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Abstract. Marine reserves have become widely used in biodiversity conservation and are
increasingly proposed as fisheries management tools. Previous modeling studies have found
that reserves may increase or decrease yields, depending on local environmental conditions
and on the specific life-history traits of the fishery species. Sex-changing (female-to-male) fish
are targets of some of the most important commercial and recreational fisheries in the world.
The potential for disproportionate removal of the larger, older sex of such species requires new
theory to facilitate our understanding of how reserves will affect the yields of surrounding
fisheries, relative to fishes with separate sexes. We investigated this question by modeling the
effects of marine reserves on a non-sex-changing and a sex-changing population. We used
demographic parameter estimates for the common coral trout as a baseline, and we conducted
extensive sensitivity analyses to determine how sustainable yields of sex-changing species are
likely to be affected by reserves across a broad range of life-history parameters. Our findings
indicate that fisheries for sex-changing species are unlikely to receive the same yield-enhancing
benefit that non-sex-changing fisheries enjoy from marine reserves, and that often reserves
tend to reduce sustainable yields for a given overall population size. Specifically, the increased
egg production and high fertilization success within reserves is more than offset by the reduced
egg production and fertilization success in the fished areas, relative to a system in which fishing
mortality is distributed more evenly over the entire system. A key reason for this appears to be
that fertilization success is reduced, on average, when males are unevenly distributed among
subpopulations, as is the case when reserves are present. These findings suggests that, for sex-
changing populations, reserves are more suited to rebuilding overfished populations and
sustaining fishery viability, rather than enhancing fishery yields. These results are robust over a
range of sex-change regimes, stock–recruitment relationships, adult mortality rates, individual
growth strategies, and fertilization-success functions. Our findings highlight the importance of
considering the different contributions of males and females to population growth and fishery
yields when evaluating the efficacy of marine reserves for enhancement of fished species.
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INTRODUCTION

No-take marine reserves have become widely used in

biodiversity conservation and, more recently, as fishery

management tools (Sanchez Lizaso et al. 2000, Mangel

and Levin 2005). No-take reserves are areas completely

and usually permanently protected from all fishing (Sale

et al. 2005), based on the idea that natural populations

can maintain themselves if protected from human

interference (Bohnsack 1996). Establishing marine

reserves allows the numerical abundance and biomass

of previously harvested populations within them to

increase toward pre-exploitation levels. Such protected

populations can in turn benefit nearby fishing grounds in

two ways: through the net emigration of adults and

juveniles across marine-reserve boundaries (termed

‘‘spillover’’; Russ 2002), or through the export of pelagic

eggs and larvae (termed ‘‘larval subsidy’’; Little et al.

2005). Reserves also have a potential cost, however: the

decrease in fishing area associated with establishment of

reserves can lead to a loss in fishery yields as fishing

fleets have diminished access to target populations

(Gerber et al. 2003). Sustainable fishery yields are of

paramount importance to commercial and recreational

fishers, two of the most common users of marine

environments. Thus, there is a need to understand how

reserves will affect the yields of surrounding fisheries so

that appropriate sustainable harvesting strategies can be

developed, regardless of whether reserves are established

for fisheries management or other objectives. Specifical-

ly, it is important to determine the circumstances in

which benefits from reserves to long-term sustainable

yields, such as through larval subsidy or emigration

(‘‘spillover’’) of larger adults, are greater or less than the
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opportunity cost of closing the area to fishing (Sanchir-

ico 2004, Hart 2006).

Approaches to understanding the benefits and costs of

reserves on fisheries yields include both empirical studies

and theoretical models, with the two approaches

typically addressing different questions (Sladek-Nowlis

and Roberts 1999). Empirical reserve studies typically

address questions with a transient nature (e.g., how

quickly does biomass increase upon reserve establish-

ment?; Russ 2002), while mathematical models typically

have been used to answer questions about long-term

asymptotic outcomes (e.g., how do reserves affect long-

term sustainable yields?; Guenette et al. 1998, Gerber et

al. 2003). Some models are simple and idealized, with no

age structure and simple larval-dispersal assumptions,

and have been used to seek general rules of thumb

applicable to a large number of populations (Mangel

1998, Hastings and Botsford 1999, Botsford et al. 2003).

Others are more complex and tailored to particular

fisheries, with age and size structure (e.g., Guenette and

Pitcher 1999, Little et al. 2007, Mapstone et al. 2008),

complex larval dispersal patterns (Man et al. 1995,

Gaines et al. 2003), or fishery-specific density-dependent

effects (Quinn et al. 1993).

It has become apparent that different models yield

different conclusions about the effect of reserves on

long-term sustainable yields, and that differences in

model assumptions have important implications for

model results (Rose et al. 2001, Gerber et al. 2003). If

these results reflect reality, then marine reserves appear

to vary in the extent to which they enhance or reduce

fishery yields depending on species-specific life-history

traits, demographic rates, and dispersal patterns. For

instance, models in which density dependence occurs

after dispersal but before recruitment to the adult

population (i.e., density-dependent recruitment), tend

to find that reserves enhance fishery yields; however,

models with pre-dispersal density dependence, such as

density dependent fecundity, find that reserves reduce

fishery yields (Sanchirico 2004, White and Kendall

2007). Models with large larval-dispersal distances

relative to reserve size (Gaylord et al. 2005), or with

strong source–sink structure (Gaines et al. 2003), tend to

find that reserves enhance yields more often than models

with smaller larval-dispersal distances. Reserves also

have been more likely to enhance yields in models with

long-lived, slow-growing species, as opposed to short-

lived, fast-growing species (Gaylord et al. 2005). And

more recently, it has been shown that while models with

simple life-history assumptions, such as age-independent

size and mortality, produce yield equivalence with

reserves, models that include realistic variation in

biomass, reproduction, or mortality with age are more

likely to find that reserves decrease yields (Kaplan 2009).

Similarly, assumptions about fishing behavior and the

interaction of reserves with other fishing regulations also

influence the effects of reserves on fishery yields

(Sanchirico et al. 2006, White 2009).

