

This is the Accepted Version of a paper published in the

journal: Design, Codes and Cryptography

Ghodosi, Hossein, Pieprzyk, Josef, and Steinfeld, Ron

(2012) Multi-party computation with conversion of secret

sharing. Design, Codes and Cryptography, 62 (3). pp. 259-

272.

http://dx.doi.org/10.1007/s10623-011-9515-z

ResearchOnline@JCU

Multi-Party Computation with Conversion of Secret Sharing

Hossein Ghodosi1, Josef Pieprzyk2, and Ron Steinfeld2

1 Department of Information Technology, School of Business
James Cook University, Townsville, Qld 4811, Australia

2 Department of Computing
Center for Advanced Computing – Algorithms and Cryptography

Macquarie University, Sydney, NSW 2109 Australia

Abstract. Classical results in unconditionally secure multi-party computation (MPC) protocols with
a passive adversary indicate that every n-variate function can be computed by n participants, such
that no set of size t < n/2 participants learns any additional information other than what they could
derive from their private inputs and the output of the protocol.

We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted
setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information
(which is random and independent from the participant inputs) ahead of the protocol execution (such
information can be purchased as a “commodity” well before a run of the protocol). We present a new
MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number
t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret
sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate
polynomial G over a field F , with inputs restricted to non-zero elements of F . The communication
complexity of our protocol is O(ℓ ·n2) field elements, where ℓ is the number of non-linear monomials in
G. Previous protocols in the trusted setup model require communication proportional to the number
of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous
protocols for functions with a small number of monomials but a large number of multiplications.

Keywords: Multi-Party Computation; Hybrid Secret Sharing Schemes; Unconditional Security.

1 Introduction

Secure multi-party computation (MPC) protocols enable a set of nmutually distrusting participants
P1, . . . , Pn, each with their own private input xi, to compute a function Y = F (x1, . . . , xn), such
that at the end of the protocol, all participants learn the correct value of Y , while their inputs
remain private. Assuming that a single trusted party exists, a simple solution to the MPC problem
can be achieved as follows. All participants will forward their inputs to the trusted party, who would
compute the function value and announce the result to each participant. However, this solution,
also known as the ideal process, is not acceptable, when the participants are not able to agree on a
trusted party.

The design of secure MPC protocols has been the subject of investigation by a great number
of researchers, and many protocols have been presented in the literature. In terms of security,
these protocols can be classified into two broad categories: (i) computationally secure, and (ii)
unconditionally secure MPC protocols. Irrespective of the classification, the security model used
includes the adversary, who may corrupt a subset of participants. For computationally secure MPC
protocols, the assumption is that the adversary is polynomially bounded (i.e. breaking the security
of the protocol implies that the adversary, in polynomial time, is able to solve a problem that is
believed to be intractable). Unconditionally secure MPC protocols are intrinsically secure; that is,
no matter how much time and computing power is available to the adversary, they cannot break
the system by any method better than by guessing private inputs.

Two common types of adversaries, namely active and passive, have been studied in the litera-
ture. Participants who are corrupted by an active adversary may behave arbitrarily or maliciously,
and may deviate from the protocol at any time. That is, an active adversary threatens the cor-
rectness of the protocol. On the other hand, participants who are corrupted by a passive adversary
behave honestly and properly follow the protocol; however, they are curious in learning additional
information. That is, a passive adversary threatens the privacy of the participants.

1.1 Background

The concept of secure MPC was introduced by Yao [36] in the context of two parties, and then
generalized by Goldreich, Micali, and Wigderson [22] for any number of participants. Although they
have provided a solution to every general MPC problem, from the efficiency point of view, their
solutions are not practical for real-life applications. Moreover, the security achieved in [36] and [22]
is computational.

In 1988, Ben-Or, Goldwasser, and Wigderson [11] and Chaum, Crépeau, and Damg̊ard [12],
independently studied unconditionally secure MPC protocols. Their model of computation is a
complete synchronous network of n participants. The private communication channels between
participants are secure (i.e. they cannot be read or tampered with by other participants). In their
solution, a generic real-life MPC protocol consists of the following three phases [11].

Initialization – Let P = {P1, . . . , Pn} be a set of n participants who wish to compute a function
Y = F (x1, . . . , xn), where Pi holds private input xi. Without loss of generality, we assume that all
input variables are elements of a finite field GF (p), where p is a prime number, and the function F
can be computed by a circuit over GF (p) using the field operations +, ×, and the inverse operations
and constants from GF (p).

Each participant Pi (i = 1, . . . , n) distributes his private input xi amongst all participants in a
t-private manner. More precisely, using Shamir’s secret sharing scheme [34], Pi chooses a random
t-degree polynomial fi(x) = xi + a1x+ . . . ,+atx

t, and for all j = 1, . . . , n, Pi gives si,j = fi(j) to
participant Pj .

Distributed Computation – Calculation of every linear function is straightforward, since a linear
combination of t-degree polynomials is a t-degree polynomial. Computation of non-linear functions,
however, is not so straightforward. Firstly, the multiplication of two t-degree polynomials is a 2t-
degree polynomial. The second problem is that the resulting 2t-degree polynomial is not a random
polynomial. Current solution to these problems implies n ≥ 2t+ 1, and the computation protocols
are highly interactive.

Reconstruction of the function value – The function F (x1, . . . , xn) can be represented as
a polynomial containing the sum of products, and the participants can collectively evaluate first
products (product gates), and then sums (sum gates), finally obtaining the shares of the function
value Y . In order to reconstruct Y , a sufficiently large set of participants can pool their shares and
recover the value Y .

