollutant generation [Argent et al.,
2009]. A natural extension to the problem of loads estima-
tion is the integration or assimilation of monitoring data
with spatially resolved pollutant transport models [Berliner,
2003; Wikle and Berliner, 2007]. Through this integration,
the prediction of a system’s state is averaged with a new
measurement about that state, thus incorporating errors in
not only the state of the system but the measurement about
it, in a similar way to how meteorological observations are
used to improve the predictions of process-based weather
models [Kalnay, 2003]. This is currently an area of future
research, which we are exploring using the Burdekin catch-
ment as a case study.
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