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ABSTRACT 

Macroecologists strive to understand the distribution and abundance of species over wide spatial 

scales, long time periods and broad taxonomic categories. The major objective of this thesis was 

to explored two facets of benthic marine algal diversity, taxonomic richness and community 

structure, in order to enhance our understanding of the processes that underpin patterns of 

biodiversity in the marine realm. To do so, I assembled a global database of algal distribution 

records from the primary literature.  

I identified global latitudinal and longitudinal diversity gradients for all genera of benthic 

marine macroalgae and for species in the Order Bryopsidales. I also quantified the size, location, 

and overlap of macroalgal geographic ranges to determine how the observed richness patterns 

are generated. Algal genera exhibit an inverse latitudinal gradient, with biodiversity hotspots in 

temperate regions, while bryopsidalean species reach peak diversity in the tropics. The 

geographic distribution of range locations results in distinct clusters of range mid-points. In 

particular, widespread taxa are centred within tight latitudinal and longitudinal bands in the 

middle of the Indo-Pacific and Atlantic Oceans while small-ranged taxa are clustered in 

peripheral locations. I assessed a suite of hypotheses about the causes of marine diversity 

gradients by comparing algal richness patterns, in combination with the size and location of 

algal geographic ranges, to the richness and range locations predicted by these hypotheses. The 

results implicate habitat areas and ocean currents as the most plausible drivers of global marine 

algae diversity patterns. 

Species richness patterns of macroalgae in the order Bryopsidales are strikingly concordant with 

those of corals and reef fishes throughout the tropical Indo-Pacific Ocean. In order to understand 

the processes that create and maintain tropical marine diversity gradients, I used the 
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Bryopsidales to test the generality of a model recently developed for coral and reef fish 

biodiversity. Model selection was used to select the energy-related variables which best 

predicted species richness. These were then included along with reef area and an estimate of the 

mid-domain effect in spatial regression models of species richness. The results confirm the role 

of geographic domain boundaries as a major predictor of marine species richness patterns across 

a variety of taxa. They also indicate that the relative importance of environmental variables may 

differ with the taxa in question, with temperature and nitrate being key predictors of algal 

richness compared to reef area for corals and fishes. Moreover, even though the best models 

differ for algae versus corals and fishes, the richness patterns predicted by each model deviate 

from the observed patterns in a consistent manner. This suggests that additional factors, not 

included in any of the models, are also important in shaping species richness for multiple 

tropical taxa in the Indo-Pacific Ocean. I propose several candidate factors that may fulfil this 

role. 

A long running controversy in community ecology concerns the extent to which species 

interactions influence the structure of assemblages. I examined assemblage structure in marine 

macroalgal communities at a variety of spatial scales in order to test for the existence of 

Wilson’s (1989) guild proportionality assembly rule and to identify the geographical scales at 

which this rule operates. In order to overcome limitations of the traditional guild-by-guild tests 

of Wilson (1989), I developed a new guild proportionality test, which examines communities in 

the aggregate. The functional group composition of algal assemblages was determined for 120 

local assemblages using the global database of marine macroalgae distribution records. Using a 

hierarchy of models and the newly developed guild proportionality test, I examined patterns of 

assemblage structure at scales ranging from regional to global. Observed communities were 

compared to null models, which assumed that species occurred in assemblages independently of 
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one another (i.e., “random” assemblage structure). These comparisons revealed highly non-

random structure in algal assemblages at all scales. Communities were more similar than 

predicted under a random assembly model within tropical regions and throughout the tropical 

biome, indicating the existence of guild proportionality within these scales. In contrast, 

communities were more heterogeneous than predicted in all temperate areas, within oceans and 

across the globe. These patterns suggest that species interactions homogenize assemblage 

structure within the tropics, but extrinsic processes such as regional environment and historical 

contingency play an important role in shaping how assemblages vary within temperate regions 

and at very broad spatial scales. 
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Chapter 1: General Introduction 

One of the oldest avenues of ecological research is the study of geographic patterns of 

biodiversity. This field tackles questions fundamental to the understanding of nature, such as 

how many species are present at a location, what their identities are and what processes control 

these patterns. The data, which have been accumulating since the earliest studies of Linneaus, 

Darwin, and Wallace, now suggest that the distribution of biodiversity across the globe can be 

described in terms of a relatively small number of “ecological laws” (Gaston 2000). Yet, while 

these patterns are relatively well documented, understanding their cause is one of the most 

significant challenges of current-day ecological research. This challenge is becoming 

increasingly pressing as the rates of global climate change and land degradation accelerate. For 

such reasons it is vital that we understand how diversity is currently distributed and what 

processes regulate and maintain these patterns in order to effectively respond to and manage 

future ecosystem changes. The overall aim of this thesis is to use benthic marine algae as a 

model group to test, on a global scale, some of the most common theories of biodiversity and to 

improve our understanding of the processes that drive patterns in the marine realm. 

1.1 SPECIES RICHNESS PATTERNS 

There are … more species of bird breeding in forests than in fields … more species of trees in 

eastern North America than in Europe. There is an even more dramatic difference in the number 

of species in the tropics than in the temperate … Will the explanation of these facts degenerate 

into a tedious set of case histories, or is there some common pattern running through them all?

        [MacArthur 1972] 
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Latitudinal gradients in species richness, which peak in the tropics and decrease towards 

temperate and polar regions, are among the most well know biodiversity patterns and have been 

recognised since the early 1800s (Hawkins et al. 2003a). In terrestrial systems, they are well 

described in plant and animal communities at a variety of scales and throughout geological time 

(Willig et al. 2003). In the marine environment, tropical richness peaks are evident in shallow 

benthic, open-ocean and deep-sea systems (Rosen 1988, Gaston 2000). Few exceptions to the 

classic latitudinal gradient have been documented, and these are generally associated with 

studies conducted over short latitudinal spans. However, for a small number of taxa, including 

parasitoids and aquatic plants, species richness does not appear to be related to latitude in a 

consistent way across all regions (Willig et al. 2003).  

In marine systems, longitudinal gradients are also highly consistent among taxa. Many shallow-

water marine taxa reach the highest richness in the central Indo-Pacific Ocean (Roberts et al. 

2002). From this central location, species richness decreases monotonically towards the African 

and South American coastlines. In the Atlantic Ocean, richness is consistently highest along the 

western coastlines of the Caribbean basin (Macpherson 2002). In conjunction with strong 

latitudinal gradients, the observed longitudinal patterns of species richness create distinct 

“hotspots” of marine diversity in the central Indo-Australian Archipelago and in the Caribbean. 

These diversity hotspots are concordant for many taxa including, corals, reef fishes, mangroves, 

seagrasses, lobsters, and marine gastropods (Duke et al. 2002, Hughes et al. 2002, Roberts et al. 

2002, Green and Short 2003).  

Species richness patterns cannot be considered in isolation from the geographic ranges of taxa, 

which overlap to produce the observed patterns. Species’ geographic ranges can be considered 

the basic unit of biogeography (Brown et al. 1996). At continental to global scales, most species 
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richness patterns are identified first by mapping individual species’ ranges and then compiling 

them to estimate species richness across broad geographic regions (Hawkins et al. 2003a). 

Moreover, species of differing range size commonly make different contributions to richness 

patterns. In many terrestrial systems, highly range-restricted endemics constitute a large 

proportion of the taxa in biodiversity hotspots, which has significant implications for 

conservation practises (Myers et al. 2000). For birds and mammals, small and large ranging taxa 

display quite different richness patterns, with most of the overall spatial patterning in richness 

caused by relatively few widespread species (Lennon et al. 2004, Vazquez and Gaston 2004).  

1.1.1 Drivers of species richness patterns 

One of the largest and on-going challenges of ecological research is to identify the processes 

that create and maintain species richness patterns. At the most fundamental level, global 

variation in species richness is a direct result of variation in the rates of speciation and extinction 

in different regions. Thus, most theories that aim to explain the location of biodiversity hotspots 

rely on explanations of why one area will promote speciation or reduce extinction relative to 

another. To date, over 120 hypotheses have been put forward to explain the observed gradients 

in species richness (Palmer 1994). Some of these apply only to specific taxa in isolated regions 

and others are flawed due to circular arguments (Rohde 1992). However, explanations 

associated with energy, geographic area and geometric constrains appear to be broadly 

applicable and to have substantial potential to explain species richness patterns (Rahbek and 

Graves 2001). 

The species-energy hypothesis is a climatically based hypothesis, according to which energy 

availability generates and maintains richness gradients. There are several forms of the species-

energy hypothesis, which involve speciation rates, productivity and species’ physiological 
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tolerances. Rohde (1992) proposed the speciation rate theory based on the idea that rates of 

metabolism, and therefore gene mutation and speciation, will be faster in the warmer 

temperatures of the tropics. A particular strength of this hypothesis is that models of how 

cellular kinetics and generation time change with temperature can be used to produces explicit 

predictions about the shape of the species-energy (temperature) relationship (e.g. Allen et al. 

[2002] model species richness as a linear function of temperature and predict the slope of the 

regression line to be -9) . The productivity version of the species-energy hypothesis suggests 

that increased energy inputs in the tropics facilitate a greater resource base for species to utilize 

and this in turn, allows species to build larger populations, which are less susceptible to 

extinction (Hawkins et al. 2003a). A third alternative is that the species-energy hypothesis may 

mediate species richness via organisms’ physiological responses to temperature. This version of 

the theory is based on the concept that high latitude environments have climates that are harsh 

and outside the optimum conditions of many taxa, as well as having characteristically large 

intra-annual variability in environmental conditions (Willig et al. 2003). Consequently, few 

organisms can maintain populations in high latitudes. 

There is evidence for all of the above processes operating in natural systems. Trees, amphibians, 

ants and some aquatic taxa display species richness-temperature relationships that conform to 

the predictions from the speciation rate version of the species-energy hypothesis, suggesting that 

elevated temperatures increase the number of species in a region by accelerating the biochemical 

reactions that determine speciation rates (Allen et al. 2002, Kaspari et al. 2004). On a global 

scale, productivity, measured in terms of temperature-water dynamics, appears to be very 

important in determining species richness patterns of terrestrial groups such as angiosperms and 

birds (Francis and Currie 2003, Hawkins et al. 2003b). However, for both plants and animals, 



 5

the relative importance of productivity compared to ambient energy may be reduced at high 

latitudes (Hawkins et al. 2003a). 

The species-area hypothesis has been proposed as a major alternative to the species-energy 

hypothesis. This theory posits that larger areas are able to support more individuals and 

populations of a species, thus reducing the likelihood of extinction. Additionally, larger areas 

are more likely to contain barriers, which promote allopatric speciation, as well as a greater 

diversity of habitats, which also promote specialisation, adaptation and speciation. Strong 

species-area relationships have been documented at local to regional scales, and since the 

Earth’s area is greatest in the tropics, this relationship should also hold at continental to global 

scales (Rosenzweig 1995). However, there is on-going debate about whether the species-area 

relationship holds at the very broadest geographic scales, and the extent to which it contributes 

to latitudinal variation in species numbers (Chown and Gaston 2000, Hawkins and Porter 2001). 

Evidence for the species-area hypothesis is inconsistent at continental to global scales. 

Rosenzweig (1995) presents evidence that as the size of biogeographic provinces or continental 

islands increases, so too does the richness of rainforest angiosperms, birds and arthropods. He 

then argues that since the species-area relationship holds at all spatial scales, the cause of 

latitudinal gradients in species richness must be related to area, because the tropics cover more 

area than any other climatic zone. However, when the globe is partitioned into terrestrial biomes 

at a finer scale based on vegetation type rather than latitudinal cut-offs, there is no general 

latitudinal gradient in biome size. Moreover, the species richness of birds within these biomes 

shows no relationship with area (Hawkins and Porter 2001). In the marine realm, evidence for 

the species-area hypothesis is also mixed. In the Indo-Pacific Ocean, the area of coral reef 

habitat is well correlated with species richness of both corals and reef fishes (Bellwood and 
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Hughes 2001, Bellwood et al. 2005), providing support for the species-area hypothesis. In 

contrast, no species-area effects could be detected for mollusc species richness patterns on either 

coastline of the Americas (Roy et al. 1998).  

Species richness gradients have traditionally been viewed as a function of environmental 

variables such as energy and area, as discussed above. However recently, the mid-domain effect 

(MDE) has been suggested as a biogeographic null model (Colwell and Hurtt 1994, Colwell and 

Lees 2000). The significance of MDEs to understanding diversity patterns is that species 

richness gradients, similar to those seen in nature, may be generated without invoking any 

environmental variables. Instead, species richness gradients arise due to geometric constraints 

on the size and location of species’ geographic ranges within a bounded domain in the absence 

of environmental variables. Thus, the location of a species range is constrained only by the size 

of the range relative to that of the domain; while large-ranged species will occupy much of the 

domain, small-range species may occur anywhere in the domain, with all locations being equally 

likely. Consequently, the probability of range overlap is highest in the middle of the domain and 

lowest at the edges. This produces a quasi-parabolic gradient in species richness, which peaks at 

the centre of the domain (the mid-domain effect), and is highly reminiscent of many of the 

species richness gradients observed in nature. 

Mid-domain effects are highly controversial. There is on-going debate about formulation of 

MDE models and the extent to which MDEs influence empirical species richness patterns (see 

Colwell et al. [2004] for a review). Numerous methods have been employed to formulate MDEs 

and while each produces a quasi-parabolic gradient in species richness, the height and shape of 

that gradient differs with the model’s specific assumptions (e.g. Koleff and Gaston [2001], 

Connolly [2005]). The influence of MDEs on species richness gradients has been investigated in 
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numerous systems and in ~75% of studies the correspondence between MDE predictions and 

empirical patterns was moderate to substantial (Colwell et al. 2004). For example, MDEs have 

been shown to account for significant portions of the variation in bird, mammal, coral and reef 

fish species richness (Willig and Lyons 1998, Jetz and Rahbek 2002, Connolly et al. 2003, Mora 

and Robertson 2005). As with any null models, an additional advantage of examining species 

richness patterns relative to a MDE is that deviations of the empirical patterns from null model 

predictions may provide valuable insight into instance in which other determinants play an 

important role in regulating species richness patterns (Colwell et al. 2004). 

1.1.2 Challenges for biodiversity research 

The study of biodiversity patterns and their determinants involves two major challenges. Firstly, 

ecological data across very large scales are difficult to generate and standardized data collection 

is only rarely conducted over broad spatial scales (Hurlbert and White 2005). Consequently 

most continental and global patterns of species richness have been generated using range maps 

(Hawkins et al. 2003a). Accurately constructing geographic ranges presents the challenge of 

compiling distributional data from disparate sources, which may have inconsistencies in 

sampling effort or the identification of taxa. However, it is generally reasonable to assume that 

the errors do not dominate the data, so long as the distribution data are complied in a consistent 

and comprehensive manner (Pielou 1977, Brown et al. 1996).  

The second major challenge associated with biodiversity research is devising informative test of 

hypotheses about the processes that create and maintain the observed richness patterns. At broad 

biogeographic scales manipulative experiments are neither feasible nor ethical. Thus, studies of 

broad-scale richness patterns must use statistical techniques to tease apart complex patterns of 

covariation among suites of variables. Methodologically, this involves overcoming problems 
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associated with spatial autocorrelation within, and collinearity among, predictor variables as 

well as the formulations of appropriate biogeographic null models. A further challenge is teasing 

apart causative factors from what are essentially correlative studies. 

1.2 COMMUNITY STRUCTURE 

An alternative way to understand biodiversity patterns is to explore patterns of community 

structure. Here the focus is on the relative abundance of species rather than their total number. 

In studies based on presence-absence data, such as in this thesis, community structure is defined 

by the incidence of species at sites. Species’ incidences may be treated individually or combined 

into the relative species richness of groups (functional groups or higher taxonomic levels). One 

of most prominent themes of research into community structure is an attempt to understand how 

species are sorted into local communities from a larger common species pool (Weiher and 

Keddy 1999). 

Species may enter communities independently of one another. In such cases, communities are 

comprised of species that disperse to a site and tolerate the local conditions and the probability 

of colonisation for a newly arrived species is independent of the species already present in the 

local community (Mason 1947, Connor and Simberloff 1979, Hubbell 2001). Thus, community 

assembly is an individualistic process, governed largely by the effects of historical and 

environmental conditions on individual species’ colonisation and extinction dynamics. 

Alternatively, species’ colonisation success may be affected by the composition of the existing 

community (MacArthur 1972, Brown et al. 2000). If competitive interactions are strongest 

among species with similar traits, as is assumed by niche-tradeoff models (Fargione et al. 2003), 

then as communities are assembled, established species will most strongly compete with, and 

inhibit the settlement of, arriving species with similar resource requirements. Such processes 
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need not limit the overall number of species in communities, but may cause communities to 

assemble towards specific relative abundances of different functional guilds (Wilson 1989, 

Fargione et al. 2003). Thus, community structure is governed via species interactions, rather 

than individualistic processes. 

Evidence for the extent to which species interactions govern community structure comes largely 

from observational data. While many of these observational studies date back to the beginning 

of the 20th century (Lomolino et al. 2004), Diamond’s (1975) study of the avian fauna of islands 

in the Bismarck Archipelago initiated the formal study of assembly rules. From presence-

absence data alone, Diamond proposed a set of rules defining the colonisation process in terms 

of permissible and forbidden species combinations and invoked interspecific competition as the 

process underlying the distribution of particular species pairs across islands. Subsequently, a 

variety of assembly rules have been proposed to describe repeatable patterns of community 

structure, and species interactions have typically been inferred as the processes underpinning 

such structure (Weiher and Keddy 1999). 

Assembly rules formally describe repeatable patterns in how local communities are assembled 

from larger species pools. One of the major challenges associated with assembly rules is 

rigorously testing for the existence of a rule relative to the null expectation of individualistic 

community assembly. Connor and Simberloff (1979) were highly critical of Diamond’s (1975) 

initial assembly rules, since the patterns observed in avian community structure could not be 

distinguished from patterns generated by the random assemblage of species from the regional 

species pool. Since these initial studies, a range of sophisticated statistical tools have been 

developed to assess patterns in community structure and to identify the extent to which species 

interactions influence the observed structure (see Weiher and Keddy [1999] for examples). A 
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feature common to all these tests is the biological null hypothesis that communities are 

assembled via individualistic processes and therefore constitute random samples of the regional 

species pool. 

Some assembly rules appear to be more pervasive in nature than others. For example, Gotelli 

and McCabe (2002) used a null model to test the predictions of several of Diamond’s rules and 

found evidence for significantly non-random community structure in the majority of the 96 

datasets examined. In contrast, assembly rules based on the relative number of species in 

functional groups such as Fox’s favoured states rule (Fox 1987) or Wilson’s guild 

proportionality rule (Wilson 1989) have proved more difficult to identify. Fox’s favoured states 

rule appears to hold in north American desert rodent communities (Brown et al. 2000), however, 

tests are highly sensitive to the null models used (Wilson 1995, Stone et al. 2000). Guild 

proportionality rules are sought primarily in plant communities, and to date, evidence for such 

rules has been detected only at very small spatial scales (Wilson 1999). It is noteworthy, 

however, that results from a manipulative study of community assembly and invasion suggest 

that competition within functional guilds results in community structure consistent with a guild 

proportionality-like rule (Fargione et al. 2003).  

1.3 BENTHIC MARINE ALGAE 

In marine systems, patterns of species richness, geographic range dynamics and community 

structure are poorly described for all but a few key groups and there is still disagreement as to 

the major drivers which create and maintain the patterns, (Fraser and Currie 1996, Bellwood and 

Hughes 2001, Hughes et al. 2002, Mora et al. 2003). For marine macroalgae, most studies have 

been conducted at local to regional scales and in temperate locations. Of notable absence is a 
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global-scale synthesis of macroalgal diversity patterns, as has been presented for groups such as 

angiosperms, birds and corals (e.g. Stehli and Wells [1971], Francis and Currie [2003]).  

Much of the study into the broad-scale distribution patterns of marine macroalgae has revolved 

around the demarcation of biogeographic regions and provinces. Gradients in species richness 

have been documented at regional scales, and the direction of the relationship between richness 

and latitude depends largely on the region of study (Pielou 1977, 1978, Gaines and Lubchenco 

1982, Santelices and Marquet 1998). Bolton (1994) attempted to synthesize the global 

relationship between algal species richness and latitude by plotting the total number of species 

within regions against the latitude of the region. No clear picture of consistent gradients in algal 

richness emerged, leading him to conclude only that “rich and poor floras occur across the 

globe”. Longitudinal patterns have only been investigated along relatively short stretches of 

coastline e.g. southern Africa and southern Australia (Womersley 1990, Bolton 1996) making 

ocean-wide analyses impossible.  

In the absence of a global view of algal richness patterns, the processes that control algal 

richness patterns have been discussed predominantly on a region-by-region basis. Many authors 

focus largely on the size and positioning of the oceans in the geologic past to explain present 

day distributions of algae (van den Hoek 1984, Santelices and Abbott 1987, Bolton 1996). 

Present day climatic features, primarily temperature but also currents, the extent of benthic 

habitat and day length, are also frequently cited as causes of the observed patterns of algal 

distribution (Luning 1990, Womersley 1990, Breeman and Pakker 1994, Phillips 2001). Few 

formal tests of the drivers of algal richness patterns have been conducted at a global scale. The 

one exception is Adey and Steneck (2001), who developed a thermogeographical model which 
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suggests that sea surface temperature and area, both integrated over evolutionary time, are 

important determinants of crustose coralline distribution and abundance. 

The structure of algal assemblages has only been investigated at very coarse scales. The R:P 

(Rhodophyte:Phaeophyte) ratio is commonly reported as a measure of the “tropical-ness” of 

assemblages and has been shown to decline with latitude (Luning 1990). Alternatively, an 

assemblage is described according to the proportions of the flora that have tropical, temperate 

and polar affinities. For example, the southern Australian Chlorophyta has been reported to be 

comprised of 85% temperate algae, 10% tropical algae and 5% polar algae (Phillips 2001). 

However, the biological significance of such statistics is questionable. For instance, although 

Caulerpa is considered to be a tropical genus, 15 of the 19 species found in southern Australia 

are endemic to this temperate region (Womersley 1984).  

1.3.1 Benthic marine algae as a model group 

Benthic marine algae are an ideal group to use as a model system with which to test major 

ecological hypotheses about biodiversity and community structure. Algae are globally 

distributed, occurring throughout tropical, temperate and polar regions, in both the Indo-Pacific 

and Atlantic Oceans. To date, marine macroecological analyses have focused on molluscs along 

the coastlines of the Americas and on tropical corals and reef fishes in the Indo-Pacific (e.g. Roy 

et al. [1998], Hughes et al. [2002]). Thus, examining macroalgae allows me to both test the 

taxonomic generality of existing results and to address them at a truly global scale. Furthermore, 

macroalgal genera display some unique patterns (namely temperate richness peaks, Chapter 2) 

which allow for testing of ecological hypotheses outside of conventional systems (i.e., those 

which display typical low latitude richness peaks). 
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On a practical level, there is a long history of phycological study at many locations world wide 

and species inventories are readily available. This facilitates the development of a global 

database of algal distributions, from which geographic ranges can be constructed and data on 

richness and community structure can be extracted. At the genus level, there are >1000 genera 

of benthic marine algae, providing large enough numbers with which to conduct meaningful 

analyses without compromising accuracy by using species-level taxonomy (which may be 

inconsistent for many groups). Some groups, however, are conspicuous and well enough studied 

to enable testing of the concordance between genus and species level patterns. Furthermore, the 

wide geographical and habitat distributions of higher level taxa allows robust multi-scale 

comparisons of community structure. Finally, macroalgae genera can be characterized into 

functional groups based on rates of biomass production, canopy formation and disturbance 

response (Steneck and Dethier 1994) and this allows analyses of diversity at an additional level. 

1.4 THESIS AIMS AND OUTLINE 

The overall aim of this thesis is to use benthic marine algae as a model group to test, on a global 

scale, some of the most common theories of biodiversity and to improve understanding of the 

processes that drive the observed patterns in the marine realm. More specifically; the first major 

aim of this thesis (Chapter 2) was to quantify global and oceanic gradients in macroalgal 

diversity, using a custom-built database of algal presence-absence from 391 sites world-wide. 

Analyses were performed on two levels; for all genera of benthic marine macroalgae and for 

species in the Order Bryopsidales; a group of predominantly reef-associated algae, which is both 

well surveyed and taxonomically stable (Littler and Littler 2003). In order to gain a first 

approximation of the processes that drive the observed patterns, in this chapter I have also 

examined algal richness patterns in the context of sizes and locations of algal geographic ranges.  
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The second aim of the thesis (Chapter 3) was to understand patterns of marine biodiversity more 

generally. The order Bryopsidales has species richness patterns in the tropical Indo-Pacific 

Ocean that are strikingly concordant with those of corals and reef fishes. I apply a recent model 

developed to explain the drivers of coral and fish richness patterns to bryopsidalean algae. 

Specifically, I test for the generality of mid-domain effects and area variables as drivers of 

marine diversity patterns. 

