
Dam Management With Imperfect Models:
Bayesian Model Averaging and Neural Network

Control

Paul J. Darwen

School of Business, James Cook University, Brisbane Campus
349 Queen Street, Brisbane, Queensland, Australia

paul.darwen@jcub.edu.au

Abstract. Dam management is a controversial control problem for two
reasons. Firstly, models are (by definition) crudely simplified versions of
reality. Secondly, historical rainfall data is limited and noisy. As a re-
sult, there is no agreement on the “best” control policy for running a
dam. Bayesian model averaging is theoretically a good way to cope with
these difficulties, but in practice it degrades under two approximations:
discretizing the parameter space, and excluding models with a low prob-
ability of being correct. This paper explores the practical aspects of how
Bayesian model averaging with a neural network controller can improve
dam management and flood control.

1 Motivation

A dam on a river has two functions, to store water for dry times, and to prevent
flooding. Unfortunately, these two functions are diametrically opposed:

– To prevent flooding, you should gradually let out all the water from the dam,
so that it can catch a future flood.

– To store water for dry times, you should never let out any water.

The dam control problem is stark: how much water should we keep in the
dam, and how much should we let out? Currently there is no consensus answer.

Section 3.1 looks at the simple control policy of always letting the water
level down to some fixed percentage of the dam’s capacity. Section 3.3 considers
a more elaborate control policy using a neural network found by expectation
maximization, either:

– By finding the single model that best fits historical data (using expectation
maximization again), or;

– By finding a whole distribution of plausible models with Bayesian model
averaging [1], an approach which is theoretically better [4, page 175].

This paper explores the practicality of the Bayesian approach. It consumes
vastly more computer time, even with two approximations: discretizing the space
of models, and deleting models with sufficiently low probability of being correct.



2 A Dam Control Problem

Imagine a river with a dam that has controllable release gates, so the dam’s
water level can be reduced to any desired level. To calibrate a rainfall model,
only 100 years of historical rainfall data exist. For a future 50-year period, the
two conflicting aims are to avoid either of these disasters:

– Avoid flooding, when the dam level reaches rises above 100%.
– Avoid running empty, when the dam level reaches 0%.

Evidence suggests that the weather in eastern Australia follows a 5-year
cycle of wet and dry, with both shorter- and longer-term cycles to complicate
matters [3]. To capture that, this paper makes up a stochastic rainfall function
that gives river flow at time t (in months) by taking random samples from a
lognormal function with standard deviation σ = 0.1 and mean µ given by:

µ = ln(2 + (0.3299928× tanh(3.3× sin(t/9.55)) (1)

+0.3345885× tanh(3.4× sin(t/7.00))

+0.3354186× tanh(3.5× sin(t/4.15))))

Equation 1 has three flood/drought cycles with roughly equal importance,
with periods of 4.15, 7, and 9.55 months. The rest is merely to make it more
complicated than the simple model described next in Section 2.1.

To generate 100 years of historical data, running this rainfall function with
a particular random number seed gives the historical data shown in Figure 1.
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Fig. 1. The first 20 years of the historical data generated by Equation 1, overlaid with
the single best-fit model with parameters w0 = 0.32 and w1 = 6.9964 in Equation 2.



2.1 A Crude Model

All rainfall models are simpler than the real world, and here the model in Equa-
tion 2 is too simple to capture the actual rainfall function in Equation 1. Here,
a simple stochastic model has the following form, with mean river flow µ set to:

µ = 2.0 + w0 ∗ tanh(4.0 ∗ sin(t/w1)) (2)

That is, the model assumes a cycle from flood to drought, where the two
model parameters are w0 the amplitude and w1 the duration of that cycle, and
it predicts the river’s mean flow at time t in months. An example of this model
for a particular choice of parameters w0 and w1 is in Figure 1.

To give the model a stochastic flavour, the prediction is a random sampling
from a normal distribution with mean given by Equation 2 and standard devia-
tion σ = 0.6. Any negative predictions are set to zero.