Despite the growing recognition that species-specific

life-history and demographic characteristics have im-

portant implications for species’ responses to fishing,

most current fishery models and stock-assessment

methods are based on the assumption that fish have

separate sexes and ignore the contributions of males to

reproductive success (Alonzo et al. 2008). This may be a

reasonable assumption when males and females experi-

ence similar fishing mortality, because male abundance

materially reduces fertilization success only when males

become disproportionately rare (Heppell et al. 2006).

However, this assumption is potentially problematic for

species whose individuals change sex during their

lifetimes. For instance, if males are only produced

through sex change, and fishing targets larger individ-

uals, then high fishing pressure can lead to dispropor-

tionate removal of males and consequential sperm

limitation, leading to a greater reduction in reproductive

output than similar rates of harvest in populations with

separate sexes (Hawkins and Roberts 2003, Heppell et

al. 2006). Understanding whether and how marine

reserves may affect the dynamics of sex-changing fishes

is important because many species from a wide range of

families of fishes (e.g., groupers, wrasses, parrotfish, and

emperors or sea-breams) are sex changing, and such

species represent major components of important

commercial and recreational fisheries around the world

(Mapstone et al. 2008). For example, coral trout

(Plectropomus spp. and Variola spp.) and red throat

emperor (Lethrinus miniatus), part of the grouper and

sea-bream families respectively, collectively comprise

82% of the $39.5 million per year Queensland (Austral-

ia) commercial line-fishing industry (State of Queens-

land 2009), and they are major fishery species in other

countries with significant coral reefs (Heemstra and

Randall 1993). Similarly, California sheephead (Semi-

cossyphus pulcher), a wrasse, comprise 88% of the $3

million per year California live-fish fishery (California

Department of Fish and Game 1995). These important

fishery species occur in areas where marine reserves have

been designated, but the relative benefit of this

management strategy to the fish and fisheries have not

been well assessed.

There are relatively few two-sex models in the

literature, and fewer still that have explicitly included

both effects of sex ratio and the efficacy of marine

reserves as a management tool for hermaphroditic

species (Alonzo and Mangel 2004, Heppell et al. 2006,

Little et al. 2007, Kerwath et al. 2008, Mapstone et al.

2008). These studies, which have assumed either a fixed

schedule for sex change, or density-dependent sex

change, indicate that reserves could prevent the skewing

of sex ratio toward female-dominated populations, and

thus mitigate some of the effects of fishing on sperm

limitation in harvested areas. The consequences of these

effects for long-term sustainable yields, however, remain

unclear. Moreover, sexual transition in sex-changing

species is believed to be triggered largely by external cues
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such as environmental conditions, population density,

and habitat competition, or by social cues such as local
sex ratio and the size of an individual relative to the

other members of its social group (Warner 1988,
Shapiro 1989). There also is some evidence for varying

degrees of plasticity in sexual developmental strategies:
some sex-changing species produce males not just
through sex change (‘‘secondary males’’) but also

through direct development (‘‘primary males’’) (Adams
et al. 2000). The extent of plasticity and associated cues

for sex change, however, are not known for many
species (Alonzo et al. 2008). The two studies considering

the implications for fisheries of alternative sexual
development pathways in the absence of reserves have

found that fishing differs in its effects on fixed and age-
variable sex-changing populations (Armsworth 2001,

Alonzo and Mangel 2005). The increasing prevalence of
marine reserves precipitates a need to understand how

the effect of reserves on long-term sustainable yields
may depend on the sexual strategies of a harvested

species, especially those that change sex.
In our present study we examined how different

female to male sex-changing regimes influenced the
effects of reserves on long-term sustainable yields

outside reserves, and explored how various life-history
traits affected this influence. We developed a number of
age-structured models, each with a different sex-change

regime and differences in the proportion of habitat in
reserve. We then compared long-term sustainable yields

from these populations with those from an equivalent
population that did not change sex. We chose our

baseline parameter values from demographic data for
the common coral trout, Plectropomus leopardus.

However, because we are interested in how the effect
of reserves depends upon sex change in general, we also

conducted extensive sensitivity analyses, to assess the
robustness of our results to the density-dependent and

density-independent components of the model, level of
adult survival, shape of the growth curve, fecundity–

mass relationship, and fertilization patterns. These
sensitivity analyses allow us to propose several general

principles for effects of marine reserves on the manage-
ment of harvest species that change sex from female to
male, and to provide some insight into how sex change

may interact with other demographic and life-history
characteristics to determine a population’s responses to

the establishment of marine reserves.

METHODS

Model species

The common coral trout, Plectropomus leopardus

(Lacepede 1802), is a high-level predator on the Great
Barrier Reef (Australia). Its life history is similar to

many other tropical, exploited reef species: it is long
lived, exhibits sharply asymptotic growth, changes sex
from female to male (but not vice versa), has relatively

sedentary adults and pelagic larvae, forms spawning
aggregations, and cannibalizes juveniles. In addition,

there has been considerable research into this species’

life-history characteristics, reproductive biology, and

demography (Ferreira and Russ 1994, Ferreira 1995,

Russ 1998, Adams et al. 2000, Samoilys 2000, Mapstone

et al. 2004), which provide a strong foundation for

parameter estimation. Thus, it provides a useful baseline

life history for our study. Moreover, P. leopardus is an

important fishery species in its own right: it has recently

comprised 70% or more of the commercial line-fishing

catch (Mapstone et al. 2004, 2008), and supports a

substantial recreational and charter (tourism) line

fishery.

Modeling methods and parameter estimation

For our general model, we used an age-structured

Leslie matrix population framework (Leslie 1945) to

model population dynamics of the stock. The Leslie

matrix model projects next-year’s population size based

on a vector representing this-year’s population size and,

in matrix notation, is simply

ntþ1 ¼M 3 nt ð1Þ

where ntþ1 is a vector that contains abundances in each

age class at the start of year t þ 1, nt is a vector that

contains abundances in each age class at the start of year

t, andM is the projection matrix. Each vector element in

ntþ1 and nt will be an abundance from a particular

combination of age class, sex (male or female), and

subpopulation (fished or reserve). M contains the per

capita recruitment terms (which encompass fecundity,

fertilization success, dispersal between subpopulations,

and survival to age 1) in the first four rows, and the

transition terms (which encompass adult survival and

sex change) in the remaining rows. Further explanation

and illustration of this model structure is available in

Gerber and Heppell (2004) and Gerber et al. (2005).

