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Abstract. The effects of ocean acidification on metamorphosis were tested using the larvae of a spawning coral, 

Goniastrea retiformis and a brooding coral Leptastrea cf transversa in Guam. Four treatment levels of pCO2 

were used, corresponding to current levels of atmospheric CO2 (approximately 380) and three values projected 

to occur later this century 600, 750 and 1000 ppm). Metamorphosis was not consistently affected by pCO2 in 

either species. These results suggest that the mode of reproduction does not affect the larval response to pCO2 

and furthermore, there will be no direct effects of ocean acidification on settlement rates of reef corals, at least 

in the near future 
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Introduction 

Climate change has the potential to detrimentally 

affect coral reefs. In particular, increasing ocean 

acidity, as a result of increased atmospheric 

concentrations of CO2, is expected present a severe 

threat to marine ecosystems before the end of this 

century (Kleypas et al. 1999; Orr et al. 2005). Ocean 

acidification is caused by alteration of sea water 

chemistry through CO2 absorption from the 

atmosphere leading to a decrease in seawater pH and 

carbonate ion concentrations (CO3
2-

). Recent changes 

in ocean chemistry, including a decrease in pH of 0.1 

units since the 1950s, have reduced the rates of 

calcification in many marine organisms (Langdon 

2000; Cooper et al. 2008; Pörtner 2009). By 2050, 

ocean pH is expected to be lower than at any point in 

the last 20 million years (Caldeira and Wickett 2003; 

Guinotte et al. 2006; Turley et al. 2007). 

To date, much of the research on the effects of 

ocean acidification on corals has focused on adults, in 

particular, the process of calcification. However, the 

early life history stages of marine organisms are also 

likely to be sensitive to changes in ocean chemistry 

(Portner et al. 2004; Byrne 2011). Hypercapnia, 

defined as an increase in the partial pressure of CO2 in 

the respiratory fluids, affects acid-base regulation, 

oxygen transport and metabolic function (see review 

by Portner et al. 2004) and seawater artificially 

enhanced with CO2 reduces sperm motility (CO2 

narcosis, e. g. Havenhand et al. 2008, Morita et al. 

2010) 

Many ecological processes are affected by 

differences in the life history traits of organism. For 

example, the mode of larval development in marine 

invertebrates (often called the reproductive mode), 

affects patterns of dispersal (Baird et al. 2009b), rates 

of recruitment (Hughes et al 2002), and post-

settlement mortality (Marshall et al. 2010). Corals 

have two contrasting modes of reproduction: brooding 

and broadcast spawning. These modes of 

reproduction are distinctive in many ways (Baird et al. 

2009b). However, potentially the most important 

difference in terms of the larva’s response to stress, 

such as increase acidity, is whether or not they 

contain photosynthetic symbionts, Symbiodinium. 

Interestingly, all brooding larvae (except those of 

Isoporans.) contain Symbiodinium on release from the 

mother, where only four out of 85 genera of broadcast 

spawning species have Symbiodinium in the eggs 

(Baird et al. 2009b). Symbiotic organisms are 

generally more susceptible to stress: for example, few 

other organisms’ responses to the small change in sea 

surface temperature association with mass bleaching 

events (Baird et al. 2009a; McClanahan et al 2009). 

Similarly, Acropora larva experimental infected with 

Symbiodinium have higher rates of mortality when 

exposed to temperatures 2°C higher than ambient 

(Yakovleva et al 2009), and naturally occurring levels 

of ultra-violet radiation (Baird et al unpublished data) 

when compared to larvae of the same species that lack 

Symbiodinium. 
Here, we test for an effect of pCO2 on 

metamorphosis in the larvae of a brooding coral that 
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contains Symbiodinium, Leptastrea cf. transversa and 

a spawning coral that does not, Goniastrea retiformis  

 

Material and Methods 

Collection of gravid colonies 

Goniastrea retiformis is a hermaphroditic broadcast 

spawner. The eggs of G. retiformis lack 

Symbiodinium which are typically not taken up by 

larvae until settlement (Fig. 1a, Babcock and 

Heyward 1986). Leptastrea cf transversa is a 

gonochoric brooder. Larvae are released containing 

Symbiodinium that have been transmitted from the 

mother to the developing oocytes (Fig. 1b) 