1.2 Security Consideration

Classical results in unconditionally secure MPC protocols (in the standard model, i.e. without any
trusted setup assumptions) can be found in [11, 12] and are summarized below.

1. In the presence of a passive adversary, no set of size t < n/2 of participants learns any additional
information, other than what they could derive from their private inputs and the output of the
protocol.

2. In the presence of an active adversary, no set of size t < n/3 of participants can learn any
additional information or disrupt the protocol.

Although there have been some developments in improving the bound t < n/3 in MPC protocols
with an active adversary [33, 2, 7, 3, 23, 9, 18, 21, 17, 19], it has been confirmed that t < n/2 is a tight
bound (even under assumption that broadcast channels are available, and allowing a small error
probability).

In this work, we study the design of MPC protocols secure against a passive adversary, but
we aim at achieving security even against a majority of t > n/2 colluding participants; in fact we
aim at achieving security even against t = n − 1 colluding participants. To circumvent the above
upper bound t < n/2 shown to hold in the standard model, we assume a modified MPC model
with a trusted setup assumption. In this trusted setup model, there is a preliminary setup phase
executed before the participants receive their protocol inputs, in which a trusted party supplies
each party (privately) with some correlated auxiliary information. Since the auxiliary information
is independent of the participants’ private inputs and the function to be computed, it can be
distributed to the participants ‘offline’, before the participants know their protocol inputs. Thus,
the trusted setup MPC model is can be viewed as an intermediate model between the ‘ideal process’
and the standard MPC model. Previous work has shown that, in the trusted setup model, it is
possible to design MPC protocols secure against a dishonest majority: the work of Kilian [29] first
showed how to build such protocols using a black-box subprotocol for Oblivious Transfer (OT) (see
also [14]), and in turn, Beaver [5] showed how build an unconditionally secure OT protocol in the
trusted setup model, using his reduction from ‘

(

2

1

)

’-OT to precomputed ‘1
2
’-OT.

1.3 Efficiency Consideration

Since the invention of MPC protocols, their efficiency has been a major issue. Indeed, the earlier
protocols [36, 22, 11, 12] are polynomial time, however, they are far from being practical, when the
group of participants is large. This is because MPC protocols are highly interactive, even if all
participants behave honestly and follow the protocol properly (they can still be curious in learning
additional information).

There are two factors, namely round complexity and communication complexity, relevant to the
efficiency of MPC protocols. The communication complexity of MPC protocols is the maximum
number of bits transmitted during the execution of the protocol. Similarly, the round complexity
is the maximum number of rounds necessary to execute the protocol. During the last two decades,
considerable efforts have been made to improve the efficiency of MPC protocols, either by reducing
the round complexity (e.g. [31, 4, 32, 16, 30]), or improving the communication complexity (e.g. [21,
25, 24, 26]) of MPC protocols. It is also worth mentioning that MPC protocols with constant-round
has been discussed by some researchers (e.g., [1, 8]).

To our knowledge, previous MPC protocols in the literature that are secure against a dishonest
majority in the trusted setup model (see [20] for classical results and [27, 28] for more recent work)
make black box use of an Oblivious Transfer (OT) subprotocol, which is then implemented in the
trusted setup model using Beaver’s ‘pre-computation’ construction [5], where the precomputation is
done during the setup phase. In these protocols, the protocol inputs are shared additively among the
n parties, and the function to be computed F is encoded as an arithmetic circuit over some ring R
(typically R = GF (2)) consisting of addition and multiplication gates. Then, for each multiplication
gate, the protocol runs O(n2) OT instances (for strings of length O(log |R|) bits) between every pair

of parties to compute an additive sharing of the gate output (this holds forR = GF (2) [20]; for larger
fields or general rings, the unconditionally secure protocols from [27] requireO((log |R|+k)·n2) OTs,
where k is a statistical security parameter). As a consequence, the total communication complexity
of these protocols is O(m·n2) field elements over R = GF (2) (or O((log p+k)·m·n2) over R = GF (p)
for general p), where m is the number of multiplication gates in the circuit for the function F . In
contrast, our protocol works over GF (p), and is not based on OT but on converting multiplicative to
additive secret sharing. It requires a total communication of O(ℓ·n2) field elements, where ℓ denotes
the number of monomials in the polynomial representation of F . Consequently, our protocol may
have lower complexity than previous protocols for functions F with a small number of monomials
ℓ but a large number of multiplications m. Note that it is possible to have ℓ = O(1) whereas
m = Ω(n); for instance, consider the function F (x1, . . . , xn) = x1x2 · · · xn/2 + xn/2xn/2+1 · · · xn
(on the other hand, in general a function that can be evaluated with m multiplications and O(m)
additions can have ℓ = Ω(2m) monomials, in which case previous protocols would have lower
complexity).

Other relevant works to ours are [6, 15], which utilize some auxiliary information to achieve
efficiency. Similar to the commodity-based computation of Beaver [6], the auxiliary information
in our protocols can be purchased as commodity, or can be generated by some random generator
functions (as in [15]). Finally, we note that the notion of converting shares between different secret
sharing schemes is also studied in [13], although for different secret sharing schemes than ours.

