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Short-term operation policy for multipurpose reservoirs can be derived from an optimization model 
with the objective of minimizing short-term losses (opportunity costs). Construction of such loss func- 
tions requires the definition of target values for the decision variables, assessment of reliabilities with 
which inflows can be predicted, and an explicit statement of operational objectives. Formulation and 
evaluation of a model is complicated by the uncertainties inherent in the prediction of future streamflows 
and by controversies about the criteria of evaluation. We discuss these issues and illustrate some of our 
arguments with simple numerical experiments. A series of synthetic short-term forecasted values (which 
satisfy a spedfled distribution of forecast errors) is used to examine operation of a single reservoir. The 
quality of forecasted values is represented by the mean and variance of these errors or the coefficient of 
prediction (Cv). The objective function of the operation model is assumed to be the best possible tradeoff 
between probable deviations from two operation targets: release and storage volume. Reservoir release 
was effected according to the solution of the optimization model conditioned upon the forecasted 
streamflow volumes for a given time increment. The storage volume was then corrected to reflect actual 
streamflow for the forecasted period. This became the initial storage for the next forecast period. Actual 
losses, deviations between actual and forecasted losses, the variance of storage and release volumes, and 
operational performance measures, including reliability, resiliency, and vulnerability, were found to be 
sensitive to the relative importance given to deviations from release or storage targets and the quality of 
forecasts. The performance of an operation policy based on a model that uses predicted streamflows as 
deterministic inputs cannot be correlated directly with the shape of the assumed loss function. 

INTRODUCTION 

Most work reported in the literature concerning reservoir 
operation has used deterministic streamflow forecasts or has 
involved schemes for developing operating rules that are 
based on a single historical streamflow record. This means 
that the adopted policies are for a perfect flow forecast situ- 
ation; however, operation policies should be developed on the 
basis of system operation being subject to uncertain forecasts 
of future inputs and demands. Some conclusions other investi- 
gators have reached are based on a single objective, e.g., meet- 
ing a release target. We show here that consideration of a 
second objective, the actual storage state, as well as noisy 
forecasts of future streamflow are important issues that sub- 
stantially influence mathematically derived reservoir operation 
policies. 

To illustrate the incor•poration of a second objective and 
noisy forecasts into the problem of operating the simplest pos- 
sible single reservoir, it is necessary to discuss multiple objec- 
tives, economic loss functions, the expected value decision- 
making criterion, the nature of decision variable targets, de- 
cision model structures, and aspects of short-term streamflow 
forecasts. As an outgrowth of a two-objective numerical exam- 
ple we found that earlier discussions of recently formalized 
terms: resiliency, robustness, and vulnerability [Hashimoto et 
al., 1982a, b; Fiering, 1982a, b, c, d) need to be expanded. 

Our work focused on developing reservoir operation policy 
in real time conditioned on uncertain future short-term 

streamflow into the reservoir. (Real time operations require 
decisions on flow release rates for short time increments, typi- 
cally on the order of 1 hour. We have used release volumes 
corresponding to periods on the order of one week). Results 
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from models that do not reflect this aspect of reality, no 
matter how elegantly structured and solved, will give results 
that may have little utility. We have avoided dogmatic defini- 
tions; hence our use of "short-term" covers periods on the 
order of hours to weeks. In our numerical example a 5-day 
forecast increment was chosen arbitrarily for illustrative pur- 
poses only. 

The objectives of operation are of prime importance in de- 
veloping an operation policy, whether they are stated ex- 
plicitly in the objective function or incorporated implicitly as 
binding constraints in the model. An example is provided by 
the chance-constrained models proposed for planning pur- 
poses [ReVelle et al., 1969; Loucks and Dorfman, 1975; Houck, 
1979] or for operation purposes [Datta, 1981; Datta and 
Houck, 1984]. All these models have to satisfy some implicit 
objectives, for example, meeting minimum and maximum stor- 
age and release bounds with specified reliabilities. These multi- 
ple implicit objectives stated in the form of constraints are, in 
addition to the objective, stated explicitly in the objective 
function. When only a single value of streamflow for a given 
period (which may be the actual value or a forecast) is used as 
an input to the model, the multiplicity of these implicit objec- 
tives is reduced. The optimum solution obtained by using such 
limited streamflow information may be far from satisfactory. 
When such models use an externally forecasted streamflow 
value, their performance depends on the quality of the forecast 
as characterized by the forecast error distribution. 

The forms of loss functions and definitions of decision vari- 

able targets, as well as the expected value criterion, hydrologic 
and economic uncertainties, and storage release tradeoffs, are 
central to any operation model development. There are con- 
flicting definitions and conflicting opinions in the literature; 
therefore we devote the next section to these issues. For short- 

term reservoir operation, where the time horizon for the single 
solution of the operation model may range between hours' and 
a few months, the impact of economic uncertainty in the form 
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of future discount rates is minimal. Therefore, we chose not to 
discuss economic uncertainty in any detail. 

COMMENTS ON LOSS FUNCTIONS 

Long-term reservoir operatio n policy is derived typically 
from an optimization model with an objective of maximizing 
long-term benefits or minimizing long-term losses. For short- 
term operations the objective is to maximize short-term bene- 
fits or minimize the opportunity cost of a decision. 