The third major objective was to examine the nature of assemblage structure in macroalgal 

communities. More specifically, I aimed to identify the assembly rules according to which 

macroalgal communities are structured, the geographical scales over which assembly rules are 

shared, and if environmental and historical differences among regions can give rise to 

differences in assembly rules among biogeographic regions. This required the development of 

new tests of guild proportionality rules (Chapter 4) and is followed by their application to the 

algal data (Chapter 5). 
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Chapter 2. Global biodiversity patterns of benthic marine algae1 

 

2.1 INTRODUCTION 

Global-scale patterns in species richness are one of the most studied phenomena in ecology and 

consistent trends are repeatedly documented in both terrestrial and marine environments (Gaston 

2000). The latitudinal gradient of increasing species richness from polar to tropical regions is 

arguably the most well known of these patterns and few taxa display contrasting patterns (Willig 

et al. 2003). Longitudinal gradients, although less well studied, can also be distinct across 

individual continents and oceans (e.g. Jetz and Rahbek [2001] for birds, Roberts et al. [2002] for 

marine taxa). However, there is much controversy about the mechanisms that underlie the 

observed patterns of biodiversity, with upwards of 30 explanations for the latitudinal richness 

gradient alone (Rosen 1988, Willig et al. 2003).  

Most theories that aim to explain the location of biodiversity hotspots typically rely on logical 

explanations for why one area will promote speciation or reduce extinction relative to another. 

For example, the species-area hypothesis suggests that larger areas can support more individuals 

and populations thereby reducing extinction risk, whilst also containing more barriers that 

promote allopatric speciation (Rosenzweig 1995, Chown and Gaston 2000). The species-energy 

hypothesis asserts that higher numbers of species in the tropics result from faster metabolic and 

speciation rates associated with warmer temperatures (Kaspari et al. 2004). Theories that 

revolve around climatic stability suggest that the tropics are a stable and relatively benign 

environment where species can specialize on predictable resources and persist when rare, 

compared to harsh temperate and polar regions where extinction rates are high (Hawkins et al.  

                                                 
1 This chapter is published as: Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 
87:2479-2488. 
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2003a). The species-productivity hypothesis suggests that greater energy inputs will support 

more individuals and promote specialization, although whether the relationship between species 

numbers and productivity is linear or hump-shaped appears to be highly scale dependent 

(Rosenzweig 1995, Chase and Leibold 2002).  

Recently mid-domain effect models have been proposed as biogeographic null models (Colwell 

and Lees 2000, Colwell et al. 2004). Under these models, species richness gradients arise due to 

geometric constraints on the size and location of species’ geographic ranges within a bounded 

domain in the absence of environmental factors. For species with wide ranges, the geometry of 

the domain has significant impact on species richness patterns, in that their ranges are most 

likely to overlap in the centre of the domain resulting in high numbers of species in the mid-

domain region. This has been demonstrated both for African birds and Indo-Pacific corals and 

reef fishes (Jetz and Rahbek 2001, Connolly et al. 2003). In contrast, small ranging taxa can 

occur anywhere inside the domain boundaries. Under a mid-domain effect null model, they 

should be uniformly distributed across the domain, however, in nature, small ranging taxa 

frequently cluster in common locations. For example, small ranging birds cluster in pockets 

along the margins of the African continent, peripheral to the middle of the domain (Jetz and 

Rahbek 2001). Small ranging African Proteaceae also cluster away from the domain centre in 

southern temperate regions (Laurie and Silander 2002). Such deviations from null model 

predictions suggest the need to evaluate alternative causes of species richness patterns (Colwell 

et al. 2004).  

To date, biogeographic studies of benthic marine macroalgae have been restricted to regional 

scales, with little synthesis of worldwide trends. Japan, southern Australia and western Europe 

are consistently highlighted as regions of high algal diversity, with the polar oceans, west Africa 
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and south-east Pacific identified as depauperate areas (Silva 1992, Bolton 1994, Santelices and 

Marquet 1998). Searches for latitudinal gradients in algal richness have also been performed on 

regional scales, with the most extensive of these studies indicating possible temperate richness 

peaks along the coastlines of the Americas (Pielou 1978). There is some indication that the most 

widespread red algal genera have extremely large ranges which extend across entire oceanic 

domains (Joosten and van den Hoek 1986). Small ranging algal genera appear to be clustered in 

temperature latitudes along both the east and west coasts of the Americas (Pielou 1978). In 

contrast, Santelices and Marquet (1998) found some evidence of increasing range size towards 

higher latitudes along the European coastline. 

Algal distribution patterns and regional assemblage composition have been explained largely in 

terms of historical processes. Early studies of algal biogeography discuss present day patterns as 

a direct result of tectonic changes over geological time and shifts in species ranges as sea levels 

and temperature regimes fluctuated (Joosten and van den Hoek 1986). Recently, Adey & 

Steneck (2001) developed a model that defines thermogeographic regions based on temperature 

and habitat area since the Pleistocene. They also define biogeographic regions based on the 

presence, abundance and level of endemism of crustose coralline algae and find that the two 

definitions produce matching regions. This suggests that energy and habitat area play an 

important role in determining the present day macroecological patterns observed for benthic 

marine algae. 

The major aim of this chapter was to quantify global and oceanic gradients in macroalgal 

diversity. On a global-scale, macroalgae display diversity gradients with unique features, such as 

temperate richness peaks. To understand how such unique patterns are generated, I quantify the 

manner in which geographic ranges of individual taxa combine to produce the observed 
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patterns. These analyses were performed on two levels; for all genera of benthic marine 

macroalgae and for species in the Order Bryopsidales; a group of predominantly reef-associated 

algae, which is both well surveyed and taxonomically stable (Littler and Littler 2003). While 

hypotheses about the causes of diversity gradients predict a positive correlation between 

environmental variables and species numbers, they also contain underlying assumptions about 

how species’ ranges are distributed within biogeographic realms (e.g. Chown and Gaston 

[2000]). Yet patterns in the distribution of species’ ranges are often neglected when searching 

for processes that create and maintain diversity patterns. Therefore, in this chapter, I have 

investigated algal richness patterns in the context of sizes and locations of algal geographic 

ranges in order to gain a more comprehensive understanding of the processes that determine 

marine diversity. 

2.2 METHODS 

A global database of benthic marine algae occurrence records was compiled from 191 species 

lists sourced from the primary literature (141 peer-reviewed papers, 23 books and 14 university-

published scientific reports). In total, the database contained 387 sites throughout the Atlantic, 

Indo-Pacific and Southern Oceans, which spanned 140o of latitude (Figure 2.1, see Appendix 1 

for full list of species list references and corresponding sites). At each site, genus-level data 

were compiled for all fully marine macroalgae in the Classes Rhodophyceae, Phaeophyceae and 

Chlorophyceae and species-level data were compiled for all algae in the Order Bryopsidales. 

Algae were entered under the taxonomic classification listed in Guiry et al. (2005). Drift 

specimens and records noted as questionable by species list authors were excluded. The 

resulting database contained 1069 genera of marine algae and 388 species of Bryopsidales. 
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The occurrence database was interfaced with a Geographic Information System (GIS, ArcView 

3.2a, ESRI). Each site and algal taxon were unique records, linked via >45,000 occurrence 

records. Records were verified against the primary literature if a single point occurred in the 

tropics when all other points were in temperate areas (and vice-versa) or if an isolated point 

occurred in any ocean basin where there were no other occurrence records (Atlantic, Pacific and 

Indian Ocean basins). To err on the side of caution, such records were deleted unless special 

reference was made by the authors as to the veracity of the record (e.g. Sporochnus moorei in 

Hawai’i (Abbott 2004)). 

Genus and species ranges were constructed in the GIS. A range was defined by outlining the 

boundary of all sites at which an alga was reported to occur and was plotted on an equal-area 

projection basemap. Ranges were not extended over vast oceanic expanses e.g. the east Pacific 

barrier, nor over areas for which reliable species lists could not be obtained, e.g. Antarctic 

Ocean (outer contours in Figure 2.2 A delineate the maximum range boundary). The area of the 

geographic range (in km2) was determined for each taxon in the GIS and ranges were partitioned 

into Indo-Pacific and Atlantic elements for algae that occur in both oceans. Range size 

frequency distributions are presented on logarithmic plots. Because a direct comparison of Indo-

Pacific versus Atlantic range sizes would be confounded by the vastly different areas of the two 

oceans, algal range areas were also expressed as a proportion of the total area of each ocean. The 

distributions of standardized range sizes were then compared between oceans using two-sided 

Kolmogorov-Smirnov testing (R2.0.1, R Development Core Team [2004]). The size and location 

of species’ geographic ranges were explored for all algal taxa by plotting the latitudinal and 

longitudinal range extent against the location of range midpoints. In order to clearly identify 

clustering of algae, mid-point analyses are presented as 2-dimensional density plots (R2.0.1, 

kde2d function). 



 20

Diversity patterns of benthic marine algae were explored by generating contours of algal 

richness. An estimate of diversity at each of the 387 sites in the database was generated by 

summing the number of ranges which overlapped that site. Range-derived diversity estimates 

were then used to interpolate contours of genus and species richness using the Inverse Distance 

Weighted interpolator (ArcView 3.2a GIS, 0.5o cells, nearest neighbour technique with 12 

neighbours, 3rd order power, no barriers). Thus contours represent the maximum diversity of a 

region, within which local sites may have lower diversity.  

Endemics were defined as taxa reported at only one location or with a geographic range size 

<1x106 km2 for genera and <0.5x106 km2 for species (c.f. Hughes et al. [2002]). These areal 

cutoffs are smaller than 0.5% of the largest geographic range recorded for each group. The 

location of endemics was explored by producing contour maps of the number of endemic taxa 

occurring at sites across the Indo-Pacific and Atlantic oceans. Contours were generated using 

the Inverse Distance Weighted interpolator (as above). Range-derived estimates of richness and 

the number of endemics used to generate contour maps are available in Appendix 1. 

2.2.1 Data quality control 

Two major challenges in biogeographic studies are changes and inconsistencies in taxonomic 

identification and the delineation of geographic ranges from a set of sampling locations at 

biogeographic scales. When analyzing data on biogeographic scales, small differences arising 

from human error are not likely to alter conclusions significantly (Brown et al. 1996). 

Nevertheless, I have implemented several strategies to minimize bias due to taxonomy and 

sampling effects in the delineation of geographic range boundaries. 
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The taxonomic status of each genus/species was verified in AlgaeBase (www.algaebase.org, 

Guiry et al. [2005]) and older taxonomic classifications were updated to reflect the name 

assigned by Guiry et al. (2005). Genus, rather than species level classifications were used to 

determine richness patterns of all benthic marine macroalgae. Genus level classifications were 

deemed more robust to mis-identification and changes in systematics, and patterns identified at 

the genus level are often matched by species level data (e.g. see Veron [1995] for corals). In 

order to directly compare richness patterns between a number of marine groups, species level 

patterns were analyzed for the Order Bryopsidales. The bryopsidales were chosen due to their 

relative taxonomic stability (e.g. when plotting the number of new bryopsidalean species against 

time, the curve reaches an asymptote around 1970, with very few new species being described 

after this time. Only 3% of species list pre-date 1970). Moreover, when patterns for the 

bryopsidales are analyzed at the broader genus level, the patterns are highly consistent with 

those generated by species level data. 

Sampling bias is an important concern when creating biogeographic ranges from species lists at 

particular locations, particularly when areas of high diversity coincide with areas that are 

traditionally well studied (Bolton 1994). However, very few taxa have been sufficiently 

intensively surveyed to generate global richness patterns based on occurrence records alone 

(Hurlbert and White 2005). An alternative method is to use geographic ranges to estimate 

richness across sites. This method is recognized as generating more realistic estimates of 

diversity than raw occurrence data, which tend to be more inconsistent and/or incomplete 

(McAllister et al. 1994) and has been used extensively for analyses conducted at continental to 

global scales (e.g. 80% of broad-scale studies on terrestrial plants, vertebrates and invertebrates 

used range-derived richness estimates (Hawkins et al. [2003a]) as have several studies of corals 

and reef fishes (McAllister et al. [1994], Veron [1995], Bellwood et al. [2005])). Since the 



 22

global effort of phycological study is patchy (Silva 1992, Bolton 1994), I used geographic 

ranges to estimate diversity at each site to minimize the bias associated with sampling effort. 

Furthermore, I tested for a dependence of algal genus richness on either the number of sites or 

phycological studies in 14 regions world-wide. Linear regression showed no relationship 

between richness and either the number of sites (p=0.47, R2.0.1) or the number of phycological 

studies (p=0.365, R2.0.1) (see Figure 2.1A,B for regions and regressions), indicating that genus 

richness was not merely a reflection of variation in sampling intensity. 

2.3 RESULTS 

2.3.1 Centres of diversity and endemism 

Centres of genus diversity for benthic marine algae occur in temperate oceans. In the Indo-

Pacific Ocean, centres of diversity occur in southern Australia and Japan, each containing 350-

450 genera of algae (Figure 2.2A). The Indo-Australian Archipelago (IAA) and southern Indian 

Ocean have moderate richness of approximately 250-300 genera. Thus, there is a band of high 

algal diversity running longitudinally between 110o-160oE. Richness attenuates to the east and 

west of this band, reaching ~150 genera in the Red Sea and along the Chilean coastline. The 

areas of lowest diversity occur in the polar regions where fewer than 100 genera have been 

recorded. Algal richness gradients in the Atlantic Ocean are both latitudinally and longitudially 

asymmetrical. The eastern coastline has higher diversity than the west with the major Atlantic 

biodiversity hotspot located along the European coastline, extending south to Morocco (250-300 

genera). Additionally, twice as many genera occur in the northern versus the southern Atlantic. 

Endemic algal genera cluster in areas of high diversity within the respective oceans (Figure 

2.2B). At most of the 387 sites across both the Indo-Pacific and Atlantic Oceans, there are fewer 

than two endemic genera, however this number increases to as many as 21 inside the Japan 
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biodiversity hotspot. Endemic genera comprise <6% of the flora at any site, including those 

within biodiversity hotspots.  

In contrast to the patterns of all algal genera, centres of diversity for the Order Bryopsidales are 

located in the tropics and species richness diminishes both latitudinally and longitudinally away 

from these hotspots (Figure 2.3A). In the Indo-Pacific, species richness is highest in the IAA, 

while the Atlantic Ocean centre of diversity is located in the central Caribbean. However, 

diversity in the Atlantic is low, with the majority of areas containing <30 species compared to 

>90 in the Indo-Pacific. While Indo-Pacific species endemics occur mainly outside areas of high 

diversity (in India, Japan and Hawaii) most of the endemics in the Atlantic occur in the 

Caribbean, where species diversity is highest (Figure 2.3B).  

2.3.2 Geographic range size distributions 

Range size frequency distributions (RSFD) are left skewed on a logarithmic scale (Figure 2.4), 

highlighting that many algae have very large geographic ranges. Endemics comprise a small 

proportion of the total number of genera in each ocean (12% in the Indo-Pacific and 7% in the 

Atlantic). In contrast, 40% of Indo-Pacific and 33% of Atlantic genera have ranges > 10 million 

km2 (i.e., ranges 10x larger than endemics). A large percentage of bryopsidalean species are also 

wide-ranging (44% in the Indo-Pacific and 23% in the Atlantic have ranges > 5 million km2 or 

10x the endemic range size). In contrast to genus level patterns, endemic species are significant 

with bryopsidales comprising 23% and 20% of the Indo-Pacific and Atlantic flora respectively.  

There are significant differences between RSFDs of all algal genera and bryopsidalean species 

in the Indo-Pacific and Atlantic Oceans (genera: D=0.1814, p<0.001; species: D=0.150, 

p=0.023). RSFDs in the Indo-Pacific are bimodal with peaks in the middle and the largest size 
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classes (Figure 2.4A,C). In the Atlantic, the proportion of algae in each range size class 

increases from left to right (i.e., from small to large), but decreases sharply in the largest size 

categories (Figure 2.4B,D). 

2.3.4 Location and overlap of geographic ranges 

There are striking patterns in the location and overlap of algal geographic ranges. Under a mid-

domain effect null model, 2-dimensional density plots of range extent versus mid-point should 

be horizontally uniform within the triangular domain boundaries (Lees et al. 1999). Yet in both 

the Indo-Pacific and Atlantic Oceans, there is obvious clustering of algal ranges. In the Indo-

Pacific, algal genera and species of Bryopsidales with large latitudinal extents cluster near the 

equator (Figure 2.5A,C). In contrast, small ranging genera cluster in both the northern and 

southern hemispheres away from the middle of the domain in temperate latitudes (Figure 2.5A). 

Small ranging bryopsidales are spread throughout all latitudes of the Indo-Pacific with a cluster 

in the southern temperate region (Figure 2.5C). Longitudinally, algal genera with small and 

large range extents are centred in the middle of the Indo-Pacific between 110-170oE (Figure 

2.5B). Longitudinally restricted bryopsidales are also centred within this band, however, larger 

ranging species are centred to the western side of the domain, leaving the eastern side relatively 

species poor (Figure 2.5D). 

The Atlantic Ocean is latitudinally highly asymmetrical, with the majority of genera and species 

having range mid-points north of the equator (Figure 2.6A,C). Algae with large latitudinal 

extents are centred around 10oN, while latitudinally restricted genera occur predominantly 

around 50oN in the temperate ocean. A large proportion of small ranging bryopsidales have 

latitudinal mid-points centred in the northern hemisphere tropics (~20oN). There is a striking 

contrast between the longitudinal clustering of genera and species in the Atlantic Ocean. The 
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majority of genera are centred in the middle of the Atlantic domain, while most species of 

Bryopsidales have ranges centred on either the eastern or western ocean margins (Figure 

2.6B,D). 

2.4 DISCUSSION 

2.4.1 Marine biodiversity patterns 

Latitudinal and longitudinal gradients 

Diversity maps of the global distribution of benthic marine algae reveal distinct gradients in 

species and genus richness. Prior to this analysis, the documentation of latitudinal gradients in 

algal diversity was restricted to small regional scales (Pielou 1978, Santelices and Marquet 

1998), leading to speculation that macroalgae do not exhibit global latitudinal gradients (Willig 

et al. 2003). The results of this chapter clearly show that this is not the case. In the largely reef-

associated Order Bryopsidales, diversity peaks at tropical latitudes and decreases steadily 

towards the poles, in a manner well documented for other tropical marine organisms (Rosen 

1988). However, when all algal genera are considered, temperate regions consistently have 

higher algal richness than tropical areas. In both the Indo-Pacific and Atlantic Oceans, algal 

centres of diversity occur in temperate areas, with richness decreasing towards the tropics and 

polar regions. Interestingly, this trend was also identified by early studies using more 

geographically restricted data sets (Pielou 1978, Vermeij 1978, Gaines and Lubchenco 1982). 

The peak in algal genus richness at mid latitudes on a global scale makes benthic marine algae 

an exceptional group, in that there are very few taxa that have diversity peaks outside of the 

tropics (Willig et al. 2003).  
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Marine algae also display distinct longitudinal richness gradients. In the Indo-Pacific, algal 

richness peaks at the same longitudes as the richness of many other taxa (Rosen 1988, Roberts et 

al. 2002) resulting in a band of exceptionally high diversity between 110o-160oE. Similarly in 

the Atlantic, the Order Bryopsidales, along with many other coastal marine taxa (Macpherson 

2002), reaches peak richness on the tropical western coastline. However, when all algal genera 

are considered, the greatest diversity occurs on the eastern Atlantic coastline. While this is not 

unique within temperate regions (Macpherson 2002), the richness of the north-eastern coast is 

usually significantly less than that of the tropical Caribbean. This is clearly not the case for algal 

genera, further highlighting the exceptional nature of global algal diversity patterns. 

Size and location of geographic ranges 

Patterns in the size and location of geographic ranges can provide insights into the mechanisms 

regulating diversity that are unavailable solely from examining variations in species numbers 

across a biogeographic realm. Endemic algae occur throughout the Indo-Pacific and Atlantic 

Oceans and yet represent only a minor element of the total flora at any site. This is in stark 

contrast to many terrestrial systems, where diversity hotspots are generated largely by an 

accumulation of endemic taxa (Myers et al. 2000). Furthermore, in the Indo-Pacific, 

bryopsidalean endemics tend to be clustered outside of the IAA hotspot, in more peripheral 

depauperate locations, which is consistent with patterns documented for coral and reef fish 

endemics (Hughes et al. 2002, Paulay and Meyer 2002, contra Mora et al. 2003). 

It is also important to consider the observed size and location of ranges in comparison to an 

appropriate null expectation. Where deviations from such an expectation occur may provide 

further insight into mechanisms that regulate diversity patterns (Colwell et al. 2004). For 

example, in the Atlantic Ocean, large ranged taxa are clustered in the centre of the ocean and 
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small ranged taxa on the eastern and western boundaries. The geometry of the Atlantic Ocean 

does not allow these taxa to be located anywhere else and thus, no other explanation of richness 

patterns need be invoked. However, algal ranges are located predominantly in the northern 

Atlantic and in the Indo-Pacific large ranged algae are clustered within tight latitudinal limits in 

the middle of the domain while small ranging taxa are disproportionately clustered away from 

the centre in temperate areas. A similar clustering is also evident for Indo-Pacific corals and 

reef-fishes (Connolly et al. 2003) and such distributions of range locations can be generated 

when environmental gradients are incorporated along with geometric constraints in process-

based models (Connolly 2005). Thus, identifying deviations from patterns generated solely by 

geometric constraints provides a basis from which to assess environmental drivers of species 

richness patterns. 

4.4.2 Causes of biodiversity patterns 

A consideration of patterns of algal richness and range size and location indicates that the 

climatic stability, species-energy and competition hypotheses are unlikely to be major drivers of 

algal richness patterns. The key assumption of the climatic stability hypothesis, that 

specialization in benign tropical habitat leads to a decline in range size towards low latitudes 

(Stevens 1989), is clearly not reflected in either genus or species level patterns of algal range 

size. Furthermore, overall algal richness is not highest in the tropics where metabolic processes 

are thought to enhance speciation (Kaspari et al. 2004). Competition with corals is commonly 

cited as an explanation of lower algal richness in the tropics relative to temperate regions (e.g. 

Fraser and Currie [1996], Miller and Hay [1996]). However, bryopsidalean richness peaks in the 

tropics in a manner very similar to corals (compare Figure 2.3A with coral richness patterns in 
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Roberts et al. 2002). Bryopsidales are predominantly reef-associated algae and are likely to be in 

direct competition with corals for space (Littler and Littler 2003).  

While the nature of the productivity-diversity relationship is highly scale dependent (Chase and 

Leibold 2002), there appears to be little evidence for productivity as a driver of macroalgal 

diversity at a global scale. Phytoplankton net primary productivity (NPP) is greatest at high 

latitudes in the northern hemisphere, along western continental boundaries and in the sub-

tropical convergence zone, due primarily to enhanced nutrient availability associated with major 

oceanic upwelling (Field et al. 1998, Behrenfeld et al. 2001). While the three centres of algal 

genus richness are all located within these areas of peak productivity, areas of high NPP also 

encompass regions of both moderate (e.g. southern Africa and California) and low algal richness 

(e.g. Chile and New Zealand). Moreover, oceanic productivity is very low in the Caribbean 

basin and the IAA where bryopsidalean richness is greatest. 

The species-area hypothesis can explain some, but not all, of the global patterns of algal 

richness. Bryopsidalean species richness patterns closely mirror those of corals and reef fishes, 

suggesting a common regulatory mechanism. Recently, the area of coral reef has been shown to 

account for a large proportion of the variation seen in coral and reef fish richness patterns 

(Bellwood et al. 2005). Within temperate areas, regions of highest algal richness also coincide 

with large areas of suitable habitat (Silva 1992). However, while the species-area hypothesis can 

account for the location of peaks in both algal genus and species richness, it cannot explain why 

temperate hotspots support more genera than do equivalent tropical regions.  

Major ocean currents may play an important role in determining the location of algal richness 

hotspots through propagule dispersal and alteration of oceanic conditions. Ocean gyres flow 

clockwise in the northern hemisphere and anticlockwise in the southern hemisphere and as a 
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result, surface circulation in tropical regions is dominated by westward flowing equatorial 

currents. These currents leave the tropics, travelling poleward along western ocean boundaries 

and back towards the tropics along the eastern edges. If currents are influential in determining 

richness patterns through dispersal then the greatest richness of tropical algae should occur in 

western ocean regions along with depauperate tropical floras in the east. Furthermore, if 

equatorial currents extend the geographic ranges of tropical algae into temperate regions, then 

high overall algal richness will occur where tropical and temperate floras overlap. This will be 

most prominent on the western ocean margins where both tropical and temperate floras are 

species rich compared to the eastern margins where tropical floras are depauperate. Current 

driven richness patterns should also result in distinct patterns of range size. Ranges of tropical 

algae centred at low latitudes are expected to be large and the ranges of algae that originate in 

temperate regions small, as temperate to tropical dispersal will be restricted. 