For fecundity, we modeled variation in fecundity with

age by first calculating the length at each age using the

von Bertalanffy growth function (VBGF):

L ¼ Linfð1� expð�k½a� a0�Þ ð2Þ

where L is the length at age, Linf is the average

asymptotic maximum body size, k is the growth rate, a

is age, and a0 is the hypothetical age at zero length

(Haddon 2001). The VBGF is commonly used to

describe the growth of species such as fishes where

individuals grow to an asymptotic size and, in particu-

lar, approximates well the growth of coral trout

(Ferreira and Russ 1994). Fecundity was then calculated

from a power-law length–fecundity relationship:

f ¼ cLd ð3Þ

where f is fecundity, L is length, and c and d are fitted

parameters. This functional form provides a good

approximation of length–fecundity relationships for

many fishes (Sadovy 1996), including P. leopardus
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(Samoilys 2000). Fecundity is based on females only,

thus Eq. 3 only pertains to females.

Density dependence was incorporated into the model

through the stock–recruitment relationship. Recruit-

ment in this study referred to the recruitment to age 1,

not recruitment to the fishery (age at first vulnerability

to fishing gear), as is common in many fisheries studies.

This study focused on density-dependent effects of

adults on recruits because such effects are common

and routinely strong in nearshore fish due to phenomena

such as preemption of territory space and cannibalism

(Hixon and Webster 2002; Osenberg et al. 2002), both of

which occur in coral trout (St. John 1995, Samoilys

1997). Specifically, we modeled per capita survival of

settlers as

cðntÞ ¼
c0

1� aBðnhab;tÞ
ð4Þ

where c0 is the density-independent component of

recruitment (i.e., probability of successful recruitment

in the absence of density dependence), a controls how

strongly recruitment success decreases as resident

biomass increases, and B(nhab,t) is the total biomass in

the habitat where settlement occurs (in our study, either

reserve or fished areas). This functional form is

commonly used to describe density dependence in

exploited species where recruitment increases to an

asymptotic value as population biomass increases

(Haddon 2001). We use biomass rather than numerical

abundance because larger adults are likely to exert

stronger per capita density-dependent effects due to

their greater energy requirements (and thus probable

greater cannibalistic effects), and their larger territories

(Luppi et al. 2001).

Part of the transition term, adult survival ( p),

describes the natural probability of survival of an

individual in any age class in an unfished population.

Annual survival was calculated from the instantaneous

annual natural mortality rate (m) in the standard

fashion:

p ¼ e�m: ð5Þ

Most stock-assessment models assume constant natural

mortality because there are insufficient data with which

to estimate natural mortality on an age-specific basis

(i.e., unless species-specific data were collected before

exploitation of the species, estimates of natural mortality

are impractical to derive from fishery data because of the

interaction between fishing and natural mortality; He et

al. 2011). Moreover, methods for estimating mortality

rates applied to fishery species yield a single, age-

independent mortality rate (Haddon 2001), and for P.

leopardus in particular the one empirical study that has

attempted to estimate age-specific mortality rates did

not obtain strong evidence for variation in mortality

with age (Russ 1998). Therefore, we follow most

previous studies of reserve effects on age-structured

populations (Guenette and Pitcher 1999, Hu and

Wroblewski 2009) and modeled the post-recruitment

mortality rate as independent of age.

We compare two sexual strategies in this study. In the

non-sex-changing strategy, males and females were both

produced only through reproduction. In the sex-

changing strategy, females were produced through

reproduction, and males produced only through sex

change. To incorporate exogenous cues for sex change,

we modeled the proportion of females changing sex to

males as a function of mean age of the population, as

described below. We also considered a third, ‘‘mixed’’

strategy in which males were produced both by sex

change, and through reproduction (as proposed for P.

leopardus by Adams et al. [2000]). However, the results

of this model were virtually identical to the sex-changing

case, and thus we do not discuss it any further here. In

all models, we characterize male and female subpopu-

lations explicitly, in contrast to most marine-reserve

models, which are single-sex (female only) models. We

assume that males and females are sexually mature once

they reach age two (Ferreira 1995, Adams et al. 2000)

and we use a logistic function to model the cumulative

probability of transitioning from female to male. This

function commonly provides a good description of sex-

specific age-frequency distributions in sex-changing

fishes (Davies et al. 2006, Caselle et al. 2011), including

for P. leopardus on the Great Barrier Reef (Mapstone et

al. 2008).

To model the contribution of males to population

growth, we assumed that fertilization success (u, the

proportion of eggs fertilized) increased as the proportion

of mature male biomass, B(nmale,t) in the relevant

subpopulation (fished or reserve) increased. This rela-

tionship was modeled as an asymptotic function:

u ¼ 1� e�rBðnmale;tÞ ð6Þ

where r is a fertility parameter describing the rate at

which u approaches 100% as B(nmale,t) increases away

from zero (Heppell et al. 2006). We used proportional

male biomass, rather than numerical abundance, in the

calculation of u to account for the greater reproductive

contribution of larger males (Samoilys and Squire 1994).

The proportion of recruits that were male (the

remainder were female) in the non-sex-changing popu-

lations was set to equal the mean sex ratio for P.

leopardus (on the Great Barrier Reef ) in the sex-

changing populations. For the sex-changing population,

the probability that an individual changed sex from

female to male increased with decreasing mean age, e.g.,

as an effect of increased fishing pressure. Specifically, we

modeled sex change as a logistic function of age:

pSC ¼
1

1þ expð�q½a� ðam þ a0Þ�Þ
ð7Þ

where pSC is the cumulative probability of an individual

having changed sex by age a, q is a coefficient describing

how strongly the rate of sex change varies with age, a is
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age, am is the mean age of the population, and ao is an

offset term. We fixed the offset term (ao) in order to

standardize all populations, regardless of sex-change

regime, to have the same ratio of male spawning

biomass to total population biomass when the popula-

tion was unfished (Appendix A: Table A1). Sex change

began at age 2, the age where mature males first begin

appearing in populations of P. leopardus (Adams et al.

