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A real-time operation model primarily useful for daily operation of reservoirs is developed. This model 
is based on a chance constraint formulation and assumes a particular form of the linear decision rule. It 
uses the conditional distribution function (CDF) of actual streamflows conditioned on the forecasted 
values. These CDF's are constructed by incorporating the statistical properties of forecast errors for 
different time steps. The objective considered is the minimization of weighted probable deviations from 
storage and release targets. These weights are surrogates for th e actual loss functions, and the probable 
deviations are functions of the reliability•levels specified in the model. With the use of target values for 
release and storage, this model is capabl e of using a release policy that is a subset of a seasonal policy 
and overcomes the myopic (short-sighted) nature of operation. Simulation of actual operation, using this 
model for a hypothetical reservoir, demonstrates the feasibility and efficiency of this approach. This 
model is shown to be applicable for a system of reservoirs. The restrictions associated with the use of a 
linear decision rule are shown to be invalid for this model. 

INTRODUCTION 

Fundamental distinctions exist between optimization 
models intended for planning and those intended for short- 
term or real-time operation of reservoirs. These distipctions 
are based on the type of inførmation provided to these models 
and the goals and objectives to be satisfied. Long-term plan- 
ning models should incorporate seasonal hydrologic data and 
long-term benefit functions. Long-term planning targets are 
obtained as outputs from these models. 

F6r real-time operation, where decisions are made relatively 
quickly and are based on short-term information, decisions 
regarding release should be dependent ,on the starting reser- 
voir storage, penalities for deviations from planned targets, 
and short-term forecasts. When dealing with very small time 
steps such as 1 hour, the hydrologic forecasts have very little 
uncertainty, and it should be possible to use these forecasts as 
deterministic inputs to an optimization model. This paper 
does not address the problem of minute-by-minute operation, 
however. The model described here emphasizes the incorpor- 
ation of uncertainties inherent in short-term (for example, 12- 
hour, 1-day, 3-day etc.) hydrologic forecasts into the decision- 
making process. Reliability measures of the system per- 
formance are developed on the basis of the forecasts' errors or 
hydrologic uncertainties. 

Background 

Some of the past research dea[•gg with real-time operation ß . . i• • '•.?: 

of reservoirs is reported •n Ja•!•n and Wilkinson [1972], 
Windsor [1973], Trott ana ¾eh t73-1, chu and ¾eh [1978], 
Yeh et al. [1979], Toebes and Rukvichai [1978], Fults and 
Hancock [1972], Becker and Yeh [1974], Becker et al. [1976], 

• Presently at Water Resources Management Laboratory, Engi- 
neering Experiment Station, University of Arkansas. 
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Tennessee Valley Authority [1974t'i Houck [198•:J],'Shane and 
Gilbert [1980], •aziciail et al. [1983], and Siavai•'dason [1976]. 

Useful di•ussion of the approaches reported in some of 
these papers can be found in Yeh [1982] and in Toebes and 
Rukvichai [1978]. Sigvaldason [1976] proposed a simulation 
model for the real-time operation of a multireservoir •system 
by using a penalty function approach. Yazicigil et al. [1983] 
extended this simulation approach and presented a unified 
screening and simulation approach for the Green River Basin 
reservoir system. Houck [1981] commented on the s•nsitivity 
of the penalty functions used for real-time operation and pro- 
posed a suitable form of the objective function to achieve an 
operation policy that conformed more closely to a hypotheti- 
cal, ideal operation policy. Shane and Gilbert [1980] proposed 
the combined use of simulation and optimization methods for 
a weekly time-step reservoir system scheduling model for the 
Tennessee Valley reservoir system. 

No specific review of li{erature related to the application of 
chance-constrained programming methods to reservoir sys- 
tems Planning or operation is made here. Interested readers 
may refer to Hogan et al. [1981], ReVelle et al. [1969], Joeres 
et al. [1981], Houck and Datta [1981], Loucks and Dorfman 
[1975], and Stedinger et al. [1983]. 

In this paper a real-time operation model is proposed that 
uses chance constraints, assumes a linear decision rule (nonre- 
strictive) as an operation policy, and incorpoi'ates the prob- 
abilistic.nature of real:time forecasts by considering the distri- 
butionS:of actual stre•:•mflow volumes conditioned on fore- 
casted values. The cOtiditional distribution functions are con- 
structed from the distribution of the errors associated with 

such forecasts. The objdCtive of the model is the minimization 
of w. eighted probable deviations from storage and release tar- 
gets obtained from a planning model. These weights are surro- 
gates for the actual loss functions, and the probable deviations 
are functions of the reliability levels specified in the model. 