The richness and range size patterns observed for algae in the Indo-Pacific Ocean are consistent 

with those predicted in an ocean currents-driven system. An exception is the high diversity of 

tropical bryopsidales in the eastern Indian Ocean, which is unexpected under an ocean-gyres 

model. However, the coastal east-Indian Ocean is not dominated by the northward flowing 

Indian Ocean gyre. Rather, the tropical Leeuwin Current flows from the equator towards the 

south pole along the east-Indian ocean margin (west Australian coastline), on the inside of the 

northward flowing Indian Ocean gyre. Furthermore, the Leeuwin Current flows directly into the 

south Australian temperate hotspot from equatorial regions. Similar mechanisms have been 

suggested to influence richness patterns of corals and reef fishes (Connolly et al. 2003). Thus 

currents in the Indo-Pacific appear to play a role in creating and maintaining algal hotspots in 

temperate regions, where tropical and temperate floras overlap. 
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Algal richness is low throughout the southern Atlantic, however, unlike the southern Indo-

Pacific, the influence of equatorial currents is only modest compared to sub-polar currents and 

upwelling systems (Pickard and Emery 1990). In the tropical Atlantic, bryopsidales species 

richness is highest in the western ocean (Caribbean) as expected, however, overall genus 

richness peaks in the north-eastern temperate regions. The north Atlantic is dominated by the 

Gulf Stream, which originates in western tropical regions then flows north and east into 

temperate areas. Water originating in the tropics extends across the north Atlantic and flows 

north to Scotland and south to Africa (Pickard and Emery 1990), where algal richness is highest. 

In contrast, the low diversity north-west Atlantic coasts are dominated by the Labrador Current, 

which originates in the Arctic and extends south to Cape Hatteras (~35oN) (Pickard and Emery 

1990). Hence ocean currents also appear to influence algal richness patterns in the Atlantic 

Ocean. 

4.4.3 Conclusions 

This chapter provides the first world-wide assessment of patterns in algal richness which 

incorporates a quantification of the size and location of algal geographic ranges. Macroalgal 

genera show atypical latitudinal richness gradients and this trend is consistent across oceans and 

biogeographic realms, suggesting that it is truly an exceptional global phenomenon rather than a 

regional anomaly. Hypotheses about the causes of diversity gradients generally assume a 

straightforward positive correlation between environmental variables and the number of taxa 

found at sites along that gradient. However, underlying these theories are fundamental 

assumptions about the relationship between the environmental variables and the size and 

location of species’ geographic ranges (Stevens 1989, Chown and Gaston 2000). Yet patterns of 

geographic range size and location are rarely considered as evidence for or against the various 
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hypotheses. When they are, we gain additional insights into the drivers of richness patterns that 

would have been unavailable from analyses of species numbers alone (Lees et al. 1999, 

Connolly et al. 2003). This chapter explicitly quantifies both richness gradients and the 

distribution of range sizes and locations that give rise to those gradients. By conducting such 

analyses, especially for a group of organisms with exceptional richness gradients, important 

inroads have been made into gaining a more comprehensive understanding of how richness 

gradients are created and maintained. 
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Figure 2.1. A) Map of the Indo-Pacific and Atlantic Oceans showing sites marked as red points 

and regions delineated by blue lines. B) Linear regressions of the genus richness of regions and 

the number of sites and phycological studies in the region. 
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Figure 2.2. Map of the Indo-Pacific and Atlantic Oceans showing contours of A) algal genus 

richness and B) clusters of endemic genera. Unshaded areas represent oceanic expanses or 

regions for which reliable data were not available. 
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Figure 2.3. Map of the Indo-Pacific and Atlantic Oceans showing contours of A) species 

richness and B) clusters of endemics within the Order Bryopsidales. Unshaded areas represent 

oceanic expanses or regions for which reliable data were not available.  
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Figure 2.4. Frequency distribution of geographic range size (RSFD) of all algal genera and 

Bryopsidalean species in the Indo-Pacific (A, C) and the Atlantic Ocean (B, D) on a logarithmic 

scale. 
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Figure 2.5. Density plots of range extent and range midpoint location for the algal genera (A, B) 

and bryopsidalean species (C, D) in the Indo-Pacific Ocean. Dark areas represent high 

concentrations of midpoints, whilst in white areas there are very few midpoints. Triangles 

indicate domain boundaries (as per Mid-domain Effect (Colwell and Lees [2000])). 
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Figure 2.6. Density plots of range extent and range midpoint location for the algal genera (A, B) 

and bryopsidalean species (C, D) in the Atlantic Ocean. Dark areas represent high 

concentrations of midpoints, whilst in white areas there are very few midpoints. Triangles 

indicate domain boundaries (as per Mid-domain Effect [Colwell and Lees (2000)]). 
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Chapter 3. Drivers of marine biodiversity patterns: testing predictions with macroalgae2 

 

3.1 INTRODUCTION 

On land, the relationship between global diversity patterns and gradients in climate is well 

established (Hawkins et al. 2003b, Field et al. 2005). Temperature and water availability are key 

mechanisms controlling species richness of the both primary producers (angiosperms and woody 

plants) and animal taxa (Currie 1991, Hawkins et al. 2003b). In contrast, in the marine realm, 

the relationship between climate and species richness is more ambiguous. Sea surface 

temperature and productivity have been suggested to underlie patterns of mollusc and 

foraminifera richness (Roy et al. 1998, Hunt et al. 2005, Rex et al. 2005), while habitat area has 

been demonstrated as a key predictor of richness in other groups (e.g. reef fishes and corals 

Bellwood et al. [2005], Mora & Robertson [2005]). Nevertheless, in both systems, 

understanding the mechanisms that underlie these relationships, and building appropriate 

statistical models to describe the relationships are ongoing ecological challenges (Evans et al. 

2005, Field et al. 2005).  

The positive correlation between species richness and global climate was first noticed as early as 

the 19th century (Hawkins et al. 2003b) and since then, hundreds of authors have proposed that 

spatial variation in energy availability controls species richness. There are two major lines of 

reasoning about how this control occurs. First is a productivity-based argument, whereby 

increased energy inputs (i.e., resources) facilitate larger populations, which are less vulnerable 

to extinction (i.e., a “more individuals” hypothesis). Second is a physiological tolerances 

mechanism, related to ambient energy rather than resource availability, whereby benign tropical  

                                                 
2 This chapter is in prep as: Kerswell AP and Connolly SR (in prep) Drivers of marine biodiversity gradients: 
testing predictions with macroalgae. Global Ecology and Biogeography. 
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climates fulfil the physiological requirements of more species than do extreme temperate or 

polar climates (Francis and Currie 2003, Hawkins et al. 2003b). The finer details of how the 

mechanisms operate may differ depending on the taxa involved and the scale of study (Evans et 

al. 2005) and the different mechanisms are not mutually exclusive. On land the best climatic 

predictor explains, on average, over 60% of the variance in species richness and the relative 

importance of productivity versus temperature varies with latitude (Hawkins et al. 2003b). In the 

marine realm, energy related factors have been shown to explain as little as <10 % of the 

variation in species richness in some groups (Bellwood et al. 2005) or as much as 90% in others 

(Roy et al. 1998). 

The species-area hypothesis is proposed as a major alternative mechanism to species-energy 

relationships. Species-area relationships, as proposed for terrestrial systems, are based on the 

argument that because the tropics form a belt north and south of the equator, they are the largest 

climatically similar area on the planet (Rosenzweig 1995). Larger areas support more 

individuals and populations, thereby reducing extinction risk. Larger areas also contain more 

barriers, which promote allopatric speciation (Rosenzweig 1995, Chown and Gaston 2000). 

Area is undoubtedly important in determining the number of species present at local to regional 

scales (Gaston 2000). However, there are few examples of area as major determinant of species 

richness patterns at a broad geographic scale (Chown and Gaston 2000).  

More recently the importance of evaluating species richness patterns in the context of 

biogeographic null models has been recognized with the advent of mid-domain effect theory 

(Colwell and Hurtt 1994, Colwell and Lees 2000). Under the mid-domain effect (MDE), species 

richness gradients arise due to geometric constraints on the size and location of species’ 

geographic ranges within a bounded domain in the absence of environmental factors. The extent 
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to which MDEs predict species richness patterns varies greatly (see Colwell et al. [2004] for a 

review). Species with large geographic ranges are geometrically constrained to exhibit strong 

correlations with MDE predictors, while small ranged taxa have the potential to deviate greatly 

from the predictions (e.g. Jetz & Rahbek [2002], Mora & Robertson [2005]).  

The influence of MDEs relative to environmental predictors of richness patterns may be 

determined by incorporating MDEs into spatial linear regression models, which include other 

predictor variables (Colwell et al. 2004). However, few studies have actually done so (Jetz and 

Rahbek 2002, Bellwood et al. 2005, Mora and Robertson 2005) and there is currently 

considerable controversy about how MDEs should be incorporated into models of species 

richness gradients (Zapata et al. 2003, Colwell et al. 2004). Most frequently, species richness 

expected under a MDE is estimated via randomisation and compared to the observed richness 

values. However, MDE randomisation models may be formulated in multiple ways and 

according to different assumptions (see Colwell et al. [2004] for a review). Moreover, each 

method of modelling MDEs produces a different species richness gradient. For example, 1-

dimensional MDEs generated using a “spreading dye” model (Jetz and Rahbek 2001), are 

typically shallower than those generated under fully stochastic models, due to an increased 

probability of ranges abutting domain boundaries under the spreading dye model (Connolly 

2005). Furthermore, Koleff and Gaston (2001) demonstrated that the height of MDEs may vary 

up to 4-fold depending on the randomisation procedure and, as a consequence, the fit of the 

empirical data to the MDE null model varied drastically. Thus, the best way to incorporate 

MDEs into models of species richness is a significant and unresolved problem. 

Recently, Bellwood et al. (2005) developed a spatial regression model that examines the relative 

influence of MDEs along with energy and area variables on the species richness patterns of 
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corals and reef fishes in the Indo-Pacific Ocean. The observed species richness patterns of corals 

and reef fish are strikingly concordant, as are the models which best explain these patterns. Reef 

area and geometric constraints (i.e., MDE) are the factors which best predict coral and fish 

diversity patterns. Corals and reef fish have markedly different life histories, yet the similarity of 

both richness patterns and the concordance of factors that are hypothesised to drive them, 

prompted Bellwood et al. (2005) to suggest that the same processes may apply more widely 

across a range of marine taxa.  

Here I test the generality of an area-MDE model, by applying the Bellwood et al. (2005) model 

to richness patterns of tropical marine algae. The order Bryopsidales contains species which 

have a high affinity with coral reefs and largely tropical distributions (Littler and Littler 2003). 

Moreover, the observed species richness patterns of Bryopsidales are highly concordant with 

those of corals and reef fishes throughout the Indo-Pacific Ocean (Chapter 2, Kerswell 2006). 

Thus they are an ideal group with which to test for the generality of MDEs and area variables as 

drivers of marine diversity patterns. 

3.2 METHODS 

The determinants of Bryopsidales species richness patterns were investigated at 140 sites in the 

tropical Indo-Pacific (30oS-30oN) (Figure 3.1). At each site, the number of Bryopsidales species 

was determined from an existing global database of algal distribution records (Kerswell 2006). 

Bellwood et al. (2005) tested a variety of variables in order to determine the best predictors of 

energy, area and MDE. I also tested several energy-related variables to determine the two best 

energy predictor variables to include in the combined models. The values of mean annual sea 

surface temperature, mean annual irradiance, mean annual nitrate concentration and mean 

annual chlorophyll a concentration for the 1ox1o degree grid cell which overlapped each site 
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were taken from the World Ocean Atlas (Conkright et al. 2002). Area was measured as the total 

area covered by coral reefs within a 600km radius of each site and log-transformed for use in 

analyses. Bellwood et al. (2005) digitized reef area from published maps and stored the data in a 

geographical information system. I extracted area estimates for the Bryopsidales analyses from 

the same GIS. 

Colwell et al. (2004) argue that the influence of MDEs relative to other environmental predictors 

of species richness gradients may be determined by incorporating MDEs into spatial linear 

regression models. However, given the differences between individual MDE models outlined 

above, it is unclear which particular randomisation procedure is the most appropriate to use. 

Bellwood et al. (2005) offer one solution by recognising that despite the differences in shape, all 

MDE models display a common feature: a monotonic, bilaterally symmetric, decrease in species 

richness from the mid-domain towards domain boundaries. Thus, instead of choosing a 

particular randomisation procedure, these authors include MDEs as a function of the distance of 

a site from the middle of the domain and constrain the models to also show a monotonic, 

bilaterally symmetric, decrease in species richness from the mid-domain towards domain 

boundaries. Consequently, in the Bryopsidales analyses, I adopted a similar approach and 

modelled MDE as the normalised distance of each site from the mid-domain (0oN, 162oE, 

Figure 3.1). That is, the latitudinal and longitudinal distances of each site from the mid-domain 

were normalized to the respective sizes of the domain, and the diagonal distance calculated 

using Pythagoras’ Theorem (see Bellwood et al. [2005] for details).  

Formulating an MDE as the distance to the middle of the domain may overestimate the 

magnitude of its effects on species richness gradients, since no constraints are placed on the 

height of the MDE gradient. Therefore, to assess whether my formulation of the MDE is 
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analogous to other methods, I compare the fit of the normalised distance to the mid-domain 

predictor with species richness gradients generated under several other methods. Species 

richness expected under the Bokma et al. (2001) MDE model was calculated at each of the 140 

sites and plotted separated for latitude and longitude. A 1-dimensional analytical formulation of 

the spreading dye model was calculated from equation 2 in Connolly (2005) using the observed 

Bryopsidales range extents. It should be noted that species richness estimated using this 1-D 

spreading dye model represents richness in latitudinal bands (rather than at discrete sites). Thus 

the magnitude of spreading dye model richness (i.e., the height of the MDE) will always be 

greater than the estimates of this study and Bokma et al. (2001) and therefore only the shape of 

the MDEs are compared. Finally, the 1-dimnesional species richness gradients resulting from 

the Poisson null model of Connolly (2005, equation 9) were calculated both latitudinally and 

longitudinally. 

Spatial regression models were used to explore the relationship between predictor variables and 

Bryopsidales richness. There has been increasing concern about the effects of spatial 

autocorrelation on the power of regression models to account for patterns of species richness 

(Legendre 1993). In order to overcome these problems I used regression models that explicitly 

account for the spatial nature of geographic data (implemented using function likfit, package 

geoR, in the software program R: see Ribeiro & Diggle [2001] for details). Specifically, richness 

relationships are modelled as Gaussian random fields of the form: 

  εμ ++= )()()( xSxxy     (3.1) 

Where μ(x) (the mean component) is a linear function of the predictor variables as in a standard 

linear regression and the residual variation is divided into spatially-autocorrelated S(x) and non-

spatial (ε) error components. Thus, S(x) is a function of the spatial distance separating locations 
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and was modelled according to an exponential decay function. All analyses were performed 

using both the spatially explicit regression model and a non-spatial equivalent (i.e., a traditional 

linear regression model).  

Collinearity between predictor variables may also be problematic in multiple regression 

analyses. I quantified the potential effects of collinearity between predictor variables and 

employed two approaches to mitigate its effects. Model selection procedures are particularly 

sensitive to collinearity in models when many predictor variables are included (Graham 2003). 

Consequently, I reduced the number of variables in my models, by choosing the two energy 

variable that best predicted species richness and using these in the final analyses. Collinearity is 

also problematic when models are built using stepwise regression procedures, because such 

procedures are highly sensitive to the order in which predictor variables are added to (or 

removed from) models (Graham 2003). An alternative is to consider all possible combinations 

of variables and use model selection techniques, such as Akaike’s Information Criterion (AIC), 

to choose the best model (Neter et al. 1996). Hence, in the final analyses, I analysed all possible 

combinations of variables, including a no trend or constant model in which species richness 

patterns were predicted only from spatial autocorrelation. This approach allowed me to choose 

the model that best predicted species richness patterns using AIC and Akaike weights 

(wAIC)(Akaike 1985). In all analyses, predictor variables were included in regression models as 

first order terms only. Second order combinations of variables had consistently worse fit (by 

AIC) to the empirical data than first order terms and were therefore not included in the final 

models.  

In order to explore the richness patterns predicted by the best linear regression model, predicted 

richness was determined at each site according to each model. Agreement between predicted 
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and observed richness was assessed by fit to the unity line. Also, maps of predicted richness 

throughout the Indo-Pacific Ocean were generated to identify where richness predictions 

consistent with observed values were estimated from the models. Richness estimates were used 

to interpolate contours of predicted species richness in a GIS using the Inverse Distance 

Weighted interpolator (ArcView 3.2a GIS, 0.5o cells, nearest neighbour technique with 12 

neighbours, 3rd order power, no barriers). Contour maps of observed species richness were 

generated using the same procedure. 

3.3 RESULTS 

The best model for Bryopsidales species richness included three variables: the distance to the 

mid-domain, sea surface temperature and nitrate. Comparisons between the spatial and non-

spatial regression models indicated that spatial regression models, which incorporated spatial 

autocorrelation, were consistently better at predicting Bryopsidales species richness. As shown 

in Table 3.1, the AICs for spatial regression models are consistently much lower than those for 

standard linear regression models using the same predictor variables and no spatial effects. Thus 

all subsequent analyses were based on the spatial regression models. Of the energy variables 

considered in the initial regression analyses, sea surface temperature and nitrate had the most 

support from wAIC (Table 3.2). Hence, sea surface temperature and nitrate were identified as 

the best energy-related predictors of Bryopsidales species richness and used as the energy 

predictor variables in the combined analyses. 

The combined analyses considered temperature, nitrate, reef area and MDE as predictors of 

Bryopsidales species richness. Collinearity between these variables was moderate, with 

Spearman’s rank correlation coefficient greatest between temperature and MDE at -0.66 (Figure 

3.2). This reinforces the importance of using model selection techniques that are more robust to 



 46

the influence of collinearity than stepwise regression procedures. Model selection by AIC 

indicated that the temperature-nitrate-MDE model was the best model (Table 3.3). The trend 

component of the this model explained 71% of variation in Bryopsidales species richness. 

Adding reef area to the model (i.e., the full model) accounted only for an extra 1% of variation. 

Thus, as annual sea surface temperature and nitrate concentrations increase, and as sites get 

closer to the mid-domain, species richness also increases, while there is a negligible influence of 

reef area on Bryopsidales richness. 

Comparisons of the various MDE species richness gradients confirm that all MDEs display a 

monotonic, bilaterally symmetric, decrease in species richness from the mid-domain towards 

domain boundaries (Figure 3.3). Furthermore, the magnitude (i.e., height) of the MDE from this 

study is within the range of species richness gradients from other MDE formulations, suggesting 

that modelling species richness as a function of the distance from the mid-domain is a 

approximation for mid-domain effects.  

Incorporating MDEs as the distance to the mid-domain may have overestimated the influence of 

MDEs, particularly since MDEs are correlated with other predictor variables (Bellwood et al. 

2005). Thus, in order to explore the relative influence of MDEs and energy variables in 

predictions of Bryopsidales species richness, I compared the observed species richness to that 

predicted by the temperature-nitrate-MDE model, the temperature-nitrate, temperature-only and 

nitrate-only models (Figure 3.4). When MDE is removed, the power of the environmental 

variable-only models to predict Bryopsidales species richness is severely reduced.  

Species richness patterns predicted from the best temperature-nitrate-MDE model are presented 

in Figure 3.1B and capture the major features of observed Bryopsidales richness. For both 

observed and predicted patterns, species richness is highest in the Indo-Australian Archipelago 
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(IAA) and Micronesia and decreases both latitudinally and longitudinally towards the domain 

boundaries. However, there are some noteworthy deviations of the predicted from the observed 

patterns. Even though richness peaks in the central Indo-Pacific in both the observed and 

predicted data, the temperature-nitrate-MDE model underestimates the magnitude of this 

richness peak by approximately 10-15%. Additionally, observed algal richness is high 

throughout the tropical Indian Ocean, with an equatorial band of high richness extending west 

from the IAA to the east African coastline where up to 90 species of Bryopsidales occur. This 

feature is not present in the predicted model. Rather, predicted richness decreases steadily from 

the IAA, to reach between 30 and 45 species on the east African coastline. In both the tropical 

east Pacific and Hawaii species richness is over-predicted by the temperature-nitrate-MDE 

model. 

3.4 DISCUSSION 

I find that sea surface temperature, nitrate and geometric constraints (i.e., a MDE) have a 

significant influence in shaping species richness patterns of Bryopsidales algae. The best model 

of geographic variation in algal species richness has striking similarities to that of Bellwood et 

al. (2005). Mid-domain effects are important factors in determining richness patterns for algae 

as well as corals and reef fishes. Additionally, all “best models” predict richness patterns that 

deviate from the observed richness patterns in consistent ways. However, there is also a 

fundamental difference between the model developed here for Bryopsidales and the Bellwood et 

al. (2005) model for coral and reef fishes. I find that energy (i.e., temperature and nitrate) is the 

primary environmental variable driving algal species richness, whereas for corals and reef 

fishes, habitat area is of primary importance. The comparison of these models suggest that at the 

very broadest scale, the geometry of the Indo-Pacific domain is a critical factor in predicting 
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species richness gradients across a variety of taxa, but that the actual environmental factors 

which influence species richness patterns may be more taxon specific. 

The key determinants of species richness patterns for terrestrial primary producers are energy 

variables related to temperature and water availability (Francis and Currie 2003, Field et al. 

2005). For macroalgae (a major group of marine primary producers), temperature is also 

influential in determining species richness patterns and indeed, temperature has been suggested 

to be a major driver of species richness in a variety of other marine taxa (e.g. molluscs: Roy et 

al. [1998], Rex et al. [2005], foraminifera: Hunt et al. [2005]). Terrestrial productivity and 

species richness are tightly linked with water availability (Francis and Currie 2003, Hawkins et 

al. 2003a). Of course in the marine realm water availability is unlikely to be limiting; however, 

nutrients, and in particular nitrates, are often a key factor limiting marine productivity (Howarth 

1988). Thus, like terrestrial systems, both ambient energy (i.e., temperature) and productivity 

(i.e., nitrate) are important environmental variables for predicting species richness of tropical 

marine algae. 

Temperature has previously been implicated in influencing the distribution of many marine 

algae (Breeman 1988, Luning 1990, Adey and Steneck 2001) although direct tests at large 

geographic scales have been limited. Tropical algal species are restricted to temperatures 

between 18-33oC, with optimal growth at ~27oC and sensitivity at the lower thermal range has 

been shown to affect the geographic distribution of tropical algae in the Atlantic (Pakker et al. 

1995). This suggests a physiological tolerances mechanism for the species-energy hypothesis. 

Additionally, for the Bryopsidales, there is some evidence that population size varies directly 

with both temperature fluctuations and increased nitrate concentrations. In the eastern Pacific, 

the summertime abundance of Caulpera increased with abnormally warm temperature in El 
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Nino years and decreased with abnormally cold temperatures in La Nina years (Scrosati 2001). 

Also, increased inputs of nitrogen have been shown to increase both the abundance and species 

richness of algal communities in manipulative field-based experiments (Worm et al. 2002, 

Bracken and Nielsen 2004). This highlights that a “more individuals” mechanism of the species-

energy hypothesis may also apply. 

Mid-domain effects are highly controversial, and incorporating them into models of species 

richness gradients is not as straightforward as is sometimes assumed. Here I show that 

incorporating MDEs as the distance to the mid-domain approximates both the shape and the 

height of MDEs derived under both randomisation and processed-based modelling procedures. 

The relative importance of MDEs in predicting species richness gradients has been questioned, 

particularly in systems where energy variables appear to highly important (Hawkins and Diniz 

2002). Here I demonstrate that when MDEs are removed from the temperature-nitrate-MDE 

models, the fit of the observed to the predicted species richness is substantially worse. This 

suggests that MDEs are not acting as a surrogate for environmental variables as has been 

previously suggested (Zapata et al. 2003), but rather are a key predictor of species richness 

patterns in their own right.  

The “best” temperature-nitrate-MDE model for algae and the area-MDE model for corals and 

fishes deviate from the observed patterns in similar ways. This suggests that important factors 

omitted from both these analyses may affect corals, fishes and bryopsidalean algae in similar 

ways. In particular, the geographic pattern of the deviations suggests a potential role for ocean 

currents as important determinants of marine richness patterns. Jokiel and Marintelli (1992) 

developed an ocean currents based dispersal model for reef organisms. Under this model, 

richness is predicted to accumulate on western boundary margins and be lowest at high latitudes 
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and in isolated locations. These patterns coincide well with the observed patterns of both algae 

and corals and reef fish, and could explain the lack of fit of the predictive models in the western 

Indian Ocean, Hawaii and the east Pacific. Furthermore, corals, fishes and Bryopsidales have 

very similar patterns in the concentration of geographic range endpoints. For all three groups, 

range endpoints are disproportionately common at high latitudes and along the east African 

coastline (Connolly et al. 2003, Kerswell 2006). While the predominance of range endpoints in 

high latitude locations may be attributed to lack of coral reef habitat (corals and fishes) or 

unsuitable temperature regimes (algae), the concentration of range endpoints along the African 

coastline is more likely due to ocean gyres than environmental effects (Connolly et al. 2003, 

Kerswell 2006).  

Despite the similarities, comparison of the algae and corals and fish models also raises the 

question of why the environmental factors that best correspond to richness patterns differ among 

taxa. As discussed above, temperature and nitrate appear to have influential effects on both the 

distribution and population sizes of tropical algae. In comparison with corals and reef fishes, 

tropical algae are less habitat specific. In addition to colonizing reef environs, algae are also 

found on tropical rocky shores, in mangrove forests and in seagrass beds (Littler and Littler 

2003). Thus while the area of coral reef available for habitation is important for corals and reef 

fish (as revealed in Bellwood et al. [2005]), energy variables may be more important for habitat 

generalists such as marine algae. 

