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Abstract

Background: SCP/TAPS proteins of parasitic helminths have been proposed to play key roles in fundamental biological
processes linked to the invasion of and establishment in their mammalian host animals, such as the transition from free-
living to parasitic stages and the modulation of host immune responses. Despite the evidence that SCP/TAPS proteins of
parasitic nematodes are involved in host-parasite interactions, there is a paucity of information on this protein family for
parasitic trematodes of socio-economic importance.

Methodology/Principal Findings: We conducted the first large-scale study of SCP/TAPS proteins of a range of parasitic
trematodes of both human and veterinary importance (including the liver flukes Clonorchis sinensis, Opisthorchis viverrini,
Fasciola hepatica and F. gigantica as well as the blood flukes Schistosoma mansoni, S. japonicum and S. haematobium). We
mined all current transcriptomic and/or genomic sequence datasets from public databases, predicted secondary structures
of full-length protein sequences, undertook systematic phylogenetic analyses and investigated the differential transcription
of SCP/TAPS genes in O. viverrini and F. hepatica, with an emphasis on those that are up-regulated in the developmental
stages infecting the mammalian host.

Conclusions: This work, which sheds new light on SCP/TAPS proteins, guides future structural and functional explorations of
key SCP/TAPS molecules associated with diseases caused by flatworms. Future fundamental investigations of these
molecules in parasites and the integration of structural and functional data could lead to new approaches for the control of
parasitic diseases.
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Introduction

The SCP/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) protein family

(Pfam accession number no. PF00188; InterPro accession number

IPR014044) includes a range of structurally related proteins found

in a wide range of eukaryotes [1] and characterized by the

presence of SCP-extracellular domains (a single- or double-

domain SCP/TAPS) which act as Ca2+-chelators in various

signalling processes [2]. SCP/TAPS proteins include rodent

sperm-coating glycoproteins (or acidic glycoproteins, proposed to

be involved in sperm maturation during passage through the

epididymis) [3], mammalian testis-specific protein (Tpx-1) [4],

glioma pathogenesis-related protein [5–7], venom allergen 5 from

vespid wasps and the venom allergen 3 from fire ants, which

mediate allergic reactions to the bites by some insects of the order

Hymenoptera [8] as well as plant pathogenesis proteins (PRPs) of

the PR-1 ‘‘subfamily’’ which are synthesized in response to

infections with pathogens or other stress-inducing factors [9]. For

parasitic helminths, SCP/TAPS proteins are common in nema-

todes of the orders Spirurida, Ascaridida, Tylenchida, Rhabditida

and Strongylida [10]. Within the latter order, members of the

SCP/TAPS protein family have been well studied in the canine

hookworm, Ancylostoma caninum. Based on the observation that

these proteins are abundant in the excretory/secretory (ES)

products of the serum-activated third-stage larvae (L3s), they have

been designated as ‘Ancylostoma-secreted proteins’ or ‘activation-

associated secreted proteins’ ( = ASPs; [11,12]). In hookworms,

SCP/TAPS proteins are thought to play an important role in the

transition from the free-living to the parasitic stage of the L3s

during the invasion of and the migration through the host’s tissues

[11–15], as well as key role/s in the modulation of the host’s

immune response [14,16]. In addition, because of its immunogenic

properties, one SCP/TAPS protein (called Na-ASP-2) is currently

under investigation as a vaccine candidate against the disease

( = necatoriasis) caused by the human hookworm Necator americanus

[17–20].

Despite the fundamental roles that nematode SCP/TAPS

proteins are proposed to play in the host-parasite interplay
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[1,11–15], knowledge of SCP/TAPS homologues/orthologues in

parasitic trematodes ( = flukes) is scant. In a single study, Chalmers

et al. [21] identified genes encoding SCP/TAPS proteins

(designated SmVALs) of Schistosoma mansoni (a blood fluke of

humans) by mining of available expressed sequence tag (EST)

datasets [21], investigated levels of transcription of corresponding

mRNAs in different developmental stages of this parasite,

performed extensive analyses of the predicted amino acid

sequences by homology modelling, and inferred phylogenetic

relationships [21]. Based on the results from this study, the authors

proposed a role for SmVALs in processes linked to the invasion of

the human host by S. mansoni [21]. This hypothesis requires testing.