Losses are negative benefits; actual loss or benefit functions 
are assessed or specified objectively and reflect the actual ben- 
efits or extent of damages corresponding to a given state. On 
the other hand, penalty functions reflect opportunity costs. 
Any decision that causes a decrease from the maximum possi- 
ble benefit (or any increase from the minimum possible loss) 
incurs a penalty. 

While it is quite difficult to construct an accurate benefit or 
loss function, it is more difficult to assess the opportunity cost 
of a decision. In many cases the shape of the penalty function 
is imposed by the decision makers to reflect a policy designed 
deliberately to achieve specific results. In short-term reservoir 
operation the penalty function is obtained from the long-term 
benefit function, the short-term benefit function, a planning 
target (a release guaranteed with high reliability), and an oper- 
ational target (corresponding to the maximum of short-term 
benefits for a planned release). Several authors [Hashirnoto et 
al., 1982a; Klernes, 1978] have described the penalty function 
as a loss function (for deviation from a target value). There- 
fore, we continue to describe the penalty function for short- 
term reservoir operation as a loss function. 

Unresolved questions regarding the best choice of a loss 
function for reservoir operation include the issues of convex- 
ity, concavity, or symmetry of the loss functions assumed. Sted- 
inkier [1978] has argued that penalization of releases in excess 
of the target value is unrealistic. Klemes [1978] disagreed with 
this argument and pointed out that it depends on the defini- 
tion of "target" and on the shape of the loss functions for 
deviations from the target value. According to his proposition, 
a release target may be defined either as a "scale of devel- 
opment" (as done, for instance, in Fierin• [1967], i.e., the re- 
lease in excess of this target value generates benefits; failure to 
meet this target value is associated with severe economic pen- 
alties) or as a value that causes no losses (the value corre- 
sponding to the minimum of the loss function or maximum of 
the benefit function as used by Klemes [1977]). When the 
second definition of a target value is accepted, it is possible to 
assume the loss to be zero (or a constant) in the vicinity of the 
target, implying no losses for small deviations from this partic- 
ular value and progressively higher losses for larger deviations 
in both directions. 

If the only objective of operating a reservior or reservoir 
system is to ensure a dependable flow during dry periods, and 
other objectives are ignored, it is possible to adopt a loss 
function that constitutes only the dry branch of a two-sided 
generalized loss function. A two-sided loss function may be 
necessary when multiple objectives, e.g., recreation, flood 
damage mitigation, navigation, water supply, and hydropower 
are important. 

Klemes [1979] pointed out that considering a loss function 
L(y) = y•, where y is the outflow from a single reservoir (with 
mean E(y); E(.) is the mathematical expectation), for a convex 
loss function (a < 0 or a > 1) a constant release equal to œ(y) 
is economically superior to a sequence of variable releases. 
For a concave loss function (0 < a < 1) a variable release, or a 

constant release equal to the target until the reservoir is full 
and then a release equal to the capacity of the reservoir, is 
superior to a constant release. For a linear or a constant loss 
function (a = 1 or a = 0) the overall economic effect is inde- 
pendent of the outflow pattern. Accordingly, it appears that 
no general optimization is possible for the last two cases. It 
should also be noted, however, that these conclusions are 
based on restrictive assumptions. Klemes's results are valid for 
an unconstrained (semiinfinite) reservoir and for a zero dis- 
count rate for future returns. For completeness we include 
here relationships between finite and infinite reservoirs. The 
essence of these relationships, contained in the next three 
paragraphs, were provided to us by Vit Klemes (personal 
communication, 1983). 

For a finite reservoir with a storage capacity K the opti- 
mum operation policy must be rephrased as "release equal to 
E(y)at or to E(y)at q- K/At," where E(y)at is the mean inflow 
during one reservoir "working cycle" At, i.e., during a period 
between two successive instants when the reservoir is either 

empty or full. Thus the above operation policy requires perfect 
knowledge about future inflows for one working cycle ahead; 
given the fact that the length of this cycle increases with reser- 
voir storage capacity, for an infinite reservoir this knowledge 
must extend over the entire future [Klernes, 1979]. 

Since a zero discount rate was taken as implying a complete 
absence of economic uncertainty [Klernes, 1977], the above 
policy can be regarded only as an "ideal" optimum policy, i.e., 
as a limit corresponding to "absolute certainty," both hydro- 
logical and economical [Klernes, 1979]. On the other hand the 
standard operation policy (release equals target, whenever 
possible) resulted in the opposite limit, i.e., as an optimal 
policy under conditions of "absolute uncertainty" (infinite dis- 
count rate and complete ignorance about future inflows 
[Klemes, 1977]). 

It is also important to note that all of the above proposi- 
tions were based on the assumption that the minimum ex- 
pected value of losses is an appropriate criterion for optimal 
operation. However, the validity of this criterion, especially for 
optimization of a single project has been questioned [Klernes, 
1978, 1979]. 

It is appropriate, therefore, to suggest that it is not possible 
to guarantee the optimality of the "ideal" operation criterion 
of making a release equal an estimate of the input mean for a 
given period, without perfect hydrologic information and/or 
building a large (semiinfinite) reservoir. On the other hand the 
standard operation policy suffers from severe limitations that 
will be discussed in a later section. 

Expected Value of Losses 

One of the drawbacks of justifying any result according to 
the expectation criterion is that actual values and expected 
values differ. In the past, many arguments have been made for 
and against using expected returns from a particular policy as 
the sole criterion for decision making. The objection generally 
cited is that "the expected value criterion does not take into 
consideration the variations in return" [Nernhauser, 1966]. 