Climate change and anthropogenic effects are currently impacting ecosystems at an 

unprecedented rate. Thus it is critical to understand what mechanisms are driving contemporary 

species richness patterns in order to best manage and conserve diversity into the future. Here I 

confirm the role of geographic domain boundaries as a major predictor of marine species 
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richness patterns across a variety of taxa. My analyses also highlight that environmental 

variables influence marine species richness patterns, but that the relative importance of such 

environmental variables may differ with the taxa in question. Moreover, it appears that not all of 

the variation in species richness for tropical taxa in the Indo-Pacific Ocean is explained by mid-

domain effects and environmental variables and I suggest that broad-scale factors such as ocean 

currents may also play a role. This presents the challenge of incorporating new types of 

variables into analyses of species richness patterns in order to understand the processes that 

create and maintain diversity across the globe. 
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Figure 3.1: Species richness patterns for the order Bryopsidales in the tropical Indo-Pacific 

Ocean (A. observed richness, B. richness predicted by the best model [temperature-nitrate-

MDE]). Black dots represent sampling locations and the white star is the location of the mid-

domain. 
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Figure 3.2: Collinearity between temperature, nitrate, reef area and distance to mid-domain 

(MDE). Spearman’s rank correlation (ρ) is indicated for each pair-wise comparison. 
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Figure 3.3: Latitudinal (A) and longitudinal (B) gradients in species richness predicted under 

the various MDE formulations (see legend). Note that in both cases the shape of the MDE 

derived from the proximity to mid-domain (this study) is consistent with the general shape of 

MDEs generated via randomisation procedures. Also note that the height of the MDE derived in 

this study falls within the bounds of other MDE models. 
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Figure 3.4: Comparison of the observed species richness and that predicted by the temperature-

nitrate-MDE model (A) and models including only environmental variables (B-D). Note that 

removing the MDE predictors from the species richness model substantially reduces the 

agreement between observed and predicted values. 
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Table 3.1: AIC from spatial and non-spatial regression models. Note that in all cases spatial 

models have substantially lower AIC, indicating better support for the spatial regression 

approach (only results from single variable models are presented but AIC comparisons are 

analogous for all combinations of predictor variables).  

model AIC 
 non-spatial spatial 

constant 1314 986 
temp 1273 986 

nitrate 1315 984 
area 1296 986 
mde 1206 966 

  

 

Table 3.2: ∆AIC and wAIC (i.e., relative support) for each energy model (np is the number of 

parameters in the model). 

model ∆AIC np wAIC 
constant 2.9 4 0.10 

temp 0 5 0.42 
light 2.0 5 0.09 

nitrate 0.6 5 0.32 
chl a 5.0 5 0.08 
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Table 3.3: ∆AIC and wAIC (i.e., relative support) for each model (np is the number of 

parameters in the model). 

models ∆AIC np wAIC 
constant 24.8 4 0 

temp 25.0 5 0 
nitrate 22.4 5 0 
area 24.5 5 0 
mde 4.9 5 0.03 
T+A 25.5 6 0 
T+M 3.5 6 0.06 
T+N 22.8 6 0 
A+M 6.0 6 0.02 
A+N 22.7 6 0 
M+N 1.8 6 0.14 

T+A+M 3.7 7 0.06 
T+A+N 23.7 7 0 
T+N+M 0 7 0.36 
A+M+N 3.3 7 0.07 

all 0.7 8 0.26 
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Chapter 4: Developing a test for guild proportionality in aggregated assemblages 

 

4.1 INTRODUCTION 

A long running controversy in community ecology concerns the extent to which species 

interactions influence the structure of assemblages. Part of this controversy is centred around the 

search for “assembly rules”. Assembly rules refer to the description of consistent patterns in the 

number and identity of species seen among replicated sets of communities (Wilson 1999) and 

mechanisms are subsequently inferred from the presence of these patterns. Most assembly rules 

aim to identify instances in which competitive species interactions constrain communities to a 

subset of possible species combinations. Examples of such assembly rules include forbidden 

species combinations (Diamond 1975), species per genus ratios (genera are represented by only 

one species at a site even though more may be present in the total species pool (Gotelli and 

Colwell 2001)), and species nestedness (the composition of species poor sites is an exact subset 

of species rich sites (Patterson and Atmar 1986)). Assembly rules may also be evident at higher 

taxonomic or functional guild levels, where the number of species occurring in a particular guild 

may be limited by strong competition for common resources between species within the same 

guild (Fox 1987, Wilson 1989).  

Two major themes have dominated the study of assembly rules. The first is a description of the 

rules and the communities in which they are and are not found. This theme will be addressed for 

macroalgal communities in the next chapter (5). The second theme is that of testing for the 

statistical significance of the pattern against an appropriate null hypothesis. Here, the focus has 

been on statistical methods, since it is rarely possible to test assembly rules with small scale 

manipulative experiments (Gotelli 2004). The validity of assembly rules, therefore, hinges upon 

being able to distinguish the rules from patterns that might arise by stochastic colonisation and 
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extinction of species independent of any constraints imposed by the operation of assembly rules. 

This is the focus of the present chapter. 

The first assembly rules were proposed by Diamond (1975) and consisted of seven observations 

or “rules” relating to bird community structure that could be applied across the Bismarck 

Archipelago (Papua New Guinea). These rules were subsequently challenged by Connor and 

Simberloff (1979), who recognised the importance of comparing the observed patterns to an 

appropriate null expectation. For assembly rules the null expectation is that species are 

assembled into communities independently of one another and thus the structure of null model 

communities reflects a random sample of the larger species pool. Consequently, null model 

communities are often termed “random” communities and observed communities are compared 

to a null expectation of “randomness”. Such terminology is used in the remainder of this 

chapter. Connor and Simberloff (1979) highlighted that many of the patterns, which Diamond 

was proposing as rules, could arise simply through independent colonisation of islands by 

species. This work was the first to consider community structure relative to a null expectation of 

randomness and sparked an on-going debate about the precise features of observed data that 

should be incorporated into null models in order to identify assembly rules in a robust manner 

(see Gotelli and Graves [1996] for a summary and chapters in Weiher and Keddy [1999] as 

examples of the debate). 

Assembly rules are based on the presence or absence of species at sites, recorded as zeros or 

ones in a species-by-site incidence matrix.  In order to create null model communities, species’ 

presences and absences are shuffled between incidence matrix cells, according to algorithms 

proposed to mimic species entering communities independently of one another (the resulting 

null model communities are presented in “randomised incidence matrices”). In order to 
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formulate robust null models of community structure, certain features of the observed data 

should be maintained in randomised incidence matrices.  

4.1.1 Guild proportionality assembly rules 

Guild proportionality rules were initially proposed as tests of the influence of interspecific 

competition on community structure (Wilson 1989). The link between guild proportionality and 

competition is typically thought to be niche limitation. If the number of resources is limited, 

then some species will competitively exclude others within the same guild and as a result the 

proportion of species in a community which belong to any one guild will be limited (Wilson 

1989). Guilds may refer to functional groups or higher taxonomic levels e.g. families and orders 

(Wilson 1999). While guild proportionality is seldom identified in natural communities (see 

Wilson [1999] for examples), the concept has considerable appeal for providing a 

straightforward assembly rule (Weiher et al. 1998). 

To test for guild proportionality, species incidences are summed across guilds and tests are 

performed on guild-incidence matrices (guilds-by-site matrices with cell values equal to the 

number of species in a guild at a site). Traditionally, to test guild proportionality, the proportion 

of species within each guild is calculated at all sites for both observed and null model (random) 

communities. Then, taking each guild separately, the variance in the proportions over the sites is 

calculated. Guild proportionality is inferred if the variance across observed communities is 

significantly less than that of the random communities. The significance level of this test is 

determined as the proportion of randomisations whose variance was greater than the observed 

variance. This is effectively a one-tailed test of whether the occurrence of guilds is more similar 

across sites than expected under the null model.  
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There are two major disadvantages of Wilson’s test for guild proportionality. Firstly, it does not 

test for all possible outcomes of comparison between observed and randomised matrices. Using 

Wilson’s 1-tailed test considers whether guild proportions are more similar than in random 

matrices (i.e., guild proportions are highly homogeneous across sites) or that observed guild 

proportions are not different from those of random matrices. However, guild proportions may 

also be more variable than those of the random matrices (i.e., highly heterogeneous across sites) 

and determining this requires a 2-tailed test. Secondly, Wilson’s method tests individual guilds 

separately, which can lead to ambiguity in interpreting community-wide patterns if some guilds 

show significant proportionality and others do not. Furthermore, there may be statistical 

limitations when testing for guild proportionality on a guild-by-guild basis. For example, in 

wetland communities, Weiher et al. (1998) could not reject the null (random assemblage) 

hypothesis due to issues associated with multiple hypothesis testing, even though there was a 

distinct tendency towards guild proportionality across several functional groups. An aggregate 

test for guild proportionality for assemblages as a whole (as opposed to multiply guild-by-guild 

tests) would add substantial statistical power to, and reduce ambiguity associated with the 

interpretation of, guild proportionality tests. 

Schluter (1990) developed a method called species-for-species matching which is essentially a 

test of guild proportionality across a whole community. The species matching method applies a 

2-tailed chi-squared test to assess homogeneity in guilds’ frequencies of occurrence across sites 

(i.e., guild proportionality). Under this method, the degree of randomness in community 

structure is assessed through the position of the observed test statistic relative to its expected (χ2) 

distribution. Statistics that fall in the middle of the distribution (i.e., 0.025<p<0.975) indicate 

that variation in assembly composition is not significantly different from a random assortment of 

taxa available in the total species pool (i.e., random structure). Statistics that fall in the extreme 
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right tail of the distribution (>97.5th percentile of the χ2 cumulative distribution function) 

indicate assemblage composition that is more heterogeneous across sites than expected under a 

random assortment. Finally, statistics that fall in the extreme left tail of the distribution (<2.5th 

percentile of cumulative distribution function) indicate highly homogeneous assemblage 

structure across sites (i.e., significant guild proportionality). 

The aim of this chapter is to develop a test for guild proportionality that can be applied across 

entire communities. Firstly, I outline key features of the observed data that, I argue, should be 

maintained in randomised matrices.  Then, several possible approaches to testing for guild 

proportionality rules in entire communities are assessed in the context of these four criteria.  For 

a test to be a good test for guild proportionality, it should conform to all four of these criteria, as 

well as accurately predicting community structure.  Since none of the existing approaches to 

testing guild proportionality meet all of these requirements, I propose a new approach in which 

randomisations are based on Bernoulli trials as a robust test for guild proportionality in entire 

communities.  Throughout I use a hypothetical dataset to illustrate some of the problems 

associated with existing approaches to testing guild proportionality in entire communities.   

4.2 CRITERIA FOR GOOD NULL MODELS OF GUILD PROPORTIONALITY 

In order to formulate robust null models of community structure, certain features of the observed 

data should be maintained in randomised matrices.  The four criteria presented below are key 

features of the observed data that should be maintained in null models of guild proportionality.  

Criterion 1: Sites must contain, on average, the same number of species in random matrices 

as in the observed data.  
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Criterion 2: Species must be sampled from the species pool with a probability equal to their 

frequency of occurrence in the pool. 

Not all sites in nature have the same species richness, nor do all species occur with the same 

frequency of occurrence within a region. If such features are not included in null models, it 

becomes unclear whether deviations of the observed data from the null model are a result of 

species interactions, or whether the deviations are simply a result of species occurring at sites 

with a different frequency in the observed data versus the null models (Wilson 1995, Stone et al. 

1996). Moreover, when species are allowed to occur in the null model communities with equal 

frequency of occurrence (rather than at their observed frequencies), Type I errors are common 

i.e., assembly rules are found in randomly structured communities (Wilson 1995, Stone et al. 

1996). One way of tackling these problems is to exactly maintain the observed site richness and 

number of species occurrences (i.e., the row and column totals of the observed incidence matrix) 

in the null models (Connor and Simberloff 1979, Stone et al. 1996). However, this approach has 

been criticised as being too severe since it is prone to Type II errors i.e., failing to identify 

assembly rules when they are present (Gotelli and Graves 1996). Instead, either the row or 

column totals, or both, may be allowed to fluctuate stochastically from one simulation to 

another, so long as the mean values across all simulations are equal to the observed values. Such 

an approach has been criticised by some authors as introducing too much flexibility into the null 

model (e.g. Stone et al. 1996). However, if each randomisation is thought of as a replicate 

community, then we should not expect row and column totals to remain fixed in each replicate 

community, since stochastic variation would allow these totals to vary around a mean value. 

Species richness and the number of sites as which a species is found are not fixed quantities in 

nature. They will vary according to resource availability and environmental conditions, and so 

there is no reason to fix site richness in the randomisation trials (Gotelli and Graves 1996). 
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Criterion 3: Guilds must have, on average, the same frequency of occurrence in random 

matrices as in the observed data. 

Criterion 4: The maximum number of species in a guild at a site cannot exceed the total 

number of species belonging to that guild in the total species pool. 

These constraints are specific to guild proportionality tests, for which species occurrences are 

aggregated into guilds.  Just as it is important to maintain, on average, the observed frequency of 

occurrence of species, it is also important to maintain the observed frequency of occurrence of 

guilds in random matrices.  This allows some guilds to be widespread and others to be range-

restricted, as is observed in nature.  Furthermore, since the basis of guild proportionality rules is 

that competition between species in the same guild constrains community structure, random 

guilds should contain no more species than belong to that guild in the total species pool. 

Below I consider existing approaches for testing guild proportionality in the context of the four 

criteria for a good null model for guild proportionality tests.  Most tests violate at least one of 

the above criteria and thus, I develop a new test for guild proportionality that fulfils all four of 

the above criteria for a good null model.  All analyses were conducted in R2.3.0 (R Core 

Development Team [2004]) and randomisations were performed 1000 times. 

4.3 ILLUSTRATIVE DATASET 

Throughout the chapter I use a hypothetical dataset to illustrate some of the problems associated 

with various tests for guild proportionality in entire communities.  The hypothetical species-

incidence matrix (Table 4.1), presents the presence/absence of 20 species (a1-d7) belonging to 4 

guilds (A-D) at 6 sites. Data were generated for each site by conducting a series of 20 Bernoulli 

trials to determine presences and absences of species (labelled a1 to d7, as per row 2 of Table 
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4.1) at sites. In order to generate sites that differed in their species richness, data for sites 1-3 

were generated with a different probability of a species being present at a site to sites 4-6 (p=0.3 

for sites 1-3 and p=0.8 for sites 4-6) (Table 4.1). In order to test for guild proportionality, the 

occurrences of each guild at each site were totalled and presented as a guild-incidence matrix 

(Table 4.2). For both the species- and the guild-incidence matrices, the row totals represent the 

total species richness of a site and the column totals represent the total number of occurrences of 

each species or guild.  It is important to note that these data were randomly assembled and as 

such should show no evidence for significant homogeneity or heterogeneity in any guild 

proportionality test. 

Table 4.1: Species-incidence matrix 

 
 
Table 4.2: Guild-incidence matrix 

 A B C D richness
Site 1 1 1 1 2 5 
Site 2 1 1 4 1 7 
Site 3 1 1 2 3 7 
Site 4 2 4 6 5 17 
Site 5 3 2 6 6 17 
Site 6 1 4 6 7 18 

occurrence 9 13 25 24 71 

 

4.4 WILSON (1989) GUILD-BY-GUILD TESTS 

The hypothetical data in Tables 4.1 and 4.2 were first tested for guild proportionality on a guild-

by-guild basis using the method of Wilson (1989). For this procedure the total species pool is 

 Guild A Guild B Guild C Guild D  
 a1 a2 a3 b1 b2 b3 b4 c1 c2 c3 c4 c5 c6 d1 d2 d3 d4 d5 d6 d7 richness

Site 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 5 
Site 2 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 7 
Site 3 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 7 
Site 4 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 17 
Site 5 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 17 
Site 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18 

occurrence 3 3 3 4 3 3 3 5 3 4 4 3 6 3 2 2 4 5 3 5 71 
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represented by all species a1 to d7. Once a species has been sampled at a site, it is removed from 

the species pool i.e., sampling occurs without replacement. Each species’ frequency of 

occurrence is equal to the number of occurrence of that species across all sites divided by the 

total number of occurrence of all species in the species pool (e.g. for species a1: 3/71 = 0.042). 

Species are sampled from the species pool with a probability equal to their frequency of 

occurrence. Thus, randomised guild-incidence matrices were generated by randomly sampling 

species from the total species pool (without replacement) and with a probability equal to their 

overall frequency of occurrence in the total species pool. Species were randomly allocated to 

sites until the site reached the observed richness level. The total count of species in each guild 

was recorded at each site in random species-incidence matrices, to produce randomised guild-

incidence matrices. This randomisation procedure allows the column totals in randomised 

matrices to vary stochastically, with an expected (i.e., mean) value equal to the observed. 

Observed row totals (i.e., observed site richness) are preserved in random matrices. 

For each site, in both the observed and the random communities, the number of species in each 

guild was expressed as a proportion of the total richness of the site. For each guild, the variance 

among sites in this proportional richness was calculated for both the observed data (Varobs) and 

for each of the random matrices (Varrand).  The ratio of Varobs to Varrand was then calculated 

separately for each random matrix.  Guild proportionality is evident in a guild if Varobs is 

significantly less than Varrand.  Significance is determined based on the proportion of random 

matrices for which Varobs<Varrand.  If this proportion is less than α (in this case α=0.05), then 

significant evidence of guild proportionality is inferred.   

There is no evidence of guild proportionality in the hypothetical dataset above. For each guild 

A-D, the observed variance in guild proportions falls within the 95% CI of Varrand (Figure 4.1, 
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αA=0.12, αB=0.12, αC=0.64, αD=0.50).  Thus the variance in all guild proportions cannot be 

distinguished from random, consistent with the fact that the data for these communities were 

generated as a random sample from a series of Bernoulli trials. 

 

Figure 4.1: Wilson (1989) guild-by-guild test for guild proportionality in hypothetical dataset from Table 
4.1. Small open circles are the mean variance in guild proportion across 1000 random matrices ± 95%CI. 
Solid circles are the observed variance in guild proportions. 

 

4.5 SPECIES MATCHING TEST (SCHLUTER 1990) 

The species matching test was proposed by Schluter (1990) as a test for guild proportionality in 

entire communities.  For this test, a chi-squared test for homogeneity is performed on the 

observed guild-incidence matrix (e.g. Table 4.2) and the location of the observed test statistic 

(X2) compared to the chi-squared density function with the appropriate degrees of freedom 

(calculated as (number of sites-1)×(number of guilds-1)).  In order to assess the usefulness of 

this approach as a test for guild proportionality in entire communities, I consider the 
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assumptions underlying a chi-squared test for homogeneity and compare them against the four 

criteria necessary for a good null model.   

The chi-squared test compares observed frequencies (i.e the number of species in a guild at a 

site) with the frequencies expected if there were no relationship between variables in the larger 

population (i.e. if species occur at sites independently of each other).  Under the null hypothesis, 

the expected frequency in each cell of the guild-incidence matrix is calculated from the observed 

data by multiplying the row total (i.e. the site richness) by the column total (i.e. the guild’s total 

number of occurrences) and dividing this value by the total number of observations.  Under such 

a formulation, the row and column totals of the expected (null model) guild-incidence matrix are 

exactly equal to those of the observed guild-incidence matrix.  Consequently, criteria 1 and 3, 

that the observed site richness and the observed frequency of occurrence of guilds, are 

maintained by the species matching test.  This is illustrated with the hypothetical dataset.  Table 

4.3 presents the expected values from a chi-squared test on the guild-incidence matrix in Table 

4.2.  Note that the row and column totals of the expected (null model) guild-incidence matrix are 

equal to the observed values presented in Table 4.2. 

Table 4.3: Expected values from a chi-squared test on the observed guild-incidence matrix 
 A B C D richness

Site 1 0.6 0.9 1.8 1.7 5 
Site 2 0.9 1.3 2.5 2.4 7 
Site 3 0.9 1.3 2.5 2.4 7 
Site 4 2.2 3.1 6.0 5.7 17 
Site 5 2.2 3.1 6.0 5.7 17 
Site 6 2.3 3.3 6.3 6.1 18 

occurrence 9 13 25 24 71 

 

To assess criteria 2 and 4, that species are sampled from the species pool with probability equal 

to the observed frequency of occurrence and that guilds contain no more species in random 
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matrices than in the observed species pool, we must consider how performing a chi-squared test 

translates into sampling species from a species pool.  Performing a chi-squared test is equivalent 

to sampling from a multinomial distribution (Biehl and Matthews 1984).  Under such a sampling 

regime, species are drawn from the species pool with replacement.  Thus the probability that a 

species is drawn from the species pool can be set at the species’ observed frequency of 

occurrence, and criterion 2 for a good null model is met.  However, sampling species with 

replacement means that a species may be allocated to a single site more than once.  

Consequently, when the number of species in each guild is aggregated into a guild-incidence 

matrix after randomisation, the number of species in a randomised guild at any one site may 

exceed the total number of species belonging to the guild in the whole region.  This clearly 

violates criterion 4, that guilds contain no more species in random matrices than in the observed 

species pool.  The consequence of this for guild proportionality tests is that there is an over-

representation of the variability in the number of species in guilds in random community 

matrices and thus, random communities are skewed towards being overly heterogeneous. 

Problems associated with sampling species with replacement from the total species pool are 

illustrated below using the hypothetical dataset.  Random species-incidence matrices were 

generated on a site-by-site basis by sampling species from the total species pool with 

replacement. Species were sampled with a probability equal to their frequency of occurrence in 

the total species pool and sites were allocated their observed number of species. Species 

incidence matrices were summarised into guild-incidence matrices.  For each guild, I summed 

the number of times the random guild contained more species than belong to that guild in the 

entire species pool (i.e., how often criterion 4 was violated across the 1000 randomisation trials).  

Under the species matching (sampling with replacement) protocol the maximum number of 

species in a guild was exceeded at at least one site in 42% of trials for guild A, 48% for guild B, 
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79% for guild C and 50% for guild D.  This error is also evident in the expected frequencies 

from the chi-squared test, which may also be greater than the maximum number of species in a 

guild (see Table 4.3 guild C at site 6 has expected frequency of 6.3 species, yet guild C only 

contains 6 species in the observed data). 

In order to assess the effects of allowing guilds to contain more species than they posses in the 

species pool, chi-squared (X2) statistics were calculated for each random guild-incidence matrix 

and combined across all randomisations into a frequency distribution of test statistics. The 

frequency distributions of X2 statistics were compared to the χ2 distribution (df=15).  Figure 4.2 

illustrates that the frequency distribution of test statistics is well characterised by the χ2 

distribution.  However, both erroneously suggest highly homogeneous community structure.  

This highlights how, under a species matching approach, random communities are skewed 

towards being overly heterogeneous and significant guild proportionality may be falsely 

inferred. 
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Figure 4.2: Frequency distribution of test statistics from guild-incidence matrices generated by sampling 
with replacement (grey bars). Note that this distribution corresponds with the χ2 distribution. The solid 
circle is the observed (X2) test statistic and the dashed lines represent the 2.5th and 97.5th percentiles of 
the cumulative density function. Note that the observed statistic is more extreme than the 2.5th percentile 
of the cumulative distribution function (p=0.993), erroneously indicating significant guild 
proportionality. 

 

4.6 MODIFIED SPECIES-MATCHING APPROACH 

A potentially robust test for guild proportionality in entire communities would result if the 

species matching method can be modified in such a way so that random guilds are not allowed 

to contain more species than are present in that guild in the total species pool, whilst still 

adhering to the other three criteria for a good null model.  Since the problem with the species 

matching method was that species are sampled with replacement, a modified species matching 

approach can be developed in which species are sampled without replacement from the total 

species pool.  This method effectively samples species from the species pool as recommend by 
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Wilson (1989, 1995) in his guild-by-guild test, but then combines the randomised data into an 

entire communities test.   

Random matrices can be constructed by sampling species from the total pool without 

replacement and with a probability equal to their frequency of occurrence in the total species 

pool as suggested by Wilson (1989). Then to obtain a null distribution of test statistics for the 

structure of entire random communities, X2 statistics for each random matrix are calculated and 

presented as a frequency distribution. This null distribution, rather than the standard χ2 

distribution, can be compared to the observed X2 test statistic. If the value of the observed 

statistic is less than the value of the 2.5th percentile of the null distribution, then there is 

significant homogeneity in the community structure (i.e., guild proportionality). If the value of 

the observed statistic is greater than the value of the 97.5th percentile of the null distribution, 

then there is significant heterogeneity in the community structure. Finally, if the observed 

statistic is between the 2.5th and the 97.5th percentile of the null distribution, the community 

structure cannot be distinguished from random.  

However, this test requires an additional modification.  Performing a chi-squared test on the 

observed and randomised guild-incidence matrices assigns expected frequencies for each matrix 

that are calculated by multiplying the row total by the column total and dividing this value by 

the total number of observations (as in a standard chi-squared test).  However, as we have seen 

above, calculating the expected frequencies in such a manner allows guilds to have more species 

in random matrices than in the total species pool.  Therefore, we need to adjust the expected 

values used to calculate the X2 statistics so that they accurately reflect the number of species in 

guilds.   This can be done by taking the means for each cell (across all randomisations) as more 

appropriate expected values.  That is, assign the expected value for each cell in the guild-
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incidence matrix as the mean cell value over all randomisation trials.  Then, in order to calculate 

the test statistics for both the observed and the random matrices (X2), a chi-squared statistic can 

be calculated manually using the mean frequencies from randomisation as the expected values 

i.e. 
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where G is a guild and L is a site (i.e., location). 