In addition, elucidating the structure/s and function/s of these

molecules in S. mansoni and other socioeconomically important

parasitic trematodes could provide an avenue for the design of new

approaches for their control.

Recently, advances in next-generation sequencing (NGS) and

bioinformatics [22–25] have allowed large-scale explorations of

the transcriptomes and/or genomes of a range of parasitic

trematodes, including the carcinogenic opisthorchiids Clonorchis

sinensis and Opisthorchis viverrini [26], the fasciolids Fasciola hepatica

[27] and F. gigantica [28] (liver flukes) as well as Schistosoma mansoni

and S. japonicum [29,30] (blood flukes). The sequence data

generated in these studies, available for download from public

databases (e.g., http://www.gasserlab.org/ and http://www.

genedb.org/), represent an excellent resource for studies of

SCP/TAPS proteins in parasitic trematodes. Utilizing current

datasets, we conduct herein the first large-scale analysis of SCP/

TAPS proteins in a range of parasitic trematodes of both human

and veterinary health importance; infer relationships between/

among trematode SCP/TAPS based on predictions of secondary

structures of protein sequences; and investigate differences in the

transcription of genes encoding SCP/TAPS between the juvenile

and adult stages of O. viverrini and F. hepatica.

Materials and Methods

Sequence datasets, and identification and analyses of
SCP/TAPS homologues/orthologues

The sequence data obtained from public sequence databases

(i.e. http://www.gasserlab.org/ and http://www.genedb.org/)

[26–31] and analysed herein included predicted peptide inferred

from (i) the transcriptome [generated by 454 sequencing of

normalized complementary DNA (cDNA) libraries] of the adult

stage of C. sinensis (n = 50,769 predicted peptides) [Sequence Read

Archive (SRA) accession number: SRA012272]; (ii) the tran-

scriptomes [generated by Illumina sequencing of non-normalized

cDNA libraries] of adult F. gigantica (n = 30,525) (SRA024257) and

of both adult and juvenile stages of O. viverrini (n = 25,172) and F.

hepatica (n = 19,669) (http://www.gasserlab.org/); (iii) the genome

sequences of S. mansoni (n = 13,174 peptides), S. japonicum (n =

13,469) and S. haematobium (n = 13,073). The algorithms BLASTp

[32] and InterProScan [33] were used to identify single- and

double-domain SCP/TAPS (predicted) in each of the transcrip-

tomic and genomic datasets based on sequence homology (e-

value cut-off: 1025) with known eukaryotic SCP/TAPS proteins

(cf. [1]), and on the presence of one or more SCP-extracellular

domains (Pfam: PF00188; InterPro: IPR014044), respectively.

Signal peptides were also predicted using the program SignalP

3.0, employing both the neural network and hidden Markov

Models [34]. Putative excreted/secreted SCP/TAPS proteins

were identified based on the presence of a signal peptide and

sequence homology to one or more known ES proteins listed in

the Secreted Protein (http://spd.cbi.pku.edu.cn/; [35]) and the

Signal Peptide (http://proline.bic.nus.edu.sg/spdb/index.html;

[36]) databases.

Prediction of the secondary structures of trematode SCP/
TAPS and homology modelling

Structure-based sequence alignments of both single- and

double-domain SCP/TAPS were generated manually, guided by

secondary structure elements predicted using PSIPRED software

[37]. Individual structure-based alignments of amino acid

sequences (.120 amino acids in length) were subjected to analysis

by Bayesian inference (BI) using the program MrBayes v.3.1.2 [38]

and verified by Neighbour Joining (NJ) analysis using the MEGA

software [39]. Each BI analysis was conducted for 1,000,000

generations (ngen = 1,000,000), with every 100-th tree being

saved, using the following parameters: rates = gamma, aamo-

delpr = mixed, and the other parameters left at the default settings.