The use of the long-term target values for release and stor- 
age makes the model capable of specifying a release policy 
that is a subset of a seasonal policy, thus eliminating the 
myopic (short-sighted) nature of operation. This model is also 
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shown to be applicable to a system of reserviors. The re- 
strictions associated with the use of a linear decision rule are 
shown to be invalid for this model. 

DEVELOPMENT OF THE MODEL 

Formulation of this model consists of two distinct steps. 
The first step involves the statistical evaluation of available 
forecasts for the inflows to the reservoir. The second step in- 
volves the formulation of the optimization model incorpor- 
ating the statistical characteristics of the forecast errors. 

Incorporation of Hydrologic FOrecast Errors 
The model to be developed requires streamflow forecasts 

and information on the reliability of these forecasts: The nec- 
essary statistical analysis includes the determination of the 
errors involved in forecasting the streamflow values for 
various time steps. These forecasts may be based on a sto- 
chastic model and/or a conceptual model. It is assumed that 
the errors have certain statistical properties that remain in- 
variant for the time horizon for which the forecasts are made 

and for the time horizon of the optimization model. 
One method of quantifying the reliability of forecasts begins 

with the estimation of the fractional error e for a given time 
interval: 

actual streamflow minus forecasted streamflow 
e= 

forecasted streamflow 

This definition implies that the errors in forecasis are normal- 
ized by the magnitude of respective forecasts. This definition 
may be modified, and the error considered may be assumed to 
be independent of the magnitude of forecasts for different 
cases, especially when a time series model is being used for 
forecasting and where the errors, as a requirement, are white 
noise. 

From the existing streamflow records and the available 
forecasted streamflows for a portion of the record it is possible 
to construct the cumulative distribution function of e. This 

can be used to define the cumulative distribution function of 

the actual inflow, Rt(f•), during a period of t days with a 
forecast offt because 

Rt(ft) = eft + ft 

This distribution function is the basis of assessing the reliabil- 
ity that the actual streamflows will remain within given 
ranges. The following optimization model is then formulated t 
by utilizing this information. T 

The Optimization Model TAR 
This optimization model utilizes the forecasted streamflow T R•(t, • 

volumes and the distribution function of the actual stream- 

flows conditioned on forecasted values. The explicit objective Xmin(t ' t') 
of the model is to meet as closely as possible the planning 
target values for release and storage for the time horizon of 
the model. The implicit objectives are to satisfy given lower 
and upper bounds of storage and release with specified relia- 
bilities. The following notation is used in the model. 

bt(f,) decision variable for the period between the be- 
ginning of day 1 and the beginning of day t + 1, 
conditioned on forecasted streamflow equal to f, 
during the same period, m3; 

CAP capacity of reservoir, m 3; 
Dr(t, • release deficit from target value for the period be- 

tween the beginning of day t + 1 and the beginning 
of day œ + 1, m3; 

Dts storage deficit from target value at end of day t, 
m 3 ß 

Er(t, • release excess from target value for the period be- 
tween the beginning of day t + 1 and the beginning 
of day [ + 1, m3; 

E, s storage excess from target value at end of day t, 
m 3 ß 

f, forecasted streamflow for the period between the 
beginning of day 1 and the beginning of day t + 1, 
m 3 ß 

Ft( ) cumulative distribution function of R,(f•); 
Ft-•( ) inverse cumulative distribution function of 

K(t, • a tolerance limit placed on the deviation of release 
commitments obtained as solutions on a particular 
day for release in the period between the beginning 
of day t + 1 and the beginning of day œ + 1 from 
the release commitment for the same period ob- 
tained from the solution on the previous day, m3; 

Pr probability of; 
Pt sd a constant equal to the weight specified in the ob- 

jective function for the storage deficit from the 
target value at end of day t; 

ptSe a constant equal to the weight specified in the ob- 
jective function for the storage excess from the 
target value at end of day t; 

pt?d a constant equal to the weight specified in the ob- 
jective function for the release deficit from the 
target release in the period between the beginning 
of day t + 1 and the beginning of day [ + i; 

pt• re a constant equal to the weight specified in the ob- 
jective function for release excess from the target 
release in the period between the beginning of day 
t + 1 and the beginning of day [ + 1; 