1.4 Our Contribution

We study the MPC problem in an unconditionally secure environment. Let F : (GF (p)∗)n →
GF (p) denote a n-variate polynomial over GF (p) (with inputs restricted to GF (p)∗) having ℓ non-
linear monomials. That is, we represent the function F as F (x1, . . . , xn) = FL(.) + FC1

(.) + . . . +
FCℓ

(.), where FL(.) denotes the linear component, and FCi
(.) (i = 1, . . . , ℓ) denotes monomials. We

demonstrate the followings:

1. The linear component, and every monomial (regardless of its depth), can be computed with no
interaction. This is achieved by introducing a hybrid secret sharing scheme, which consists of
two (namely an additive and a multiplicative) secret sharing schemes.

2. Calculation of the function value, however, requires the combination of results obtained from
the additive and multiplicative secret sharing schemes. The conversion of multiplicative secret
sharing into the additive secret sharing is done with the help of some auxiliary information
distributed to the participants in a trusted setup phase. The auxiliary information is completely
independent from the secret input of participants, and can be purchased as “commodity” well
ahead of a run of the protocol.

3. Our MPC protocol uses allows the adversary to corrupt up to n − 1 participants. This is a
significant improvement over the security of unconditionally secure MPC protocols without
a trusted setup phase, and, unlike previous protocols in the trusted setup model, is achieved
without using Oblivious Transfer (OT) as a subroutine, but with a share conversion subprotocol.
How our contribution fits in the MPC scenarios is illustrated in Figure 1. As shown, our trusted
setup model may be viewed as a ‘semi-ideal’ model.

Ideal Process (t < n)

Trusted Party

Output

Y

P1 P2 Pn· · ·

xnx2x1

Broadcast

Hybrid Model (t < n)

Source
of

Randomness

Pn

xn

P1
x1

P2

x2

MPC

Protocol

Auxiliary Information

Distributed Model (t < n/2)

Pn

xn

P1
x1

P2

x2 MPC

Protocol...

...

Fig. 1. Different models of MPC

4. The communication complexity of our protocol is O(ℓ ·n2) field elements, where ℓ is the number
of monomials in F , as defined above. Although we may not achieve efficiency for functions
with a large number of monomials, for functions with a small number of monomials, regardless
of their depths, our protocol is very efficient. More precisely, for each monomial, we need one
round of interaction amongst the participants (note that computation of functions that consist
of only one monomial can be achieved non-interactively, and without the help of any auxiliary
information).

In the next section, we will provide basic definitions. In Section 3, we will introduce the concept
of hybrid secret sharing schemes, and demonstrate an implementation of a hybrid secret sharing
containing an additive and a multiplicative (n, n)-threshold scheme. In Section 4, we will utilize
the proposed hybrid secret sharing to compute every component of a function in a non-interactive
manner. Section 5 discusses a possible protocol for converting the shares of a secret associated with
a multiplicative (n, n)-threshold scheme to its corresponding additive (n, n)-threshold scheme. In
Section 6, we will demonstrate an implementation of MPC protocols, using the proposed hybrid
secret sharing. Section 7 concludes the work.

2 Preliminaries

Our model of computation is a complete synchronous network with private channels available
between every pairs of n collaborating participants. Participants have unlimited computing power
and properly follow the protocol, but they are curious in learning more information regarding the
other participant private inputs (i.e. the adversary is passive with unlimited computing capabilities).

Definition 1. A multi-party protocol is t-private if after completion of the protocol no subset of t
participants learns any information (about uncorrupted participant private inputs) more than what
they could derive from their private inputs and the output of the protocol.

2.1 Sharing a Secret

Secret sharing allows a set of n participants P = {P1, . . . , Pn} to share a piece of information in
such a way that only authorized subsets of the participants can recover the secret. The partial
information si, given to participant Pi, is called the share of participant Pi from the secret. The
set of all authorized subsets that are able to recover the secret is called the access structure. The
set K of all possible values of the secret is called the secret domain, and the set S of all possible
values of the shares is called the share domain. We shall assume throughout that P, K and S are
all finite sets.

A secret sharing scheme in which every subset, A ⊆ P, (|A| = t), is an authorized set is called a
(t, n)-threshold scheme. Hence, a (t, n)-threshold scheme determines a set of functions FA : St → K
defined for every A ⊆ {1, 2, . . . , n} with |A| = t, such that for any given set of t shares the function
value is the secret, i.e. K = FA(si1 , . . . , sit).

Definition 2. [10] Let ⊤ and ⊥ be binary functions on elements of the secret domain K and the
share domain S, respectively. A (t, n)-threshold scheme has the (⊤, ⊥)-homomorphism property if
for every subset A, whenever K = FA(si1 , . . . , sit) and K ′ = FA(s

′
i1
, . . . , s′it), then

K⊤K ′ = FA
(

(si1 ⊥ s′i1), . . . , (sit ⊥ s′it)
)

.

That is, the composition of the shares of the secrets K and K ′ are the shares of the composition of
the secrets K and K ′. One can check that Shamir’s (t, n)-threshold scheme is (+,+)-homomorphic,
but it is not (×,×)-homomorphic.

3 A Hybrid Secret Sharing Scheme

Ordinary secret sharing schemes utilize a functionality for setting the system. For example, in
Shamir threshold scheme, the shares of participants are points that satisfy a polynomial, where the
secret is the constant term of the polynomial. The secret can be reconstructed by interpolating the
associated polynomial. Now, we introduce the concept of a hybrid secret sharing scheme, where a
secret can be shared using two sets of functions.