The above reasoning for not using expected returns as the 
sole decision making criterion is only superfically valid. When 
utility measures (according to the von Neumann-Morgenstern 
Cardinal Utility Theory), not monetary values, are considered, 
the criterion of maximizing expected utilities accounts for the 
risk associated with probable returns and the decision maker's 
preferences for a combination of values. In practice the major 
difficulty is in constructing a proper utility function. Even with 
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Fig. 1. Long-term and short-term benefit functions for reservoir re- 
lease. 

proper measures for returns, an expected utility criterion is 
impractical for water resource or other socioeconomic systems 
because usually more than one decision maker (representing 
different constituents) is involved. A single many-to-one map- 
ping that relates all measures of importance to a utility scale is 
not obtainable in such cases. Therefore, expected return as a 
criterion for decision making may be unsuitable for water 
resources systems optimization problems. 

Target Values for Decision Variables 

Theoretical target reservoir releases, shown schematically in 
Figure 1, can be defined in two ways. The first concerns a 
value, Xmin, guaranteed with high reliability for short-term 
allocation. For a release equal to Xmin, short-term benefits 
equal long-term benefits, and no penalities are incurred. Re- 
leases in excess of Xmi n give rise to increased benefits, although 
these benefits are lower than could have been attained (from 
the long-term benefit function) had the guaranteed amount 
been higher. The long-term benefit function should start dip- 
ping down at some value of reservoir release X*, when an 
incremental release will cause a problem such as flooding, 
damage to aquatic life, or loss of recreational opportunity. 
The short-term benefit function will also dip down, but for•a 
corresponding release, X < X*, except for the unusual case of 
Smi n coinciding with X*, in which case X = X*. (The long- 
term benefit function is the envelope of short-term benefit 
functions.) 

If the main concern of reservoir operation is to mitigate the 
impacts of high flows, i.e., flooding, similar arguments can be 
made. Now the maximum outflow that may not be exceeded 
with a high reliability is defined as Xmax; any decrease in 
release volumes from Xmax might increase actual benefits. At a 
certain point, however, disbenefits occur when the amount 
planned for was Xmas, and the actual outflow is appreciably 
smaller. 

A second definition of target release can be developed by 
using the release magnitudes (target 1 and target 2) shown in 
Figure 1. These values are treated as variables where short- 
term benefits are a maximum, i.e., penalties (opportunity cost 
for given Xmi n or Xmax) are zero, as defined by Klemes [1978]. 
(Short-term losses are at a minimum for releases target 1 and 
target 2 where the penalties are zero.) 

Because target 1 and target 2 are conditioned on Xmi, and 
Xm• •, respectively, some readers may be tempted to define 
Xmi, and Xm• as "planning targets" and targets 1 and target 2 
as operational targets. However, we refrain from such rigid 
definition. It is more useful to emphasize that Xm• , or Xm•x are 
releases guaranteed with high reliability (a decision variable), 
and target 1 and target 2 are based on these values. (It is 
possible to compute all these quantities from an operation 
policy optimization model.) Selection of target I or target 2 is 
conditioned on the objectives of operation. Target 1 is impor- 
tant for water supply objectives; target 2 is associated typi- 
cally with flood flow management. 

Reservoir Release Targets and Optimal Operating Policy 

When the target value is defined as Xm• , (or Xma0, so that 
an increase (or decrease) of release from this value is not pe- 
nalized, some investigators claim the Standard (Linear) Oper- 
ating Policy (SLOP), an acronym suggested by colleague Rick 
Palmer, is the optimal operation criterion. This policy requires 
release of the (fixed) target (Xmi,) whenever enough water is 
available or release of as much as is available when the stor- 

age plus inflow is lower than Xm•,; when the reservoir is full, 
the release is equal to Xm• , plus the spill. Klemes [-1977] 
questioned the optimality of such a policy and claimed it leads 
to inferior release decisions. Stedinger [-1978] contested this 
argument, claiming that Klemes used an unrealistic objective 
function that penalized both positive and negative deviatiohs 
from the target value. It is now clear that Stedinger's argu- 
ment is true only when Xmi , is assumed as the target. 

Some important points must be noted here. The main draw- 
back of the SLOP is that, while it is simple to specify a release 
policy ("release the target volume whenever enough water is 
available,"), at any time a decision to release is made, this 
volume can only be estimated; therefore uncertainty must be 
considered explicitly. This uncertainty introduces the need for 
denoting Xmi n (or Xmax) , which might not be the same as 
target 1 (or target 2), as shown in Figure 1. If there were no 
uncertainties involved, there would be no need to differentiate 
between Xmi n and target 1 (or Xma x and target 2). (Xmi , and 
Xma x are typically used in chance-constrained models as lower 
and upper bounds corresponding to specific reliability levels.) 
Further complications arise when the actual rate of release on 
an hour-to-hour basis is to be ascertained once these release 

volumes have been specified. A detailed discussion of this 
aspect is beyond the scope of this paper. 