Rt(f ,) streamflow between the beginning of day 1 and the 
beginning of day t + 1, conditioned on forecasted 
streamflow equal to f, during the same time period, 
m 3 ß 

S• initial storage at beginning of day 1, m3; 
Smin minimum storage allowable, m3; 

St+ x(f•) storage at the beginning of day t + 1, conditioned 
on forecasted inflow equal to f, in the time period 
from the beginning of day 1 to the beginning of 
day t + 1, m 3; 
tth day; 
time horizon considered, days; 
target storage during the time horizon considered, 
m 3 ß 

target release between the beginning of day t + 1 
and the beginning of day [ + 1, m3; 
minimum allowable release for the period between 
the beginning of day t + 1 and the beginning of 
day [ + 1, m3; 

Xt(f•) release between the beginning of day 1 and the 
beginning of day t + 1, conditioned on forecasted 
streamflow equal to f, in the same time period, m3; 

X(t, [)= X•(J•)- Xt(f, ) release between the beginning of 
day t + 1 and the beginning of day [+ 1, con- 
ditioned on forecasted streamflow equal to f• in the 
period between the beginning of day 1 and the 
beginning of day t + 1 and equal to f• between the 
beginning of day 1 and the beginning of day œ + 1 
(œ >_ t), m3; 

•z(t, •, •(t), •/(t), 6(0, #(t) as defined by the constraints. 
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The explicit form of the objective function considered in this 
model is the minimization of the weighted sum of maximum 
probable deviations from storage and release targets. These 
maximum probable deviations are defined by the reliabilities 
with which these deviations are not to be exceeded. A linear 

equivalent of this objective function suitable for inclusion in a 
linear program is 

T 

Minimize D = • (Pt sd * Dts q- Pt se ß Et s) 
t=l 

T-1 T 

q- E E [Pti rd * Dr( t, t') + Pti re ß Er(t, t)] (1) 
t=0 i=t+ 1 

The values of at s and Et s are deficit and excess storages at 
the end of day t, and the values of Dr(t, t• and Er(t, t• are the 
deficit and excess releases for the period between the be- 
ginning of day t q- 1 and the beginning of day [ q- 1. The 
appropriate constraints to define the excess and deficit storage 
values are 

S,+,(ft) = TAR + E, •- D, • (2) 

D/> 0 (3) 

œ/_> o (4) 

Use of expected values in the objective function of a real- 
time operations model is restrictive in the sense that it requires 
utility functions that reflect how prone or averse the decision 
makers are to risk. Though theoretically plausible, in practice, 
utility functions are difficult if not impossible to construct 
because of the presence of multiple objectives, conflicting in- 
terests, and multiple decision makers. Therefore, the expected 
value criterion is not used in the objective function of this 
model. 

The decision rule used assumes the release from the be- 

ginning of day 1 to the beginning of day t + 1, conditioned on 
forecasted streamflow equal to f,, to be a linear function of the 
storage at the beginning of day 1: 

x,( f ,) = s, - b,( f ,) (5) 

The value of the decision variable bt(ft) will be chosen to 
optimize the objective function. 

Substituting the decision rule Xt(f0 = S• - bt(ft) in the con- 
tinuity or mass balance equation, the following equations are 
obtained: 

St+ •(f,)= S• + Rt(f,)- Xt(f,)= Rt(f,) + bt(f,) (6) 

t=l, 2 .... ,T 

X(t, œ) = X•(f•)- Xt(ft ) = bt(ft ) - b•(f•) (7) 
t= 1,2,..., T- 1 t<œ<T 

X(0, 1)= S, - b,(f,) (8) 

The chance constraints imposed, considering Rt(f•) as a 
random variable, are 

1. The probability that the storage at the beginning of 
each period is greater than or equal to a specified value, Smi,, 
must equal or exceed a specified minimum value fi(t). 

Pr[St+ •(ft) > Smin] >' •(t) (9) 

or 

Pr[Rt(f•) < Smi n -- bt(ft)] • 1 - fi(t) (10) 

or 

Ft[Smi n - bt(ft)] • 1 - fi(t) (11) 

or 

Smi n -- bt(ft ) •-• Ft-'[1 - fi(t)] t= 1, 2, ..., T (12) 

2. The probability that reservoir storage at the beginning 
of each period will be less than the reservoir capacity CAP 
must equal or exceed a specified value 7(0. Apparently this 
equation means that there may be a nonzero probability of 
the reservoir capacity being exceeded. In reality this means 
that there will be a spill equal to the amount by which the 
capacity is exceeded. 