Definition 3. Let K be the domain of possible secrets, and let S be the domain of possible shares.
A hybrid (t, n)-threshold scheme determines two sets of functions FA : St → K and GA : St → K
defined for every A ⊆ {1, . . . , n} with |A| = t, such that for any given set of t shareholders each
function defines the value of the secret, i.e., K = FA(si1 , . . . , sit) = GA(s

′
i1 , . . . , s

′
it).

We refer to such secret sharing scheme as a (F,G)-hybrid (t, n)-threshold scheme.

Definition 4. A (F, G)-hybrid (t, n)-threshold scheme is perfect, if every subset of t− 1 or fewer
shareholders each knowing two shares (associated with functions F and G) cannot learn any useful
information about the secret.

Definition 5. A (F, G)-hybrid (t, n)-threshold scheme is F-convertible (respectively, G convert-
ible), if given the shares associated to function F (respectively, function G) enables every authorized
set to compute their shares associated to function G (respectively, F), without revealing any useful
information about the secret.

For the purpose of MPC protocols, in the following, we will devise a (F,G)-hybrid (n, n)-
threshold scheme over GF (p), where the functions F and G are simply the modular additions and
multiplications over GF (p). By abuse of language, we may refer to it as a (+,×)-hybrid threshold
scheme.

3.1 An Additive (n, n)-Threshold Scheme

Let P = {P1, . . . , Pn} be a set of n participants, and let K ∈ GF (p) be the secret, where p is a
prime integer.

Definition 6. For every secret K ∈ GF (p), an additive (n, n)-threshold scheme determines a set
of functions FP : GF (p)n → GF (p) defined for the set of n shareholders P = {P1, . . . , Pn} such
that K = FP(s1, . . . , sn) = s1 + . . .+ sn (mod p).

An implementation of this secret sharing scheme is shown in Figure 2. This scheme is perfect [35],
as the shares of every set of n− 1 participants are completely independent from the secret.

Share Distribution – The dealer chooses n−1 shares s1, . . . , sn−1 at random from all possible values in GF (p),
and computes K = sn +Σn−1

i=1 si (mod p). The dealer sends (privately) share si to participant Pi (i = 1, . . . , n).

Secret Reconstruction – All participants pool their shares and reconstruct the secret K = Σn
i=1si (mod p).

Fig. 2. An additive (n, n)-threshold scheme.

Theorem 1. Given the proposed additive (n, n)-threshold secret sharing. If s1, . . . , sn and s′1, . . . , s
′
n

are shares of participants P1, . . . , Pn associated with secrets K and K ′, respectively, then (s1 +
s′1), . . . , (sn + s′n) are the shares of participants P1, . . . , Pn associated with secret K +K ′. That is,
the additive (n, n)-threshold secret sharing has the (+,+)-homomorphism property.

Proof. The proof is simple and skipped.

3.2 A Multiplicative (n, n)-Threshold Scheme

Let GF (p)∗ denote the set of non-zero elements of GF (p), which form a group under multiplica-
tion. By replacing the additive group GF (p) with the multiplicative group GF (p)∗, we define a
multiplicative (n, n)-threshold scheme as follows.

Definition 7. For every secret K ∈ GF (p)∗, a multiplicative (n, n)-threshold scheme determines
a set of functions GP : (GF (p)∗)n → GF (p)∗ defined for the set of shareholders, P = {P1, . . . , Pn}
such that K = GP(s1, . . . , sn) = s1 × . . .× sn (mod p).

An implementation of this secret sharing scheme is shown in Figure 3.

Share Distribution – The dealer chooses n − 1 independent and uniformly random shares s1, . . . , sn−1 from
GF (p)∗, and computes sn = K × (Πn−1

i=1 si)
−1 (mod p). For i = 1, . . . , n, the dealer privately sends share si to

participant Pi.

Secret Reconstruction – All participants pool their shares and reconstruct the secret K = Πn
i=1si (mod p).

Fig. 3. A multiplicative (n, n)-threshold scheme.

Theorem 2. Given the proposed multiplicative (n, n)-threshold secret sharing. If s1, . . . , sn and
s′1, . . . , s

′
n are shares of participants P1, . . . , Pn associated with secrets K and K ′, respectively, then

(s1×s′1), . . . , (sn×s′n) are the shares of participants P1, . . . , Pn associated with secret K×K ′. That
is, the multiplicative (n, n)-threshold secret sharing has (×,×)-homomorphism property.

Proof. The proof is simple and skipped.

Theorem 3. The (+,×)-hybrid threshold secret sharing consisting of an additive (n, n)-threshold
scheme defined in Figure 2 and a multiplicative (n, n)-threshold scheme defined in Figure 3, is
perfect.

Proof. Let K be a secret, and let s1, . . . , sn and m1, . . . ,mn be the shares of participants P1, . . . , Pn,
associated with the additive and multiplicative schemes, respectively. Also, w.l.o.g. let P1, . . . , Pn−1

be a group of collaborating participants who wish to learn some information about K. The most
that they can compute is that sn +Σn−1

i=1
si = mn×Πn−1

i=1
mi, where sn and mn are unknown to the

collaborating participants. However, for every possible value of sn (respectively, mn), there exists
one value for mn (respectively, sn), and thus one value for the secret. Therefore, the set of n − 1
collaborating participants cannot decrease their uncertainty about the secret.

4 Function Computation using Hybrid Secret Sharing

In this section, we demonstrate how to perform the computation of linear functions and monomials.