This procedure was applied to the hypothetical dataset.  In no instances did the number of 

species in a random guild exceed the number of species contained in that guild in the total 

species pool.  Furthermore, when the observed X2 statistic was compared to the appropriate null 

distribution, it fell between the 2.5th and the 97.5th percentile of the null distribution (at the 18.2th 

percentile), accurately representing the random structure of the hypothetical dataset (Figure 4.3). 
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Figure 4.3: Frequency distribution of test statistics from guild-incidence matrices generated by sampling 
without replacement as per modified species-matching procedure (grey bars).  The solid circle is the 
observed (X2) test statistic, which accurately falls within the random part of the null distribution. 

 

The modified species-matching method has solved the problem of random guilds containing too 

many species and thus, as a first approximation it fulfils all the criteria for a good null model.  

However, in modifying the species matching approach, we have also changed how species are 

sampled from the larger species pool (i.e., species are now sampled without replacement).  It 

must, therefore, be confirmed that the species are still being sampled with a frequency of 

occurrence equal to that of the observed data (i.e. fulfilling criterion 2 for a good null model).   

Wilson (1989, 1995) emphasises the importance of sampling species according to their 

frequency of occurrence in the total species pool. This allows some species to be widespread 

and others to be rare in random matrices and is a key constraint of randomised matrices. 
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However, sampling species without replacement does not exactly preserve this constraint. 

Instead, for each randomisation trial, the probability with which a species is drawn from the 

species pool depends on the order in which species are drawn. For example, take the following 

very simple incidence matrix: 

 spp a spp b spp c richness 
site 1 1 0 1 2 
site 2 1 1 0 2 
site 3 1 0 1 2 

occurrence 3 1 2 6 
 

The total species pool from which to sample is {a,a,a,b,c,c} and a species can only be allocated 

once to a site. So for example, if spp a is drawn first, then the remaining species pool from 

which to sample is {b,c,c}. To see how the probability of drawing a particular species depends 

on the order in which species are drawn, let us consider drawing species a and b from the 

species pool: 

  Pr(a) × 
6
1

3
1

2
1)|Pr( =×=ab      (4.2) 

  Pr(b) × 
10
1

5
3

6
1)|Pr( =×=ba      (4.3) 

The frequency of occurrence of species a in the total pool is 1/2, while that of species b is 1/6. 

However, by drawing species a first (equation 4.2), the probability of species b being drawn 

next becomes 1/3 (not 1/6) and by drawing species b first (equation 4.3), the probability of 

species a being drawn next becomes 3/5 (not 1/2). Hence, the overall probability of drawing one 

species a and one species b is different depending on which order the species are sampled. 

However, in guild proportionality tests we need to know the probability with which each species 

occurs in the total species pool and verify that it is the same as the species’ observed frequency 
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of occurrence. This probability can be calculated by averaging the individual probabilities of a 

species over all the possible sampling orders.  

Total Pr(a) = Pr(a first) + Pr(b first)×Pr(a second) + Pr(c first)×Pr(a second) 

Total 1 1 3 2 3Pr( ) ( ) ( )
2 6 5 6 4

a = + × + ×   

Total 17Pr( )
20

a =  

However, the expected frequency of species a in the total species pool is 3/4 (i.e., Pr(drawing a 

first = 1/2) + Pr(not drawing a first and drawing a second = 1/2×1/2)), which is not equal to 

17/20.  This highlights that when sampling occurs without replacement from the total species 

pool, species may be sampled with a probability different to their overall frequency of 

occurrence.  One complication of this is that once species occurrences are totalled across the 

randomised species incidence matrix, the values may not match the observed values (i.e., the 

column totals are do not match between observed and randomised matrices).  Continuing with 

the simple example; 

The expected frequency with which species a will occur in the randomised matrix (i.e., the 

expected column total of the randomised matrix for species a) is equal to sum of the 

probabilities of it being sampled at no sites, one site, two sites and all sites: 
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= 2.55 

Since the observed value is 3, we can see that the column totals of the observed incidence matrix 

may not be equal to the expected column total of the random incidence matrix. This inequality 

may also affect the column totals of guild-incidence matrices since a guild’s frequency of 

occurrence is calculated as the sum of all the occurrences for the species that belong to that 

guild. This problem is illustrated using the illustrative dataset (Tables 4.1 and 4.2). The species 

incidence matrix (Table 4.1) was randomised by sampling species with replacement and then 

combined into guild-incidence matrices. The expected frequency of each guild is then equal to 

the mean cell values in the guild-incidence matrix (over all randomisations). As is illustrated in 

Table 4.4, the expected values do not match the observed. Thus both the second and third 

criterion for a good null model (preserving observed species and guild occurrences) have been 

violated and the modified species matching approach does not appear to be a robust test for 

guild proportionality in entire communities. As a potential alternative I explore a method for 

randomising species-incidence matrices developed by Stone et al. (1996, 2000). 

Table 4.4: Mean (expected) cell frequencies from 1000 random guild incidence matrices using the 
modified species matching method. Note that expected number of occurrences from the random matrices 
are not equal to the observed values, i.e., compare column totals. 

 A B C D 

Site 1 0.7 0.9 1.7 1.7 
Site 2 1.0 1.3 2.4 2.3 
Site 3 0.9 1.3 2.4 2.4 
Site 4 2.5 3.4 5.3 5.8 
Site 5 2.5 3.4 5.3 5.8 
Site 6 2.7 3.6 5.6 6.2 

total occurrence 
(expected) 10 14 23 24 

observed 9 13 25 24 
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4.7 GUILD RANDOMISATION METHOD (STONE ET AL. [1996, 2000])  

Stone et al. (1996, 2000) present a method for randomising species presence-absence data 

without changing the observed species-incidence matrix. Under this approach, species are 

randomly allocated to guilds with equal probability, whilst remaining on exactly the same sites 

as in the observed data. Thus, the guilds in random matrices have the same total number of 

species as in the observed data, but the identity of those species changes with each 

randomisation trial. The authors presented the guild randomisation method as a means of 

maintaining species’ geographic ranges in random matrices. (Under traditional species-

incidence randomisation methods, species are constrained to occur at the same number of sites 

as in the observed data, but those sites may occur well outside the geographic range of the 

species). 

The guild randomisation approach may also be developed into a guild proportionality test in 

entire communities.  Random matrices are created by swapping the groups to which species 

belong, while maintaining the observed species-incidence matrix. The random species-incidence 

matrices are then totalled into guild-incidence matrices and an X2 statistic calculated for each. 

These X2 statistics are then combined into a (null) frequency distribution for the guild 

randomisation method.  Like the modified species matching test, using the expected values from 

a chi-squared test produces inaccurate numbers of species in guilds.  Therefore corrected test 

statistics must be calculated from equation 4.1 with Eij equal to the expected frequencies from 

the guild randomisation method. 

The advantage of using the guild randomisation method to create null models is that the 

observed species incidence matrix is not altered in the randomisation trials.  Consequently, both 

the observed site richness and the observed frequency of occurrence of species are maintained in 
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the random data.  Furthermore, while species are randomly allocated to guilds, the observed 

number of species in each guild is maintained at the observed value.  Thus three of the four 

criteria for a good null model have been fulfilled. 

The fourth criterion for a good null model, that guilds’ frequencies of occurrence must, on 

average, be equal to the observed value, is not fulfilled by the guild randomisation test.  

Different species have different numbers of occurrence and each time a species is allocated to a 

new guild, those occurrences contribute to that guild’s total occurrences. Since the allocation of 

species to guilds changes with each randomisation trial, the total number of occurrences for that 

guild also changes. Consequently, when the total number of occurrences of each guild is 

averaged over all randomisation trials, the average number of occurrences is not equal to the 

observed values (compare rows 7 and 9 of Table 4.5). Therefore, while the guild randomisation 

method takes great care to maintain the observed frequency of occurrence of species, it does not 

maintain the observed frequency of occurrence of guilds.  The severity of this problem will 

depend on differences in the average number of species occurrences in each guild. For example, 

swapping guilds for species that have similar numbers of occurrence will have a small effect on 

the average number, because all guilds are similar to begin with. However, if different guilds 

have very different numbers of occurrence, swapping the guilds to which species belong will 

have a large effect of the average. 

To illustrate the discrepancies in the frequency of occurrence of guilds in observed and 

randomised matrices, I performed the guild randomisation procedure on the hypothetical dataset.  

Table 4.5 presents the mean frequency of occurrence of each guild at each site (i.e., guild-

incidence matrix cells averaged over all randomisation trials).  A comparison of the observed 
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and expected frequency of occurrence of each guild reveals that the third criterion for a good 

null model is violated by the guild randomisation method. 

Table 4.5: Expected frequencies from the guild randomisation method. Note that total guild occurrences 
are not equal to the observed values.  

 A B C D site richness 
(mean) 

Site 1 0.8 1 1.4 1.8 5 
Site 2 1.0 1.3 2.2 2.4 7 
Site 3 1.1 1.4 1.9 2.6 7 
Site 4 2.6 3.4 5.1 5.9 17 
Site 5 2.6 3.4 5.1 5.9 17 
Site 6 2.7 3.7 5.3 6.3 18 

total occurrence 
(mean) 11 14 21 25  

95% CI 7-14 10-18 17-25 20-30  

observed 9 13 25 24  

 

4.8 BERNOULLI TRIAL APPROACH 

The above analyses highlight the importance of maintaining four key features of the observed 

data when formulating the null distribution for guild proportionality test across whole 

assemblages. Since none of the above tests fulfil all four of the key criterion for a good null 

model, I outline a new approach to randomising species-incidence matrices that preserves the 

four key features detailed above. 

The probability of occurrence of a species S within the species pool (SPPS,POOL) is equal to its 

total number of occurrences in the region divided by the total number of occurrence of all 

species in the region i.e. 
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where n is the number of occurrences, L is a site and S is a species. 

The expected frequency of occurrence of a species S occurring only at site L (E(SPPSL))is equal 

to the probability of species S in the total pool multiplied by the total richness of site L: 

  LPOOLSSL RSPPSPPE ×= )Pr()( ,     (4.5) 

where RL is the richness of site L. 

Then we can think of whether species S occurs at site L as a Bernoulli trial with probability p, 

where p is equal to the expected frequency of occurrence of a species occurring at a site, 

E(SPPSL)). 

Now that we know p, we can conduct Bernoulli trials for each species at each site (i.e., for each 

cell of the species-incidence matrix) and determine whether or not a species is present according 

to probability p (see Appendix 2 for R code to perform these analyses). Once the species-

incidence matrix is randomised, the number of species in each guild can be summed to generate 

a random guild-incidence matrix. The X2 statistic is then calculated for each random matrix and 

combine these over all randomisations to produce the null distribution of test statistics against 

which the observed X2 statistic is compared. 

This approach allows the richness of sites and the total number of species’ occurrences to 

fluctuate stochastically across randomisation trials, however, the expected value of each is equal 

to the observed value. This is because the expected frequency of each species occurring at each 

site (i.e., E(SPPSL)) sums to the observed richness of site L when calculated across all species 

occurring at a site (i.e., summed across a row) and E(SPPSL) also sums to the observed number 

of species occurrences when calculated for species S across all sites (i.e., summed down a 

column). Thus the expected row and column totals match the observed, but may fluctuate across 
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each random matrix. Furthermore, because each cell of the species-incidence matrix is sampled 

independently, the observed probability of species in the total pool is known exactly. In some 

instances, the probability of a species occurring at a site (E(SPPSL)) may be greater than 1 and in 

this case, E(SPPSL) is set at exactly 1. Allocating species to sites under a Bernoulli trial means 

that species can only be allocated to a site once, thus preventing guilds from having more 

species in randomised communities than they have in nature. Finally, the mean number 

occurrence of guilds is equal to the observed value.  Thus the Bernoulli trial approach preserves 

all four of the criteria proposed for a good null model for guild proportionality tests.   

To verify the above points, I applied the Bernoulli trial approach to the hypothetical dataset.  

Table 4.6 highlights that the site richness, guilds’ occurrence and the maximum number of 

species in a guild are consistent between the observed and the randomised data.  By 

remembering that the species probability of occurrence in the Berboulli trials, p, is equal to the 

species frequency of occurrence (E(SPPSL)), we see that all four of the criteria proposed for a 

good null model for guild proportionality tests are maintained.  Furthermore, when the obsseved 

X2 statistic is compared to the null distribution of test statistics generated under the Bernoulli 

trial method, it accurately falls within the random part of the distribution (17.7th percentile, 

Figure 4.4). 
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Table 4.6: Expected frequencies from Bernoulli trials. Note that the mean site richness and total guild 
occurrences are equal to the observed values. Also note that guilds do not contain more species than are 
observed in the observed data. 

 A B C D site richness 
(mean) observed 

Site 1 0.6 0.9 1.8 1.7 5 5 
Site 2 2.2 3.1 6.0 5.7 17 17 
Site 3 0.9 1.3 2.5 2.4 7 7 
Site 4 0.9 1.3 2.5 2.3 7 7 
Site 5 2.2 3.1 6.0 5.7 17 17 
Site 6 2.3 3.3 6.0 6.1 18 18 

total occurrence 
(mean) 9 13 25 24   

observed 9 13 25 24   
 
 
 
 

      

 

Figure 4.4: Frequency distribution of test statistics from guild-incidence matrices generated by Bernoulli 
trials (grey bars).  The solid circle is the observed (X2) test statistic, which accurately falls within the 
random part of the null distribution. 
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4.9 DISCUSSION 

The construction of robust null models of community structure is a rigorously debated topic in 

the assembly rules literature (e.g. Gotelli and Graves [1996], Wieher and Keddy [1999]). As I 

have demonstrated above, the evidence of how communities are structured differs with the null 

model that is used. Thus it is critical that null models of community structure be carefully 

developed and tested on simulated data. The validity of each of the approaches explored in this 

chapter (i.e., species matching, modified species matching, guild randomisation, Bernoulli trial) 

can be determined by considering two factors; firstly, whether the test accurately predicts 

community structure in simulated data, for which the structure of the assemblage is known and 

secondly, whether the test preserved important features of the observed data in the null models. 

These factors are summarised for the four approaches in the tables below. 

 
Table 4.7: Accuracy of tests (assessed using the illustrative dataset). 

 Species 
matching 

Modified species 
matching 

Guild 
randomisation Bernoulli 

Random 
structure no yes yes yes 
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Table 4.8: Preservation of key observed characteristics in null models. 

 Species 
matching 

Modified species 
matching 

Guild 
randomisation Bernoulli 

Site richness 
(row totals) yes yes yes yes 

Species’ frequency 
of occurrence 
(column totals) 

yes no yes yes 

Guilds’ frequency 
of occurrence 
(column totals) 

yes no no yes 

Max # species in 
guilds no yes yes yes 

 

The species matching approach (Schluter 1990) is clearly not an appropriate test of guild 

proportionality in entire assemblages. The underlying assumption of this method is that 

sampling occurs with replacement in randomisation trials. The advantage of sampling with 

replacement is that species are sampled with probability exactly equal to their observed 

frequency of occurrence. However, a major disadvantage of sampling with replacement is that 

species may occur more than once at a single site in random communities. This introduces 

excess variability into null models and also allows sites to have more species in a guild than 

occur in that guild in the total species pool. As a consequence of these flaws, the species 

matching approach overestimates the degree of homogeneity in random or heterogeneously 

structured communities, which may result in the false assignment of assembly rules.  

Randomising incidence matrices through random draws of species from the total species pool 

(without replacement) was thought to be a robust method of creating null models of community 

structure, so long as the observed species’ frequencies of occurrence and site richness were 

maintained (Wilson 1995, Brown et al. 2000). However, the analyses performed here have 
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revealed some inconsistencies with this randomisation method that make the proposed modified 

species matching approach problematic.  In particular, species may not be sampled from the 

species pool with a probability equal to their frequencies of occurrence.  This occurs because 

when sampling occurs with replacement, the probability of a species being chosen differs with 

the order in which a species is selected.  When these probabilities are averaged over all possible 

sampling orders the resulting total probability may not be equal to the species’ frequency of 

occurrence.  Furthermore, for large species-incidence matrices, averaging each probability over 

all possible sampling orders will be extremely computationally intensive.  As a consequence of 

this inconsistency, the observed column totals of both species- and guild-incidence matrices may 

not be equal to the expected column totals in the randomised matrices, in violation of criteria 2 

and 3 for a good null model.  

The guild randomisation method was developed to construct null models for Fox’s favoured 

states rule (Stone et al. 1996, 2000). Under this rule, the proportion of species within guilds 

must be homogeneous among separate communities within a region, in addition to all functional 

groups having equal numbers within each individual community (Fox 1987). However, the guild 

proportionality rule is less restrictive and does not require all guilds to have the same number of 

species at any one site, only the same proportion of species between sites. Consequently, when 

species-incidence matrices are randomised via the guild randomisation method, the observed 

frequency of occurrence of guilds is not maintained in random matrices. 

The Bernoulli trial approach developed above results in accurate predictions of community 

structure when tested against simulated data. Furthermore, it incorporates the key features of 

observed incidence matrices that are important to maintain in null models, and is the only one of 

the four approaches proposed here to do so. In addition to having good statistical properties, the 
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Bernoulli method is also the most biologically realistic null model. When testing for assembly 

rules, the biological null model is that species occur at sites independently of one another. This 

is reflected in the Bernoulli approach which treats each cell of the species-incidence matrix as an 

independent trial, in contrast to the other methods which randomise on a site-by-site basis. Thus, 

the Bernoulli trial approach is proposed as a robust test of guild proportionality in aggregated 

communities and will be employed in the following chapter to test for assembly rules in 

macroalgal communities. 
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Chapter 5: Scale transitions and assembly rules in marine macroalgal communities: a 
global synthesis3 

 

5.1 INTRODUCTION 

One of the long-standing debates in community ecology concerns the extent to which species 

interactions regulate community composition. One view is that interactions among species are 

highly influential in determining community structure and that such interactions constrain the 

structure of assemblages to a limited suite of possible states (Clements 1936, MacArthur 1972, 

Brown et al. 2000). An alternative view suggests that interactions are not strong enough to affect 

community structure. Rather, communities are comprised of individuals that disperse to a site 

and tolerate the local physical conditions (Mason 1947, Connor and Simberloff 1979, Hubbell 

2001). Consequently, community assembly is an individualistic process, determined largely by 

the effects of historical and environmental conditions on individual species’ colonization and 

extinction dynamics. Communities organized via individualistic processes are often termed 

“random” assemblages of species, because individualistic processes are thought to give rise to 

assemblages which resemble random assortments of species from a larger species pool. In 

contrast, communities in which species interactions are influential are considered to be non-

random or deterministic assemblages, since the interactions restrict community composition to a 

limited suite of possible states. 

In 1975 Diamond proposed “assembly rules” as a means of characterizing how individual 

species combine from larger species pools to form communities. Assembly rules formally 

describe empirical non-random patterns in community organization (Weiher and Keddy 1999). 

The first assembly rules concerned patterns of species co-occurrence in avian communities 

                                                 
3 This chapter is in prep as: Kerswell AP and Connolly SR (in prep) Scale transitions and assembly rules in marine 
macroalgal communities: a global synthesis. The American Naturalist. 
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(Diamond 1975), and since then they have been sought more broadly. For example, a recent 

meta-analysis applied Diamond’s assembly rules across 96 terrestrial datasets and revealed that 

species co-occur in most natural communities less frequently than expected by chance (Gotelli 

and McCabe 2002). Species interactions are through to be the primary mechanism that 

determines non-random patterns of community structure i.e., assembly rules (Diamond 1975, 

Weiher and Keddy 1999), however, it important to note that other factors, such as habitat 

specificity, may also be influential (Peres-Neto 2004).  

Assembly rules may also be present at levels of organization higher than individual species, 

such as functional groups or higher taxonomic levels (Wilson 1999). In such cases, the relative 

proportion of species within each group is predicted to remain stable across communities (the 

“guild proportionality rule” of Wilson [1989]), with assemblages exhibiting a more consistent 

composition than would be expected on the basis of a random assortment of taxa from the 

available species pool. A particularly restrictive form of this rule (the “favoured states” rule of 

Fox [1987]) posits that each guild is equally represented across different local communities and, 

within each local community, the difference in the number of species in each guild differs by no 

more than one. Such communities are said to be in a “favoured state”. 

Establishing the existence of assembly rules requires that the observed assemblages deviate 

significantly from assemblages constructed at random from the larger species pool. However, 

specific tests have been conducted in different ways. For Diamond’s co-occurrence rules, 

presence-absence matrices are randomised so that the observed total number of occurrences 

each species and the observed richness of sites (i.e., row and column totals) are maintained 

while presence records are swapped among matrix cells. Patterns of species occurrence are then 

directly compared between observed and randomised matrices (Connor and Simberloff 1979, 
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Gotelli and McCabe 2002). Tests for the guild proportionality rule also randomise presence-

absence matrices, however, species are subsequently pooled into functional groups. If the 

number of species in groups is less variable across sites in the observed versus the randomised 

matrices, there is evidence of guild proportionality (Wilson 1989). In this chapter I utilize the 

Bernoulli trial approach developed in the previous chapter to test for guild proportionality in 

aggregated macroalgal assemblages. 

Patterns of assemblage structure have been investigated at a variety of scales. Temporally, there 

is evidence for non-random patterns in community structure, which persist over periods ranging 

from several years (Fukami 2004) to millennia (McGill et al. 2005). Spatially, non-random 

patterns of community structure have been documented in <1m2 quadrats (e.g. in grass 

communities [Wilson 1999]) as well as across entire deserts and island archipelagos (e.g. small 

mammals and birds [Diamond 1975; Kelt et al. 1995]). However, there has been virtually no 

attention to how patterns of community structure (i.e., assembly rules) change with scale. The 

few exceptions (Gotelli and Ellison 2002, Mouillot et al. 2005) have focused on patterns of 

species co-occurrence, and have not yet yielded unambiguous conclusions about how assembly 

rules change with or depend on spatial scale. 

Here I examine assemblage structure in macroalgal communities. Specifically, I conduct a 

multi-scale test of the guild proportionality rule, using a hierarchy of random assembly models 

at scales ranging from regional to global. The analyses identify highly non-random structure 

within macroalgal communities consistent with a guild proportionality assembly rule. 

Additionally, these analyses reveal the geographical scales over which guild proportionality 

rules apply, and they also show how environmental and historical differences among regions can 

give rise to differences in assemblage structure among biogeographic regions. 
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5.2 METHODS 

The composition of benthic marine algal assemblages was determined at 120 sites across the 

Indo-Pacific and Atlantic Oceans. Sites were located between 50oS and 70oN and assigned to 1 

of 6 regions – Indian (20), tropical Pacific (30), north Pacific (10), south Pacific (14), tropical 

Atlantic (21), north Atlantic (25) (numbers in brackets indicate how many sites occur in each 

region, see Figure 5.1 for location of sites). Tropical regions extended between 30oS and 30oN, 

as the 30o parallels are generally recognized as the limit of tropical marine ecosystems (i.e., 

coral reefs). The south Atlantic was not included, because there were too few sites to conduct 

meaningful analyses. 

The genus composition of algal assemblages was derived from a database detailing the global 

distribution of 1069 genera of fully marine macroalgae (see Chapter 2, Kerswell [2006]). An 

algal genus was recorded as present in an assemblage if its geographic range overlapped the site 

at which that assemblage occurred. Thus local assemblages are comprised of all the genera that 

potentially occur at a site (due to range overlap) i.e., the local genus pool. Such measures of 

local communities have been used successfully in previous studies of assembly rules in both 

marine and terrestrial systems (Kelt 1999, Bellwood and Hughes 2001). Additionally, 

geographic range-derived estimates of occurrence reduce biases associated with patchy 

sampling effort of phycological studies across the globe (McAllister et al. 1994, Kerswell 2006).  

Algal assemblage structure was defined at every site as the genus richness of nine algal 

functional groups. The functional groups were based on those of Steneck and Dethier (1994) 

(see Table 5.1 for full details). All of the functional groups are globally distributed. 
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5.2.1 Hierarchy of random assembly models 

I tested for guild proportionality in algal assemblages by comparing observed assemblages to 

null models, which assumed random assemblage structure at a variety of scales. Assemblage 

structure was examined at scales ranging from global to regional and separate models were 

constructed at each geographic scale. Each scale was chosen to reflect different assumptions 

about the underlying biological groupings of the source genus pools. For each model I generated 

a source genus pool (in the form of an incidence matrix) by recording the presence and absence 

of all algal genera at all sites encompassed by the scale of the model. Thus the manipulation of 

scale occurred as a scaling down of the source genus pools from which random communities 

were assembled (see below), while the structure of observed “local” communities remained 

unchanged. See Figure 5.2 for a visual representation of the relationship between the models. 

At the largest scale, the global model tested the simplest scenario whereby all communities 

follow the same guild proportionality rule; i.e., the proportion of each algal group was more 

similar across sites than if communities were assembled at random from the global genus pool. 

The global model was then sub-divided in two ways. Firstly, the global model was sub-divided 

at the biome scale, since ~30% of macroalgal genera have geographic ranges that are restricted 

to temperate waters. This division resulted in two biomes models, tropical and temperate, which 

each tested for guild proportionality rules within either tropical or temperate algal communities. 