Tree and branch lengths were measured employing the parameter

‘sumt burnin = 1000’; an unrooted, consensus tree was construct-

ed, with ‘contype = halfcompat’ nodal support being determined

using consensus posterior probabilities and displayed employing

the program TreeView v.1.6.6 [40]. For selected single-domain

SCP/TAPS proteins, homologues with known three-dimensional

structures were identified using the protein-fold recognition

software pGenTHREADER [41] and selected as templates for

comparative modelling using MODELLER [42]. Twenty inde-

pendent models were generated, and the model with the lowest

energy was selected, its geometry analysed using PROCHECK

[43] and then inspected visually with PyMOL [44].

Assessment of levels of transcription of genes encoding
SCP/TAPS in selected liver flukes

The raw sequence reads derived from each of the non-

normalized cDNA libraries from adult and juvenile O. viverrini

and F. hepatica were mapped to the longest contigs representing

individual SCP/TAPS proteins using the program SOAP2 [45].

Briefly, raw sequence reads were aligned to the non-redundant

transcriptomic data, such that each raw sequence read was

uniquely mapped (i.e. to a unique transcript). Reads that mapped

to more than one transcript (designated ‘multi-reads’) were

randomly assigned to a unique transcript, such that they were

recorded only once. To provide a relative assessment of transcript

abundance, the number of raw reads that mapped to each

sequence was normalized for length (i.e. reads per kilobase per

million reads, RPKM) [46].

Interaction networking
An established method [47] was used for probabilistic functional

genetic networking among Mus musculus gene homologues/

orthologues of molecules encoding SCP/TAPS proteins of

parasitic trematodes using the recommended, stringent cut-off

value of 4.6. The predicted networks resulting from the analyses

were saved in a graphic display file (gdf) format, examined using

the graph exploration system available at http://graphexplora-

tion.cond.org/ (http://www.geneorienteer.org/; [47]).

Results and Discussion

SCP/TAPS proteins of parasitic trematodes
A total number of 151 peptides with high homology (e-value

cut-off: 1025) to known eukaryotic SCP/TAPS were predicted

from all of the genomic and/or transcriptomic sequence datasets

available for trematodes (Tables S1 and S2). These datasets

provide a solid resource for future structural and functional

SCP/TAPS Proteins of Parasitic Trematodes
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investigations of the SCP/TAPS protein family of trematodes and

other parasitic helminths. Of the sequence data included here, the

complement of protein-coding genes of S. mansoni comprises the

largest number of predicted SCP/TAPS proteins reported to date

(n = 39 and 2 single- and double-domain SCP/TAPS, respectively)

(Tables S1 and S2). One of these amino acid sequences (i.e.

Smp_131370) had not been predicted from the S. mansoni EST

datasets analysed previously [21], thus representing a novel record.

The large number of transcripts encoding distinct SCP/TAPS

proteins in S. mansoni is in contrast to the number of SCP/TAPS-

encoding genes inferred from the genomic sequence data from the

other two Schistosoma species analysed herein (n = 17 and 25 for S.

japonicum and S. haematobium, respectively; cf. Tables S1 and S2).

The likely explanation for this result is technical and appears to

relate to the fact that, in the assemblies of the S. japonicum and S.

haematobium genomes, smaller proportions of genome sequence are

contained within large, contiguous sequences (‘scaffolds’) [30,31],

thus leading to the fragmentation of predicted open reading

frames (ORFs) and, in turn, to an underestimation of the number

of protein-coding genes. In the future, bridging the gaps between

scaffolds representing these draft genomes (by, for instance,

performing re-assembly of Illumina reads to close gaps between

adjacent contigs within scaffolds; [48]) should allow the unequiv-

ocal identification of the complete sets of SCP/TAPS protein-

coding genes in these blood flukes and will pave the way for

comparative studies. In addition, it will provide a basis for in-depth

analyses of amino acid sequence features, such as patterns of

cysteine residues and presence/absence of signal peptides, thus

assisting future structural and functional analyses of members of

the SCP/TAPS protein family in parasitic helminths.