Additive (n, n)-threshold scheme –
Pi chooses n− 1 shares si,j (j = 1, . . . , n, j 6= i) at random from all possible values in GF (p), and computes his
share, si,i, using

xi = si,i +Σn
j=1

j 6=i

si,j (mod p)

Multiplicative (n, n)-threshold scheme –
Pi chooses n − 1 non-zero shares mi,j (j = 1, . . . , n, j 6= i) at random from all possible values in GF (p), and
computes his share, mi,i, using

xi = mi,i × (Πn
j=1

j 6=i

mi,j) (mod p)

Fig. 4. Sharing input xi by participant Pi (i = 1, . . . , n)

4.1 Computation of Linear Functions

Assume that the secret inputs x1, . . . , xn of participants P1, . . . , Pn are shared, using the additive
(n, n)-threshold scheme of Figure 4. Let si,j and sk,j be Pj ’s shares from the secret inputs xi and
xk, respectively. Computation of every linear function can be done in the following way:

– In order to compute xi + xk, each participant Pj computes si+k
j = si,j + sk,j, which is the

share of Pj associated with xi + xk. This is because the additive (n, n)-threshold scheme is
(+,+)-homomorphic.

– For every known scalar c ∈ GF (p) and each secret input xi, computation of c×xi requires that
each participant Pj (j = 1, . . . , n) calculates c× si,j as his share of c× xi.

– For every scalar c ∈ GF (p) and each secret input xi, computation of c+ xi can be done in any
of the following ways:
(i) Share the value c amongst all participants, using the additive (n, n)-threshold scheme. Then

each participant Pj (j = 1, . . . , n) computes cj + si,j as his share of c + xi, where cj is the
share of Pj from c.

(ii) A more efficient way is that only a designated participant, Pℓ, ℓ ∈ {1, . . . , n} (who is chosen
by all participants) adds c to his share from xi, i.e., computes c+ si,ℓ.

– Computation of an additive inverse is easy. Every participant Pj computes the additive inverse
of his share.

Thus, every linear function with n inputs can be computed with no interaction.

4.2 Computation of Monomials

Assume that the secret inputs x1, . . . , xn, of participants P1, . . . , Pn are shared, using the multi-
plicative (n, n)-threshold scheme of Figure 4. Let mi,j and mk,j be Pj ’s shares from the secret inputs
xi and xk, respectively. Computation of every multiplication gate can be done in the following way:

– In order to compute xi × xk, each participant Pj computes mi×k
j = mi,j × mk,j, which is the

share of Pj associated with xi × xk. This is because the multiplicative (n, n)-threshold scheme
is (×,×)-homomorphic.

– For every scalar c ∈ GF (p) and each secret input xi, computation of c× xi can be done in any
of the following ways:

(i) Share the value c amongst all participants, using the multiplicative (n, n)-threshold scheme.
Then each participant Pj (j = 1, . . . , n) computes cj ×mi,j as his share of c× xi, where cj
is the share of Pj from c.

(ii) A more efficient way is that only a designated participant, Pℓ, ℓ ∈ {1, . . . , n} (who is chosen
by all participants) multiplies c on his share of xi, i.e., computes c×mi,ℓ.

– Computation of a multiplicative inverse is easy. Every participant Pj computes the multiplicative
inverse of his share.

Thus, every multiplication gate, regardless of its depth, can be computed with no interaction.

5 Conversion of Multiplicative Shares to Additive Shares

Up to this point, we have shown that for every function F (x1, . . . , xn) = FL(.)+FC1
(.)+. . .+FCℓ

(.),
the linear component FL(.), and all monomials FCi

(.) (i = 1, . . . , ℓ) can be computed none-
interactively. However, value of the linear component is shared in an additive (n, n)-threshold
scheme, while the value of each monomial is shared in a multiplicative (n, n)-threshold scheme.
Computing the function value, without revealing any information about the value of each compo-
nent, requires converting the multiplicative (n, n)-threshold sharing associated with each monomial
FCi

(.) (i = 1, . . . , ℓ) to a corresponding additive (n, n)-threshold sharing.

Let m1, . . . ,mn be the shares of participants P1, . . . , Pn, such that K = Πn
i=1mi (mod p) ∈

GF (p)∗. Also assume that the shareholders have been provided with some auxiliary information,
which could be completely independent from the secret and from their shares. Our solution is given
by the protocol depicted in Figures 5.

Correctness – Each participant Pi (i = 1, . . . , n) receives n − 1 values αi,jmj from participants
Pj (j = 1, . . . , n, j 6= i). Knowing αi,i, mi, and the received information, Pi computes

si = Πn
j=1αi,jmj = Πn

j=1αi,jK,

as his share corresponding to an additive (n, n)-threshold scheme. The protocol of Figure 5 is
correct, because at the end of the protocol, the sum of the computed shares of all participants is:

Σn
i=1si = Σn

i=1

(

Πn
j=1αi,jK

)

=
(

Σn
i=1

(

Πn
j=1αi,j

))

K = K (mod p).

Security – Without loss of generality, let P1, . . . , Pn−1 be the set of n−1 participants who collude in
order to breach the security of the proposed conversion protocol via learning some information about
the secret, K. They collectively know n − 1 shares m1, . . . ,mn−1 associated with a multiplicative
(n, n)-threshold scheme; auxiliary information αi,j (i = 1, . . . , n and j = 1, . . . , n − 1); and n − 1
values vi,n ≡ mnαi,n (mod p) (i = 1, . . . , n − 1) received from the honest participant Pn. To

Inputs:

– Shares – Each participant Pj (j = 1, . . . , n) owns a share mj associated to a multiplicative (n, n)-threshold
scheme over GF (p), such that m1 × . . .×mn = K (mod p), where K ∈ GF (p)∗ is the secret.