The target value should be interpreted as that volume of 
water for which penalities are a minimum; any deviation from 
the vicinity of this value is penalized to whatever extent is 
appropriate. The exact shape of the benefit function will vary 
from basin to basin and may also be modified according to 
the perceptions of decision makers. Hashimoto et al. [-1982a] 
wrote that loss functions of the type L(X) = [(T -- X)/T] • for 
X < T and L(X)= 0 for X _> T (X is the release and T the 
target release; • is a constant), when incorporated in an opti- 
mization model that minimizes the expected value of losses 
subject to some physical constraints, result in different types of 
policies, depending on the value of •. They reported that the 
operation policy specified by the loss function for • > 1 results 
in hedging from the target release, even if enough water was 
available (as evident from hindsight). This does not occur for 
• < 1. This result can be visualized conveniently by examining 
the loss function (T - X) • shown in Figure 2. Let p denote a 
possible deviation from the target release at the end of oper- 
ating period 1, q the corresponding possible deviation during 
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Fig. 2. Shapes of loss functions for different values of/•. 

period 2, and p + q the combined deviation at the end of the 
two operating periods. 

It is now evident that for an expected deviation equal to p 
at the end of period 1 and q during period 2 the losses can be 
minimized if the combined deviation is actually postponed up 
to the end of period 2 for/5 < 1. If/5 = 1, the delay does not 
affect the losses and therefore may result in alternative opti- 
mum solutions. In the case of /5 > 1, because pt + q,< (p 
+ q)", it is always costlier to postpone the deviations and 

preferable to incur maximum losses at the first period rather 
than adding them up for the second period. This conclusion is 
valid when using the expected loss criterion in the objective 
function because the transition probabilities (from one discrete 
flow state to another) used are assumed stationary and may be 
considered as constant multipliers to the loss magnitudes. 

Hedging from the SLOP is only a consequence of different 
/5 values, as indicated by Hashimoto et al. [1982a]. The extent 
of hedging depends on the state value and the transition prob- 
abilities from one discrete state to another. By assuming a 
one-sided loss function, when additional releases in excess of 
the target value are not penalized, it is immaterial how much 
is released once the target is met as a lower bound. 

The conclusion that a target release value equal to the mean 
inflow is optimum is not acceptable if, for example, variations 
in storage levels are of any concern in determining operation 
policy. It may be possible to release the target volume(s) 
whenever there is enough water available, but this may cause 
great variations in the reservoir level(s), which may be unde- 
sirable for recreational or hydropower generation purposes. 
Penalties not only for deviations from release targets but also 
from prespecified storage targets are needed for even the sim- 
plest reservoir systems. 

Multiple Targets 

The previous discussion has considered a release target. A 
storage target is now considered in addition to a release 
target, making the operating problem a two decision variable 
situation for a single time step. The target storage is not the 
same as a minimum storage because it is reasonable to assume 
that in many possible objectives of reservoir operation a posi- 
tive or a negative deviation from the storage target may be 
undesirable. Once a storage target is introduced into decision- 
making considerations, many of the observations discussed 

above are rendered inadequate. Now, more than one loss 
function, one for deviations from the target release and one for 
the deviation from target storage, must be considered. An in- 
crease in release causes a decrease in storage and vice versa. 
Therefore these two objectives become conflicting; preference 
ordering of the objectives (release and storage) becomes neces- 
sary to reach a single solution. 

Cohon and Marks [1975] pointed out that the above vector 
optimization problem cannot be optimized in a strict sense. In 
the absence of preference information an optimal solution 
cannot be found to the problem because all feasible solutions 
are not ordered. However, an incomplete ordering may be 
obtained from the set of noninferior solutions where alter- 

natives are eliminated only on the basis of inferiority. A basis 
for more complete ordering is the articulation of preferences 
prior to the solution. Therefore we have adopted the goal- 
programming technique in the examples given later for opti- 
mizing operation of a single reservoir where two objectives are 
to be satisfied. 

While goal programming provides some help, the reservoir 
operation problem is complicated further by uncertainties in- 
troduced by the unknown future inflows to the reservoir. We 
explore this issue explicitly by examining the conditional dis- 
tributions of future inflows where the future inflows are as- 

sumed to be forecasted with different levels of precision. 

QUALITY OF INFLOW VOLUME FORECASTS 

Lettenmaier [1984] proposed a simple index for measuring 
the quality of forecasted streamflow volumes. This index, the 
coefficient of prediction C v, is defined as 

x,)'- 
C v = 1- 2 (1) 

O'At 

where •, is forecasted streamflow volume for the time t, X, is 
actual streamflow volume for the time t, tra, 2 is unconditioned 
variance of streamflow for the same time interval, E(.) is the 
expectation operator, and At is the length of each time period. 
The coefficient of prediction has a useful range from 1.0 for a 
perfect forecast (forecast error variance = 0) to 0.0 for a fore- 
cast containing no information other than the mean of the 
forecast period streamflow. Negative values of C, mean that 
the forecast contains negative information (forecasts that are 
more variable than the historically recorded runoff volume for 
the same time steps). This index can be used for forecasts 
generated by stochastic models or by conceptual or physics- 
based models, so long as the errors are considered stationary 
for a limited time horizon. 

NUMERICAL EXPERIMENTS 

The importance of the issues introduced above is explored 
for a single hypothetical reservoir operated to derive benefits 
from both release and the volume of water stored. We deliber- 

ately kept the model simple to ensure that attention remains 
focused on tradeoffs between conflicting objectives in the pres- 
ence of uncertain inflows. 