In the present study, a total number of 42 (27%) SCP/TAPS

amino acid sequences were predicted to contain an N-terminal

signal peptide (Tables S1 and S2); in particular, amongst the

sequence data analysed herein, the S. mansoni set of predicted

proteins included the largest number of SCP/TAPS with a

signal peptide indicative of secretion (n = 17; Tables S1 and S2).

Conversely, none of the SCP/TAPS amino acid sequences

predicted from the transcriptome of F. gigantica contained a

secretory signal peptide (Tables S1 and S2), despite unpublished

evidence of one SCP/TAPS containing a signal peptide in this

trematode (GenBank accession number FN379399). These

findings support the existence of two types of eukaryotic SCP/

TAPS proteins, one of which lacks a signal peptide and is

localized within the cellular compartment, in association with

the Golgi endoplasmic reticulum (e.g., the Golgi-associated PR-

1-related protein [GAPR-1] of vertebrates; [49–51]), and the

other which contains a signal peptide and is localized in the

extracellular compartment (e.g., Ac-ASP-2 of A. caninum; [12]).

The detection of SCP/TAPS amino acid sequences that lack a

predicted signal peptide in all of the trematode sequence

datasets contrasts the situation for parasitic nematodes (includ-

ing hookworms and filarioids) whose SCP/TAPS proteins

usually possess a signal peptide and are abundant in the ES

products (e.g., [1,12,15,52–55]). To date, SCP/TAPS proteins

have been identified in the ES products of various species and

different developmental stages of parasitic trematodes, including

S. mansoni and S. japonicum eggs [56,57] and O. viverrini adults

[58]. In particular, protein Sj-VAL-1 was isolated from the ES

products of eggs of S. japonicum and shown to evoke a specific

Th2-type immune response when inoculated into naı̈ve mice

[56], whereas other SCP/TAPS members have been isolated

from ES products from S. mansoni miracidia and cercariae

during their transition to sporocysts [59] and schistosomules

[60,61], respectively. These findings raise questions as to the

roles that SCP/TAPS play in the infection process in both the

vertebrate and molluscan hosts. In another study, SCP/TAPS

proteins were not detected in ES products from juvenile or adult

F. hepatica [62]. The structural and functional differences

between secreted and non-secreted SCP/TAPS proteins remain

unclear [21] and warrant detailed investigations. Both secreted

and non-secreted SCP/TAPS are characterized by the presence

of a highly conserved SCP-domain [63]. Although conserved

domains are known to play key roles in determining protein

function, protein-protein interactions, DNA binding and

enzyme activity [64], structural analyses of the complete amino

acid sequence of proteins are essential to assist in-depth

investigations of function [65].

Structural classification of trematode SCP/TAPS
In the present study, a key criterion for the classification of

trematode SCP/TAPS proteins was the presence of cysteine

residues at particular sequence positions. Three conserved

disulphide bonds, which stabilize the fold of the core, were

defined as a hallmark-feature of the SCP domain. For single-

domain SCP/TAPS proteins, amino acid sequence alignments,

guided by predictions of their secondary structures and sequence

similarity, allowed the definition of (at least) four individual groups

(Table S1; Figures 1 and 2a–d; Figure S1), characterized by: (i) the

presence of all conserved secondary structure elements of the SCP

domain, an N-terminal a-helix in most sequences and eight

conserved cysteine residues (group 1); (ii) presence of all conserved

secondary structure elements of the SCP domain, an N-terminal

a-helix in many sequences, a cysteine-rich N-terminal region and

the absence of conserved cysteine residues after a1 and b3 (group

2); (iii) presence of all conserved secondary structure elements of

the SCP domain and of one conserved cysteine residue after a1,

and the absence of an N-terminal a-helix (group 3); or (iv)