Pr[St+ ,(f•) _< CAP] _> 7(t) (13) 

or 

CAP - bt(ft) > Ft -' [7(t)] t = 1, 2 ..... T (14) 

3. The probability that the release between the beginning 
of day t + 1 and [ + 1 is greater than the minimum specified 
value Xmin (t, œ) for that period must equal or exceed a speci- 
fied minimum value •(t, D. 

Pr[X•(f•)- Xt(ft ) > Xmin(t , œ)] • •(t, t") (15) 
or 

Pr[bt(ft)- b•(fO > Xmin(t, /)] > •(t, D (16) 

The quantity X(t, t') is used rather than daily releases because 
the model assumes that the releases for shorter time periods 
are subsets of longer time period releases. The high degree of 
statistical dependence between inflows over these periods is 
accounted for in this way. Because bt(f) and b•(J•) are not 
random variables for a particular solution, •(t, œ) is assumed 
equal to 1, so that the above constraints reduce to 

bt(ft ) -- b•(f•) • Xmin(t , œ) (17) 

t=l, 2 .... ,T-1 t<[<T 

S, - b,(f,) > Xmin(0 , 1) (18) 

Constraints 17 and 18 imply that the probabilities of meeting 
the release constraints are dependent on the probabilities of 
meeting the constraints on storages. These constraints ensure 
that bt(f,) _> b•(f•), t </'. If these constraints were not specified, 
it could have been possible that the releases specified by Xt(f,) 
would not be monotonically increasing functions of t. This is 
because different forecasts and error distributions are used for 

different values of t(t = 1,..., T). 
4. In order to account for the objective function given by 

equation (1), constraint sets that specify the maximum prob- 
able deviations from storage targets as a function of the speci- 
fied reliability levels must be incorporated. Constraints serving 
this purpose may be specified as 

Pr[St+ •(ft) > TAR- Dt •] > 6(0 (19) 

or 

or 

Pr[Rt(ft ) + bt(ft ) > TAR - Dt •] > 6(0 (20) 

TAR - Dt ß - bt(f, ) _< F t -' [ 1 - 6(0] (21) 

t= 1,2 ..... T 
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Similarly, for storage excesses from the target value, 

Pt[St+ •(ft) -• TAR + ES(t)] •_ #(t) 

or 

(22) 

TAR + ES(t)- bt(ft ) >_ F,-'[/•(t)] (23) 

t=l, 2 ..... T 

5. Because of this model's formulation, the release may be 
met with 100% probability, provided there is enough water in 
storage. Constraints that specify the deficit or excess releases 
to be incorporated in the objective function may be stated as 

X(t, • _• TRe(t , •- D'(t, • (24) 
or 

Tee(t, h - b,(f,) + b•(f•)_• D'(t, t") 
t= 1,2,..., T-1 

(25) 

t<i'_<T 

and 

Also 

or 

and 

Tea(O, 1) - S • + b • (f•) _< D'(O, 1) (26) 

X(t, h •- Tee(t, h + E'(t, h (27) 

o,(f,)- o,(f,)- h -< e'(t, h 

t=l, 2 ..... T-1 

(28) 

t<i'_<T 

S, - b,(f•)- Tee(O, 1) _< E'(O, 1) (29) 

6. The primary function of this model is predictive in 
nature; it may therefore be desirable that the proposed release 
policy for the next several days not change too dramatically as 
the release policy is updated during these several days. By 
limiting the changes in release policy from one day to the next, 
the flexibility to respond to streamflow forecast changes is 
reduced, but the ability to plan activities dependent on the 
release policy is enhanced. To restrict the deviations between 
the releases predicted for the same day or days by a previous 
solution of the model and a current solution of the model, 
these constraints may be added: 

X(t, t") _• XO(t, t") + K(t, t") (3O) 

X(t, h -• X•( t, h- K(t, h (31) 