2000).

We consider the full range of possible harvests (from

no take to complete take of the age classes subject to

fishing), and a range of the amount of habitat in the

reserve (no reserve, 10%, 20%, and 40% of the fished

area), rather than adopting an optimization approach

(i.e., finding the optimum reserve size and fishing effort

that maximizes yields). We chose to analyze the full

range of possible fishing-mortality rates for two reasons.

First, deterministic optimization is known to lead to

fishing strategies that make fisheries collapse very likely

(Roughgarden and Smith 1996) while stochastic opti-

mization requires information about inter-annual vari-

ability in demography that is often poor or unavailable

(Watson and Sumner 1999). Consequently, rules of

thumb based on deterministic models (e.g., 10% of

fishing effort, ‘‘0.1F’’) remain commonly used (Berkeley

2006). Second, many reserves (e.g., on the Great Barrier

Reef ) are implemented for conservation purposes rather

than to manage a particular target fishery, and thus

reserve area is not set to optimize fishery yields

(Mapstone et al. 2008).

Catch was implemented in the model by removing

each year from the fished habitat a set proportion, F, of

individuals age 3 and above. This simulates the

widespread phenomenon of setting minimum size limits

that are above age at maturity (McPhee 2008), and, in

particular, it roughly corresponds to the minimum legal

size limit for harvest (38 cm) of P. leopardus on the

Great Barrier Reef. The removed proportion F was

varied from 0 to 0.9. We did not implement any

additional size selectivity in fishing (e.g., a propensity

to release smaller fishes). This is a reasonable baseline

case because many tropical groupers, including P.

leopardus, are sold predominantly to live markets where

smaller (but legal-sized) fish are actually favored, so

discarding of small but legal-sized fish is unlikely

(Mapstone et al. 2001, Muldoon 2009). Similarly,

noncommercial fishing in many tropical nations is

dominated by subsistence fishing, and thus also likely

to exhibit little if any size selective fishing, and anecdotal

evidence also suggests that there is very little size

selectivity in the recreational fishery for our baseline

population (A. Frisch, S. Sutton, personal communica-

tions).

Mass-at-age was calculated using a power-law length–

mass relationship to convert numerical catches to

biomass:

M ¼ hLx ð8Þ

where M is mass, L is length, and h and x are

parameters that describe how mass changes with length.

Empirical length–mass relationships for fishes common-

ly show this functional form (Schneider et al. 2000),

including for P. leopardus (Ferreira and Russ 1994).

Reserve size (R) was expressed as a proportion of the

total habitat area, and the population vector extended,

to explicitly model the dynamics of subpopulations in

the reserve and fished habitats. Four reserve scenarios

were modeled: no reserve, 10%, 20%, and 40% of the

habitat closed to fishing. Our baseline case assumed that

once juveniles settled in a subpopulation (reserve or

fished) they remained within that subpopulation (Zeller

and Russ 1998). This corresponds to a case where the

scale of adult movement is small, relative to distances

between reserve and non-reserve patches. For instance,

on the Great Barrier Reef, reserves tend to be defined at

and above the whole-reef scale, whereas adult P.

leopardus do not appear to move between reefs (Davies

2001, Zeller 1997, 1998). Coupling of the dynamics of

reserve and fished subpopulations occurred via larval

dispersal. We used the simplifying assumption that all

larvae (regardless of where they were produced) entered

a common larval pool from which they settled into

fished or reserve subpopulations in proportions equal to

the relative sizes of the reserve or fished areas. This

assumption is commonly made in reserve modeling (see

Gerber et al. [2003] for a review) and approximates

reserve designs in which reserves are well interspersed

among areas open to fishing, and the sizes of individual

reserve patches are small relative to likely dispersal

distances of larvae. For instance, larval-dispersal mod-

eling for coral trout on the Great Barrier Reef suggests

that larval dispersal distances are much larger, relative

to reserve sizes (James et al. 2002).

While our baseline case assumes no movement of

adults but extensive mixing of larvae across reserve

boundaries, these assumptions are likely to be violated

to some degree in some reserve systems. In particular,

reserves are not always large, relative to the scale of

adult movement. For instance, in tropical developing

countries, individual reefs may consist of reserves

interspersed with fished areas. Therefore, as part of

our sensitivity analysis, we consider an alternative model

in which common spawning aggregations form across

reserve boundaries. Our baseline larval-pool assumption

is likely to maximize the benefits of reserves for

sustainable yields, relative to cases with high levels of

self-recruitment, because it tends to maximize the larval

subsidy provided to fished habitats by adults in reserves.

While this may be a reasonable approximation for many

sex-changing populations, there will be others for which

this assumption is likely to be less reasonable. Therefore,

we address possible interactions between such dispersal

patterns and sex-change dynamics below (see Discus-

sion).

We modeled density dependence in the presence of

reserves by first calculating the biomass within reserves
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by summing the biomass of all age groups within

reserves and then normalizing by reserve area (i.e.,

dividing by R) to obtain a biomass density in the reserve.

The same was done with fished areas except that

B(nfish,t) was divided by (1 � R).

Baseline parameter values, and the ranges explored in

our sensitivity analyses, are reported in Appendix A:

Table A1. Baseline parameter values were chosen to

correspond to a typical tropical grouper, many of which

are major fishery species that change sex from female to

male (e.g., black grouper, camouflage grouper, brown

marbled grouper, and coral trout) (SCRFA 2010). In

particular, our baseline parameterization utilized, where

available, information on the demography of P.

leopardus on the Great Barrier Reef. We assumed a

longevity of 14 years, consistent with the maximum age

of P. leopardus observed around (unfished) Lizard

Island (Ferreira and Russ 1994). The von Bertalanffy

growth and length–mass relationship parameters were

obtained by averaging growth parameters obtained from

unfished reefs across four regions of the Great Barrier

Reef. These data came from the Effects of Line Fishing

(ELF) Experiment, a 10-year study that collected size,

density, sex ratio, growth, and mortality data for

numerous fishery target species inside and outside

reserves on four regions of the Great Barrier Reef

(Mapstone et al. 2004). Fecundity–length parameters

were taken from previous work on the reproduction of

P. leopardus (Samoilys 2000). The natural survival

probability used was the average (over all four regions)

of survival on closed (no-take) reefs from the ELF data.