distribution of secondary structure elements, similar to those of

groups 1–3, and the absence of conserved cysteine residues (group

4). Within group 3, F. gigantica c4654, F. gigantica c12544, O. viverrini

c3766, C. sinensis c8455 and O. viverrini c2349 did not possess the

cysteine residue at a1, characteristic for this group; however, the

similarity between their predicted secondary structures and those

of other proteins within group 3 led to their inclusion within this

group. The SCP/TAPS groups differ markedly in the conserva-

tion of cysteine residues; while the conserved intra-molecular

disulphide bonds are present in proteins of groups 1 and 2, they

are absent from those of groups 3 and 4. Thus far, the only known

example of a non-disulphide-stabilised SCP-fold is GAPR-1 [66].

Of the 148 SCP/TAPS amino acid sequences predicted, eleven

represented double-domain SCP/TAPS proteins. However, the

structure-based amino acid sequence alignment revealed that the

C-terminal moiety of two of these proteins, namely S. haematobium

cA00818 and cA08278, possessed a non-SCP/TAPS fold. Of the

remaining nine sequences, S. haematobium cA07851 represented

group 1, and the other eight sequences were classified as group 2,

based on the conservation of cysteine residues (Table S2; Figure 1;

Figure S2). Previously, structure-based sequence alignments of

SCP/TAPS proteins of nematodes had led to their categorization

into three (structural) groups [63]. Based on comparisons of the

positions of the conserved cysteine residues between nematode and

trematode SCP/TAPS proteins, disulphide bridges can be inferred

that are crucial for the fold-stability (a2-b2 and b2-b3) and for the

tolerability of variations of the molecular constituents of the SCP-

fold. In particular, up to four conserved cysteine residues,

including those linking a2-b2 and b2- b3, in the amino acid

sequences of single-domain SCP/TAPS belonging to group 3 and

4, are mutated.

SCP/TAPS Proteins of Parasitic Trematodes
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At the molecular level, SCP/TAPS proteins adopt the fold of an

a-b-a sandwich, similar to the plant PR-1 protein P14a [2] and the

hookworm protein Na-ASP-2 [67]. Variable extensions are linked

to the C-terminus of the SCP-extracellular domain and include the

LCCL ( = Limulus clotting factor C, Coch-5b2, and Lgl1), the C-

type lectin, the ion channel regulator [66] and an additional SCP-

Figure 1. Schematic of the topology of the SCP-fold, location of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-
related 1 proteins (CAP) motifs and approximate position of conserved cysteine residues in the primary structure. The proposed
classification of groups of trematode SCP/TAPS proteins is supported by the occurrence of conserved cysteine residues. The grouping of hookworm
SCP/TAPS proteins has been reported recently [63]. For the hookworm SCP/TAPS proteins, the cysteine connectivity in the intra-molecular disulphide
bonds is known from experimental three-dimensional structures and shown by colour-mapping. The likely cysteine connectivity for trematode SCP/
TAPS is hypothetical and based on the modelling in this study.
doi:10.1371/journal.pone.0031164.g001

Figure 2. The phylogenetic relationships of single-domain SCP/TAPS proteins (.120 amino acids in length) predicted from the
transcriptomes of Clonorchis sinensis, Opisthorchis viverrini, Fasciola hepatica and F. gigantica (liver flukes) and the genomes of
Schistosoma mansoni, S. japonicum and S. haematobium (blood flukes) based on Bayesian inference. Group 1 (a); group 2 (b); group 3 (c);
group 4 (d). The posterior probability supporting each clade is indicated. The corresponding phylogenetic reconstructions conducted using
Neighbour Joining analyses of single-domain SCP/TAPS proteins are available from the primary author upon request.
doi:10.1371/journal.pone.0031164.g002