XO(t, • denotes the optimum value of the predicted release 
between the beginning of day t q- 1 and the beginning of day 
[ q- 1 obtained as solution to the model on the previous day. 
In practice the value of t may be restricted to 1 or 2 days, and 
the value of [ may be restricted to t q- 1 or t q- 2 in these 
constraints. Real-time forecasts are quite accurate only for a 
lead time of 1 or 2 days, and restricting the operation policy to 
a function of the policy based on forecasts of longer intervals 
may not be advantageous. Theoretically, however, these con- 
straints may be extended to cover the whole time horizon 
incorporated in a particular solution. Equivalent constraints 
using the linear decision rule may also be stated as: 

b,(f,)- b,(f•) _• X•(t, h + K(t, h (32) 

t=l, 2 ..... T-1 t<[_<T 

S• - b•(h) _< X•'(O, 1) + K(O, 1) (33) 

and 

b,(f,)- b,(f•) •_ X•(t, h - K(t, h (34) 

t= 1,2,..., T- 1 t<[_<T 

S• - b•(f•) >_ X•'(O, 1)- K(O, 1) (35) 

Therefore, this model consists of the objective function 
(equation (1)) of minimizing the weighted sum of maximum 
probable deviations from target values of releases and storages 
for the time horizon of the model and a set of constraints (12, 
14, 17, 18, 21, 23, 25, 26, 28, 29, 32-35) on performance re- 
quirements and the reliabilities with which these performance 
criteria are to be met. The forecasts required for a single day's 
solution of this optimization model are one time-step ahead 
forecasts for time periods varying from 1 day to the time 
horizon, which may be about 30 days. For each time step, 
different forecasting models may be used. 

The objective function can be generalized to represent 
better the actual penalty (opportunity cost) for deviations 
from the target values if ptsd, ptse, pt?a, and Pa re are defined as 
functions instead of constants. The discounting factors for un- 
certainties in the future may be assumed to be included in 
these functions. Using these functions instead of the weights 
(constants) as described before will require their definition in 
the constraint set and most likely require piecewise lin- 
earization because they will be nonlinear. 

A further generalization of the objective is possible by al- 
lowing the reliability levels (fi, •, #) to be variables. Then the 
penalty functions would not only be functions of storage and 
releases but also the reliabilities of those storages and releases. 
Appropriate ranges of the cumulative distribution functions 
(CDF) of actual inflows conditioned on forecasted flows would 
have to be included (piecewise linearized) in the constraint set. 
One last extension of the objective would be to include the 
entire CDF's of storages and releases in the objective. This 
could be done approximately by defining several reliability 
levels (fi, •, #) between 0 and 1, determining the associated 
storage or release values, and approximating the remainder of 
the CDF's. 

In the next section the solution of the model will be dis- 

cussed. The results of simulating the operation policies in a, 
simulation model and motivations for some of the results will 

be presented. It is hoped that this evaluation will help to make 
the assumptions in the model more clear. 

SOLUTION OF THE MODEL 

The first step in the evaluation of this model was to es- 
tablish a hypothetical reservoir system for test purposes. In 
practice the capacity of the reservoir will be a known value; 
however, because the reservoir system used in this evaluation 
is hypothetical, a single linear decision rule (LDR) model [Re- 
Velle et al., 1969] with 12 seasons per year was used to find 
the optimal capacity reservoir for the tests. The capacity re- 
quired for this hypothetical reservoir on the Tygert River in 
West Virginia was 168.7 ß 106 m 3. 

The next step in the model construction was the devel- 
opment of the forecasting models for different time steps 
Simple autoregressive models were used because the primary 
purpose of the optimization model presented here is not to 
evaluate the degree of accuracy of the forecasting models but 
to utilize the information on the probable errors associated 
with the forecasts in evaluating the reliability of operations. 
To preserve the seasonal characteristics of the streamflow se- 
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TABLE 1. Weights for the Objective Function 

Weights on Weights on 
Storage Deviations Release Deviations 

p•a = 0.31 Po• rd = 1.2 
Pe a = 0.32 P•2 rd = 0.9 
P3 sa = 0.33 P23 rd = 0.6 
p?a = 0.40 P37 •a = 0.3 

P3o s•t = 0.50 P73o n• = 0.1 
p•se = 0.30 Po• •e = 1.2 
p:s• = 0.30 P•:r• = 0.9 
P3 se = 0.30 P23 re = 0.6 
P7 se = 0.40 P37 re = 0.3 

P3o se = 0.50 P73o re = 0.1 

quences, different forecasting models may be developed for 
different periods of the year. 

