JCU ePrints

This file is part of the following reference:

Morgan, Terence Ernest (2003) Effects of ripeners on early season sugar production in sugar cane. Masters (Research) thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/2139

Effects of ripeners on early season sugar production in sugar cane

Thesis submitted by

Terence Ernest Morgan B.Ag.Sc. Hons.

in March 2003

Thesis submitted for the research Degree of Masters of Science in Tropical Plant Sciences within the School of Tropical Biology at James Cook University

STATEMENT OF ACCESS

I, the undersigned author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work

Or

I wish this work to be embargoed until 27/10/2005

Or

I wish the following restrictions to be placed on this work:

Signature

Date

Abstract

Ripening in sugar cane refers to an increase in sugar content on a fresh weight basis prior to commercial harvest. Certain chemicals are applied to cane in commercial fields in some countries to accelerate ripening and improve profitability of sugar production. However, responses have usually been reported to be variety and environment specific. We examined changes in the sucrose content in the juice extracted from 43 Australian sugar cane (Saccharum spp. hybrid) varieties in response to four chemicals in the Burdekin region in north Queensland over two years. The four chemicals used were ethephon (as $Ethrel^{(R)}$) + fluazifop-P butyl (as Fusilade®), glyphosate (as Weedmaster® Duo) and haloxyfop-R methyl (as Verdict[®]). These chemicals were applied in March/April each year. Of particular interest was to determine if economic responses are possible for Australian varieties harvested in the May and June period when sugar content in cane is usually low. Increases in sucrose (measured by pol) levels in cane juice were observed after combined application of $Ethrel^{(m)}$ + Fusilade^(m) (E+F) and after application of glyphosate. These results suggest opportunities exist in the Australian industry to improve the profitability of earlyharvested sugar cane crops, but further research is required to quantify effects on cane yield and responses in diverse environments.

A second component of this study looked at physiological traits associated with responsiveness of varieties to be chemically ripened. Three highly responsive (Q113, Q135 and Tellus^A) and 3 non-responsive varieties (Q167^A, Q179^A and Q186^A) were selected from 42 varieties tested to glyphosate in April 2000. These varieties were treated again in April 2001 and changes in brix, pol, fibre and dry matter were monitored in bottom, middle and top stem sections at T₀ (time of application), T₄ and T₈ weeks after application. Fresh weight pol results show that both response-type groups responded similarly to glyphosate at T₄ weeks but at T₈ weeks the responsive group had significant higher pol ($P \le 0.01$) relative to the non-responsive group. A pooled analysis of variance for all varieties showed glyphosate had not significantly affected either dry or fresh stalk weights by T₈ weeks.

Differences between the response-type groups were then examined at T_0 and it was found that the responsive type group had higher fibre ($P \le 0.01$) and less pol ($P \le 0.05$) in the bottom stem sections compared to the non-responsive group. It is speculated that the pol/DM ratio in the bottom stem sections is a useful measure for prioritising which early-harvested crops are suited to chemical ripening. It is suggested that potential to chemically ripen early harvested crops diminishes as this ratio increases in the bottom stem section. In this study, the pol/DM ratios in the bottom stem sections were 3.7 % higher in the non-responsive group at T₀. The responsive group also had on average more then eight green leaves at T₀. This confirms South African recommendations on the usefulness of this trait to predict the potential of early harvested crops for ripening.

Future research is required to confirm these results, particularly with other types of ripeners since glyphosate is known to adversely affect the yields of some varieties in the following ration crops.

Acknowledgements

The completion of this study would not have been possible without the cooperation and enthusiasm of many people from different organisations.

This work was funded by the Sugar Research Development Corporation, CRC for Sustainable Sugar Production and CSR Ltd. I also acknowledge the support received from Dr Andrew Wood and Mr John Baird from CSR Ltd. to undertake this study.

My supervisors Dr Philip Jackson, CSIRO Plant Industries and Dr Joseph Holtum, Tropical Plant Sciences, James Cook University for the help and advice you have both given me during the last four years. Many thanks.

Technical assistance from the Technical Field Department was received from Jeff Olsen, Steve Elliott, Trevor Pollard, Rick Revelon, Michael Curtis, Andrew Brittain, Vallis Nixon, Leigh Chappel, Franco Zanni, Sharon Newton and Robert Valenti. Technical assistance from Bill Messer and John Foreman of CSIRO Plant Industries is also acknowledged. I acknowledge the tremendous help all these people gave me with the always arduous and sometimes difficult fieldwork between 1999 and 2001.