Secondly, the global model was sub-divided at an ocean-basin sale, since ~40% of algal genera 

are endemic to either the Indo-Pacific or Atlantic Ocean. This division resulted in two oceans 

models, Indo-Pacific and Atlantic, which each tested for guild proportionality rules within the 

respective oceans. At the smallest scale, six regional models were developed to test for separate 
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guild proportionality rules in each region. These models allowed for the evolutionary and 

physiological separation of algal taxa.  

5.2.2 Testing for guild proportionality  

I used the Bernoulli trial approach developed in Chapter 4 to test for guild proportionality in 

aggregated algal communities. Observed genus-incidence matrices were constructed for each 

model (e.g. global model: 120 sites x 1069 genera, tropical biome model: 71 sites x 650 genera). 

Each genus-incidence matrix was randomised according to the Bernoulli trial algorithm, to 

create 1000 random genus-incidence matrices for each model. These matrices were summarized 

into functional group-incidence matrices by summing all the genera in each functional group at 

each site included in the model. A null distribution of X2 test statistics was created by 

calculating the chi-squared statistic for all functional group-incidence matrices generated for 

each model. Each observed incidence matrix was also summarized into a functional group-

incidence matrix and the corresponding X2 test statistic calculated.  

The position of the observed test statistic for each model was compared with its corresponding 

null distribution in order to assess homogeneity in the frequency of occurrence of groups across 

sites at each scale and determined if communities were assembled at random from larger genus 

pools. Observed statistics that fell in the middle of the null distribution (i.e., between the 2.5th 

and 97.5th percentile) indicated that variation in assembly composition was not significantly 

different from a random assortment of the algae available in the larger genus pool (i.e., random 

structure). Observed statistics that fell in the extreme right tail of the null distribution (>97.5th 

percentile) indicate assemblage composition that was more heterogeneous across sites than 

expected under a random assortment and observed statistics that fell in the extreme left tail of 

the null distribution (<2.5th percentile) indicated highly homogeneous assemblage structure 
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across sites (i.e., assemblage structure was more similar among sites than expected by chance 

and consistent with a guild proportionality rule). 

In addition to the null model analyses, I used linear discriminate analysis to explore the nature of 

observed algal assemblages. The first and second discriminant scores were plotted for each site 

and the location of regions in multidimensional space defined as the boundary around all the 

sites occurring in that region. All analyses were performed using R2.3.0 (R Development Core 

Team [2004]). 

5.3 RESULTS 

I found strong evidence that algal assemblages at sites were not a random subset of the larger 

genus pool, at any scale. At the largest, global scale the observed X2 test statistic was located to 

the extreme right of the null distribution (Figure 5.3, Table 5.2), highlighting assemblage 

composition that was significantly more heterogeneous among sites across the globe than 

predicted by the corresponding random assembly models (i.e., assemblage structure more 

different than expected by chance). Similarly at the oceans scale, in both the Indo-Pacific and 

the Atlantic Oceans models, the observed X2 statistics were also located towards the far right of 

the null distribution (Figure 5.4A,B Table 5.2). Hence there is no evidence that a consistent 

guild proportionality rule applies at any of these very broad spatial scales.  

At the biome scale, the location of the observed chi-squared test statistics relative to the null 

distribution differs for tropical versus temperate models. For the temperate biomes model the 

observed X2 test statistic is located to the extreme right of the null distribution (Figure 5.4D, 

Table 5.2), as in the global and oceans models. However, for the tropical biomes model the 

observed test statistic falls to the extreme left of the null distribution (Figure 5.4C). This 

indicates that assemblage composition that was more homogeneous among sites in the tropics 
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than predicted by the corresponding random assembly model (i.e., assemblage structure more 

similar than expected by chance) and thus there is evidence for significant guild proportionality 

within tropical biomes. At the regional scale, there is also a trend towards highly heterogeneous 

structure in temperate regions and highly homogeneous structure in tropical regions (Figure 5.5, 

Table 5.2), again indicating guild proportionality among tropical but not temperate sites.  

Patterns represented in multivariate plots of the observed algal assemblage data are consistent 

with the patterns of algal assemblage structure revealed by the null model analyses (Figure 5.5). 

Each region occupies a unique area of multidimensional space (i.e., no two regions are exactly 

superimposed upon one another) and while there is noticeable overlap of tropical regions, 

temperate regions tend to be distinct both from the tropics and from one another. Biomes are 

separated along the first discriminant axis, with the majority of temperate sites lying to the right 

and the majority of tropical sites lying to the left. This axis alone explains ~50% of the between 

region variance in algal assemblage structure.  

5.4 DISCUSSION 

5.4.1 Assembly rules in macroalgal communities 

The results of this chapter reveal highly non-random structure of macroalgal communities. Both 

within individual tropical regions and across the tropics as a whole, algal assemblages show 

significant consistency in functional group composition across sites, suggesting the existence of 

guild proportionality at these scales. Previously, evidence for guild proportionality has not been 

found at scales greater than a few hectares and has only rarely been found in plant communities 

(Wilson 1999). The finding that the guild proportionality rule applies to algal assemblages at 

scales of thousands of kilometres highlights how examining community assembly at a 

macroecological scale can complement the insights afforded by finer-scale studies.  
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Algal assemblage structure changes substantially with scale. At the very broadest scales, guild 

proportions vary greatly among sites and there is no evidence of global or ocean-basin guild 

proportionality rules. In contrast, algal assemblages within tropical regions conform to region-

specific guild proportionality rules, despite large differences in overall algal richness at this 

scale (e.g. genus richness of assemblages varies over 2-fold in all tropical regions: Kerswell 

[2006]). In contrast to the tropics, regional and biome guild proportionality rules do not hold in 

temperate areas. There is large variation in guild proportions within individual temperate 

regions. For example, most groups vary in guild proportions by at least 2-fold across sites within 

a single region, but this difference may be as great as 8-fold in some groups (e.g. gelatinous 

functional group in the north Atlantic). At a biome scale, these difference are even greater, e.g. 

up to 9-fold in the fine branching functional group. Thus there is no evidence for guild 

proportionality within temperate areas at any of the scales investigated in this study. 

5.4.2 Mechanisms of community assembly 

Instances of non-random patterns of community structure are generally used to infer that 

interspecific competition shapes community structure (Weiher and Keddy 1999). Indeed the 

guild proportionality rule was initially proposed as a specific test for interspecific competition as 

a driver of community structure (Wilson 1989). The link between guild proportionality and 

competition is typically thought to be niche limitation. If the number of resources is limited, 

then some species will competitively exclude others within the same guild and as a result the 

proportion of species in a community which belong to any one guild will be limited (Wilson 

1989). In macroalgal communities, light and available substrate are highly limiting resources 

and at local scales there is direct evidence that competition for these factors can be influential in 

structuring macroalgal communities in predictable and consistent ways (Luning 1990, Irving 
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and Connell 2006). However, patterns alone do not uniquely imply process and it is therefore 

important to consider what other processes may drive communities towards non-random 

configurations (Gotelli and McCabe 2002, McCay et al. 2004). 

Factors other than competitive interactions that generate non-random patterns of community 

structure include shared habitat preferences between taxa, the location of geographic ranges and 

non-competitive species interactions (McCay et al. 2004, Peres-Neto 2004). It has been shown 

across several taxa that communities that occur in areas of similar habitat type are likely to be 

highly convergent (Schluter and Ricklefs 1993, Peres-Neto 2004). Thus it is possible that the 

highly homogeneous nature of algal assemblage structure within the tropics may be an artefact 

of individual regions sharing highly similar habitats. However, sites within individual regions 

and across the tropical biome (where guild proportionality rules are present) encompass a range 

of habitat types including coral reefs (e.g. Micronesia, Jamaica), rocky reefs (e.g. Taiwan, 

Brazil), sandy beaches (western Australia, west African coast) and muddy shores (e.g. Bay of 

Bengal, Mauritania). Despite these large differences in habitat, algal assemblages are highly 

homogeneous in structure throughout the tropics. 

Non-competitive interactions, such as mutualistic associations, may also cause guild 

proportionality. In the case of macroalgae, ~12.5% of algal genera are obligate epiphytes or 

parasites of other macroalgae. Since the epiphytic/parasitic genera are not distributed equally 

across functional groups, I reran the above analyses excluding this 12.5% of taxa. Excluding the 

epiphytic/parasitic taxa did not alter the results at the global, oceans or biomes scale, and at the 

regional scale, the outcome of comparisons observed guild proportions and their corresponding 

null models were the same for all but the Indian Ocean, where support for guild proportionality 

became statistically non-significant. This suggests that mutualisms do not drive the observed 
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guild proportionality rules. Additionally, the removal of epiphytic algae from analyses assumes 

that competitive interactions do not occur within the epiphytic group, yet this is not always the 

case in natural systems (Morcom et al. 2005). 

Some authors argue that highly structured communities (i.e., communities in which assembly 

rules are evident) may result merely from the location and overlap of species’ geographic 

ranges, rather than from species interactions (Stone et al. [1996, 2000] but see also Brown et al. 

[2000]). In this study, local algal assemblages were defined by those genera whose geographic 

ranges overlap a particular site. Therefore, if the location of algal geographic ranges were 

driving guild proportionality in tropical regions, then the rules should only be present at those 

scales at which most sites were incorporated by the ranges of most genera. That is, the same 

genera would contribute to the structure of most sites, resulting in highly similar assemblages 

within an area. However, in addition to strong regional guild proportionality rules, significant 

guild proportionality is found throughout the tropical biome. At this scale, the geographic ranges 

of many taxa (~45%) are restricted to either the tropical Atlantic or Indo-Pacific. Hence sites 

throughout the tropics (especially those in the Indo-Pacific versus the Atlantic Ocean) differ in 

which genera contribute to the structure of communities, but functional groups still constitute 

very similar proportions of local richness across all tropical sites.  

At the very broadest scale, historical and environmental factors are likely to be responsible for 

the lack of consistent guild proportionality within oceans or across the globe. At these large 

scales, algal communities are highly heterogeneous, reflecting differences between tropical and 

temperate environments. Temperate regions have long been physically separated, both by land 

barriers and the tropical Tethys Sea, leading to isolation of species within either the Atlantic or 

Indo-Pacific Oceans and within separate hemispheres. Such regional isolation is likely to have 
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resulted in the evolution of unique algal floras in different temperate areas and hence the lack of 

a temperate biome guild proportionality rule. Within temperate regions, eastern and western 

coastlines often experience very different temperature and light regimes. For example, in the 

northern Atlantic Ocean, temperatures are consistently 10oC lower on the western as compared 

to the eastern coastlines as a result of the polar Labrador Current (Pickard and Emery 1990). 

Consequently, algal communities in the eastern north Atlantic have species rich floras 

dominated by warm-temperate taxa, while communities on the western coastlines are 

characterized by species poor Arctic-associated taxa (Luning 1990). Consequently, guild 

proportionality rules for macroalgae do not hold at a regional scales (as defined in this study) in 

temperate areas. 

Biological interactions appear to be important in maintaining consistent algal assemblage 

structure only within the tropics. This finding compares well with patterns of community 

structure in coral and reef fish assemblages, which are highly similar throughout much of the 

tropics (Bellwood and Hughes 2001, Bellwood et al. 2002). The tropics are climatically quite 

stable and all three tropical regions were connected until only 3.2 million years ago (with the 

closing of the Isthmus of Panama). These factors may have lessened the influence of historical 

and environmental differences and facilitated homogenization of assemblage structure (i.e., the 

evolution of a consistent guild proportionality rule) across the tropics to a much greater degree 

than in temperate regions. 

5.4.3 Methodology 

The approach employed in this study has a number of advantages. Firstly, the multi-scale 

analysis allowed several random assembly models to be formulated. This suite of models 

allowed me to unambiguously identify the scales at which guild proportionality assembly rules 
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operate. The use of the Bernoulli trial approach for testing guild proportionality rules also has a 

number of advantages. I was able to test the guild proportionality hypothesis in the aggregate, 

rather than testing each guild separately. This overcomes the loss of power and potential 

ambiguity of testing a single ecological hypothesis by means of multiple statistical tests. 

Furthermore, employing a 2-tailed test allowed me to identify deviations from random structure 

as either more heterogeneous or more homogeneous than expected by chance. Finally, the 

multivariate analyses are highly consistent with the model-based analyses, indicating that the 

results are likely to be quite robust. 

In conclusion, much of the debate over assembly rules has focused on a dichotomy: whether 

individualistic processes or species interactions shape the structure of ecological communities. 

This study highlights how processes that generate highly homogeneous non-random assemblage 

structure, such as species interactions, and those that do not, such as environmental or historical 

differences, can be important at different scales or in different parts of the world, even within a 

single taxonomic group. In particular, I find that within tropical regions and across the tropical 

biome as a whole macroalgal assemblages show strikingly concordant composition, consistent 

with Wilson’s (1989) guild proportionality rule, even when genus richness and habitat type vary 

substantially at these scales. The unprecedentedly large scale at which I find these rules to be 

operating suggests that community structure may be homogenised over much larger 

geographical scales than has previously been realized (cf. Wilson [1999]). However, I also 

identify a role for environmental and historical differences, especially outside the tropics. There 

is substantial potential for such multiple-scale approaches to provide a framework for 

understanding how different processes interact across scales to shape global patterns in 

community structure. For this reason, I believe that such approaches warrant further exploration.  
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Figure 5.1: Location of the 120 sites at which algal assemblage structure was determined. Sites 

were pooled into six regions: Indian Ocean, tropical Pacific, north Pacific, south Pacific, tropical 

Atlantic and north Atlantic. The tropical biome extends from 30oN to 30oS and the temperate 

biome encompasses areas to the north and south of these latitudes. 
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Figure 5.2: Diagram showing the relationships between global, ocean, biome and regional 

models. 
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Figure 5.3: Frequency distribution of X2 statistics from null models at the global scale. Genus-

incidence matrices were randomised according to the Bernoulli trial approach (Chapter 4) and 

aggregated into functional-group incidence matrices. X2 statistics were calculated for each of 

these matrices and are presented as the above frequency distributions. The observed X2 statistic 

is marked as solid points. 
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Figure 5.4: See caption on facing page. 
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Figure 5.5: See caption on facing page.
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Figure 5.6: Linear discriminant analysis of genus richness at all sites for algal functional 

groups. The location of individual sites along discriminant axes is not marked, however, shapes 

outline the outer boundary of sites within each region. Tropical regions are delineated with 

dashed lines and temperate regions with full lines. 
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Table 5.1: Functional group classifications used in this study and corresponding classification of 

Steneck & Dethier (1994). 

 
Functional 

group 
(this study) 

Steneck & Dethier (1994) 
classification Comment Example 

Coarsely 
branched Corticated macrophytes - Chondrus, 

Gigartina 

Crustose Crustose algae May be free living or epiphytic Peyssonnelia, 
Ralfsia 

Filamentous Filamentous algae - Cladophora 

Finely branched Corticated foliose algae - Dictyota, Padina 

Gelatinous - Soft and gelatinous; may be 
lightly calcified Liagora 

Jointed 
calcareous 

Articulated calcareous 
algae - Jania, Halimeda 

Leathery Leathery macrophytes - Laminaria, 
Sargassum 

Sheets Foliose algae Single cell layer in sheet or 
tube 

Ulva, 
Hypoglossum 

Tufts/feathery Filamentous algae 
Filaments gathered in tufts, 
often with common stalk or 

holdfast 

Asparagopsis, 
Chlorodesmis 
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Table 5.2: Observed chi-squared statistics and the corresponding percentile of the null 

distribution for each model (null models were based on 1000 randomisations). 

 

Scale Model Observed 
X2 statistic 

Percentile of 
null distribution 

Global Global 1624 >0.999 

Biome Tropical 261 <0.001 

 Temperate 828 >0.999 

Ocean Indo-Pacific 672 >0.999 

 Atlantic 702 >0.999 

Regional Indian 46 0.018 

 tropical Pacific 78 0.010 

 tropical Atlantic 66 0.072 

 north Pacific 106 >0.999 

 south Pacific 90 >0.999 

 north Atlantic 287 >0.999 
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Chapter 6: General Discussion 

 

6.1 ALGAL RICHNESS PATTERNS 

The first maps of global diversity patterns for benthic marine algae arose from this thesis 

(Kerswell 2006). These maps show that contrary to previous suggestions, benthic marine algae 

have distinct richness gradients at a global scale. Algal richness peaks at mid-latitudes and 

decreases both towards the tropics and polar regions. This highlights marine algae as an 

exceptional group, since very few taxa have richness peaks outside of the tropics (Willig et al. 

2003). Longitudinally, algae also display unusual patterns in the Atlantic Ocean, with the 

highest richness occurring on the eastern Atlantic coastlines. In the Indo-Pacific Ocean, 

however, richness “hotspots” occur in southern Australia and Japan, resulting in a band of very 

high genus richness throughout the central Indo-Pacific, which is consistent with richness 

patterns of other taxa in this ocean (Hughes et al. 2002, Roberts et al. 2002).  

Prior to this study, the general consensus was that macroalgae did not display globally consistent 

latitudinal richness gradients (Bolton 1994, Willig et al. 2003). However, this is clearly not the 

case. Previous studies of algal richness were conducted at restricted spatial scales, and when 

synthesised by Bolton (1994) no clear gradients in algal richness were evident. Yet, while 

Bolton’s (1994) results are consistent with those documented here – areas of high and low 

richness occur both in the tropics and in temperate regions – the inference that algae do not 

show latitudinal gradients at a global scale is false. When algal richness is considered in 2-

dimensions, i.e., both latitudinally and longitudinally, it becomes clear that the gradients are 

distinct. The results of this study, therefore, highlight the importance of considering richness 

patterns both at very broad geographic scales, as well as 2-dimensionally. 
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Rigorously documenting algal genus richness patterns provids the first opportunity to explore 

the processes which create and maintain these patterns at a global scale. This study also 

highlights the importance of considering species’ geographic ranges when attempting to 

understand the processes that drive richness patterns. I analysed algal richness gradients in the 

context of patterns in range size and overlap to understand the likely drivers of algal richness 

patterns at a global scale. There is little evidence that energy, productivity, climatic stability or 

competition are major determinants of algal richness patterns. Rather, the results implicate 

habitat areas and ocean currents as the most plausible drivers of observed diversity patterns. 

 In order to understand patterns of marine diversity more generally, I performed a case study of 

the order Bryopsidales. The order Bryopisdales is reef associated group (Littler and Littler 

2003), which has Indo-Pacific richness patterns that are strikingly concordant with those corals 

and reef fishes. Using a spatial regression-based approach to model the patterns of 

bryopsidalean richness, and comparing the results to those from an analogous study of corals 

and reef fishes (Bellwood et al. 2005), I revealed several key features about the processes that 

create and maintain marine diversity in the tropical Indo-Pacific. Firstly, geometric constraints 

(i.e., a mid-domain effect) are highly important in predicting richness patterns for all three 

groups. Secondly, while temperature and nitrate are the environmental variable most well 

correlated with algal richness, reef area is the environmental variable most well correlated with 

coral and reef fish richness. This suggests that the environmental variables that are most 

important in determining species richness patterns are likely to be taxon specific. Finally, by 

examining the deviations of the richness patterns predicted by both the bryopsidales and the 

coral and fish model, I identified a potential role of ocean currents in shaping richness patterns 

in the tropical Indo-Pacific Ocean.  
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6.1.1 Algal richness patterns – future directions 

To date the conventional approach to analysing the drivers of species richness patterns has been 

to use regression models. However, associated with this approach is the problem of 

understanding causation from correlative studies. Thus the challenge for future studies which 

aim to uncover the processes that create and maintain diversity gradients is to conduct the 

analyses in a more causative framework. A possible way forward has recently been suggested by 

Connolly (2005), who developed an approach that incorporates both geometric constraints and 

environmental gradients into process based models of species richness gradients. A 

complementary approach is that developed by Goldberg et al. (2005), which allows for testing 

of hypotheses about regional rates of taxon origination, extinction, and dispersal using 

information on the ages and current distributions of taxa. Now that the most fundamental data 

on algal distributions are available, there is much scope to apply new and emerging techniques 

to understand the processes driving the observed patterns.  

6.2 ALGAL COMMUNITY STRUCTURE 

To date the debate concerning the processes that shape communities has been highly polarised 

(Weiher and Keddy 1999). However, the new Bernoulli trial-based guild proportionality rule 

developed in Chapter 4, and its application to algal data across multiple spatial scales (Chapter 

5), highlights that processes such as species interactions and historical or environmental 

differences, may be important at different scales. For marine algal functional groups, guild 

proportionality rules hold throughout both individual tropical regions and the tropical biome as a 

whole. At these scales, species interactions appear to be important in shaping communities. In 

contrast, algal community structure is highly heterogeneous in temperate oceans, at all scales 

examined in this study. Temperate regions have been long isolated from one another, and within 
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individual regions, environmental conditions fluctuate greatly, thus preventing the operation of 

guild proportionality rules.  

The new Bernoulli trial-based guild proportionality rule developed in this thesis has numerous 

advantages over existing tests. Foremost, the test lends itself to application across multiple 

spatial scales. By applying it to algal data at scales ranging from regional to global, I have 

identified both the scales at which guild proportionality rules hold and how different processes 

may interact across spatial scales to shape global patterns in community structure. 

Methodologically, the new test overcomes several of the problems associated with testing for 

guild proportionality on a guild-by-guild basis. Furthermore, the test preserves all the key 

features of observed communities, including the frequency of occurrence of both species and 

guilds. Most importantly, the Bernoulli trial approach to randomising species-incidence matrices 

provides a null model that is both biologically and statistically consistent; species enter 

communities (i.e., are drawn from the larger species pool) independently of one another.  

6.2.1 Algal community structure – future directions 

Assembly rules are highly controversial and difficult to document (Weiher and Keddy 1999). 

This is largely due to the reliance on statistical models to draw conclusions about the processes 

that shape community structure (Stone et al. 1996). Currently there is a dearth of experimental 

data available to rigorously test and calibrate tests for assembly rules. Consequently, future 

manipulative studies which directly test the extent to which species interactions influence the 

structure of communities will be critical both to understanding whether assembly rules exist and 

also for calibrating the existing statistical tests.  
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6.3 SUMMARY 

The overarching aim of this thesis was to use benthic marine algae as a model group to test on a 

global scale, some of the most common theories of biodiversity and to improve our 

understanding of the processes that drive the observed patterns. The first step in this research 

was to identify the genus richness patterns for marine algae, and in doing so I have revealed that 

algae have distinct, yet exceptional richness gradients. I have highlighted the value of 

understanding richness patterns in the context of both the number of taxa at a site and also how 

species’ ranges overlap in geographic space. The results of this thesis highlight that very broad-

scale processes such as geometric constraints and ocean currents are likely to be highly 

important in determining the richness patterns of the tropical Indo-Pacific Ocean, while the 

environmental factors that are of primary importance appear more taxon specific. Our on-going 

challenge is to extend the methods used to understand the drivers of richness patterns beyond 

correlative approaches. Biodiversity may also be considered in terms of community structure 

and characterised by assembly rules. Here I have developed a new test for the guild 

proportionality rule, which is robust to many of the statistical problems associated with other 

assembly rule tests. When applied to macroalgal communities across multiple spatial scales, this 

test highlights how processes that generate highly homogeneous assemblage structure, such as 

species interactions, and those that do not, such as environmental or historical differences, can 

both be important in shaping community structure. Thus this thesis has both furthered our 

knowledge of how diversity is distributed on earth and made important inroads into 

understanding the drivers of the observed patterns.  
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APPENDIX 1: DATABASE SUMMARY 
 
Table A1: Summary of algae occurrence database.  The number of taxa at each site represents 
the range-derived data used to create diversity maps (Figure 2.2 & 2.3).  References are the 
original species lists from which occurrence data were extracted and geographic ranges 
complied. 
 