The use of a linear decision rule, in the formulation of this 

model does not limit the solution space as it does in other 
models. S• is always a known quantity in an operation model, 
and therefore bt(ft ) can easily be replaced by S•- Xt(ft). 
Equation (12) would become 

Smi n -- S 1 -•- St(f) • F t - '[-1 - fi(t)] (36) 

It is now possible to find the optimum value of the decision 
variables X,(ft) and X(t, • by utilizing (17). This would not be 
the case with a planning model where S• is the initial storage 
at the beginning of a season and is to be treated as a random 
variable. The limitiations often cited when a linear decision 

rule (LDR) is used should not be valid here. This model 
should serve as an example where use of an LDR is not at all 
restrictive. 

The optimization model already presented is a generalized 
version of the model that was solved. To limit the compu- 
tational burden and to approximate more accurately the 
actual decision-making environment, the number of CDF's to 
be considered in a time horizon of T days was limited. For 
this particular study, according to the notation used, the 
values of t were restricted to 0, 1, 2, 3, 7, and 30 days. Values 
of [ were restricted to 1, 2, 3, 7, and 30 days only. Also for 
constraints 32 and 34 the value of t was restricted to 0, 1, and 
2 days, while the value of [ was restricted to 1, 2, and 3 days. 
This means that in each subsequent solution of this model, at 
the beginning of each day, the release policy for the first three 
days of solution was restricted to within some specified toler- 
ance limits of the predicted release as obtained by a solution 
of this model for the previous day. 

This model also requires as inputs the storage volume at the 
beginning of each day and the updated forecasts made on a 
real-time basis at the beginning of each day. The releases and 
storages for the second, third, and later days as specified by 

the model are only used for forecasting purposes to predict the 
releases in future time periods. Only the solution for the first 
day is used for making actual releases. This preserves the real- 
time characteristics of the operation policy. The release policy 
as predicted for a longer time period may be restricted by 
introducing bounds into the model to maintain the releases 
for a given time horizon or for a particular season within 
some limits of the release commitment made from a planning 
model. 

The objective weights used in this example (Pt sd, ptse, pard, 
and Pa re) were chosen arbitrarily (Table 1), keeping in mind 
the general assumption that deviations from release targets are 
mare costly than an equal amount of deviation from a storage 
target. Also the meeting of targets on the first day of a particu- 
lar solution is relatively more important than that of subse- 
quent days when the model inputs are actually updated and 
the operation policy revised. 

The model was solved for varying initial conditions and 
different reliability levels. The operation policies obtained as 
solutions were tested by simulation of reservoir operation. The 
mathematical programming package XMP [Marsten, 1980] 
was used to solve the linear optimization models. Some of the 
many variations of the model that were tested are given in 
Table 2. These models were tested for an identical set of 

streamflow data for a period of 30 days. The daily flows actu- 
ally occurring consisted of a series of high flows beginning on 
the third day and ending on the seventh day and a series of 
low flows beginning on the twenty-second day. Tables 2 and 3 
summarize some of the results obtained. 

Table 2 shows some of the variations of the model that were 

tested. The columns in Table 2 specify the various levels of 
reliabilities that were used in these models. In model A, only 
the predicted values of streamflow were used. Therefore no 
reliability levels are applicable to this model. Model C speci- 
fies lower reliability levels as compared to model B for all the 
performance requirements except the storage deviation from 
target value in the 7- and 30-day periods. 

Table 3 shows some results of solving these models at the 
beginning of each day for a 30-day period and of simulating 
operating conditions by using actual streamflow volumes. Be- 
cause a series of high flows was considered for these examples, 
the maximum volumes of the releases and storages were con- 
sidered critical. It is evident from Table 3 that the maximum 

storage attained during this period is largest in model A. 
While model C results in a smaller value of excess deviation 

from release target compared to model B, this occurs at the 
expense of attaining a higher storage excess than model B. 
This is because in model B the deviations from storage target 
are restricted with higher reliabilities; however, in the process 
of complying with this requirement, model B is forced to re- 
lease a larger amount in order to be risk averse, i.e., to avoid 

TABLE 2. Identification of Models With Different Inputs 

S 1 on 
Model First Day, Xmi n (0, 1), 
Identity 10 6 rn3 10 6 rn3 •1, •1 •2, •2 •3, •3 •7, •7 •30, •30 •I, ]A1 •2, ]A2 •3, ]A3 •7, •/7 •30, ]A30 

A 85.57 2.44 --* • • • 
B 85.57 2.44 0.90 0.85 0.85 0.75 0.70 0.85 0.85 0.80 0.70 0.70 
C 85.57 2.44 0.75 0.75 0.75 0.70 0.70 0.75 0.75 0.75 0.75 0.75 

CAP = 168.70'106 m3;• TRR(t, •)= (;--t)*2*Xmin(O, 1); Smin = 24.45'106 m3; TAR = 73.35'106 m3; 
K(t, ;) - T•(t, ;); Xmin(t, t) = (t -- t)*Xmin(0, 1). 