SCP/TAPS Proteins of Parasitic Trematodes
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extracellular domain. The abundance of the SCP/TAPS fold and

its extension, by means of a variable set of protein domains with

distinct functions, suggest a ‘‘vehicle-payload’’ model for these

proteins [63], whereby the C-terminally linked domain is delivered

by the SCP-domain to sites of action. The SCP-fold could also be

hypothesized to be involved in binding, recognition or enzymatic

activities; however, further studies are required to support this

hypothesis. In the future, experimental studies aimed at defining

the structure-function relationships of the SCP-fold will provide a

solid basis for determining its precise molecular activities. Indeed,

given the magnitude of variation in the atomic structure of the

SCP-fold, three-dimensional models obtained by comparative

modelling need to be treated with caution. To illustrate this point,

we generated and critically appraised the homology model for a

group 1, single-domain SCP/TAPS protein (designated c962)

from O. viverrini. For this target, the structure of Na-ASP-2 (PDB

code 1u53) was identified as the best template for comparative

modelling. An analysis of the predicted structure revealed that the

cysteine residues that are conserved between the trematode group

1 and the hookworm group 1 SCP/TAPS proteins are engaged in

disulphide bonds, due to the restraints provided by the chosen

template. The remaining, even number of cysteine residues may

also engage in intra-molecular disulphide bonds, and their

positioning within the primary structure promotes this hypothesis.

Due to the restraints by the chosen template, the homology model

for the group 1 proteins of trematodes shows that these additional

cysteine residues are freely surface-accessible. However, a different

conformation of the connecting loops, which would bring the

remaining cysteine residues into spatial vicinity, can also be

proposed (Figure 3). When applying two disulphide bonds as

special restraints in the comparative modelling calculation, a

structure with four intra-molecular disulphide bonds was inferred.

Importantly, for O. viverrini c962, an N-terminal peptide of 94

amino acids, including two cysteine residues, was excluded from

comparative modelling, due to the restrictions resulting from the

template structure. Indeed, a limitation of the homology modelling

approach for the de novo-determination of protein structures is the

fact that, since homology models only extend to the boundaries of

overlap between the template and the target protein in the

alignment, the effects of N- or C-terminal peptides of the target on

the fold are not considered. Experimental studies of the tertiary

structures of different groups of SCP/TAPS will assist substantially

in enhancing our knowledge of the structure-function relationships

of these proteins.

Developmental regulation of SCP/TAPS transcription
Levels of transcription of molecules encoding SCP/TAPS

proteins were investigated in the juvenile and adult stages of both

O. viverrini and F. hepatica, two key representatives of the

Trematoda. In O. viverrini, significant (p,0.001) differences in

transcription were recorded for eight distinct molecules encoding

SCP/TAPS (seven single- and one double-domain SCP/TAPS)

(Tables S1 and S2), of which four were up-regulated in the adult

stage (Table S1). Conversely, in F. hepatica, transcripts encoding six

distinct (i.e. four single- and two double-domain) SCP/TAPS were

significantly up-regulated in the juvenile stage (p,0.001) (Tables

S1 and S2), thus suggesting that SCP/TAPS proteins might play

distinct roles during the infection of and/or the establishment in

the mammalian hosts of trematode species with distinct biologies.

For example, excysted juveniles of O. viverrini migrate from the

duodenum through the ampulla of Vater and the common bile

duct to the intra-hepatic bile ducts, where they develop into adult

flukes [68,69], whereas F. hepatica juveniles burrow through the

intestinal wall and migrate through the peritoneal cavity and the

liver capsule to then mature to adult flukes in the bile ducts [70].