2.2 A Control Function

A popular control policy is to set a single parameter, namely how much of
the dam’s capacity to fill with water, with the unused capacity being a “flood
compartment”. This policy will be evaluated later in Section 3.1.

A more elaborate controller could be a neural network, and this paper uses
the simplest kind: a sigmoid function equivalent to a one-node neural network.

θ(u0, u1, x, t) =
1

1 + eu0+u1x
(3)

The sigmoid function θ in Equation 3 has bias u0 and weight u1, and takes
input x(w0, w1, t) the water level of the dam at time t as predicted by a model
with parameters w0 and w1 from Equation 2. The sigmoid function θ is the
desired water level that the dam should be lowered to. Of course, if the dam’s
water level is already less than that, then no water need be released.

As a sigmoid function can take an S-shape, the general aim of this controller
function is to suggest a lower dam level if wet weather is predicted, and to suggest
a higher dam level if dry weather is predicted.

2.3 The Single Best-Fit Model versus Bayesian Model Averaging

A popular approach for finding a controller is to calibrate the model’s parameters
to the historical data, and then calibrate a controller to that single best-fit model.

To find that single best-fit model, expectation maximization is a popular
approach: it finds the model that has the highest probability of being correct,
given the data [2]. For the historical data in Figure 1, the most probable model
has w0 = 0.32 and w1 = 6.9964 in Equation 2. Figure 1 shows this model.

The problem with the best-fit model is that the “highest probability of be-
ing correct” often turns out to be disappointingly improbable. With so little
historical data, many other models are less probable, but still plausible.
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Fig. 2. The probability distribution of plausible models. The single most-probable
model is the one at the peak of the highest hill.

In the Bayesian model averaging approach, the aim is to iterate over all
those plausible models to find the probability that a model is correct, given the
historical data. Figure 2 shows this probability distribution for our test problem.
The highest point in that distribution represents the most probable model, at
parameters w0 = 0.32 and w1 = 6.9964. But picking the highest point in the
probability distribution (i.e., the best-fit model) ignores all those other less-
probable models that are still plausible, throwing away much of the information
in the historical data.

In this paper, the problem is not to find the single “best” model, but instead
to come up with an adequate controller despite having a too-simple model.

2.4 Two Approximations to Bayesian Model Averaging

Bayesian model averaging is theoretically the better method [4, page 175], but
that proof assumes a continuous world. In the messy world of numerical approx-
imations, there are trade-offs. This section describes two approximations.

Firstly, the distribution of models in Figure 2 may look smooth, but it uses
a discretized grid to step through the model parameters. The w0 axis has step
size 0.004 and w1 has a smaller step size of 0.0012 to capture those narrow sails.
These step sizes were tuned by hand, to be small enough make Figure 2 smooth.

Secondly, even with discretized model parameters, there are still a great many
models with non-zero probability of being correct. Figure 3 counts how many
models there are, as we descend from the peaks of Figure 2. Figure 3 can be
extended to the left side without limit, so if you really want every single model
with non-zero probability of being correct, there is essentially no limit. Rather
than enumerate every single model, a reasonable approximation is to use some
minimum cutoff, and ignore the low-probability models. From Figure 3, a cutoff
of 10−6 will take the 1,489 most probable models.
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Fig. 3. There are an unlimited number of low-probability models, so this paper uses a
cutoff of 10−6, which makes for 1,489 models.

3 Results

3.1 A Fixed Level Is Not A Good Policy

A simple control policy is to gradually release water from the dam until the level
is down to some fixed percentage of capacity, so the unused dam space can be a
“flood compartment”. This section evaluates that kind of policy.

Take the single model that best fits the historical data, and use it to evaluate
various fixed levels by doing Monte Carlo simulation of many possible 50-year
futures. The peak of the solid line in Figure 4 shows that the single best-fit model
predicts a fixed level of 71.65% would be the best water level to keep the dam
at, and doing so should prevent disaster (either the dam over-filling, or running
empty) with a probability of 99.35% over the next 50 years. Sounds pretty good,
if you trust that single best-fit model!