*Used predicted values only. fi, •, g,/l values not applicable. 
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Model 

Identity 

TABLE 3. Simulation and Optimization Results for Different Models 

Ending Percentage of Maximum 
Maximum Storage Time Maximum Inflow 

Maximum Daily on 10th Predicted Storage on 5th 
Storage, Release, Day, Deviation Exceeded Day, 
10 6 m 3 10 6 m 3 10 6 m 3 in Initial 10 Days 10 6 m 3 

A 133.64 27.62 77.11 30.0 26.65 

B 123.52 20.41 91.78 20.0 26.65 
C 130.67 16.33 93.74 30.0 26.65 

Ending 
Storage 
on 30th 

Day, 
10 6 m 3 

55.55 

68.01 

71.02 

bigger deviations in the future. Also the ending storages after 
30 days (which is also the time horizon of the models for a 
particular solution) are nearer to the target value for models B 
and C than for model A. 

The inadequacy of using only predicted values as determin- 
istic inputs to the model is evident from the performance of 
model A. Because this model simply uses the predicted values, 
whenever high flows occur that differ appreciably from the 
predicted value, this model fails to recognize the higher per- 
centile values of future probable flows. This may result in very 
high deviations from the target values at certain stages. Also, 
for a series of low flows, when not enough water is available to 
meet the release targets during the last few days, the storage is 
depleted faster than with the other two models. 

Figures 1-3 show release patterns obtained for these three 
different models for an identical set of inflows. The fluctu- 

ations in release volumes and storage volumes are most pro- 
nounced in model A. Model C shows the minimum fluctu- 

ation. With uncertain inputs, very large probable deviations 
from target values are guarded against in models B and (2 
with higher reliabilities than model A. However, in model C 
the reliability levels are smaller than those of model B, and 
therefore the critical values of minimum or maximum inflows 

considered probable are less critical in model C than in model 
B. This may cause model B to release a higher volume than 
model C when a high flow is forecasted with identical initial 
conditions. 

Although many other variatons of the model with different 
inputs were considered, they are not reported here because it 
is not possible to reach definitive conclusions from limited 
examples. It is especially true when the performance of the 
model is very much dependent on the quality of the forecasts 
obtained from the forecasting model. This aspect is discussed 
in greater detail in Datta and Burges [1984]. These evaluations 
only show that the model is solvable, it gives sensible results 

30.00 

20.00 

IO.OO 

o.oo , 

o.oo 

MODEL A 

INFLOW 

o RELEASE 

! i ! i ! 

I0.00 20.00 30.00 
DAYS 

that are not counterintuitive, and these evaluations may be 
used to aid the judgment of the decision makers. 

EXTENSION OF THE MODEL TO A SERIES OF RESERVOIRS 

One of the strong points of the model presented is that it 
does not require complicated statistical manipulations such as 
convolution. Also, the linear programming algorithm can be 
used. This algorithm is simpler to use and substantially more 
versatile in many situations than other solution approaches 
such as dynamic programming. Therefore this model should 
be very useful if it can be extended to a series or network of 
reservoirs and still remain well within the range of compu- 
tational feasibility. The modification necessary to use this 
model for a system of reservoirs in series is presented here as 
an illustration. The objective function is now modified to 

T N 

Minimize D = • • (P,t sa ß D,t s + Pit se , E,t s) 
t=l i=1 

T-1 T N 

t=O i=t+l i=1 

ß [Pm 'a ß O,'(t, [) + Piti re * Er(t, [)] (37) 

Here the subscript i denotes reservoir i, with N reservoirs in 
series; for this example the reservoirs are numbered starting 
with 1 as the most upstream reservoir down to N as the most 
downstream reservoir. All the weights P may again be re- 
placed by actual or hypothetical loss or penalty functions for 
deviations from storage and release targets. 