Site ID # Genera 
# Endemic 

Genera 
# Bryops 
species 

# Endemic 
bryops 
species Latitude Longitude References 

1 215 0 44 0 12.47 53.87 140 
2 261 0 51 0 -26.01 32.58 32, 36 
3 247 2 24 1 -33 17.56 141 

20 289 0 83 0 -8.12 156.83 184 
21 289 0 82 0 -9.05 159.15 184 
22 290 0 82 0 -8.63 158.15 184 
23 287 0 82 0 -9.07 160.13 184 
24 288 0 82 0 -9.59 160.18 184 
25 286 0 80 0 -10.44 162 184 
26 285 0 96 1 -5.09 119.28 167 
27 299 0 104 1 -5.15 145.82 26, 27, 30, 33 
28 170 1 51 0 16.75 -88.08 92, 93 
29 269 0 83 0 -6 72 45, 146 
30 164 1 46 0 19.74 -87.67 43 
31 253 0 69 1 -12.5 177.08 120 
33 195 0 31 0 14.71 -16.31 58, 73 
34 278 1 19 1 43.37 -8.38 13 
35 267 0 58 0 25.63 122.07 190 
36 177 0 54 1 12.52 -82.71 128 
37 239 2 16 0 20.3 -156.25 62 
38 277 0 72 1 21.53 121.35 172, 173 
39 275 0 69 1 22.38 121.3 172, 174 
40 193 0 28 1 19.87 -16.61 97 
41 197 1 23 0 -27.12 -109.37 130, 137 
42 339 3 36 1 -33.49 26.17 9 
43 449 21 85 8 36.16 133.16 76 
44 174 0 12 0 26.68 45.88 15, 16 
45 177 0 18 0 7.58 -12.18 8, 73 
46 197 0 51 0 -21.15 -159.45 23 
47 275 0 41 0 -29.05 167.59 23, 99 
48 182 0 62 0 9.33 -79.37 46, 150, 188, 189 
49 205 0 51 0 -16.3 -151.45 123 
51 171 0 23 0 -23.1 -135 123 
52 181 0 39 0 -18.04 -141 123 
53 205 0 52 0 -16.45 -151 123 
54 199 0 52 0 -15.47 -145.1 123 
55 203 0 52 0 -16.1 -148.14 123 
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Site ID # Genera 
# Endemic 

Genera 
# Bryops 
species 

# Endemic 
bryops 
species Latitude Longitude References 

56 168 0 16 0 -9.22 -140.01 123 
57 198 0 51 0 -14.49 -148.34 123 
58 204 0 52 0 -17.29 -149.52 123 
59 170 0 29 0 -22 -140 123 
60 192 0 51 0 -16.4 -142.5 123 
61 198 0 52 0 -15 -147.4 123 
62 190 0 49 0 -16 -142.25 123 
63 198 0 52 0 -15.42 -144.43 123 
64 193 0 52 0 -14.35 -145.13 123 
65 192 0 51 0 -14.3 -144.58 123 
66 203 0 52 0 -17.32 -149.34 123 
67 199 0 52 0 -16.45 -144.15 123 
68 198 0 51 0 -15 -148.1 123 
69 203 0 52 0 -17.23 -150.37 123 
70 168 0 15 0 -8.55 -139.32 123 
71 199 0 52 0 -17.5 -144.5 123 
75 284 0 64 0 -14.66 136.25 126 
76 290 1 70 0 -12.62 141.52 126 
77 299 0 77 0 -16.93 149.18 100 
78 279 0 54 0 -28.31 31.25 41, 86 
79 302 7 77 1 -20.29 147.9 127 
80 294 0 100 0 -9.3 147.07 28, 29, 102 
81 287 2 75 0 -13.96 143.85 60 
82 326 7 75 0 -20.85 148.78 60 
83 317 6 60 0 -25.36 152.64 60 
84 315 7 75 0 -22.93 150.68 60 
85 305 6 56 0 -27.16 153.19 60 
86 313 7 76 3 -18.95 147 60 
87 231 0 56 1 -13.82 -171.75 149 
88 229 0 35 0 -3.5 -172.5 152 
89 272 0 62 0 -0.52 166.93 154 
90 182 0 22 0 16 40 91 
92 239 0 65 0 -13.25 40.52 12 
93 204 0 55 0 12.3 -70 171 
94 209 1 54 0 12.15 -68.27 171 
95 230 1 21 3 -35.22 173.95 114 
96 160 0 8 0 29.33 34.57 96 
97 231 0 56 1 -14 -170.5 148 
98 253 0 66 0 -18 179.5 121, 151 
99 287 1 85 0 -21.22 165.45 55 

100 249 0 20 1 38.3 -28 117, 153 
101 275 2 23 1 39.58 -8 153 
102 276 0 18 0 42.67 -5.02 153 
103 295 9 18 0 46.88 -0.04 153 
104 245 0 8 0 54.01 5.93 153 
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Site ID # Genera 
# Endemic 

Genera 
# Bryops 
species 

# Endemic 
bryops 
species Latitude Longitude References 

106 201 0 8 0 62.31 12.3 153 
107 134 0 2 0 67.77 28.77 153 
108 289 0 19 0 53.38 -7.76 153 
109 286 1 11 0 52.97 -1.53 153 
110 254 1 12 0 57.34 -2.13 153 
111 227 0 8 0 60.09 -1.09 153 
112 186 0 6 0 62.02 -6.47 153 
113 108 0 2 0 72.65 5 153 
114 78 0 0 0 78.12 15.4 153, 169 
115 167 2 4 0 64.63 -17.8 56, 153 
116 126 0 2 0 68.8 -32.58 153 
117 125 0 2 0 68.22 -56.73 153 
118 107 0 1 0 70.3 -68.3 153 
119 138 0 2 0 56.28 -61.04 153 
120 197 0 6 0 48.84 -54.28 153 
121 188 0 6 0 49.65 -61.65 153 
122 192 0 6 0 46.57 -66.69 153 
123 186 0 6 0 44.07 -68.81 153 
124 182 1 7 0 42.54 -70.52 153 
125 179 1 7 0 41.56 -70.84 153 
126 178 1 7 0 41.14 -71.33 153 
127 172 0 7 0 40.83 -72.78 153 
128 156 0 7 0 40.02 -74.25 153 
129 150 0 7 0 38.84 -75.21 153 
130 156 0 7 0 37.92 -75.2 153 
131 165 0 9 0 36.98 -75.65 153 
132 175 2 4 0 56.28 -132.88 139 
133 233 6 7 0 51.19 -126.76 139 
134 230 6 7 1 47.09 -123.38 139 
135 226 2 6 0 43.79 -123.82 139 
136 224 0 7 0 41.39 -124.06 5 
137 225 0 11 0 27.7 -113.25 5 
138 286 0 36 0 -26.48 113.72 178, 179, 180, 181, 182, 183
139 334 0 39 0 -28.73 114.34 178, 179, 180, 181, 182, 183
140 358 0 41 0 -30.82 115.04 178, 179, 180, 181, 182, 183
141 364 0 45 0 -32.85 115.27 178, 179, 180, 181, 182, 183
142 347 0 44 0 -34.24 115.54 178, 179, 180, 181, 182, 183
143 338 0 41 0 -34.47 116.79 178, 179, 180, 181, 182, 183
144 345 0 42 0 -34.05 118.81 178, 179, 180, 181, 182, 183
145 353 0 44 0 -33.51 120.8 178, 179, 180, 181, 182, 183
146 354 3 44 1 -33.62 122.64 178, 179, 180, 181, 182, 183
147 359 0 44 0 -32.95 124.52 178, 179, 180, 181, 182, 183
148 363 0 44 0 -31.84 126.4 178, 179, 180, 181, 182, 183
149 412 0 46 0 -31.34 128.5 178, 179, 180, 181, 182, 183
150 444 3 56 0 -31.39 130.87 178, 179, 180, 181, 182, 183
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Site ID # Genera 
# Endemic 

Genera 
# Bryops 
species 

# Endemic 
bryops 
species Latitude Longitude References 

151 437 2 53 0 -32.05 133.21 178, 179, 180, 181, 182, 183
152 436 16 50 2 -33.47 134.82 178, 179, 180, 181, 182, 183
153 437 0 50 0 -33.47 134.82 178, 179, 180, 181, 182, 183
154 433 2 50 0 -34.8 136.03 178, 179, 180, 181, 182, 183
155 428 1 49 0 -35.37 137.91 178, 179, 180, 181, 182, 183
156 399 0 44 0 -36.91 140.31 178, 179, 180, 181, 182, 183
157 379 0 41 0 -38.32 142.18 178, 179, 180, 181, 182, 183
158 369 0 41 0 -38.29 144 178, 179, 180, 181, 182, 183
159 366 0 39 0 -38.26 145.6 178, 179, 180, 181, 182, 183
160 333 0 35 0 -37.91 147.28 178, 179, 180, 181, 182, 183
161 322 0 33 0 -37.66 147.22 178, 179, 180, 181, 182, 183
162 429 1 49 0 -35.4 137.39 178, 179, 180, 181, 182, 183
163 333 0 32 0 -40.52 146.29 178, 179, 180, 181, 182, 183
164 284 4 24 0 -41.53 147.75 178, 179, 180, 181, 182, 183
165 258 0 21 0 -42.55 146.4 178, 179, 180, 181, 182, 183
166 296 0 23 0 -41.52 144.94 178, 179, 180, 181, 182, 183
167 247 1 23 0 -34.32 20.2 19 
168 245 2 23 0 -33.56 18.28 71 
169 181 1 7 0 41.2 -70.45 164 
170 265 0 78 0 9.1 92.44 72 
171 265 0 78 0 8 93.22 72 
173 268 0 81 0 7 93.53 72 
174 270 0 62 0 22.34 120.36 64 
175 387 21 28 8 43.63 142.25 109 
176 453 21 88 8 38.21 135.81 191 
177 238 0 8 0 54.09 7.52 14 
178 232 0 29 4 -35.7 -70.38 131, 138 
179 245 2 77 5 18 -66 10 
180 176 0 38 4 -14.77 -38.37 40 
181 241 0 77 0 -2.99 40.16 31, 146 
182 142 0 20 0 19.1 -95.95 85 
183 174 0 14 1 27.2 51.63 17 
184 187 0 19 1 24.28 54.25 146 
185 249 0 79 0 -9.42 46.37 146 
186 257 0 86 0 -6 53.17 146 
187 107 0 0 0 -37.83 77.52 146 
188 258 0 65 0 11.4 92.44 146 
189 174 0 13 0 26.05 50.31 146 
190 211 0 32 1 21.36 90.63 146 
191 250 1 53 0 15.27 95.25 146 
192 265 0 79 1 -16.63 59.63 146 
193 270 0 71 0 -10.3 105.4 146 
194 265 0 67 0 -12.07 96.53 146 
195 245 0 75 0 -12.11 44.18 146 
196 268 1 82 0 -6.34 72.24 146 
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197 189 0 31 0 11.85 43.1 146 
198 269 2 90 8 8.11 77.3 146 
199 290 2 83 1 -6.92 110.72 146 
200 182 0 18 1 27.6 54.77 146 
201 172 0 10 0 29.2 48 146 
202 242 0 63 0 9.88 72.75 146 
203 268 1 68 3 -18.75 47.24 146 
204 272 0 90 0 3.68 101.83 146 
205 260 0 83 1 3.03 73.06 146 
206 275 1 77 1 -20.14 57.35 146 
207 237 1 56 0 -18.4 36.3 146 
208 266 0 78 0 8 93.22 146 
209 186 0 17 0 25.57 56.28 146 
210 208 0 34 2 24.3 64.51 146 
211 175 0 14 0 26.03 51.2 146 
212 272 0 72 0 -21.08 55.28 146 
213 271 0 69 0 -19.75 63.5 146 
214 166 0 10 0 22.41 38.38 146 
215 268 0 82 0 -10 60 146 
216 262 1 90 0 -4.5 55.5 146 
217 272 0 94 0 1.32 103.86 146 
218 218 0 52 0 5.2 48.3 146 
220 269 1 89 3 7.49 80.17 146 
221 105 0 0 0 -38.44 77.3 146 
222 247 0 78 0 -7.35 39.69 146 
223 266 0 80 0 7.99 99.18 146 
224 201 2 34 0 15.89 47.46 146 
226 246 2 25 1 -31.32 18.14 155 
227 142 0 5 0 -47.7 179.08 59 
228 153 0 5 0 -48.02 166.57 59 
229 133 0 3 0 -50.75 166.17 59 
230 138 0 3 0 -49.68 178.8 59 
231 115 0 3 0 -52.53 169.13 59 
232 269 0 57 0 24 121 87 
233 338 3 56 4 -30.41 26.28 145, 146 
234 167 0 13 0 -16.39 13.28 73 
235 178 0 20 0 10.2 -14 73 
236 178 0 22 0 11.6 -15.34 73, 176 
237 172 0 17 0 5.42 -9.32 73 
238 174 1 15 0 5.57 -0.66 73 
239 169 0 14 0 6.18 1.32 73 
240 169 0 14 0 6.24 2.31 73 
241 166 0 13 0 5.37 5.31 73 
242 163 0 13 0 3.36 8.9 73 
244 158 0 12 0 -1.5 10.26 73 
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245 163 0 13 0 1.4 9.42 73 
246 163 0 13 0 1 7 73 
247 163 0 13 0 1.37 7.27 73 
248 160 0 12 0 -1.24 5.37 73 
249 104 0 1 0 67.5 -100 84 
250 28 0 0 0 82.44 -61.3 84 
251 31 0 1 0 81.72 -64.64 84 
252 52 0 1 0 80.27 -70.2 84 
253 57 0 1 0 79.08 -75.3 84 
254 56 0 1 0 78.77 -74.77 84 
255 71 0 1 0 76.08 -85.55 84 
256 65 0 1 0 76.48 -90.42 84 
257 65 0 1 0 76.7 -89.52 84 
258 66 0 1 0 76.5 -90.5 84 
259 81 0 1 0 74.53 -82.45 84 
260 92 0 1 0 73.02 -85.15 84 
261 96 0 1 0 72.73 -93.8 84 
262 96 0 1 0 72.36 -94.13 84 
263 103 0 1 0 69.34 -91.3 84 
264 96 0 1 0 72.7 -77.85 84 
265 97 0 1 0 72.66 -74.44 84 
266 114 0 1 0 64.44 -65.27 84 
267 117 0 1 0 61.39 -71.11 84 
268 108 0 1 0 64.7 -82.2 84 
269 108 0 1 0 66.52 -86.23 84 
270 110 0 1 0 59.65 -85.16 84 
271 110 0 1 0 52.63 -80.49 84 
272 104 0 1 0 69.37 -94.86 84 
273 106 0 1 0 68.62 -95.88 84 
274 106 0 1 0 68.1 -97.57 84 
275 106 0 1 0 69.61 -98.46 84 
276 101 0 1 0 68.63 -102.91 84 
277 94 0 1 0 69.14 -106.17 84 
278 96 0 1 0 68.5 -105.72 84 
279 97 0 1 0 68.25 -106.9 84 
280 97 0 1 0 67.98 -108.82 84 
281 82 0 0 0 68.15 -112.78 84 
282 71 0 0 0 68.81 -115.08 84 
283 59 0 0 0 72.17 -118.48 84 
284 58 0 0 0 70.78 -121.19 84 
285 4 0 0 0 69.43 -133.05 84 
286 2 0 0 0 69.58 -139.03 84 
287 23 0 0 0 82.72 -63.34 84 
288 26 0 0 0 80.67 -88.6 84 
289 45 0 0 0 79.34 -92.88 84 
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290 66 0 1 0 76.86 -89.5 84 
291 56 0 0 0 77.18 -95.2 84 
292 57 0 0 0 76.74 -96.5 84 
293 65 0 0 0 75.94 -96.03 84 
294 68 0 1 0 75.75 -92.85 84 
295 76 0 1 0 74.56 -94.69 84 
296 65 0 0 0 75.34 -97.33 84 
297 57 0 0 0 75.39 -102.18 84 
298 49 0 0 0 75.89 -106.54 84 
299 59 0 0 0 75.34 -105.68 84 
300 64 0 0 0 74.03 -106.75 84 
301 60 0 0 0 71.85 -113.6 84 
302 43 0 0 0 75.82 -111.43 84 
303 36 0 0 0 75.51 -118.52 84 
304 31 0 0 0 76.15 -119.22 84 
305 27 0 0 0 75.73 -121.02 84 
306 44 0 0 0 75.58 -110.78 84 
307 279 0 70 0 20.25 122 147 
309 293 0 96 0 13.54 124.18 147 
310 290 0 91 0 15.38 122.53 147 
311 294 0 100 0 12.73 120.72 147 
312 295 0 99 2 12.21 123.36 147 
313 293 0 97 0 11.66 124.89 147 
314 286 0 92 0 9.37 118.16 147 
315 296 0 100 0 10.82 122.01 147 
316 294 0 95 0 10.71 124.4 147 
317 293 0 98 0 10.16 123.67 147 
318 293 0 96 0 9.48 124.11 147 
319 294 0 99 0 9.81 123.11 147 
320 292 0 96 0 7.53 124.83 147 
321 288 0 96 0 6.4 121.59 147 
322 254 0 44 1 32.18 -64.48 142 
323 294 4 37 2 28.3 -14.1 57 
324 259 1 23 0 32.45 -17 118 
325 268 1 12 1 30.72 -114.75 7 
326 451 21 86 8 33.5 132.05 108 
327 225 0 14 0 39.95 120.8 160 
328 294 0 100 0 12.34 120.62 147 
331 292 0 99 0 9.13 123.35 147 
333 286 0 93 0 5.35 120.38 147 
334 296 0 99 0 11 123.5 147 
360 287 1 10 0 53.49 -10 133 
361 128 0 12 0 -23.02 -42 42 
362 268 0 35 0 -25.54 113.35 78 
363 361 2 46 1 -32.01 115.28 65, 67 
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364 264 0 35 1 28.12 -177.24 2 
365 267 0 38 4 25.69 -169.82 2 
366 142 0 11 0 -20.5 -29.32 124 
367 316 3 48 0 -31.67 29.43 18 
368 295 1 50 0 -29.59 31.03 50 
369 321 4 41 1 -32.72 151.29 101, 103, 104, 105 
370 301 2 42 0 -31.28 159.09 103, 104, 106 
371 307 13 12 3 32.42 -117.7 5, 158 
372 216 0 53 0 9.77 -65.48 53 
373 253 0 46 0 22.2 114.15 61 
374 301 0 85 0 13.5 144.75 95 
375 310 0 106 4 7.36 143.21 95 
376 205 3 12 1 -40.97 173.11 115 
377 181 1 8 0 -44 -176.5 116 
378 239 5 19 4 -34.15 172.17 113 
379 218 0 50 0 15.32 -61.18 170 
380 181 0 58 0 12.4 -81.47 44 
381 179 0 56 0 12.17 -81.85 44 
382 187 0 60 0 14.27 -80.33 44 
383 186 0 60 0 13.57 -80.07 44 
384 179 0 40 0 27.5 -82.47 37, 38 
385 226 0 51 0 17.08 -61.25 74 
386 127 0 11 0 -23.15 -44.23 49 
387 280 0 63 0 -12.43 130.85 187 
388 218 0 31 1 20.6 92.33 68, 69, 70 
389 196 3 20 0 34.23 -77.79 143 
390 191 0 19 0 32.73 -79.81 143 
391 177 0 19 0 31.12 -81.23 143 
392 180 0 29 0 29.21 -80.88 143 
393 206 0 64 1 17.9 -77.16 21, 22 
394 186 0 60 0 19.32 -80.31 162 
395 287 0 77 0 6.95 158.21 63, 98 
396 77 0 0 0 -33.91 -53.66 24 
397 73 0 0 0 -34.41 -55.8 24 
398 280 0 11 0 55.06 -6.8 106 
399 312 0 31 0 36.21 127.34 83 
400 279 0 11 0 54.76 -5.9 106 
401 288 0 11 0 54.23 -5.78 106 
402 209 0 20 0 -30.25 -178.5 112 
403 332 0 41 0 -28.5 113.82 66 
404 156 0 12 0 8.21 -80.1 46 
405 172 0 15 0 4.66 -4.87 73 
406 270 2 10 0 52.13 4.45 156 
407 175 0 51 0 9.94 -82.88 77 
409 150 0 9 1 23.2 -106.38 122 
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410 224 0 7 0 40.67 -124.04 5 
412 229 0 7 0 39.24 -123.68 5 
413 236 0 7 0 38.34 -122.91 5 
414 237 0 7 0 37.83 -122.39 5 
415 241 0 7 0 37.31 -122.27 5 
416 251 4 8 0 36.82 -121.86 5 
417 269 2 9 0 35.92 -121.29 5 
418 281 2 9 0 34.98 -120.72 5 
419 288 2 10 0 34.41 -119.82 5 
420 291 2 12 0 34.17 -119.22 5 
421 293 2 12 0 33.78 -118.64 5 
422 303 2 12 0 33.01 -118.22 5 
423 155 0 16 1 -3.95 -77.3 39 
424 224 0 67 0 18.14 -69.91 135 
425 187 0 14 0 -21.84 13.29 94 
426 173 0 12 0 -18.57 12.24 94 
427 185 0 14 0 -21.3 13.65 94 
428 185 0 14 0 -24.56 14.7 94 
429 294 0 100 0 12.35 120.63 147 
430 443 3 56 0 -31.39 130.87 178, 179, 180, 181, 182, 183
431 309 4 12 0 32.23 -116.75 5 
432 288 0 82 0 -9.77 160.04 184 
433 267 6 42 6 22 -159.5 3 
434 268 6 44 8 21.5 -158 3 
435 268 6 43 7 21 -157 3 
436 260 2 41 5 21 -150 3 
437 260 3 41 5 19.5 -156.5 3 
438 67 6 1 1 -60 -61 177 
439 56 0 0 0 -54 -66 177 
440 54 0 0 0 -52 -60 177 
441 62 1 0 0 -54 -36 177 
442 44 0 0 0 -53 73.5 177 
443 51 0 0 0 -54.5 159 177 
444 183 1 63 1 22.31 -79.29 159 
445 286 0 91 2 9 167 165 
446 160 0 13 0 -7.95 -14.37 75 
447 157 0 12 0 -15.93 -5.7 75 
448 235 1 38 0 -16 -24 75 
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APPENDIX 2: R CODE 

 
CHAPTER 3 CODE 
 
# Script: Drivers of Bryopsidales diversity (Chapter 3) 
# Software: R2.3.0 (available at http://cran.au.r-project.org/) 
 
# Author: Ailsa Kerswell 
# Date: 1st Jan 2006 
 
## CODE to test correlation between climate variables and Bryops  
## richness using all sites in the Indo-Pacfic between 30oS-30oN (Chapter 3) 
 
## Run models (likfit) incoporating spatial autocorrelation for all  
## variables and for all combos of variables 
 
## For the analyses save a table of the AICs. Employ formulae to  
## calculate wAICs and then chose the best model  
 
## For all the best models calculate the fitted values (save betas from  
## each of the best models for future reference and use). 
## Plot fitted versus observed and calculate % variation explained by 
## models 
 
 
rm(list=ls()) 
 
setwd("C:\\Ailsa's Documents\\correlates of diversity\\Bryops analyses") 
 
library(geoR) 
options(scipen=4) 
options(digits=2) 
 
 
# Function to calculate wAIC 
 
calc.waic = function(aic.vector){ 
    waic = rep(NA, length(aic.vector)) 
    expaic = rep(NA, length(aic.vector)) 
    for (i in 1:length(aic.vector)){ 
        minaic = min(aic.vector) 
        deltaaic = aic.vector[i]-minaic 
        expaic[i] = exp(-0.5*deltaaic) 
    } 
    sumexp = sum(expaic) 
    waic = expaic/sumexp 
    return(waic) 
} 
     
 
## INPUT DATA & DEFINE VARIABLES 
 
in.data<-read.table("bryops_data_minus4.txt",header=TRUE,sep="\t") 
attach(in.data) 
data=in.data[order(in.data$lat),] 
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raw.bry=data$bryops 
bry=(raw.bry-mean(raw.bry))/sd(raw.bry) 
    # normalised richness 
 
lat=data$lat 
long=data$gis_long 
norm.lat = (lat+30)/60 
norm.long = (long+169)/249 
    # normalises lat and long to b/w 0-1 
 
raw.temp=data$temp 
temp=(raw.temp-mean(raw.temp))/sd(raw.temp) 
    # normalised temp 
 
area10=log10(data$area10) 
area=(area10-mean(area10))/sd(area10) 
    # normalised area 
 
mde2 = (norm.long-0.5)^2+(norm.lat-0.5)^2 
    # uses pythag to get sq dist from pts to mid-domain 
mde=sqrt(mde2) 
 
 
raw.light_winter=data$light_winter 
light_winter=(raw.light_winter-mean(raw.light_winter))/sd(raw.light_winter) 
    # normalised light_winter 
 
raw.light_summer=data$light_summer 
light_summer=(raw.light_summer-mean(raw.light_summer))/sd(raw.light_summer) 
    # normalised light_summer 
 
raw.light_range=data$light_summer - data$light_winter 
light_range=(raw.light_range-mean(raw.light_range))/sd(raw.light_range) 
    # normalised light_range 
 
raw.nitrate=log10(data$nitrate) 
nitrate=(raw.nitrate-mean(raw.nitrate))/sd(raw.nitrate) 
    # normalised nitrate 
 
raw.chla=log10(data$chla) 
chla=(raw.chla-mean(raw.chla))/sd(raw.chla) 
    # normalised chla 
 
 
par(mfrow=c(3,2)) 
par(pty='s') 
plot(raw.temp, raw.nitrate) 
plot(area10, raw.nitrate) 
plot(raw.temp, area10) 
plot(area10, mde) 
plot(raw.temp, mde) 
plot(mde, raw.nitrate) 
 
cor(raw.temp, raw.nitrate) 
cor(area10, raw.nitrate) 
cor(raw.temp, area10) 
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cor(area10, mde) 
cor(raw.temp, mde) 
cor(mde, raw.nitrate) 
 
 
# RUN SPATIAL REGRESSION MODELS 
 
## BRYOPSIDALE DATA MODELS WITH ALL VAR COMBOS 
 
long.lat = cbind(data$long, data$lat) 
 
geo.algae = list(coords = long.lat, data=raw.bry, temp = temp,  
     area=area, mde=mde, nitrate=nitrate, chla=chla, 
                  light_range=light_range) 
    # List with site coords, algae richness data and environmental variables 
 
ini.vals  =  c(var(geo.algae$data),1) 
    # Initial conditions for the spatial autocorrelation parameters 
 
## Maximum likelihood fitting of alternative models (including fits for the non-spatial model) 
## Spatial covariances are assumed to decrease exponentially with distance.   
 