There are no empirical estimates for the density-

dependent parameters (a and c0), so we set the

equilibrium population biomass in the absence of

fishing, and then chose several combinations of c0 and

a that yielded this equilibrium biomass. We used an

intermediate combination of c0 and a as our baseline

values and considered the ‘‘strong’’ and ‘‘weak’’ density-

dependent scenarios relative to that baseline in our

sensitivity analyses.

The parameters for the logistic equation describing

sex change were based on analysis of sex frequencies

from unfished reefs in the ELF data (Adams et al. 2000,

Mapstone et al. 2004, Davies et al. 2006). Specifically, q

was obtained by solving the logistic equation for the age

at which 95% of the population had changed sex. The

proportion of males entering the population directly

through reproduction for the non-sex-changing popula-

tions was fixed to ensure that the proportion of

spawning-male biomass was similar to that of the sex-

changing population. This facilitated direct comparisons

between results from the various models. The propor-

tion of males entering the population directly through

reproduction in the sex-changing population was set to

zero. There are no known estimates of the fertility

parameter (r) for the fertilization success function so we

follow a previous study that models the management of

sex-changing fishes (Heppell et al. 2006) and chose two

parameterizations such that fertilization patterns range

from a gradual increase in fertilization success with

relative male biomass, to a sharp increase in fertilization

success. We used the parameterization exhibiting a

gradual increase as the baseline because it represents a

strong sperm-limitation effect and thus potentially leads

to the largest benefit from reserves.

Each of the models was projected for 100 years, which

was more than adequate to ensure that equilibrium was

reached. We then normalized the equilibrium yields by

standardizing them to the biomass of an unfished

population, and we plotted those percentage yields

against target population biomass (also normalized to

unfished population biomass) for different reserve

scenarios. Thus, we examine sustainable yield as a

function of target population size (i.e., the population

size at which management aims to maintain the fishery).

Note that because fishing begins at age 3, whereas

individuals mature at age 2, curves of yield against

biomass will not extend all the way to zero biomass in

many cases, because fishing never removes all reproduc-

tive individuals from the population. We examined how

different stock–recruitment relationships, adult mortal-

ity rates, growth rates, fertilization-success functions,

and spawning patterns affected our results, because

these population characteristics are likely to vary among

sex-changing species, and to be important for effects of

marine reserves. The nature and intensity of density

dependence is known to affect whether reserves enhance

or diminish sustainable yields (Sanchirico 2004). Sur-

vival, longevity, and fecundity–age relationships influ-

ence the lifetime fecundity of fish recruiting to reserves,

and thus the potential for benefit to fisheries yields

provided by fish that recruit to reserves (Gaylord et al.

2005). The shape of the fertilization success curve

determines how strongly male depletion affects popula-

tion fecundity (and thus when reserves may benefit

fisheries by replenishing male numbers; Heppell et al.

2006). Moreover, the parameters describing both

density-dependent recruitment and the fertilization

success function frequently are poorly constrained,

including for P. leopardus (Rose et al. 2000). Finally,

reserves will not always exceed the spatial scale of adult

movement, and thus, in some systems, there will be

greater potential for movement of adults across reserve

boundaries than for our baseline population. It is well

known that such ‘‘spillover’’ of adults may increase

yields (Russ 2002), as large fish leave reserves and are

caught. However, for sex-changing populations, large

males leaving reserves may also be able to alleviate

sperm limitation in the fished areas, and thus enhance

population fecundity.

We examined sensitivity to stock–recruitment relation-

ships by varying the combination of a and c0 that

together produced the same equilibrium population

biomass in the absence of fishing. The density-indepen-

dent parameter, c0, was set to 0.00005 to represent

populations with weak density dependence and to
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0.00025 to represent populations with strong density

dependence (see Fig. 1a for a graphical representation).

We varied a in order to obtain the appropriate

population biomass in the absence of fishing. An increase

in the intensity of density dependence therefore led to

both a higher density-independent component of recruit-

ment (faster increase in recruitment as adult biomass

increased away from zero) and stronger per capita

negative effects of adults on juveniles (recruitment

saturated quickly as adult biomass increased towards its

equilibrium value). Sensitivity to different natural mor-

tality rates was analyzed by running models using

survival parameters that corresponded to doubled and

halved instantaneous natural mortality rate, giving p ¼
0.505 and p ¼ 0.843, respectively. P. leopardus grow

relatively quickly, compared to many sex-changing

fishery species, typically reaching maximum length, mass,

and fecundity by age 8. Therefore, we assessed how

slower growth influenced the effects of reserves by

analyzing models using an alternative set of growth and

fecundity parameters (k ¼ 0.2, c ¼ 7.4, d ¼ 2.6),

corresponding to slower growth and thus a more gradual

increase of fecundity with age (Fig. 1b). A steeper

fertilization-success function (r ¼ 20) was used to

investigate how a weaker affect of male abundance on

fertilization success would affect reserve performance

(Fig. 1c) .We assessed the potential for migration of males

across reserve boundaries to alleviate sperm limitation by

considering a cross-boundary spawning aggregation

model, in which reserve and non-reserve subpopulations

were combined when calculating fertilization success.

This represents an extreme case of alleviating sperm

limitation, as would be expected if individuals formed

common spawning aggregations across reserve boundar-

ies, and thus contrasts with our baseline case in which

males do not move across reserve boundaries at all.

