
Trina Myers, Ian Atkinson, Ron Johnstone

1. eResearch Centre, James Cook University, Townsville, Qld
2. Geography, Planning & Environmental Management. University of Queensland, Qld
Data Deluge

• Many non-standardised monitoring efforts – *disparate data* is being generated as we sit here...

• Bottlenecks are developing in the data analysis/data processing phases

Researchers and managers of (say) coral reefs need:

• Less Data &
• More Information!
The Gap

- Current data processing depends on manual manipulation and human intervention
 - Not automatic
 - Slow...

- Existing technologies & tools cannot handle future data analysis requirements
 - Need to explore new technologies
 - Adapt these into new tools
The Challenge

• The challenge is to change current approaches to data analysis through introducing new technologies which will be able to scale

 – Independent of data sources
The Semantic Web

- The Semantic Web allows more efficient ways of managing disparate data

- Making documents **machine readable** not just human readable
The Semantic Web

• Built on Resource Description Format (RDF) triples -
 – Subject - the resource
 – Predicate – linking property
 – Object – value of property
• Each triple can be called a statement
• Anything can be described in a series of triples

Water

has_empirical_formula

H₂O

<subject> has a Property <predicate> valued by <object>
The Semantic Web

- Semantic Web technologies use logic systems to infer a conclusion or meaning.

Semantic inference can tame the Data Deluge.
The Ontology

• Ontologies are the foundation of Semantic Web technologies

An ontology is a set of explicit specifications, terms and relationships of a concept.

Formal definitions and axioms are used to constrain the interpretation of the specifications to create, share and re-use “computer-understandable” knowledge.

(Antoniou et al. 2001).
The Semantic Reef Project

• An eco-informatics application focused on automated data processing, problem solving and knowledge discovery for reef management

• The goal is to harness:
 – The Semantic Web
 – Scientific workflows
 – Grid computing

 into a hypothesis-based research tool
Modular Design

• Create a modular Knowledge Base:
 – Domain experts perspective for functions of any coral reef
 – Semantic building blocks for Ontology engineering
Modular Design of Ontologies

Key Processes/Pathways
- Standing Stocks
- Nutrient Dynamics
- Bio-availability
- P:R $>=1$
- P:R <1
- Productivity
- Dominant Producer Components
- Number of Trophic Levels
- Major Components of Trophic Layers

Trophic/Functional Type
- Complex or Simple (number of trophic layers)

Human Influences
- Frequency & Intensity
 - Physical
 - Chemical
 - Biological
- Type

Identifying All Coral Reefs

Water Chemistry
- Background Nutrient Levels/Stocks
- Inorganic Compounds
- Organic Compounds
- pCO$_2$, pH, Alkalinity
- Chlorophylls & Pigments

Temperature Regime
- Day/Night Max values
- Day/Night Differences
- Day/Night Mins

DHW - Risk or Potential
- Historical Temperature Regime/features
- Bleaching Events (or not)
- Trajectory?

Hydrodynamics
- Supply or Removal Capacity for Nutrients, pollutants etc.
- Volumes & Exchange Patterns
- Associated Oceanic or Other Scale Dynamics

Current regimes (speed & direction)
- Bathymetry
- Critical Boundary Layers or Interfaces

Light Environment
- Sensitivity of Corals to Light
- In-water Light Quanta

Other Components
- Plants
- Animals
- Non-coral Species Composition
- Micro-organisms
- Hard Corals
- Soft Corals
- Coral Species Composition
- Coral Community Composition

Particular Sensitivities of species to nutrients, light, or Temperature (or both)
- Historical Mortality or Disturbance record

Background Nutrient Levels/Stocks

Compressed text

Courtesy of Ron Johnstone and Glen Holmes
Centre for Marine Science, University of Queensland
The Research Question

Can *semantic inference* be implemented in a software hypothesis tool to facilitate research?

- Investigate new semantic technologies
- Investigate the impact of new technology on data integration with a focus on marine data

Using the Semantic Reef architecture
Validating the Approach

Reverse-hypothesis approach to ground-truth the system against historic events

Test case:
Coral Bleaching on the GBR – 1998 and 2002
Flexible Hypothesis Design

Scientific Workflow

Data

Knowledge Base

Inferred Knowledge

Observe to confirm Hypothesis

Propose hypothesis

Inference rules to query KB

Coral_Reef.Coral_Reef(?x) ∧ Temperature_Element:Temperature_Environment(?y)
∧ Environmental_Element:hasTemperatureEnvironmentOf(?x, ?y) ∧
Reef_Stock:Coral(?z) ∧ ReefDL:hasCorel(?x, ?y) ∧ ReefDL:isHermatypic(?z, true) ∧
Coral_Reef:hasAverageLongTermSeaSurfaceTemperatureOf(?x, ?LMST) ∧
Temperature_Element:hasDailyAverageSSTof(?y, ?SST) ∧
swrlb:greaterThanOrEqual(?SST, ?LMST) ∧
Chemical_Element:Water_Chemistry_Environment(?w) ∧
Environmental_Element:hasWaterChemistryEnvironmentOf(?x, ?w) ∧
Chemical_Element:hasChlorophyll(?w, Chlorophyll_a) ∧
Coral_Reef:hasWaterDepthMetresOf(?x, ?depth) ∧
swrlb:lessThan(?depth, 2.0) ∧ Light_Element:Quanta(?q) ∧
Environmental_Element:hasLightEnvironmentOf(?x, ?q) ∧
Light_Element:hasEinsteinsof(?q, ?MicroEinst) ∧
swrlb:greaterThanOrEqual(?MicroEinst, 1000)

antecedents

consequence

→ BleachWatch_Coral_Reef(?x)
SEMAT and the Semantic Reef

Data Collection and Extraction Layers

Data Adaptation Layer

Semantic annotation workflows

Linked Data

New Knowledge Base

Hypothesis query

Inference Rule

Conclusion or Alert

Coral Reef Ontology Knowledge Base

Common Ontologies
- Time ontology
- Sensor ontology
- Geospatial ontology

SQL Database

Jena Triplestore

Data retrieval methods:
1) Diver with data collector/data storage
2) Wired connection
3) Wireless connection
Outcomes

• A new approach to automate data analysis

• A means to automatically extract or disclose unknown relationships and/or phenomena in the data

• Based on the Semantic Web, scientific workflows and grid computing technologies

• Proven to handle disparate data (tested on coral bleaching experiment)

• Integrated with the SEMAT system
Implications and Applications

The Semantic Reef system offers a different approach to the development and execution of observational hypotheses in the marine domain

– Re-usable design for any coral reef worldwide

– Help inform reef Managers in data collection and reef monitoring decisions

– Suitable for other lines of enquiry (medical, business, earth sciences...
Questions?

Leave Jarrod alone!

Instead e-mail:

Trina.Myers@jcu.edu.au
Ian.Atkinson@jcu.edu.au