Unfortunately, the dashed line in Figure 4 uses the true, unseen function that
generates rainfall (from Equation 1) to evaluate the true probability of success.
If you run the dam at a constant water level of 71.65% as suggested by the single
best-fit model, then your true probability of success is a lousy 9.4%, much less
than the 99.35% that the single best-fit model has led you to believe.

3.2 A Neural Network Controller from the Single Best-Fit Model

Take the single best model, which is the peak of Figure 2), and use it to find the
best controller function. That single best model says its best controller should
have a success rate of about 98%, which sounds pretty safe.

Unfortunately, running that controller through 400,000 simulated futures us-
ing the true rainfall function gives a true success rate of only 32.3%. The actual
success rate is worse because of the simplicity of the model’s functional form, and
the limited historical data. So for this approach, you have unwittingly doomed
your city with a 67.7% chance of disaster some time in the next 50 years, even
though your best-fit model predicts only a 2% chance of disaster.
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Fig. 4. A simple control policy is to gradually release water to bring the level down to
some fixed percentage. Using the single model that best fits the historical data, this
shows how well the fixed-level approach works according to that single best model, and
according to the actual, unseen rainfall function. Keeping the water level at 71.65%
(as the best-fit model suggests) would give a real success rate of only 9.4%.

3.3 A Neural Network Controller from Bayesian Model Averaging

Bayesian model averaging generates the whole distribution of models shown in
Figure 2. This paper discretizes that distribution and then ignores the low-
probability models, as described in Section 2.4.

So here, the best controller is the one that performs best, according to the
weighted vote of all 1,489 models. The weighting is according to each model’s
probability of being correct. This approach takes about 1,498 times as much
computer time as using the single best-fit model. The best controller should get
a success rate of 98%, according to those models, showing that the controller
function is not the bottleneck — whatever the model(s), there is a controller
which supposedly will have a 98% success rate, according to those models.

Taking that winning controller from Bayesian model averaging, and running
it through 400,000 simulated 50-year futures using the true rainfall function gives
a true success rate of 45.796%. That’s better than the 32.319% from the single
best-fit model in Section 3.2, and much better than the lousy 9.4% from using
a fixed level back in Section 3.1. These differences are statistically significant.

The single best-fit model gives a controller at the parameters u0 = −2.4375
and u1 = 1.546875. In contrast, the controller from Bayesian model averaging is
at u0 = −2.83984375 and u1 = +1.9140625, a substantial difference.

Equation 1 describes the (usually unseen) rainfall function. So this section
cheats and uses that true function to find the ideal controller: it’s at u0 =
−5.5 and u1 = +3.9 and gives a success rate of 98.8% on the true rainfall
function. Again, all controllers get about 98% on their choice of models, so it’s
not controller optimization that matters here. Figure 5 shows all three controllers
in parameter space — the Bayesian approach’s controller is closer to the ideal.
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Fig. 5. The two controller functions, one found from the single best model, and the
other from a Bayesian distribution of all plausible models, are shown here with the
ideal controller, found by using the (usually unseen) function that generates rainfall.
The Bayesian approach is closer to the ideal.

4 Discussion and Conclusion

Models are merely simplified, abstracted version of the real thing. A more re-
alistic model would have more than the 2 parameters in Equation 2. However,
models with a many free parameters require more data. Any practical rainfall
model cannot have a large number of free parameters, due to the shortage of
historical data. This avoids a combinatorial explosion from a high-dimensional
space of model parameters. So long as the space of plausible models has rea-
sonably low dimensions, then iterating through that space of models should be
feasible for the Bayesian model averaging approach.

In this problem, the complexity of the neural network controller and the
algorithm for optimizing that controller were not the bottlenecks that prevent
success — in fact, even the simple controller used here was good enough for
a 98% success rate. The bottleneck is that the model is too simple. For such
models, Bayesian model averaging is a practical way do dam management and
similar control problems.
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