RESULTS

Reserves had little effect on yield in the non-sex-

changing case when target population biomass was high

(above ;70% of unfished biomass) but increased yields

when biomass was lower (,60%), so that the highest

yields were obtained when total reserve area was large

(Fig. 2a). Reserves also had little effect on yield of sex-

changing populations when target population biomass

was high. Reserves reduced yields, however, when

population biomass was lower, so that the no-reserve

scenario produced the highest yields, and larger reserves

led to larger decreases in yields (Fig. 2b). When reserves

were a small proportion of habitat (;10%) they were

FIG. 1. (a) Recruitment success as a function of population
biomass. (Recruitment success does not have units; it is just a
multiplier that reduces the numbers of individuals that
successfully recruit to the population.) Solid gray lines represent
scenarios with the baseline density dependence (b¼ 0.0001, a¼
3.9 3 10�4), dashed lines represent scenarios with weak density
dependence (b ¼ 0.00005, a ¼ 1.8 3 10�4), and dash-dot lines
represent scenarios with strong density dependence (b ¼
0.00025, a ¼ 0.001). (b) Fecundity (the number of eggs
produced per individual female) as a function of age. The solid
line is based on fast-growing coral trout, von Bertalanffy
growth function, and fecundity parameters, for which maxi-
mum length and fecundity is reached at age 8. The dashed line is
based on a theoretical slow-growing population for which
maximum length is not reached until age 14. (c) Fertilization

 
success as a function of relative male spawning biomass (as a
proportion of total spawning biomass). The solid line represents
a scenario with a less strongly asymptotic effect of relative male
biomass on fertilization success u (r ¼ 8; see Eq. 6) while the
dashed line represents a scenario with a more strongly asymptotic
effect of male biomass on fertilization success (r¼ 20).
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able to produce equivalent or increased yields compared

to models without reserves, in sex-changing populations

at the low end of target population biomass (Fig. 2b),

but almost complete take of fishable-aged individuals in

the fished area was required for this effect to manifest.

The highest sustainable yield possible was reduced,

relative to the baseline models, when a slower growth

function was introduced (Fig. 2c, d). Slower growth had

a qualitative influence on the efficacy of reserves in the

non-sex-changing population: reserves decreased yields

slightly (Fig. 2c) relative to the baseline (Fig. 2a) for

small and intermediate target population sizes. Slower

growth also caused an overall reduction in reserve

efficacy and sustainable yield in sex-changing popula-

tions, but the increase in reserve yields at the lowest

target stock sizes (10–20% of unfished biomass) re-

mained, leading to higher yields than scenarios without

reserves for both sex-changing and non-sex-changing

strategies, albeit at very low population biomass sizes.

Results were qualitatively similar to the baseline

scenario when reduced sperm limitation was modeled,

for both non-sex-changing and sex-changing popula-

tions (Fig. 2e, f ). However, for the sex-changing

population, reduced sperm limitation places a greater

lower bound on target biomass levels (i.e., yield curves

do not extend as far to the left under reduced sperm

limitation: Fig. 2b, f ).

The highest sustainable yields were always increased

relative to the baseline models under strong density

dependence (Fig. 3a, b) and were reduced under weak

FIG. 2. Sustainable yields as functions of target population size (both expressed as a percentage of the unfished population
biomass at equilibrium), for populations that do not change sex (a, c, e) vs. populations that do (b, d, f ). The first row presents
results from baseline parameters, the second row represents a slow growing population (changes to von Bertalanffy growth factor
and associated fecundity parameters), and the third row represents a steeper fertilization success function (weaker effect of male
biomass on fertilization success). Solid lines represent no-marine-reserve scenarios, dashed lines represent scenarios where 10% of
the fishable area is in a reserve, dash-dot lines represent scenarios where 20% of the fishable area is in a reserve, and dotted lines
represent scenarios where 40% of the fishable area is in a reserve.
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density dependence (Fig. 3c, d). Overall, the qualitative

effects of alternative sexual strategies on the efficacy of

marine reserves were unaffected by the intensity of

density dependence: yields were higher with reserves in

non-sex-changing populations, and lower with reserves

in sex-changing populations. Nevertheless, each sexual

strategy responded to variation in the intensity of

density dependence in slightly different ways. Specifical-

ly, for non-sex-changing populations, the yield benefit of

reserves was greater under strong density dependence,

whereas approximate yield equivalence was observed

under weak density dependence (Fig. 3a, c). For sex-

changing populations, however, the difference between

yields with and without reserves was very similar under

FIG. 3. Sustainable yields as functions of target population size (both expressed as a percentage of the unfished biomass at
equilibrium) for populations that do not change sex (a, c, e, g) vs. populations that do (b, d, f, h). The first and second rows present
results from a particular set of density-dependent parameters (high c0¼ 00025, low c0¼ 0.00005) while the third and fourth rows
present results from a particular set of adult-survival parameters (high p¼ 0.843, low p¼ 0.505). Solid lines represent no-marine-
reserve scenarios, dashed lines represent scenarios where 10% of the fishable area is in a reserve, dash-dot lines represent scenarios
where 20% of the fishable area is in a reserve, and dotted lines represent scenarios where 40% of the fishable area is in a reserve.
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strong and weak density dependence, although, as with

reduced sperm limitation, strong density dependence

places a greater lower bound on target biomass levels

(i.e., yield curves do not extend as far to the left under

strong density dependence: Fig. 3b, d).

Variation in adult survival had qualitatively different

effects on sex-changing and non-sex-changing popula-

tions. For sex-changing populations, reserves tended to

produce nearly equivalent yields at large target popula-

tion biomass, or decrease sustainable yields at interme-

diate population biomass, regardless of adult survival

(Fig. 3f, h). In contrast, for non-sex-changing popula-

tions, reserves increased yields when adult survival was

high (Fig. 3e), but yields were approximately equivalent

when survival was low (Fig. 3g).

For the cross-boundary spawning aggregation model,

the sex-changing population became qualitatively com-

parable to the non-sex-changing population in its

response to marine reserves (Appendix B: Fig. B1).

Specifically, for both populations, reserves slightly

increased yields, with the largest reserve area producing

the highest yields.