– Auxiliary information – Each participant Pj (j = 1, . . . , n) is given a set of n elements α1,j , . . . , αn,j ,
such that

Σn
i=1ui ≡ 1 (mod p), where ui ≡ Πn

j=1αi,j (mod p). (1)

The αi,j ’s are generated as follows:
• Pick u1, . . . , un in GF (p) as shares for an additve (n, n)-threshold sharing of 1, i.e. pick u1, . . . , un−1

independently and uniformly at random from GF (p) and compute un ≡ 1−
∑n−1

i=1
ui (mod p) ∈ GF (p).

• For i = 1, . . . , n, pick n − 1 independent and uniformly random elements {αi,j}j 6=i from GF (p)∗ and
compute αi,i ≡ ui · (

∏

j 6=i
αi,j)

−1 (mod p) ∈ GF (p) (note that αi,i = 0 if and only if ui = 0).

Conversion:

– Each participant Pj (j = 1, . . . , n) sends vi,j = αi,jmj (mod p) (for i = 1, . . . , n) to participant Pi.

Outputs:

– Participant Pi (i = 1, . . . , n) computes

si =

n
∏

j=1

vi,j = Πn
j=1αi,jmj = uiK (mod p)

as his share of K, associated to an additive (n, n)-threshold scheme.

Fig. 5. Protocol for converting the shares of a multiplicative (n, n) scheme to an additive (n, n) scheme.

demonstrate the security, we show that all these known values can be perfectly simulated by the
collusion P1, . . . , Pn−1 by itself, independently of the secret K.

Clearly, the collusion cannot learn anything about K from their shares mi. This is because
of the perfectness of the associated multiplicative (n, n)-threshold scheme: the m1, . . . ,mn−1 can
be simulated by independent and uniformly random elements in GF (p)∗. By definition, the αi,j

for i = 1, . . . , n and j 6= i are independent and uniformly random in GF (p)∗. Therefore, since
mn ∈ GF (p)∗, the values vi,n ≡ mnαi,n (mod p) observed by the collusion are independent of mn

and uniform in GF (p)∗ – hence, the collusion can simulate αi,j (for i = 1, . . . , n and j /∈ {i, n})
and vi,n (for i = 1, . . . , n − 1) by independent uniformly random elements in GF (p)∗. Finally, it
remains to simulate the values αi,i ≡ ui · (

∏

j 6=i αi,j)
−1 (mod p) for i = 1, . . . , n − 1. Here we use

the perfectness of the additive (n, n)-threshold scheme to conclude that the shares u1, . . . , un−1 of
1 are independent of each other and of αi,j for i 6= j, and uniformly random in GF (p). Therefore,
since (

∏

j 6=i αi,j)
−1 ∈ GF (p)∗, the collusion can simulate the values αi,i (for i = 1, . . . , n − 1)

by independent uniformly random elements in GF (p). It follows that the set of n − 1 colluding
participants cannot learn any information about the secret K, as claimed.

6 MPC Protocols With Hybrid Secret Sharing

Now we are going to show a potential application of hybrid secret sharing to MPC problem.

Similar to [11, 12], our model of computation is a complete synchronous network with private
channels available between every pairs of n collaborating participants. Participants have unlimited
computing power and properly follow the protocol, but they are curious in learning more infor-
mation regarding the other participant private inputs (i.e. the adversary is passive with unlimited
computing capabilities).

We note that the security of our multiplicative to additive sharing conversion protocol from
Sec. 5 relies on the shared secret being non-zero. Therefore, in the following MPC protocol, we
restrict the private inputs of all participants to be non-zero (i.e. elements of GF (p)∗). This im-
plies that the value of all monomials in the function F (when evaluated at the private inputs) is
in GF (p)∗, as required. Although this restriction prevents our protocol from being applied non-
trivially over GF (2), it is still possible to use our protocol to compute arbitrary functions over
GF (2) by encoding them as polynomials over a larger field such as GF (5), see Remark 1 below.

Initialization – Each participant Pi (i = 1, . . . , n) distributes his private input xi ∈ GF (p)∗

amongst all participants, using the additive and multiplicative (n, n)-threshold schemes – refer to
Figures 4.

Computation – In order to compute the function F (x1, . . . , xn) = FL(.) + FC1
(.) + . . . , FCℓ

(.),
each participant Pi (i = 1, . . . , n) privately computes FL(.) and all monomials FCj

(.) (j = 1, . . . , ℓ).

Reconstruction of the function value – All participants collectively have the values of each
component of the function. The linear component is shared in additive (n, n)-threshold form, while
each monomial is shared in multiplicative (n, n)-threshold form. For every monomials (if any),
participants convert their multiplicative shares to additive shares.

Let Ai,j be the share of participant Pi associated with monomial FCj
(.), in an additive (n, n)-

threshold format. Now, Pi computes Yi = Ai,0 + Ai,1 + . . . , Ai,ℓ, where Ai,0 is the share of Pi

associated with the linear component FL(.) (if it exists). Since each participant has a share of the
function value associated to an additive (n, n)-threshold scheme, they can pool their shares and
compute the function value, using

Y = Σn
i=1Yi (mod p).

The above considerations lead us to the following statement.