The continuity or mass balance equation is to be modified 
to reflect that the total inflow into a reservoir is the uncon- 

trolled inflow from the basin plus the release from an up- 
stream reservoir minus any withdrawal by the users between 
reservoirs. Therefore X(t, [) should now be replaced by Xi(t , 
and Y:(t, [)' X•(t, [) refers to that part of the release (with- 

MODEL B 

30.00 a INFLOW 

20.00 

lO.00 

0.00 

o RELEASE 

i i i i 0.00 I 0.00 20.00 30 O0 

DAYS 

Fig. 1. Releases and inflows for model A. Fig. 2. Releases and inflows for model B. 
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I 

z 

ta I0.00 

MODEL C 

_ A INFLOW 

o RELEASE 

0.00 .... , 
0.00 10.00 20•00 30.00 

DAYS 

Fig. 3. Releases and inflows for model C. 

drawal) from reservoir i used in the control area of reservoir i; 
and Y•(t, • refers to that portion of the release from reservoir i 
that enters the downstream reservoir i+ 1 as inflow. If the 

losses incurred as a result of deviations frøm a release target 
are due solely to the withdrawal from a reservoir Xi(t, t), then 
the deviations from the target withdrawal for a particular res- 
ervoir will be determined by Tm•,(t, t) - Xi(t, •. 

For purposes of this illustration the release from a reservoir 
is assumed to arrive at the next downstream reservoir in the 

same day. Therefore, equations (5)-(7) are now given as: 

Xit(ft) d- Yit(J•it) -- Sil -- bit(•it) (38) 

= s,, + x,,ff,,)- 

+ Y•- •,t(f•- •,t) t - 1, 2 ..... T 

For i = 1 the previous equations become 

i=2 ..... N 

(39) 

s,,,+ ,(A,)= s,, + R,,(A,)- x,,(A,)- 

(4O) 

and 

Xi(t, • + ri( t, b = bit(fit) - bif(fii) (41) 

t=l, 2 ..... T--1 t<[<T i=1 .... ,N 

Other constraints are to be suitably modified. For example, 
constraint 12 will now be given by 

Smini -- bit(fit) - Yi- 1,,(f/- 1,t) • Fit- '[1 - •(t)] (42) 

t=l, 2 ..... T i=2,...,N 

Constraint 25 will now be given by 

rm•,(t, •- b,t(f•,) + b•(f•) + Y•(t, • < D[(t, • (43) 
t=l, 2 .... ,T-1 t<[_<T i=l,...,N 

where Y•(t, D is defined by 

Y•(t, t)= Y•(f•)- Y•t(f/,) (44) 

In a similar fashion, all other constraints can be modified. 
When there are reservoirs in series and parallel, similar con- 
straints can be formulated. 

SUMMARY AND CONCLUSIONS 

This model is primarily for use as a real-time daily oper- 
ation model. It must be solved at the beginning of each day, 
with updated forecasts, revised conditional distribution func- 
tions of future streamflows, and the state of the system given 
by the initial storage used as inputs. The objective of oper- 
ation is to minimize the sum of penalties associated with devi- 
ations from target or Meal conditions for operations over a 
time horizon of several days to a month. 

Theoretically, this model can be extended to shorter time- 
steps such as hourly operations. However, hourly operations 
are generally based on almost perfect forecasts of streamflows 
and exact consumer demands for water supply and hydroelec- 
tri c power. Therefore in such a situation a deterministic opti- 
mization model, rather than a chance-constrained model, may 
be more appropriate. Operation policies obtained as solutions 
from monthly or seasonal models may be used as planning 
inputs to the daily operation model so that the release in a 
time horizon of 30 days can be specified by appropriately 
fixing the value of the decision parameter br(fr) with some 
tolerance. 

The solutions obtained from the optimization model for 
different input conditions were studied in a simulation of res- 
ervoir operation by using these policies. The results obtained 
give some insight to the working of this model. The simulation 
results may aid in the selection of appropriate levels of the 
reliabilities to be specified by the decision makers for meeting 
different operational requirements. Also, using only the fore- 
casted values and ignoring the uncertain parts is a special case 
of this model and may be acceptable when the probabilities of 
system failures are very low. Some limitations of using only a 
forecasted value were demonstrated through model A. 

The time horizon that should be considered in a particular 
solution of this model must be decided on the basis of the 

operational objectives. If the smaller time-step operation poli- 
cies are intended to be subsets of longer time-step operation 
policies like seasonal or weekly time steps, the value of T 
should be appropriately specified. 

This model was shown to be extendable to a system of 
reservoirs. Also, the restrictions generally associated with the 
use of linear decision rules were shown to be invalid for this 
model. 
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