Eight mature colonies. Of G. retiformis were 

collected from the fringing reed in Pago Bay, Guam 

(13° 25’N, 144° 48’E) and maintained in outdoor 

aquaria until they spawned on the night of 15
th

 June 

2009. Following spawning, larvae were cultured as 

outlined in Babcock et al. (2003) and maintained in 

0.2µm filtered sea water (FSW) until competent to 

settle (Connolly and Baird 2010). Approximately 20 

colonies of L. cf transversa were collected from the 

lagoon behind the fringing reef fronting the Guam 

Port Authority (13°27'54.98"N, 144°40'16.10"E) on 

the 15
th

 June and maintained in flow through aquaria 

at the University of Guam Marine Laboratory. At 

night, the water flow was stopped, and in the morning 

larvae were collected from the aquaria with pipettes. 

A total of 75 larvae were collected on the 17
th
 June 

2009 and the larvae were maintained in 0.2µm filtered 

sea water for three days prior to the settlement 

experiment that commenced on 20
th

 June 2009 

 
Figure 1(a) A broadcast spawned larva (Goniastrea retiformis) with 

no symbionts (b) a brooded larvae (Leptasrea cf. transversa) with 

symbionts evident as brown splotches in the gastroderm 

Experimental manipulation of ocean acidification  

The CO2 tanks were prepared in a temperature 

control room (25°C-26°C). A CO2 mixing system 

developed by Munday et al. (2009) was used to 

manipulate pCO2 in seawater. Four levels of pCO2 

(ambient 380 ppm, 600 ppm, 750 ppm and 1000 ppm) 

were used, as recommended by the EPOCA protocol 

(Barry et al. 2010). CO2 concentration was measured 

in ppm units using a CO2 gas probe (Vaisala ®). The 

mixed gases were bubbled through 70 l sump tanks to 

enrich the water. The enriched water was flowed 

through replicates via a one-way flow-through system. 

pH conditions and corresponding total alkalinity (TA) 

were measured for each treatment by using auto Gran 

titration (APHA 2320). Experimental calcite (Ωcalc) 

and aragonite saturation (Ωarag) , carbonate (CO3
2-

) 

and bicarbonate ion concentration (HCO3
-
) were 

calculated from TA, pH, salinity and CO2 

concentration (pCO2) using CO2SYS (Pierrot et al. 

2006; Table 1). 

 

The effect of acidification on metamorphosis  

Ten G. retiformis larvae from each of the 3.5 l jars 

were placed into each well of a 6-well Iwaki cell 

culture plate with a modified meshed lid. Similarly, 

one L. cf transversa larva was placed in each well 

with a total of 18 larvae per pCO2treatment. A 5 mm 

x 5 mm crustose coralline algae (CCA), Hydrolithion 

sp. was placed in each well to induce metamorphosis. 

The plates were then immersed in the four pCO2 

treatments and the number of larvae completing 

metamorphosis was assessed after 24 h. Larvae were 

defined as metamorphosed if a basal disc had been 

deposited (Baird and Babcock 2000). 

.  

 

Data analysis  

Differences in the mean number of G. retiformis 

larvae completing metamorphosis among the four 

pCO2 treatments were tested with 1-way ANOVA. 

Tukey’s HSD multiple comparison test was used to 

determine which pCO2 levels differed. Any bias in 

these data was explored by residual analysis and if 

detected the data were transformed as noted in the 

ANOVA tables. A contingency table was used to test 

whether the number of L. cf transversa larvae settling 

was independent of the level of pCO2. 

 

Results  

Ocean acidification did not affect metamorphosis as 

predicted in either species. The mean number of G. 

retiformis larvae completing metamorphosis did not 

differ among the different pCO2 levels (F1,46 = 2.386, 

p = 0.1292; Fig. 2). While the number of larvae 

completing metamorphosis in L. cf transversa was 

dependent on the level of pCO2 (χ
2
1, 3 = 9.0625, p = 

0.02847), the pattern was not that expected if the 

response was does dependent. The highest number of 

L. cf transversa larvae metamorphosed in the 1000 

ppm the lowest number in the 750 ppm treatment and 

there was no difference between ambient and 500 

ppm (Table 2). 
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Figure 2: Metamorphosis success in G. retiformis propagules under 

acidity treatments (SE).  