Operation Model 

The objective was minimization of losses from deviations 
from two targets:release and storage volumes. The nonlinear 
loss functions used (Figures 3a and 3b) were piecewise lin- 
earized and incorporated into a deterministic linear (goal) pro- 
gramming formulation: 

Minimize 
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Fig. 3. Loss function for deviations from (a) release target and (b) 
storage target. 

Subject to 

where 

k,*[L,'W,' + E,')] + s + E,s)] (2) 

St+ • = St + Xt- Rt (3) 

St+ 1 --• CAP (4) 

St+ 1 • Smin (5) 

S,+x + D/- E/• T s (6) 

R t -F Dt'-- E t' _• T' (7) 

o, s, E, s, O,', E,' > 0 (8) 

k• a constant weight given to the losses due to devi- 
ation from the flow release target; 

k2 a constant weight given to the losses due to devi- 
ation from the storage volume target; 

LtS( ß ) loss function for storage deviation from target; 
L[(.) loss function for release deviation from target; 

St storage at the beginning of time t; 
3•t forecasted streamflow volume at time t; 
R t release during the time interval t to t + 1; 
T s storage target; 
T' release target; 

CAP capacity of the reservoir; 
Smi. minimum allowable storage; 

Dt s, Et s deviations from storage target; 
D[, E[ deviations from release target. 
The variables D and E are included in the formulation to 

facilitate calculation of losses. The loss functions (Figures 3a 
and 3b) are positive for both positive and negative deviations 
from the targets. D and E are nonnegative; D covers the 
branch of the loss functions corresponding to negative devi- 
ations; E covers the branch of the loss functions correspond- 
ing to positive deviations. For any solution of the model, if D 
is positive, E is forced to zero and vice versa. The weights k• 
and k2 sum to unity. 

Flow Forecast Procedure 

For convenience we chose to generate each forecast se- 
quence as the sum of the recorded streamflow for a 5-day 
period plus an error term. Other procedures would be used in 
practice, but this was sufficient for our purpose. The forecasted 
flow 3• t is given by 

X, = X, + •, (9) 

where e t is the error term. 
Lettenmaier [1984] gives complete details for this scheme. 

The correlation structure of daily flows (the shortest time step 
for available recorded data) was assumed to be Markovian, 
with an implied correlation coefficient p for each specified 
value of C•,. 

The error term et is assumed to have a Markovian struc- 
ture; with this assumption the variance and correlation coef- 
ficient for •t can be computed for a specified value of C v and 
the corresponding value of p. 

The relevant equations are 

a• = (1 - C•)ø'saat (10) 
where a• is the standard deviation of et and aat is the standard 
deviation of historical data corresponding to a time increment 
At. (We used At = 5 days and 2 years of flow data; hence a,,t 
was computed from 146 consecutive 5-day flow volumes.) 

The random (Gaussian) component in the Markovian error 
term has zero mean and variance 

(1 - p ...... ,2)a•2 

where for At = 5 and using results from Lettenmaier [1984], 

p ...... , = p(1 -- pS)215(1 -- p)(1 + p) + p'•]-' (11) 

System Data 

Five-day flow increments were adopted for the experiments. 
Streamflow data for a 2-year period (October 1972 to Septem- 
ber 1974; 146 5-day increments) from the Skykomish River, 
Washington (USGS gauge 12123400) were used. The average 
5-day flow volume was 2.1 units, and the average annual flow 
# was 153.3 units. The reservoir had a capacity (CAP) equal to 
85 units; Smi, = 10 units. The storage target was TS= 40 
units. The initial storage S O = 40 units; the beginning time 
was taken at the start of a water year. The release target was 
held constant at T'= 2.5 flow units. This high target was 
chosen deliberately to stress the system heavily. (The mean 
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flow per 5-day period was 2.1 flow units, hence the annual 
target release to mean flow ratio was 1.19. This target cannot 
be met physically in the long-term; it is infeasible to satisfy 
this target at all times). The reservoir was relatively large 
(CAP/•, = 0.55). 

Other capacity to mean flow ratios could have been chosen, 
and results probably would differ from those we report below. 
We emphasize, however, that our primary concern is to show 
operation strategies for conflicting objectives in the presence 
of noisy forecasts. 

Three models, models 1, 2, and 3, were explored. Each 
model used the loss functions shown in Figures 3a and 3b. 
(These loss functions were arbitrarily chosen. We recognize 
that construction of each function is a nontrivial task and that 

data for their construction are difficult to obtain and estimate. 

Fuzzy, time-varying functions rather than the crisp functions 
used here may be all that could be hoped for in practice.) The 
only difference between the models resulted from changes in 
k• and k2--the weights placed on the release and storage 
objectives, respectively. The models were (model number, k•, 
k2): model 1, 0.5, 0.5; model 2, 0.8, 0.2; model 3, 0.2, 0.8. 

The loss functions shown in Figures 3a and 3b were so 
constructed that for equal weights on storage and release devi- 
ations, one unit of storage deviation is penalized less than a 
unit of release deviation. However, at a particular level of 
deviation (9.5 units) the deviations from storage become more 
costly than equivalent deviations from the release target. This 
implies that at a certain point it becomes more important to 
meet the storage target than the release target. We chose this 
construction because meeting a release target is often more 
important than meeting a storage target. Although it is not 
evident from Figure 3a (because of the linear scale used), any 
nonzero deviation from the release target was penalized. This 
also prevented the LP algorithm from finding alternative 
optima. 