Metrological data was kindly provided by Steve Attard and Geoff Bamber from CSIRO Sustainable Ecosystems.

Helpful suggestions and advice were also received from Dr Geoff Bamber, Dr Lisa MacDonald and Dr Graham Bonnet.

Finally, to my family, Christine, Thomas and Robert, for patience and understanding whilst I was completing this work.

Contents

Statement of access	i
Abstract	ii
Acknowledgements	iv
Contents	v
Figures	viii
Tables	x
Statement of sources declaration	xii
1 General Introduction	1
1.1 The need for chemical ripeners	1
1.2 Knowledge gap constraints to the adoption of ripener technology in Australia	2
1.3 Hypothesises and objectives	3
2 A review of chemical ripening in sugar cane	4
2.1 Introduction	4
2.2 Concepts, Definitions and Terminology	4
2.2.1 The sugar cane crop	4
2.2.2 The composition of cane	4
2.2.3 Factors affecting sucrose yields	5
2.2.4 The measurements of sucrose yield	5
2.2.5 The relation between sugar yield per hectare, sucrose content and grower returns	6
2.2.6 What is ripening	7
2.2.7 The justification for using ripeners	7
2.2.8 A brief history of sugar cane ripeners	8

	2.3	The types of ripeners	10
	2.4	The physiological responses of sugar cane to chemical ripeners	12
		2.4.1 Natural ripening and sucrose accumulation - what is really happening?	12
		2.4.2 Chemical ripening and sucrose accumulation	13
	2.5	A review of chemical ripening research in South Africa	14
		2.5.1 The early 1970's	14
		2.5.2 The late 1970's	19
		2.5.3 The 1980's	22
		2.5.4 The 1990's	27
	2.6	A review of chemical ripening research conducted in Australia	32
	2.7	Current commercial practice	41
	2.8	Other Issues	41
	2.9	Cost benefit analysis of using ripeners	42
	2.10	Environmental and safety issues pertaining to chemical ripeners	43
	2.11	Conclusion	44
3 The	resp	onsiveness of early-harvested Australian sugar cane	
	to cl	nemical ripeners	
	to cl 3.1	nemical ripeners	47
	to cl	hemical ripeners Introduction Material and methods	47 47 48
	to cl 3.1	hemical ripeners Introduction Material and methods 3.2.1 Experimental design	47 48 48
	to cl 3.1	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements	47 48 48 51
	to cl 3.1	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions	47 48 48 51 52
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis	47 48 48 51 52 53
varieties	to cl 3.1	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis Results	47 48 48 51 52 53 55
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis Results 3.3.1 Seasonal differences between 2000 and 2001	47 48 48 51 52 53 55 55
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis Results 3.3.1 Seasonal differences between 2000 and 2001 3.3.2 Main effects of ripeners	47 48 48 51 52 53 55 55 55
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis Results 3.3.1 Seasonal differences between 2000 and 2001 3.3.2 Main effects of ripeners 3.3.3 Main effects of Ethrel [®] + Fusilade [®]	47 48 51 52 53 55 55 55 56
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis 3.2.1 Seasonal differences between 2000 and 2001 3.3.2 Main effects of ripeners 3.3.3 Main effects of Ethrel [®] + Fusilade [®] 3.3.4 Main effects of glyphosate	47 48 48 51 52 53 55 55 55
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis 3.2.5 Main effects of ripeners 3.3.1 Seasonal differences between 2000 and 2001 3.3.2 Main effects of ripeners 3.3.3 Main effects of Ethrel [®] + Fusilade [®] 3.3.4 Main effects of glyphosate 3.3.5 Variation among varieties for response	47 48 51 52 53 55 55 55 55 56 58
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis 3.2.4 Data analysis 3.3.1 Seasonal differences between 2000 and 2001 3.3.2 Main effects of ripeners 3.3.3 Main effects of Ethrel [®] + Fusilade [®] 3.3.4 Main effects of glyphosate 3.3.5 Variation among varieties for response to ripeners	47 48 51 52 53 55 55 55 56
varieties	to cl 3.1 3.2	hemical ripeners Introduction Material and methods 3.2.1 Experimental design 3.2.2 Measurements 3.2.3 Weather conditions 3.2.4 Data analysis 3.2.5 Main effects of ripeners 3.3.1 Seasonal differences between 2000 and 2001 3.3.2 Main effects of ripeners 3.3.3 Main effects of Ethrel [®] + Fusilade [®] 3.3.4 Main effects of glyphosate 3.3.5 Variation among varieties for response	47 48 51 52 53 55 55 55 56 58