 
Treatment Settled Not settled 

Control 9 9 

500 9 9 

750 4 14 

1000 13 5 
Table 2: The metamorphosis success of Leptastrea sp.  

 
Discussion 

Metamorphosis was not consistently affected by pCO2 

in either species. These results suggest that the mode 

of reproduction does not affect the larval response to 

pCO2 and furthermore, there will be no direct effects 

of ocean acidification on settlement rates of reef 

corals, at least in the near future. 

Our results are consistent with other recent research 

on the effect of ocean acidification on coral larval 

metamorphosis. A reduction in metamorphosis is 

typically only apparent at very high levels of pCO2 or 

when mediated by ocean acidification induced 

changes in the quality of the substratum (see review 

by Albright 2012; Chua 2012). There are a number of 

reasons why corals may be robust to ocean 

acidification. Adult corals thrive in an environment 

with high natural fluctuations in pH (Gagliano et al. 

2010) which may pre-adapt the offspring to withstand 

high level of OA. For example, sea urchins that live in 

tidal pools with high natural fluctuations in pH 

produce offspring that are robust to OA (Byrne 2011). 

Similarly, larvae of the Sydney Rock Oyster 

(Saccostrea glomerata) produced by adults subjected 

to elevated pCO2 during gametogenesis had faster 

development, greater shell length and metabolic 

activity in elevated CO2 conditions, compared to 

juveniles from wild caught adults (Parker et al. 2012). 

Similarly, brooded larvae produced by adult 

byrozoans (Bugula neritina) grown in elevated copper 

concentration were larger, dispersed farther and were 

tolerant of copper toxicity (Marshall 2008). Such 

maternal effects are likely to be greater in species 

with larvae that rarely leave the maternal habitat, such 

as those species that brood larvae. However, we found 

no difference between these two coral species with 

different modes of larval development. Alternatively, 

the process of calcification may pre-adapt corals to 

fluctuation in pH. During calcification, corals elevate 

the extracellular pH under the calicoblastic epithelium 

by 0.2-0.5 units (Venn et al. 2011) and therefore, 

corals may have evolved mechanism for the tissue to 

adjust to high pH. 

In conclusion, projected ocean acidification levels 

in the near future appear unlikely to have major 

ecological effects on coral settlement. The lack of 

major affects on larval ecology does not mean that 

ocean acidification is not a threat to other stages in a 

coral’s life history. There are strong theoretic and 

empirical reasons for expecting an effect on 

physiology (Portner et al. 2004) and patterns of gene 

expression vary dramatically in coral larvae as levels 

of pCO2 increase (Moya et al. 2012). The 

consequences of energy expenditure on cellular acid-

base regulation and lowered metabolism are perhaps 

unlikely to be apparent in short term ecological 

experiments. In particular, growth, reproduction and 

competitive ability are all likely to be affected by 

increases in ocean acidity over a longer time frame 

(Anthony et al. 2008; Fabricius et al. 2011). In 

addition, increased concentrations of atmospheric 

CO2 are also resulting in the warming of the ocean via 

the green house effect (Hendriks et al. 2010). 

Consequently, marine organisms must deal with both 

high pCO2 and high temperatures and future work 

should explore the possible synergistic effects of 

these stressors on coral larval ecology 
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Table 1: Water chemistry parameters (±SE) value throughout the experiment with saturation values  of Aragonite and Calcite and actual 

saturated values of pCO2 in treatments tanks calculated using CO2SYS using parameters: K1, K2 from Mehrbach et al 1973 refit by 

Dickson & Millero 1987; KHSO4 from Dickson 1990; pH: NBS scale/kg-H2O  (Pierrot et al 2006)

Treatment   pH  TA (µmol/kg as 

CaCO3) 

Temperature 

(°C) 

Ω calc Ω arag pCO2 

calculated 

Ambient 8.08 (0.02) 2076 (40) 25.6(0.1) 3.5 (0.1) 2.3 (0.1) 443 (21) 

600  8.02 (0.02) 2094 (43) 25.3 (0.1) 3.1 (0.1) 2.0 (0.1) 523 (24) 

750  8.01 (0.02) 2015 (37) 25.2 (0.1) 3.0 (0.1) 2.0 (0.1) 531 (29) 

1000  7.87 (0.02) 2036 (47) 25.3 (0.1) 2.3 (0.1) 1.5 (0.1) 775 (32) 
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