The range of C v values used was 0.1 to 0.9. The daily corre- 
lation coefficient was forced to assume values such that for a 

given unconditioned variance rrat 2 (obtained from recorded 
data of length 2 years) the resulting coefficient of prediction 
(Cv) was as specified. Once p was computed for a given C v, 
p ...... , could be determined. For example, for Cv=0.1, 
p=0.5737; for C v=0.9, p--0.9785. Also, for C v=0.1, 
p ...... , -- 0.0201, and for C v = 0.9, p ...... , = 0.0940. 

Solution Procedure 

For fixed k, and k2 a value of C v was chosen (between 0.1 
and 0.9), and the specified model was solved as follows. A 
5-day forecast was made and the optimization model solved. 
At the end of the 5-day period the actual flow (first 5 days of 
water year 1973) was used to compute the actual storage in 
the reservoir rather than the value that resulted from use of 

the forecasted 5-day volume. The storage penalty was recom- 
puted with the updated actual storage. The process was re- 
peated for each of the remaining 5-day time increments in the 
2-year time period. The initial storage for each 5-day period 
was the updated actual storage at the end of the previous 
5-day period. 

The procedure was repeated until operation for 10 fore- 
casted sequences, each of length 2 years, had been completed. 
We ran experiments with 50 sets to be sure that results were 
not overly sensitive to the number of scenarios examined. For 
low C v, results for 50 sequences and 10 sequences differed by 
about 10%. For Cv > 0.5 there was little difference in results. 
Consequently, all results presented here are for 10 sequences 

of length 146 5-day periods. (The computational expense was 
significant, hence our preference for small forecast sequence 
sample size.) 

RESULTS 

All significant results are given in graphical form, starting 
with Figure 4. The absicissa is either the coefficient of predic- 
tion C• or the weight applied to the release objective k•. Data 
on the graphs are connected by straight lines for simplicity in 
illustrating trends; much greater computational effort than is 
appropriate would be needed to obtain data suitable for con- 
struction of continuous curves. 

It is evident from Figure 4 that the actual losses incurred 
decrease substantially as the coefficient of prediction increases. 
Also, at various ranges of C• one of the models seems to be 
more efficient in reducing the losses. Consideration of seasonal 
target values (rather than the fixed value for storage used here) 
may modify these results, but we expect that the relative con- 
clusions will still be true. Figure 4 also shows that model 1 
may not be a desirable alternative if the forecasts are not 
reliable. The objective mix presented by model 2 may not be a 
desirable alternative for 0.5 < C• < 1.0. (i.e., increasing accu- 
racy tending to a perfect forcast); model 3 may be more ef- 
ficient. 

If the variances of release and storage are criteria for evalu- 
ation, other conclusions can be obtained from Figures 5 and 6. 
As seen from Figure 5, variations in the priorities given to 
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Fig. 5. Variance of release volumes; each value is the average of 
the variances computed from 10 time series of releases, each series 
included 146 time increments. 

Another important point to be noted here is that these 
figures only indicate comparative trends. The absolute mag- 
nitudes shown in the figures depend on the storage target 
chosen and especially the release target used, as well as the 
shape of the loss functions. Additional trials with different 
target release volumes showed that, as the target release ap- 
proached the mean value of streamflow during the time hor- 
izon of this evaluation, the variance of the releases decreased 
as anticipated. 

RELIABILITY, RESILIENCY, AND VULNERABILITY OF OPERATION 

In addition to the commonly accepted measure of reliability 
as a system performance criterion for evaluating an operation 
policy, other criteria, including resiliency and vulnerability of 
operation policies, have been suggested recently [Hashimoto et 
al., 1982a]. Reliability of a system performance is defined as 
the probability that a state of the system Xt is in a satisfactory 
state S: 

• = Prob[Xt•S] (13) 

The resiliency of a system operation may be defined as the 
probability of a system's recovery to a satisfactory state S in 
time period (t + 1), given that the system was in failure state F 
at time period t [Hashimoto et al., 1982a]. Therefore, resiliency 
of a system operation policy was defined as 

Probability{X,+, e S IXte F} (14) 

This is equivalent to the inverse of the expected value of the 
length of time the system is in a failure or unsatisfactory state. 
Thus it may be defined as 

15.0 

14.5 

meeting the storage and release targets have distinct effects on • 14 0 
the variances of storage and release volumes for each period. o• 
It is seen from Figure 5 that as the priority for meeting the • 
release target increases the variance of the release decreases. In • 
general, model 2 results in minimum variance, and model 3 • 
results in maximum variability. Similarly for the storage varia- • 13.5 
bility, as the priority for meeting the storage target increases, > 
the variability of storage decreases; therefore model 3 shows • 
the lowest variability. However, this trend is not evident when c, 
models 1 and 2 are compared. This is because, while the re- • 13.0 
leases made depend completely on the operation policy speci- • 
fled by the optimization model once the initial storage is de- .• 
termined, the end storage for each period is determined, not 
by the storage that results from using forecasted inflow but by 
the actual flow that occurs. Therefore storage volumes can be 
expressed as 

St+ ,(actual) = St+ ,(forecasted) + (error term) (12) 

This error term depends upon the forecast accuracy and deter- 
mines the deviation between the storage predicted by the solu- 
tion of the optimization model (knowing only the forecasted 
streamflow volume) and the end storage determined by the 
actual streamflow volume. 
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the variances computed from 10 time series of storages, each series 
included 146 time increments. 
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EJ- number of sojourns into an satisfactory state F -I 
Ltotal number of periods in unsatisfactory state FJ (15) 

where E[.] is the expectation operator. 
Vulnerability may be defined as the expected severity of a 

failure when in a failure state F. This definition does not, 
however, take into account actual variability in this criterion. 