DISCUSSION

Most marine reserve models have predicted that

reserves increase yields for non-sex-changing popula-

tions (e.g., Sanchirico 2004, Gaylord et al. 2005, White

and Kendall 2007). Our results suggest, however, that

sex change reduces the fisheries benefits of reserves, and

can lead to reduced yields compared to the no-reserve

scenarios, particularly for intermediate target popula-

tion biomass levels (;35–65% of unfished biomass). At

high target-biomass levels (;65% of unfished biomass or

greater), we obtained near equivalence in yields with vs.

without reserves, across all scenarios and for both sexual

strategies. The results are qualitatively robust over a

range of stock–recruitment relationships, adult mortal-

ity rates, maximum ages, growth and fecundity sched-

ules, and fertilization-success relationships. We did find

one qualitative exception for both non-sex-changing and

sex-changing populations, however. For non-sex-chang-

ing populations, slow growth reduced sustainable yields

more in the reserve than the non-reserve case, so that

sustainable yields were slightly higher without reserves.

Conversely, for the sex-changing population, allowing

males from reserves to fertilize females in fished areas

increased yields with reserves sufficiently that yields were

slightly higher with reserves than without them.

Our results for non-sex-changing populations are

qualitatively consistent with previous work that found

reserves increase yields when recruitment is density

dependent (e.g., Gaylord et al. 2005), but they suggest

smaller reserve benefits than previous studies. The most

likely explanation for this difference is our inclusion of

both sexes in the model, as males contribute to yields but

do not contribute directly to population fecundity.

Thus, their inclusion reduces overall population fecun-

dity, relative to a population consisting purely of

females, and thus diminishes the larval-subsidy benefit

of reserves. This highlights the importance of consider-

ing the different contributions of males and females to

yields and population growth when evaluating the

efficacy of marine reserves.

Whether reserves increase or decrease yields depends

on the trade-off between the benefit that a fish in a

reserve provides to the fishery through dispersal of its

offspring to fished areas (Little et al. 2005), and the

opportunity cost associated with not being able to

harvest that fish (Gerber et al. 2003). Reserves provide

fishery benefits through two means. The first is via the

buildup of large fecund females within the reserve

boundaries (Gaylord et al. 2005). These females

contribute disproportionately to population fecundity

(compared to smaller females) and thus provide a

recruitment benefit to fished areas, provided that

offspring disperse beyond reserve boundaries. The

benefits of larger fecund females caused reserves to

increase yields for intermediate target population sizes in

our non-sex-changing models. This can be seen by

comparing the results of the baseline model, in which

females rapidly approached maximum size and thus

fecundity (Fig. 2a), with the slow growth model, in

which females were smaller and less fecund, on average

(Fig. 2c). In the baseline model, reserves increased

yields, whereas in the slow-growth model, reserves

decreased yields. Similarly, for sex-changing popula-

tions, females in the slow-growth scenario would be

smaller and less fecund, on average, than in the baseline

scenario, and reserves correspondingly decreased yields

more in the slow-growth scenario than the baseline

scenario (Fig. 2b, d). The second way that reserves

benefit fisheries is by splitting a population with equal

density into two (or more) populations with unequal

densities. This causes a reduction in post-settlement

density dependence in the population with the lower

density (the fished area), which in turn increases the

productivity (through enhanced per capita recruitment

success) of that population (Sanchirico 2004).

Our study extends upon previous sex-change work

(Armstrong 2001, Alonzo and Mangel 2004, 2005) by

exploring the effects of reserves on populations with a

range of sexual strategies. Female to male sex change

reduces the prospect of fishery benefit from reserves,

primarily by reducing the number of large fecund

females in the population (e.g., Fig. 2b). In sex-changing

populations, the largest fish are mostly male, which

contributes to larval subsidy only via their marginal

contribution to improved fertilization success. Conse-

quently, the benefit of reserves to fisheries yield is limited

relative to non-sex-changing populations for which

females in reserves provide increased larval subsidies

beyond the reserves throughout their lives.

The introduction of reserves not only causes an

inequality of densities, it also causes a disproportionate

allocation of males in the populations: there is a decrease

in the proportional male biomass in the fished population,
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and an increase in the reserve population. This dispro-

portionate allocation of males increases the strength of

sperm limitation in the fished population, while simulta-

neously providing limited benefits to fertilization success

in reserves, which will already have a comparatively high

relative male biomass. In other words, because fertiliza-

tion success is a saturating function of relative male

biomass, the marginal cost of decreasing male biomass

where there is a lower relative abundance of males will

outweigh the marginal benefit of a corresponding increase

in male biomass where their relative abundance is already

high. Consequently, reserves, by allocating males dispro-

portionately between reserve and fished subpopulations,

reduce the average contribution of males to reproductive

output (Fig. 4), and thus lower the population’s overall

productivity. This interpretation is supported by our

cross-boundary spawning aggregation model: allowing

males from reserves to fertilize females from fished areas

eliminates this fertilization effect, and thus, in contrast to

our baseline case, sustainable yields are higher with

reserves than without them.

Overall, our baseline and alternative fertilization-

success functions produced similar qualitative effects of

reserves for both sex-changing and non-sex-changing

populations, suggesting that the effects of reserves on

sustainable yields will be broadly similar across a range of

fertilization-success relationships. However, for the sex-

changing population, we did find that, under reduced

sperm limitation, the lower bound on target population

size was larger than in our baseline scenario (i.e., yield

curves did not extend as far to the left in Fig. 2f compared

to Fig. 2b). This is consistent with the strongly asymptotic

shape of the fertilization-success function under reduced

sperm limitation: fertilization success remains high, even

when the population is very heavily fished, compared to

the baseline. Thus a comparatively larger cohort of

recruits is produced when the relative abundance of males

is low, as happens for sex-changing populations as target

population size decreases.