Corollary 1. Let F : (GF (p)∗)n → GF (p) denote a n-variate polynomial over GF (p) (with inputs
restricted to GF (p)∗) having ℓ non-linear monomials. Then, assuming a setup phase in which an
auxiliary information (which is independent of the function inputs and consists of O(ℓ ·n2) elements
of GF (p)) is privately distributed among the n participants, the function F can be computed by the
n participants such that no subset of n− 1 participants can learn any additional information, other
than what they can learn from their inputs and the protocol’s output. The protocol has a total
communication complexity of O(ℓ · n2) elements of GF (p).

Remark 1 – Despite the restriction of our protocol to non-zero inputs, it can still be used to
compute arbitrary functions over GF (2) by using a suitable encoding over a larger field (although
the resulting number of monomials over the larger field will be in general exponential in the depth
of the original GF (2) circuit). To see that this is possible, it suffices to show that a two-input
NAND gate can be encoded into a polynomial over non-zero inputs over the larger field. Indeed,
consider, for example, the polynomial h(x1, x2) = 2x21x

2
2+3x1x2+2 over the field GF (5). It is easy

to verify that h(2, 2) = h(1, 2) = h(2, 1) = 1 and h(1, 1) = 2, so h computes an encoding of the
GF (2) NAND function over GF (5), where we encode the GF (2) values 0 (respectively 1) as the
GF (5) non-zero values 2 (respectively 1).
Remark 2 – For security reasons, any set of auxiliary information should be used only once.
That is, for computing a function containing ℓ monomials, ℓ sets of auxiliary information should
be provided to the participants.

7 Conclusions

We have introduced a new cryptographic tool called hybrid secret sharing that allows to convert
multiplicative secret sharing into its additive version. The conversion uses some auxiliary infor-
mation which is independent from the secret. We have demonstrated that, in an unconditionally
secure setting, if the participants are given access to the auxiliary information distributed during
a trusted setup phase, we achieve maximum level of security in MPC protocols, demonstrating a
new way to obtain maximal security in the trusted setup model.

For future research, one could ask the following questions:

– Can our hybrid secret sharing approach be adapted to achieve security against active adversaries
in the trusted setup model?

– Hybrid secret sharing is an interesting tool, and its properties need more investigation. In
particular, it is interesting to investigate how the conversion depends on the access structure
and required homomorphic properties.

– The complexity of our hybrid secret sharing based protocol is proportional to the number
of monomials in the generic sum-of-product representation. However, for general arithmetic
circuits, the number of monomials grows exponentially with the multiplicative depth of the
circuit. If we would like to efficiently extend our approach to arithmetic circuits of an arbitrary
depth, then we need a conversion of additive secret sharing into its multiplicative version. So
far, we do not know how to do this.

Acknowledgements
Josef Pieprzyk and Ron Steinfeld were supported by the Australian Research Council grant DP0987734.

References

1. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Constant Number of Rounds of
Interaction. In: 8th Annual ACM Symposium on Principles of Distributed Computing, Edmonton, Alberta,
Canada (1989) 201–209

2. Beaver, D.: Multiparty Protocols Tolerating Half Faulty Processors. In Brassard, G., ed.: Advances in Cryptology
- Proceedings of CRYPTO’89. Volume 435 of Lecture Notes in Computer Science. Springer-Verlag (1990) 560–572

3. Beaver, D.: Secure Multiparty Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty Minority.
Journal of Cryptology 4 (1991) 75–122

4. Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In Feigenbaum, J., ed.: Advances in
Cryptology - Proceedings of CRYPTO’91. Volume 576 of Lecture Notes in Computer Science. Springer-Verlag
(1992) 420–432

5. Beaver, D.: Precomputing Oblivious Transfer. In Dwork, C., ed.: Advances in Cryptology - Proceedings of
CRYPTO 1995. Volume 963 of Lecture Notes in Computer Science. Springer-Verlag (1995) 97–109

6. Beaver, D.: Commodity-Based Cryptography. In: Proceedings of the 29th ACM Annual Symposium on the
Theory of Computing (STOC’97). (1997) 446–455

7. Beaver, D., Goldwasser, S.: Multiparty Computation with Faulty Majority. In: the 30th IEEE Symposium on
the Foundations of Computer Science (FOCS89). (1989) 468–473

8. Beaver, D., Micali, S., Rogaway, P.: The Round Complexity of Secure Protocols. In: Proceedings of the 22nd
ACM Annual Symposium on the Theory of Computing (STOC’90). (1990) 503–513

9. Beaver, D., Wool, A.: Quorum-Based Secure Multi-party Computation. In Nyberg, K., ed.: Advances in Cryp-
tology - Proceedings of EUROCRYPT’98. Volume 1403 of Lecture Notes in Computer Science. Springer-Verlag
(1998) 375–390

10. Benaloh, J.: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret. In Odlyzko, A., ed.: Advances
in Cryptology - Proceedings of CRYPTO’86. Volume 263 of Lecture Notes in Computer Science. Springer-Verlag
(1987) 251–260

11. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorem for Non-Cryptographic Fault-Tolerant
Distributed Computation. In: Proceedings of the 20th ACM Annual Symposium on the Theory of Computing
(STOC’88). (1988) 1–10

12. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Protocols. In: Proceedings of the 20th
ACM Annual Symposium on the Theory of Computing (STOC’88). (1988) 11–19