These system performance criteria were evaluated for our 
dual-objective single reservoir operated under conditions of 
imperfect inflow forecasts. The failure state of our system was 
specified arbitrarily as that state when the absolute deviation 
of the actual release was greater than 0.2 times the target 
release or when the actual storage (corrected for forecast 
errors) at the end of a period had an absolute deviation great- 
er than 0.125 times the storage target. Every time the release 
or storage volumes entered these failure states, a failure was 
counted for release or storage, respectively. The choice of the 
failure states is subjective; one choice may be no better than 
another. When all deviations from the release target are penal- 
ized, is it appropriate to consider all deviations from the target 
release as failures? We chose the failure states arbitrarily, re- 
flecting the relative weights given to storage and release devi- 
ations. This choice illustrates one possible situation. 

Figure 7 contains results obtained from simulation of actual 
operating conditions once a release had been made according 
to the solution of the optimization model. All these results are 
average values for two criteria (reliability and resiliency) ob- 
tained from 10 sets of generated forecasts for C,--0.7. This 
particular value of Cp was chosen as representative of fore- 
casts that were neither exceptionally erratic nor accurate, and 
they reflect the state of practice. It is seen from Figure 7 that 
the resiliency of the operation policy specified by models 1, 2, 
and 3 differs for storage values and release values. While the 
absolute magnitude of this criterion depends on reservoir size 

and flow variability, the relative values are of concern. These 
results show that specifying very high priority to meeting the 
storage or release target may actually decrease the resiliency 
of the policy. However, under these conditions, the reliability 
of satisfying the storage and release targets may be increased. 
When the model is required to meet the release target with a 
high priority, the reliability of attaining the release target is 
maximum, achieved at a cost of reducing the resiliency. A 
similar conclusion is true for the storage volumes. 

It is also evident that the reliability or resiliency curves do 
not follow any trend that might have been inferred from re- 
sults obtained from methods that used perfect forecasts. For 
perfect forecasts the reliability of meeting the storage or re- 
lease target should increase as the priorities on meeting these 
targets increase. Figure 8 may explain the reason for such 
counterintuitive results. When the optimization model is 
solved, the model calculates an end storage based upon the 
forecasted streamflow volume. The correct storage at the end 
of the period is recomputed with the actual flow volume. The 
model has effected an optimal policy by using an uncertain 
flow forecast. Losses are corrected for the updated (true) stor- 
age before a solution is sought for the next time period. If the 
forecasted value of the end storage (storage at the end of the 
period when release for that period has been made) was the 
same as the actual value (the perfect forecast case), the reliabil- 
ity and resiliency curves would be as shown in Figure 8. Relia- 
bility and resiliency depend upon the priorities used in the 
model to satisfy the storage target. Due to forecast errors, 
however, these trends are modified as indicated in Figure 7. 
Figures 7 and 8 illustrate the relevance of forecasting errors 
and of prespecified priorities in a multiobjective model. 

Vulnerability was defined as a measure of the severity of a 
failure when in a failure state. Hashirnoto et al. [1982a] used 
the average of the maximum deficit that occurred in each 
mathematical run of failures within an operating time series as 
an index of vulnerability. In addition to the limitations of this 
measure that result from using a one-sided loss function (a 
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Fig. 8. Reliability and resiliency of anticipated storage volumes ob- 
tained from forecasted inflows for C. = 0.7. 
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single objective, release, was considered; deficits were evalu- 
ated and excesses ignored) their approach has another poten- 
tial drawback. Consider, for example, two alternative time 
series for release from a reservoir. The deficits for a common 

period of eight time increments are 0.0, 0.2, 0.6, 2.8, 0.5, 0.0, 
0.6, 0.0 and 0.0, 0.2, 0.8, 2.6, 0.4, 0.0, 0.8, 0.0, respectively. The 
maximum deficit for each run of deficits is in italics. Both 

series yield vulnerability equal to 1.7 (series 1•(2.8 + 0.6)/2; 
series 2--(2.6 + 0.8)/2). However, the first sequence may actu- 
ally be worse when, the loss function is convex, i.e., of the type 
(target-release) • with/• > 1. This is not reflected in the above 
definition of vulnerability. A different picture may be obtained 
if the vulnerability is defined in terms of the losses incurred. 

We defined vulnerability as the total losses incurred by a 
sequence of operations that follow optimal policy. If this defi- 
nition is acceptable, Figure 4 will also denote the vulnerability 
of the system operation both in terms of storage and release 
deviations because the total losses were computed on the basis 
of deviations. As noted before, vulnerability now becomes a 
function of the forecasting accuracy C, and weights k• and k2. 
Model 3 indicates a desirable combination of k: and k2 for 
forecasts for most C, values from the consideration of mini- 
mum vulnerability. 