Retaining a fixed equilibrium unfished biomass across

different density-dependence scenarios meant that the

strong density-dependence case included both an in-

crease in the density-dependent effects of adults on

recruitment success and also an increase in the density-

independent component of recruitment success. In other

words, the strong density-dependence case corresponded

to a population with high capacity to recover from low

density, via high recruitment success, but for which

recruitment then decreases sharply with increases in

adult biomass. This led to a sharper increase in larval-

subsidy benefit from reserves as adult biomass was

lowered in the fished areas. The greater larval subsidy

meant that populations could withstand stronger fishing

pressure (i.e., higher yields for a given target population

size), and that there was a greater lower bound on target

population size: populations cannot be fished down as

far when the reserve population is providing a greater

larval-subsidy benefit, as under stronger density depen-

dence. Previous studies found reserves had the ability to

increase yields under post-dispersal density dependence

(Gaylord et al. 2005, White and Kendall 2007). Our

results indicate that the magnitude of this effect is

sensitive to the intensity of density dependence, but that

the greater dispersal benefits from reserves under strong

compared to weak density dependence holds regardless

of whether populations were sex changing or not.

High adult survival consistently increased the perfor-

mance of reserves relative to non-reserve cases for both

sex-changing and non-sex-changing populations. With

high survival, fishes recruiting to reserves survive longer,

have greater lifetime fecundity, and so generate a greater

lifetime recruitment subsidy to the fished population

(Gaylord et al. 2005, White and Kendall 2007). In

contrast, reserve benefit is reduced with low adult

survival because few individuals survive to contribute

significantly to reserves. This supports previous argu-

ments that reserves would not benefit species with ‘live

fast die young’ life histories (Gaylord et al. 2005).

The general model framework presented above has

made simplifying assumptions (well-mixed larval pool,

‘‘knife-edge’’ fishing selectivity [i.e., fishing mortality

rates equal for all fish .3 years], and no movement of

adults from reserves to replenish fished areas) in order to

effectively isolate interactions among key factors and to

facilitate sensitivity analysis. The consequences of

relaxing these assumptions, though not explicitly treated

in this study, can be anticipated. The limiting case of no

larval dispersal between reserve and fished areas would

FIG. 4. Illustration of how average fertilization success is
reduced when there are large spatial differences in proportional
male biomass, as in reserves vs. fished subpopulations. The
solid circle represents a population without marine reserves,
where proportional male biomass is similar everywhere. The
open circles represent fished (lower proportion of males) and
reserve (higher proportion of males) subpopulations for a
population with marine reserves. The open triangle represents
the average fertilization success across the two subpopulations
(for simplicity, this illustration assumes a 50–50 split of habitat
between reserve and fished areas). Note that, due to the shape
of the fertilization function, average fertilization success for the
case with reserve and fished subpopulations (triangle) is lower
than fertilization success for the population without marine
reserves (solid circle).

NEIL C. S. CHAN ET AL.788 Ecological Applications
Vol. 22, No. 3



mean that larvae produced inside reserves stay in

reserves and do not contribute to the fishery and so

yields will be reduced in direct proportion to the area

closed off for reserves (Little et al. 2007, Kaplan 2009).

Thus, incomplete mixing of larvae will tend to reduce

reserve benefits (or increase reserve costs) relative to the

complete-mixing assumption used here (Little et al.

2007). Exceptions to this general rule can occur if there

is strong source–sink structure and reserves tend to be

located over areas that are net exporters of larvae to

areas open to fishing (Gaines et al. 2003, Sanchirico et

al. 2006), provided sufficient larvae return to the

‘‘source’’ reserves to ensure maintenance of the popula-

tions in reserves. Sex-changing fisheries with progres-

sively greater removal of older age classes (e.g., fisheries

with significant selectivity for trophy-sized fishes) would

be likely to see reduced reserve benefits, because this

would tend to increase the difference between the

relative male biomass in fished and reserve areas. As

noted earlier, this means that, for a given overall

population biomass, average male contribution to

fertilization success will tend to be higher when males

are more evenly distributed throughout the population

(i.e., in the absence of reserves). Intermediate levels of

movement by adults, particularly density-dependent

migration of males, would act to mitigate some of the

cost of closing an area to fishing because males would

tend disproportionately to move into fished areas, and

thus contribute to fishery yields (Little et al. 2009).

Conversely, female migration could diminish the larval-

subsidy benefits if many females cross reserve boundar-

ies. Extensive adult movement across reserve boundar-

ies, however, would tend to make dynamics similar to

the no-reserve case, regardless of sexual strategy,

because most or all individuals would become accessible

to the fishery for some of their lives. In cases where

adults are relatively site attached, but move across

reserve boundaries to form spawning aggregations,

sperm limitation is alleviated, and reserves become more

likely to increase yields in sex-changing populations. In

developing countries, reserves may, in some cases, be

sufficiently small for species such as common coral trout

to exhibit some cross-boundary interbreeding, although

the extreme of complete mixing examined in our

sensitivity analysis seems unlikely, given that only a

minority of the population forms spawning aggrega-

tions, and that most coral trout are very site attached

throughout their lives. However, for other sex-changing

species whose adults move larger distances (e.g., Nassau

grouper; Colin 1992), this alleviation of sperm limitation

may well play a larger role.

Overall, our findings indicate that female to male sex-

changing populations, unlike non-sex-changing popula-

tions, are unlikely to receive a yield-enhancing benefit

from marine reserves at any given target population size,

at least when reserves are large relative to the scale of

adult movement. This result is robust over a range of sex-

change regimes, stock–recruitment relationships, adult

mortality rates, and growth rates. The principal causes of

this result appear to be the larger proportion of males in

older age classes, relative to non-sex-changing popula-

tions, and the fact that fertilization success approaches an

asymptote as male biomass increases. Reserves should

thus be employed in female to male sex-changing fisheries

for their ability to protect or rebuild overfished popula-

tions, and to sustain fishery viability, especially in the face

of large uncertainty due to a lack of data, rather than for

anticipated enhancement of fishery yields beyond reserve

boundaries. More broadly, our findings also highlight the

importance of considering the different contributions of

males and females to population growth when evaluating

the efficacy of marine reserves.
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SUPPLEMENTAL MATERIAL

Appendix A

A table showing parameters used in the models (Ecological Archives A022-042-A1).

Appendix B

A figure showing results of the cross-boundary spawning aggregation model (Ecological Archives A022-042-A2).
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