13. Cramer, R., Damg̊ard, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-Sharing, and Applications to Secure
Computation. In Kilian, J., ed.: 2nd Theory of Cryptography Conference TCC 2005. Volume 3378 of Lecture
Notes in Computer Science. Springer-Verlag (2005) 342–362

14. Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Transfer and Private Multi-Party Computation.
In Dwork, C., ed.: Advances in Cryptology - Proceedings of CRYPTO 1995. Volume 963 of Lecture Notes in
Computer Science. Springer-Verlag (1995) 110–123

15. Damg̊ard, I., Ishai, Y.: Scalable Secure Multiparty Computation. In Dwork, C., ed.: Advances in Cryptology
- Proceedings of CRYPTO 2006. Volume 4117 of Lecture Notes in Computer Science. Springer-Verlag (2006)
501–520

16. Damg̊ard, I., Nielsen, J.: Universally Composable Efficient Multiparty Computation from Threshold Homomor-
phic Encryption. In Boneh, D., ed.: Advances in Cryptology - Proceedings of CRYPTO 2003. Volume 2729 of
Lecture Notes in Computer Science. Springer-Verlag (2003) 247–264

17. Fitzi, M., Garay, J., Maurer, U., Ostrovsky, R.: Minimal Complete Primitives for Secure Multi-party Computa-
tion. In Kilian, J., ed.: Advances in Cryptology - Proceedings of CRYPTO 2001. Volume 2139 of Lecture Notes
in Computer Science. Springer-Verlag (2001) 80–100

18. Fitzi, M., Hirt, M., Maurer, U.: Trading Correctness for Privacy in Unconditional Multi-Party Computation.
In Krawczyk, H., ed.: Advances in Cryptology - Proceedings of CRYPTO’98. Volume 1462 of Lecture Notes in
Computer Science. Springer-Verlag (1998) 121–136

19. Fitzi, M., Holenstein, T., Wullschleger, J.: Multi-party Computation with Hybrid Security. In Cachin, C.,
Camenisch, J., eds.: Advances in Cryptology - Proceedings of EUROCRYPT 2004. Volume 3027 of Lecture
Notes in Computer Science. Springer-Verlag (2004) 419–438

20. Goldreich, O.: Foundations of Cryptography, Volume II. Cambridge University Press, 2004.

21. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and Fast-track Multiparty Computations with Applications
to Threshold Cryptography. In: 17th Annual ACM Symposium on Principles of Distributed Computing. (1998)
101–111

22. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game. In: Proceedings of the 19th ACM
Annual Symposium on the Theory of Computing (STOC’87). (1987) 218–229, May 25–27

23. Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in Secure Multi-Party Computations.
In: 16th Annual ACM Symposium on Principles of Distributed Computing (PODC). (1997) 25–34

24. Hirt, M., Maurer, U.: Robustness for Free in Unconditional Multi-party Computation. In Kilian, J., ed.: Advances
in Cryptology - Proceedings of CRYPTO 2001. Volume 2139 of Lecture Notes in Computer Science. Springer-
Verlag (2001) 101–118

25. Hirt, M., Maurer, U., Przydatek, B.: Efficient Secure Multi-party Computation. In Okamoto, T., ed.: Advances
in Cryptology - Proceedings of ASIACRYPT 2000. Volume 1976 of Lecture Notes in Computer Science. Springer-
Verlag (2000) 143–161

26. Hirt, M., Nielsen, J.: Upper Bounds on the Communication Complexity of Optimally Resilient Cryptographic
Multiparty Computation. In Roy, B., ed.: Advances in Cryptology - Proceedings of ASIACRYPT 2005. Volume
3788 of Lecture Notes in Computer Science. Springer-Verlag (2005) 79–99

27. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure Arithmetic Computation with No Honest Majority. In Reingold,
O., ed.: 6th Theory of Cryptography Conference TCC 2009. Volume 5444 of Lecture Notes in Computer Science.
Springer-Verlag (2009) 294–314

28. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In Wagner,
D., ed.: Advances in Cryptology - Proceedings of CRYPTO 2008. Volume 5157 of Lecture Notes in Computer
Science. Springer-Verlag (2008) 572–591

29. Kilian, J.: Founding Cryptography on Oblivious Transfer. In: Proceedings of the 20th ACM Annual Symposium
on the Theory of Computing (STOC’88). (1988) 20–31

30. Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-party Computation with a Dishonest Majority. In
Biham, E., ed.: Advances in Cryptology - Proceedings of EUROCRYPT 2003. Springer-Verlag (2003) 578–595

31. Kushilevitz, E.: Privacy and Communication Complexity. In: the 30th IEEE Symposium on the Foundations of
Computer Science (FOCS89). (1989) 416–421

32. Kushilevitz, E., Rosc̀n, A.: A Randomness-Rounds Tradeoff in Private Computation. In Desmedt, Y., ed.:
Advances in Cryptology - Proceedings of CRYPTO’94. Volume 839 of Lecture Notes in Computer Science.
Springer-Verlag (1994) 397–409

33. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: Proceedings
of the 21th ACM Annual Symposium on the Theory of Computing (STOC’89). (1989) 73–85

34. Shamir, A.: How to Share a Secret. Communications of the ACM 22 (1979) 612–613
35. Stinson, D.: An Explication of Secret Sharing Schemes. Designs, Codes and Cryptography 2 (1992) 357–390

36. Yao, A.: Protocols for Secure Computations. In: the 23rd IEEE Symposium on the Foundations of Computer
Science. (1982) 160–164