Robustness is described as a measure of overall economic 

performance. For a given positive constant, robustness may be 
defined as the probability that the ratio of economic regret to 
the least cost is less than or equal to that constant [Hashimoto 
et al., 1982b]. For an operation policy the least cost or mini- 
mum penalities of operation may be considered as that con- 
stant. (Robustness is a more appropriate measure for evalu- 
ating a long-term policy. However, economic regret is cer- 
tainly relevant to any decision based on economic consider- 
ations.) Therefore, economic regret, which may be defined as 
actual penalties minus minimum possible penalties, should be 
a useful index in evaluating on operation policy. Regret is 
defined here as the difference between actual total penalties 
and the possible minimum penalties as a function of forecast 
accuracy. This model finds a policy that results in minimum 
losses for an assumed perfect forecast for each forecast period. 
The actual loss incurred will be different and will depend on 
the difference between forecasted flow and actual flow. The 

ordinate in Figure 9 denotes the sum of deviations, averaged 
over 10 forecast scenarios, between forecasted losses predicted 
by the model (knowing only the forecasted values) and the 
actual losses (from observed inflow) that occur during each 
time period. It is clear from Figure 9 that, if the given defini- 
tion of regret is accepted, the regret for the operation policy is 
a function of C,. As forecasts become more accurate, i.e., the 
C, values increase, regret also decreases. For high C, values 
(•0.9) the results are relatively insensitive to the model adopt- 
ed. 

SUMMARY AND CONCLUSIONS 

The aim of this work was to explore the sensitivity of 
various performance criteria for reservoir operation to the ac- 
curacy of forecasted streamflow volumes. For a single reser- 
voir the sensitivity of these criteria to meeting conflicting stor- 
age and release targets was examined. When a tradeoff is 
made between incurring one unit of storage deviation and one 
unit of release deviation from respective target values, the 
compromise solution depends on uncertain future streamflow 
as well as the shapes of the loss functions. Therefore the rela- 
tive shapes of the storage or release loss function should incor- 
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Fig. 9. Difference between the sum of actual losses and the sum of 
losses conditioned on forecasted flow. 

porate economic information applicable to the operation. 
Loss functions for short-term operation represent opportunity 
costs, which depend on future hydrologic and economic uncer- 
tainties. It is unlikely that such functions can be constructed 
with objective information only. 

Most of the results given are averaged over 10 sets of fore- 
casted operation sequences corresponding to a single 2-year 
historical sequence. When the results for a single set are com- 
pared with those of the averaged values, the difference be- 
tween the expected trends and the actual trends that might 
occur becomes obvious. Figure 10 shows typical variability of 
the actual losses for two values of C,. It is clear that a single 
bad forecast in a series of forecasts that are quite good may 
offset all the benefits derived from using a fairly accurate fore- 
cast model. Therefore these results must be viewed with 

proper understanding of the uncertainties that play the most 
important role, especially in short-term operation. The follow- 
ing are the conclusions of this work: 

1. The Standard Linear Operation Policy (SLOP) is not a 
reasonable operation policy when the objectives of operation 
are multiple and conflicting in nature. 

2. If the objective of operation is maintenance of both 
storage and release targets, the relative shapes of the loss or 
penalty functions, as well as the prespecified priorities of meet- 
ing the storage or release targets, should reflect the risk aver- 
seness and the subjective judgment of the decision makers 
about economic and hydrologic uncertainties. 

3. Use of short-term forecasts appears to be desirable for 
short-term reservoir operation whenever the forecasts are 
good enough so that the variance of the distribution of actual 
streamflows, conditioned on the forecasted values, is smaller 
than the unconditioned variance. The coefficient of prediction 
(C,) criterion may be useful for determining the worth of a 
forecast in terms of information added. While these forecasts 

are actually surrogates for feedback information, the C,, values 
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should aid the decision maker's subjective judgment about the 
utility of forecasts. 

4. The accuracies of inflow forecasts, made by a model 
external to the optimization model, influence the system per- 
formance in various ways. Evaluation of any policy without 
accounting properly for the probable errors in these forecasts 
may lead to misleading conclusions. 

5. An operation policy is based on the assumptions em- 
bedded in the model used to develop the policy. However, the 
performance of this policy depends on the actual operating 
conditions of the system. While the performance of a policy 
can be judged with respect to various operational criteria, 
including reliability, resiliency, and vulnerability, it is not pos- 
sible to correlate such criteria to the economic assumptions 
used in the model when future uncertainties are not incorpor- 
ated explicitly into the model. 

6. The variances of the storage and release volume de- 
pends on the magnitudes of k• and k:. 

A very simple model was used here. Usually, it is necessary 
to consider forecasts several time steps ahead; the optimum 
time horizon to be chosen is site specific and is influenced by 
the reservoir size to inflow volume ratio. A more complicated 
model than used here can be constructed to make use of a 
time series of forecasted inflows. 

We have demonstrated that an operation policy derived 
from a model that uses future predicitons as deterministic 
inputs has severe drawbacks. It cannot be overemphasized 
that when dealing with future uncertainties it is unreasonable 
to propose any method that may be universally accepted. A 
catastrophic event may offset all expectations in terms of 
losses and benefits. Any short-term operation policy not capa- 
ble of incorporating some judgement of experienced operators 
or decision makers explicitly should be discarded. This work 
should caution practitioners about some limits of methods 

used to develop optimum short-term reservoir operation 
policy, given ubiquitous future hydrologic uncertainty. 
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