	3.4	Discussion.		68
4	Physiolog	gical traits	associated with ripening	73
	4.1	Introduction .		73
	4.2	Method		74
		4.2.1	Experimental design	74
		4.2.2	Measurements	74
		4.2.3	Data Analysis	75
	4.3	Results		75
		4.3.1	Selection of ripener type	75
		4.3.2	The selection of responsive and non-responsive Varieties from small mill data obtained in 2000	76
		4.3.3	Small-mill, whole stalk, pol responses seen in 2001 compared to 2000	76
		4.3.4	A comparison of the small mill and carver press date obtained in 2001	77
		4.3.5	Plant growth responses to glyphosate	78
			4.3.5(a) Stalk length differences between treatments	79
			<i>4.3.5(b)</i> Effect of ripener application on stalk length	80
			<i>4.3.5(c)</i> Fresh and dry weight differences between treatments	81
			4.3.5(d) Stalk fresh and dry weight differences between response-type groups	83
		4.3.6	Whole stalk pol differences between populations for different response-type groups	84
		4.3.7 4.3.8	Were the pol increases in June a sugar accumulation or desiccation effect? The spatial contribution of different stem sections	86
		7.5.0	to the pol responses seen for each response-type group	86
		4.3.9	Traits associated with response-type groups at application time in April	89
		4.3.10	Other traits and glyphosate response	90
	4.4	Discussion		93
5	General	Discussion		95
	5.1	Summary of	results	95
	5.2	Practical imp	plications	96
	5.3	Future resea	rch	97

98

Figures

Figure 2.1: The inverse relationship between juice purity at the time of	
application and the observed response in sugar yield for NCo376	15
Figure 2.2: Long term effects on the estimated recoverable sugar percent fresh mass (ERS%) to multiple rates of Ethrel [®] in NCo376 in Natal, South Africa.	16
Figure 2.3: Long term effects on the sucrose percent cane dry mass to multiple rates of Ethrel [®] in NCo376 in Natal, South Africa	17
Figure 2.4: The effect of Ethrel [®] rates on sucrose per cent fresh weight cane for different varieties 12 weeks after application	18
Figure 2.5: The effects of Roundup [®] on sucrose % fresh weight cane in NCo376 subjected to different nitrogen and irrigation treatments	20
Figure 2.6: Changes in sucrose % cane fresh weight from control after applying glyphosate (bottom) to each of the 20 trials	21
Figure 2.7: The effects of $Ethrel^{\mathbb{R}}$ on sucrose % cane and stalk mass	21
Figure 2.8: Changes in percentage estimated recoverable sugar (ERS % cane) with time	23
Figure 2.9: The relationship between sugar yield response (ters/ha) and initial cane dry matter percentage	24
Figure 2.10: Commercial ripening responses in mainly NCo376 to different types of ripeners	25
Figure 2.11: Sucrose/ha/month (kg) vs age of cane at harvest (months)	27
Figure 2.12: Changes in the sucrose, glucose and fructose % dry mass in stalk segments of Fusilade [®] treated, unstressed cane	28
Figure 2.13: CCS response in Q117 to Fusilade [®] after application in the Herbert region.	31
Figure 3.1: Weather data for 2000 and 2001	53
Figure 3.2: Effects of combined Ethrel [®] and Fusilade [®] treatment relative to the control plots averaged across years (2000 and 2001)	58
Figure 3.3: Effects of glyphosate application in 2000 and 2001 on brix, pol and purity, averaged across all varieties and across the May and June samplings	60