Based on this knowledge, it is tempting to speculate that, in F.

hepatica, the up-regulation of SCP/TAPS transcripts shown in the

juvenile stages may favour the successful migration of the parasites

through the host tissues, as hypothesized previously for the larval

stages of the hookworms A. caninum and N. americanus

[11,14,15,71], whereas nothing is known about the molecular

mechanisms that determine the up-regulation of such transcripts in

the juvenile and adult stages of O. viverrini. Similar profiles of

developmental regulation of genes encoding SCP/TAPS were

observed previously in S. mansoni [21]. In this blood fluke, real-time

PCR analysis of molecules encoding SmVALs revealed variable

profiles, which included transcripts up-regulated in the develop-

mental stage involved in the invasion of the intermediate (i.e.

miracidium) or definitive (i.e. schistosomule) hosts and other

transcripts ubiquitously expressed in all of the developmental

stages studied (i.e. eggs, cercariae, miracidia, schistosomules, and

adult males and females) [21]. In another study [72], an SCP/

TAPS-encoding transcript was shown to be up-regulated in the

vitelline tissues of S. japonicum, suggesting an involvement in

reproductive pathways within the female worm. The develop-

mental regulation of genes encoding SCP/TAPS throughout the

life cycle of both O. viverrini and S. mansoni suggests that these

molecules play diverse, but critical roles in the fundamental

biology of these organisms. In the future, knowledge of the levels of

transcription of genes encoding SCP/TAPS in other developmen-

tal stages of O. viverrini, as well as the localisation of SCP/TAPS

proteins in the tissues of different developmental stages of parasitic

trematodes, will assist in improving our understanding of the

function of these molecules in these and other parasitic helminths.

Genetic interactions of SCP/TAPS homologues
Networking predicted that 16 mouse homologues/orthologues

of trematode SCP/TAPS genes/transcripts, including those

encoding the glioma pathogenesis-related protein GLIPR-1,

Golgi-associated pathogenesis protein GLIPR-2 and cysteine-rich

secretory proteins CRISP-1 and CRISP-2, interact with a total

number of 391 other genes (Table S3). While little is known about

these interactions at this point, interestingly, previous studies

[5,73] have shown that the transcription of a glipr-1 orthologue is

high in human glioblastoma multiforme/astrocytoma and glioma

cell lines, but not detectable in other neuronal cancer cell lines or

in normal brain tissue. Although this link between up-regulated

transcription and glioblastoma multiforme/astrocytoma remains

to be proven, it is tempting to propose that some SCP/TAPS

proteins from O. viverrini (a carcinogen; [74,75]) are involved in the

pathogenesis of cholangiocarcinoma in chronically infected

humans. This hypothesis warrants testing. In the first instance,

studies could explore, for instance, the morphological and

molecular alterations in human bile duct cell lines exposed to

various SCP/TAPS proteins derived from the parasite.

Concluding remarks
Supported by the availability of the entire genome sequence of

schistosomes [29,30], recent advances in functional genomics

provide unprecedented opportunities for fundamental investiga-

tions of SCP/TAPS proteins in different species and developmen-

tal stages of parasitic trematodes. Given that the life cycle of a

range of parasitic trematodes (including Schistosoma spp.) can be

maintained under laboratory conditions [76,77], gene manipula-

tion and/or silencing approaches, including transgenesis and RNA

interference (RNAi) [78–80], could be employed for investigations

of functional aspects of genes encoding SCP/TAPS proteins in

parasitic trematodes. Such fundamental insights will enhance the
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understanding of key aspects of the biology of parasitic trematodes

of socio-economic importance, such as pathways linked to the

infection in the host and host-parasite interactions, and could

provide the basis for important biotechnological outcomes, such as

the development of novel strategies for the control of tremato-

diases.

Figure 3. Homology models for the molecule c962 from Opisthorchis viverrini. Top row: the models are rendered in cartoon representation
with cysteine side chains shown as bars in grey. The colour mapping ramps from blue (N-terminal end) to red (C-terminal end). Bottom row: surface
representation of the models is in the same orientation as in the top row. The electrostatic surface potential is mapped by colour (blue: positive
charge; red: negative charge). The left panel shows a homology model using Na-ASP-2 (PDB code: 1u53) as a template without restraint. For the
model shown in the right panel, two restraints were applied to force disulphide bonds between the remaining cysteine residues. The comparison of
both models highlights the significant differences in conformation and shape resulting from different template restraints applied. The images were
generated using PyMOL [http://www.pymol.org/].
doi:10.1371/journal.pone.0031164.g003
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