Figure 3.4: Pol % for Ethrel [®] + Fusilade [®] treatment averaged for May and June 2000	61
Figure 3.5: . Pol % in glyphosate treatment averaged for May and June 2000	62
Figure 3.6: Varietal pol % responses for E + F treated varieties averaged for May and June in 2000 compared to those for glyphosate	63
Figure 3.7: Pol % responses of varieties to E + F treatment averaged across May and June in 2000 and in May and June 2001	64
Figure 3.8: Average varietal pol % responses to glyphosate treatment for May and June in 2000 compared to the responses seen in 2001	65
Figure 3.9: Mean shoot and stalk numbers for varieties in the glyphosate and control treatment.	67
Figure 3.10: The effect of glyphosate applied in 2000 on the mean pol for samplings in March, April, May and June 2001 compared to the control treatment.	68
Figure 4.1: Pol % for glyphosate treated varieties averaged for May and June 2000	76
Figure 4.2: A comparison between years of the small mill pol responses for whole stalk samples of the selected responsive and non-responsive varieties.	77
Figure 4.3: Process comparison of the average whole stalk pol % for all varieties in the control and glyphosate-treated plots	78
Figure 4.4: Stalk length differences between the untreated plots and glyphosate treated plots for all varieties following application in April	80
Figure 4.5 Stalk length differences between the untreated and glyphosate treated plots for the non-responsive group and responsive group following glyphosate application in April	81
Figure 4.6 Stalk fresh weight differences between the untreated plots and glyphosate treated plots	82
Figure 4.7: Stalk dry weight differences between the untreated plots and glyphosate treated plots	82
Figure 4.8: Stalk fresh weight responses between the untreated and glyphosate treated plots for the non-responsive group and responsive group	83
Figure 4.9: Stalk dry weight responses between the untreated and glyphosate treated plots for the non-responsive group and responsive group	84
Figure 4.10: Pol % changes with time for the response type groups following an application of glyphosate in April	85

Figure 4.11: Partitioning data showing the change for the control in pol % for each section of the response type groups	88
Figure 4.12: Pol differences in the top stem section between the control and Treatments for the individual varieties	89
Figure 4.13: Small-mill data form 2000 comparing the initial pol at application time in April with the average pol response seen in May and June	91
Figure 4.14: Small-mill data form 2001 comparing the initial pol at application time in April with the average pol response seen in May and June	91
Figure 4.15: Stem elongations before the application of glyphosate compared to the average pol response in May and June	92
Figure 4.16: Stem elongations after the application of glyphosate compared to the average pol response seen in May and June	92
Tables	
Table 2.1: The composition of sugar cane	5
Table 2.2: A comparison of two crops with equivalent sugar yields and the value to and Australian grower.	6
Table 2.3: Responses and standard errors (SE±) of yield characteristics,number of treatments (n) and probability (prob) of recovering costs aftereliminating factors which influence response to Fusilade [®] Super	31
Table 2.4: A summary of CCS responses to Ethrel [®]	36
Table 2.5: Varietal responses to Ethrel [®]	39
Table 2.6: CCS levels for each treatment at four dates after spraying	40
Table 2.7: Plot yield and CCS for each treatment and \$ return to grower after deducting \$7/t harvest cost with sugar at \$330/t	40
Table 2.8: Commercial application rates and treatment harvest intervals for various countries	42
Table 2.9: Some expected responses and cost/benefit ratios for different ripeners for some of research that has been conducted overseas	43
Table 3.1: List of varieties examined and their parentage	49
Table 3.2: Details of treatments imposed	50
Table 3.3: Details of ripeners and rates used	50
Table 3.4: Mean pol (%) and purity (%) across all varieties in the control treatment in 2000 and 2001	55

Table 3.5: Analyses for significance for various ripener treatments (R),variety (V), date (D) and year (Y) interactions	56
Table 3.6: Analyses for significance for ripener treatment (R),variety (V) and date (D) interactions to the carry-over effects of glyphosate	67
Table 3.7: Estimated cost: benefit ratios found for the top 5 responsive varieties in 2000 and 2001 to ripener treatments	70
Table 4.1: Mean square estimates for pol in April, May and June 2001	79
Table 4.2: Mean squares for whole stalk responses between treatments for pol, dry matter (DM) and pol/DM in June 2001	86
Table 4.3: Average responses between the control and treated plots for stem partition data comparing traits between non-responsive groups (NR) and the responsive (R) group varieties in June, eight weeks after glyphosate application	87
Table 4.4: Stem partitioning data comparing traits between non-responsive group (NR) and the responsive (R) group varieties in April at the time glyphosate application	90
Table 4.5: Node count data showing least square means between the non-responsive group (NR) and the responsive (R) group varieties in April at the time glyphosate.	90

Statement of Sources Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.