## 1.  No trend (i.e. y = beta): 
no.trend.ml  =  likfit(geo.algae,ini=ini.vals,cov.model="exp",nospatial=TRUE, messages=FALSE) 
 
## 2.  Enviro variables (and their combinations): 
temp.ml  =  likfit(geo.algae,trend= ~ temp,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
light_range.ml  =  likfit(geo.algae,trend= ~ light_range,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
nitrate.ml  =  likfit(geo.algae,trend= ~ nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
chla.ml  =  likfit(geo.algae,trend= ~ chla,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
 
area.ml  =  likfit(geo.algae,trend= ~ area,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
mde.ml  =  likfit(geo.algae,trend= ~ mde,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
 
TA.ml  =  likfit(geo.algae,trend= ~ temp+area,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
TM.ml  =  likfit(geo.algae,trend= ~ temp+mde,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
TN.ml  =  likfit(geo.algae,trend= ~ temp+nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
AM.ml  =  likfit(geo.algae,trend= ~ area+mde,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
AN.ml  =  likfit(geo.algae,trend= ~ area+nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
MN.ml  =  likfit(geo.algae,trend= ~ mde+nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
 
TAM.ml  =  likfit(geo.algae,trend= ~ temp+area+mde,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
TAN.ml  =  likfit(geo.algae,trend= ~ temp+area+nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 



 149

TMN.ml  =  likfit(geo.algae,trend= ~ temp+mde+nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
AMN.ml  =  likfit(geo.algae,trend= ~ area+mde+nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
 
all.ml  =  likfit(geo.algae,trend= ~ temp+area+mde+nitrate,ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
 
 
aics_energy = c(no.trend.ml$AIC,  
temp.ml$AIC,  
light_range.ml$AIC,  
nitrate.ml$AIC,  
chla.ml$AIC) 
 
calc.waic(aics_energy) 
 
aics = c(no.trend.ml$AIC,  
temp.ml$AIC,  
nitrate.ml$AIC, 
area.ml$AIC, 
mde.ml$AIC,  
TA.ml$AIC, 
TM.ml$AIC, 
TN.ml$AIC, 
AM.ml$AIC, 
AN.ml$AIC, 
MN.ml$AIC, 
TAM.ml$AIC, 
TAN.ml$AIC, 
TMN.ml$AIC, 
AMN.ml$AIC, 
all.ml$AIC) 
 
waics = calc.waic(aics) 
    # calculate wAIC from above aics 
 
models = c('no.trend', 'temp', 'nitrate', 'area', 'mde', 'TA', 'TM', 'TN', 
               'AM', 'AN', 'MN', 'TAM', 'TAN', 'TMN', 'AMN', 'all') 
 
cbind(models, waics) 
 
## CHECK 2nd ORDER TERMS 
 
temp2.ml  =  likfit(geo.algae,trend= ~ temp+I(temp^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
nitrate2.ml  =  likfit(geo.algae,trend= ~ nitrate+I(nitrate^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
area2.ml  =  likfit(geo.algae,trend= ~ area+I(area^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
mde2.ml  =  likfit(geo.algae,trend= ~ mde+I(mde^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
 
 
temp2alt.ml  =  likfit(geo.algae,trend= ~ I(temp^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
nitrate2alt.ml  =  likfit(geo.algae,trend= ~ I(nitrate^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
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area2alt.ml  =  likfit(geo.algae,trend= ~ I(area^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
mde2alt.ml  =  likfit(geo.algae,trend= ~ I(mde^2),ini=ini.vals,cov.model="exp",nospatial=TRUE, 
messages=FALSE) 
 
 
temp.aics = c(temp.ml$AIC, temp2.ml$AIC, temp2alt.ml$AIC) 
nitrate.aics = c(nitrate.ml$AIC, nitrate2.ml$AIC, nitrate2alt.ml$AIC) 
area.aics = c(area.ml$AIC, area2.ml$AIC, area2alt.ml$AIC) 
mde.aics = c(mde.ml$AIC, mde2.ml$AIC, mde2alt.ml$AIC) 
 
 
 
 
## COMPARE AICs from spatial and non-spatial models 
 
no.trend.aic.ns = -2*(no.trend.ml$nospatial$loglik.ns)+2*no.trend.ml$nospatial$npars.ns  
temp.aic.ns = -2*(temp.ml$nospatial$loglik.ns)+2*temp.ml$nospatial$npars.ns 
nitrate.aic.ns = -2*(nitrate.ml$nospatial$loglik.ns)+2*nitrate.ml$nospatial$npars.ns 
area.aic.ns = -2*(area.ml$nospatial$loglik.ns)+2*area.ml$nospatial$npars.ns 
mde.aic.ns = -2*(mde.ml$nospatial$loglik.ns)+2*mde.ml$nospatial$npars.ns 
 
TA.aic.ns = -2*(TA.ml$nospatial$loglik.ns)+2*TA.ml$nospatial$npars.ns 
TM.aic.ns = -2*(TM.ml$nospatial$loglik.ns)+2*TM.ml$nospatial$npars.ns 
TN.aic.ns = -2*(TN.ml$nospatial$loglik.ns)+2*TN.ml$nospatial$npars.ns 
AM.aic.ns = -2*(AM.ml$nospatial$loglik.ns)+2*AM.ml$nospatial$npars.ns 
AN.aic.ns = -2*(AN.ml$nospatial$loglik.ns)+2*AN.ml$nospatial$npars.ns 
MN.aic.ns = -2*(MN.ml$nospatial$loglik.ns)+2*MN.ml$nospatial$npars.ns 
 
TAM.aic.ns = -2*(TAM.ml$nospatial$loglik.ns)+2*TAM.ml$nospatial$npars.ns 
TAN.aic.ns = -2*(TAN.ml$nospatial$loglik.ns)+2*TAN.ml$nospatial$npars.ns 
TMN.aic.ns = -2*(TMN.ml$nospatial$loglik.ns)+2*TMN.ml$nospatial$npars.ns 
AMN.aic.ns = -2*(AMN.ml$nospatial$loglik.ns)+2*AMN.ml$nospatial$npars.ns 
 
all.aic.ns = -2*(all.ml$nospatial$loglik.ns)+2*all.ml$nospatial$npars.ns 
 
AIC.nospat = c(no.trend.aic.ns, temp.aic.ns, nitrate.aic.ns, area.aic.ns, mde.aic.ns,  
                       TA.aic.ns, TM.aic.ns, TN.aic.ns, AM.aic.ns, AN.aic.ns, MN.aic.ns,  
          TAM.aic.ns, TAN.aic.ns, TMN.aic.ns, AMN.aic.ns, all.aic.ns) 
    # AICs for models without spatial component 
 
compare.aics = cbind(models, AIC.nospat, aics) 
    # spatial models always have much lower AICs 
 
 
 
## PREDICTED VALUES FOR SOME MODELS 
 
temp.pred = temp.ml$beta[1]+temp.ml$beta[2]*temp 
 
area.pred = area.ml$beta[1]+area.ml$beta[2]*area 
 
mde.pred = mde.ml$beta[1]+mde.ml$beta[2]*mde 
 
nitrate.pred = nitrate.ml$beta[1]+nitrate.ml$beta[2]*nitrate 
 
TN.pred = TN.ml$beta[1]+TN.ml$beta[2]*temp+TN.ml$beta[3]*nitrate 
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TMN.pred = TMN.ml$beta[1]+TMN.ml$beta[2]*temp+TMN.ml$beta[3]*mde+TMN.ml$beta[4]*nitrate 
 
all.pred = 
all.ml$beta[1]+all.ml$beta[2]*temp+all.ml$beta[3]*area+all.ml$beta[4]*mde+all.ml$beta[5]*nitrate 
 
 
## Plot observed versus predicted from the best model 
## (in this case best model is TMN.ml) 
 
par(mfrow=c(1,2)) 
par(pty='s') 
 
plot(TMN.pred, raw.bry, ylim=c(0,110), xlim=c(0,110), ylab='observed',  
      xlab='predicted', cex=1.5) 
abline(0,1) 
 
TMN.resid = raw.bry-TMN.pred 
 
plot(TMN.pred, TMN.resid, ylab='residuals', xlab='fitted') 
abline(0,0) 
 
 
# Plot some of the results without MDEs included 
 
par(mfrow=c(2,2)) 
par(pty='s') 
 
plot(TMN.pred, raw.bry, ylim=c(0,110), xlim=c(0,110)) 
plot(TN.pred, raw.bry, ylim=c(0,110), xlim=c(20,60)) 
plot(temp.pred, raw.bry, ylim=c(0,110), xlim=c(20,60)) 
plot(nitrate.pred, raw.bry, ylim=c(0,110), xlim=c(20,60)) 
 
 
 
## MDE ANALYSES 
# Data here are constrained to be within the domain 
# i.e. lats and longs only between 30-30o lat 
 
ends.data<-read.table("bryops_ip_endpoints.txt",header=TRUE,sep=",") 
attach(ends.data) 
 
min.lat = ends.data$min.lat 
max.lat = ends.data$max.lat 
min.long = ends.data$min.long 
max.long = ends.data$max.long 
    # range endpoints 
 
lat.range.deg = max.lat-min.lat 
long.range.deg = max.long-min.long 
    # range extents in degrees 
 
zero=lat.range.deg==0 
lat.range.deg[zero]=1 
zero=long.range.deg==0 
long.range.deg[zero]=1 
    # give endemics range size of 1 degree lat and long 
 
dom.lat = max(max.lat)-min(min.lat) 
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dom.long = max(max.long)-min(min.long) 
    # max size of domain 
 
lat.range = lat.range.deg/dom.lat 
long.range = long.range.deg/dom.long 
    # range extent normalised to b/w 0-1 
 
 
# Function to calculate prob of overlap of site x by spp 
# with range size r from SPREADING DYE model 
# Based on Connolly 2005 eqn 2 
 
spread.dye = function(x, r){ 
 
    oneminr = 1-r 
 
    if(oneminr<=x & x<=r){ 
        Pr = 1 
        }else{ 
 
        if(r<=x & x<=oneminr){ 
            Pr = r 
            }else{ 
 
            if(x<min(r, oneminr)){ 
                Pr = x+(r/2) 
                }else{ 
 
                if(x>max(r, oneminr)){ 
                    Pr = 1-x+(r/2) 
                    } 
                } 
            } 
        } 
    return(Pr) 
} 
 
 
 
# Need to run spread.dye for all spp over all domain locations 
 
N = length(min.lat) 
    # number of species in the domain 
 
L = 100 
    # number of locations on domain 
locs = seq(0,1,1/L) 
    # locations on the domain 
 
## For latitude: 
 
lat.SD.mat = matrix(NA, nrow=N, ncol=(L+1)) 
 
for(l in 1:(L+1)){ 
    for(n in 1:N){ 
        prob = spread.dye(locs[l], lat.range[n]) 
        lat.SD.mat[n,l] = prob 
    } 
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} 
lat.SD.rich = colSums(lat.SD.mat) 
 
 
## For longitude: 
 
long.SD.mat = matrix(NA, nrow=N, ncol=(L+1)) 
 
for(l in 1:(L+1)){ 
    for(n in 1:N){ 
        prob = spread.dye(locs[l], long.range[n]) 
        long.SD.mat[n,l] = prob 
    } 
} 
long.SD.rich = colSums(long.SD.mat) 
 
 
 
par(mfrow=c(1,2)) 
par(pty='s') 
 
plot(locs, lat.SD.rich, type='l', lwd=2) 
plot(locs, long.SD.rich, type='l', lwd=2) 
 
 
par(mfrow=c(1,2)) 
par(pty='s') 
plot(norm.lat, mde.pred, cex=1.25,ylim=c(0,140)) 
lines(locs, lat.SD.rich, lwd=2) 
 
plot(norm.long, mde.pred, cex=1.25,ylim=c(0,120)) 
lines(locs, long.SD.rich, lwd=2) 
 
 
mde.seq = abs(locs-0.5) 
mde.my.est = mde.ml$beta[1]+mde.ml$beta[2]*mde.seq 
plot(locs, mde.my.est) 
    # calculates 1-d mde estimate based on my equations 
    # developed in 2-d 
 
 
 
# Boekma 2-d fully stochastic 
 
p = norm.lat 
q = 1-norm.lat 
 
r = norm.long 
t = 1-norm.long 
 
S = 290 
    # richness of total species pool 
 
exp.rich = 4*p*q*r*t*N 
 
plot(norm.lat, exp.rich) 
plot(norm.long, exp.rich) 
 



 154

 
 
# Want to get mde estimate from Poisson model 
# using Connolly 2005 eqn 9 
# therefore need to first estimate lambda from mde predictions 
# versus norm lat and long data using least squares  
 
library(nlme) 
 
lat.gls=gls(mde.pred~norm.lat+I(norm.lat^2)) 
coeffs.lat = lat.gls$coeff 
 
long.gls=gls(mde.pred~norm.long+I(norm.long^2)) 
coeffs.long = long.gls$coeff 
 
 
poisson = function(x, coeffs){ 
    lambda =  
    Pr = (2-exp(-lambda*x)-exp(-lambda*(1-x)))/lambda 
    return(Pr) 
} 
 
 
lat.poisson = rep(NA, length(locs)) 
 
for(l in 1:length(locs)){ 
    prob = poisson(locs[l], coeffs.lat) 
    lat.poisson[l] = prob 
} 
 
 
long.poisson = rep(NA, length(locs)) 
 
for(l in 1:length(locs)){ 
    prob = poisson(locs[l], lambda.long) 
    long.poisson[l] = prob 
} 
 
 
par(mfrow=c(1,2)) 
par(pty='s') 
plot(locs, lat.poisson*N, type='l') 
plot(locs, long.poisson*N, type='l') 
 
 
 
windows() 
 
par(mfrow=c(1,2)) 
par(pty='s') 
plot(norm.lat, mde.pred, cex=1.25,pch=19, ylim=c(0,100)) 
points(norm.lat, exp.rich) 
lines(locs, lat.SD.rich, lwd=2) 
lines(locs, lat.poisson*N, col='red', lwd=2) 
 
plot(norm.long, mde.pred, cex=1.25, pch=19, ylim=c(0,120)) 
points(norm.long, exp.rich) 
lines(locs, long.SD.rich, lwd=2) 
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lines(locs, long.poisson*N, col='red', lwd=2) 
 
 
 
 
par(mfrow=c(1,3)) 
par(pty='s') 
plot(norm.lat, mde.pred, cex=1.25, ylim=c(0,100)) 
lines(norm.lat, lat.gls$fitted, lwd=2) 
 
plot(norm.long, mde.pred, cex=1.25, ylim=c(0,100)) 
plot(norm.long, long.gls$fitted, cex=1.25, ylim=c(0,100)) 
 
 
 
## CHECK AUTOCORRELATION CAPTURE 
 
## To check how well spatial autocorrelation captured plot variogram 
## of residuals as well as fitted line from predicted varigram 
 
par(mfrow=c(2,2)) 
par(pty='s') 
 
temp.ml.resid = geo.algae$data - temp.pred   
    # Residuals of trend part of model 
plot(variog(coords=geo.algae$coords,data=temp.ml.resid), pch=19, cex=1.25)   
    # Variogram of residuals of trend part 
lines(temp.ml, lwd=2)  
    # Predicted (fitted) variogram  
 
 
area.ml.resid = geo.algae$data - area.pred   
plot(variog(coords=geo.algae$coords,data=area.ml.resid), pch=19, cex=1.25)   
lines(area.ml, lwd=2)  
 
mde.ml.resid = geo.algae$data - mde.pred   
plot(variog(coords=geo.algae$coords,data=mde.ml.resid), pch=19, cex=1.25)   
lines(mde.ml, lwd=2)  
 
TM.ml.resid = geo.algae$data - TM.pred   
plot(variog(coords=geo.algae$coords,data=TM.ml.resid), cex=1.25)   
lines(TM.ml, lwd=2)  
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CHAPTER 4 CODE 
 
 
# Script: Developing a new guild proportionality test 
# Software: R2.3.0 (available at http://cran.au.r-project.org/) 
 
# Author: Ailsa Kerswell 
# Date: 9th Sept 2006 
 
 
# This script is used to develop a new test for gp in  
# aggregated communities.  Using hypothetical datasets 
# generated to have either random, homogeneous or 
# heterogeneous structure, I explore 5 alternative methods 
# to test for guild proportionality in entire communities. 
# 1. Schluter chi-squared test 
# 2. Hybrid of Wilson randomisation and Schluter (and with mean-correction) 
# 3. Stone et al method (with same and different range size for guilds) 
# 4. Bernoulli trials 
 
# To check for consistencies between Wilson and Schluter 
# do randomisations with replace=T and replace=F and 
# compare frequency distributions. 
 
# Guild propotionality statistics are also calculated as per 
# Wilson (1989) and variance comparisons plotted 
 
 
 
library(MASS) 
options(digits=2) 
 
rm(list=ls()) 
nspp <- 20 
nsites <- 6 
ngroups <- 4 
numsims <- 1000 
grp.rich = c(3,4,6,7) 
 
# Hypothetical occurrence matrices 
 
## 1. Random structure matrix 
sppmat <- matrix(NA,nrow=nsites,ncol=nspp) 
sppmat[1,] <- c(0,1,0,0,0,0,1 ,0,0,0,0,0,1,0,0,0,1,0,0,1) 
sppmat[2,] <- c(1,0,0,1,0,0,0 ,1,0,1,1,0,1,0,0,0,0,1,0,0) 
sppmat[3,] <- c(0,1,0,0,0,1,0 ,1,0,0,0,0,1,0,0,0,0,1,1,1) 
sppmat[4,] <- c(1,0,1,1,1,1,1 ,1,1,1,1,1,1,1,0,0,1,1,1,1) 
sppmat[5,] <- c(1,1,1,1,1,0,0 ,1,1,1,1,1,1,1,1,1,1,1,0,1) 
sppmat[6,] <- c(0,0,1,1,1,1,1 ,1,1,1,1,1,1,1,1,1,1,1,1,1) 
 
 
# species' probabilities of occurrence 
sppprobs <- colSums(sppmat)/sum(colSums(sppmat)) 
 
# cumulative number of species (used to facilitate making the group x site matrix) 
richvec <- cumsum(c(3,4,6,7)) 
 
# Richness of sites 
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siterich <- rowSums(sppmat) 
siterich 
 
# Group x site matrix for the "real" hypothetical data, and chi-squared test 
grpmat.real = matrix(NA,nrow=nsites,ncol=ngroups) 
colnames(grpmat.real) = c('a', 'b', 'c', 'd') 
grpmat.real[1,] = c(sum(sppmat[1,1:3]), sum(sppmat[1,4:7]), sum(sppmat[1,8:13]), 
sum(sppmat[1,14:20])) 
grpmat.real[2,] = c(sum(sppmat[2,1:3]), sum(sppmat[2,4:7]), sum(sppmat[2,8:13]), 
sum(sppmat[2,14:20])) 
grpmat.real[3,] = c(sum(sppmat[3,1:3]), sum(sppmat[3,4:7]), sum(sppmat[3,8:13]), 
sum(sppmat[3,14:20])) 
grpmat.real[4,] = c(sum(sppmat[4,1:3]), sum(sppmat[4,4:7]), sum(sppmat[4,8:13]), 
sum(sppmat[4,14:20])) 
grpmat.real[5,] = c(sum(sppmat[5,1:3]), sum(sppmat[5,4:7]), sum(sppmat[5,8:13]), 
sum(sppmat[5,14:20])) 
grpmat.real[6,] = c(sum(sppmat[6,1:3]), sum(sppmat[6,4:7]), sum(sppmat[6,8:13]), 
sum(sppmat[6,14:20])) 
 
 
 
 
# SPECIES MATCHING METHOD PLOT 
 
chisq.test(grpmat.real) 
real.chi=chisq.test(grpmat.real)$statistic 
chi.expect = chisq.test(grpmat.real)$expected 
 
plot(dchisq(1:30, 15), type='l', lwd=2) 
points(real.chi, 0, cex=1.5) 
 
 
 
 
# SAMLPING SPECIES WITH REPLACEMENT 
 
chival <- rep(NA,numsims) 
chiprob <- rep(NA,numsims) 
chidf <- rep(NA,numsims) 
siterich.sim <- matrix(NA,nrow=numsims,ncol=nsites) 
grprich.sim <- matrix(NA,nrow=numsims,ncol=ngroups) 
grpmat <- array(NA,dim=c(nsites,ngroups,numsims)) 
max.guild = matrix(NA, nrow=numsims, ncol=ngroups) 
for (sim in 1:numsims) { 
    for (site in 1:nsites) { 
        # Sample species with replacement; prob of occurrence weighted by 
        # observed frequency of occurrence 
        samplevec <- sample(c(1:nspp),siterich[site],replace=T,prob=sppprobs) 
         
        # Calculate number of species per functional group 
        grpmat[site,1,sim] <- sum(samplevec<=richvec[1]) 
        grpmat[site,2,sim] <- sum(samplevec<=richvec[2])-grpmat[site,1,sim] 
        grpmat[site,3,sim] <- sum(samplevec<=richvec[3])-grpmat[site,1,sim]-grpmat[site,2,sim] 
        grpmat[site,4,sim] <- length(samplevec)-sum(grpmat[site,c(1:3),sim]) 
     
        max.guild[sim,] = apply(grpmat[,,sim], 2, max) 
    } 
    # Conduct chi-squared test 
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    chitest <- chisq.test(grpmat[,,sim]) 
    chival[sim] <- chitest$stat 
    chiprob[sim] <- chitest$p.value 
    chidf[sim] <- chitest$par 
} 
 
exceed.max = rep(NA, ngroups) 
for(i in 1:ngroups){ 
    exceed.max[i] = sum(max.guild[,i]>grp.rich[i]) 
} 
exceed.max/numsims 
 
truehist(chival, col='grey', xlim=c(0, 30)) 
lines(dchisq(1:30, 15), lwd=2) 
points(real.chi, 0, cex=1.5) 
 
 
# SAMLPING SPECIES WITHOUT REPLACEMENT - MODIFIED SPECIES MATCHING 
 
siterich.sim <- matrix(NA,nrow=numsims,ncol=nsites) 
grprich.sim <- matrix(NA,nrow=numsims,ncol=ngroups) 
grpmat <- array(NA,dim=c(nsites,ngroups,numsims)) 
max.guild = matrix(NA, nrow=numsims, ncol=ngroups) 
for (sim in 1:numsims) { 
    for (site in 1:nsites) { 
        # Sample species with replacement; prob of occurrence weighted by 
        # observed frequency of occurrence 
        samplevec <- sample(c(1:nspp),siterich[site],replace=F,prob=sppprobs) 
         
        # Calculate number of species per functional group 
        grpmat[site,1,sim] <- sum(samplevec<=richvec[1]) 
        grpmat[site,2,sim] <- sum(samplevec<=richvec[2])-grpmat[site,1,sim] 
        grpmat[site,3,sim] <- sum(samplevec<=richvec[3])-grpmat[site,1,sim]-grpmat[site,2,sim] 
        grpmat[site,4,sim] <- length(samplevec)-sum(grpmat[site,c(1:3),sim]) 
     
        max.guild[sim,] = apply(grpmat[,,sim], 2, max) 
    } 
} 
 
exceed.max = rep(NA, ngroups) 
for(i in 1:ngroups){ 
    exceed.max[i] = sum(max.guild[,i]>grp.rich[i]) 
} 
exceed.max/numsims 
 
expt.freqs = apply(grpmat,c(1,2),mean) 
    # mean grp frequencies at each site from randomisations 
 
pseudochi.expt = rep(NA, numsims) 
for(sim in 1:numsims){ 
    X2 = sum((grpmat[,,sim] - expt.freqs)^2/expt.freqs) 
    pseudochi.expt[sim] = X2 
} 
 
pseudochi.obs = sum((grpmat.real - expt.freqs)^2/expt.freqs) 
 
 
truehist(pseudochi.expt, col='grey', xlim=c(0, 25)) 
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points(pseudochi.obs, 0, cex=1.5, lwd=2) 
    # modified species matching plot 
 
 
 
 
## WILSON GUILD-BY-GUILD METHOD 
 
## Get guild prop variance for each group (across sites 
## within the region in question) 
## Do this for each randomisation and plot histogram 
## of random community variances 
 
rand.var = matrix(NA, nrow=numsims, ncol=ngroups) 
colnames(rand.var) = c('A','B','C','D') 
 
for(mat in 1:numsims){ 
    propmat = grpmat[,,mat]/siterich 
        # converts number of gen in group to proportion 
    rand.var[mat, ] = apply(propmat, 2, var) 
} 
 
real.prop = grpmat.real/siterich 
real.var = apply(real.prop, 2, var) 
    # real variance values 
 
gp.index = matrix(NA, nrow=numsims, ncol=ngroups) 
colnames(gp.index) = c('A','B','C','D') 
    # guild prop index (Wilson 1989) Vobs/Vnull 
    # if this is >1 then no guild prop if <1 guild prop 
 
for(mat in 1:numsims){ 
    gp.index[mat,] = rand.var[mat,]/real.var 
} 
 
gp.sig = rep(NA, ngroups) 
names(gp.sig) = c('A','B','C','D') 
    # significance level for gp index.  Sig gp at alpha =0.05  
    # if gp.sig<=0.025 (2-tailed test) 
 
for(grp in 1:ngroups){ 
    TF = gp.index[,grp]<1 
    gp.sig[grp] = sum(TF)/numsims 
} 
 
 
randvar.stats = matrix(NA, nrow=3, ncol=ngroups) 
colnames(randvar.stats) = c('A','B','C','D') 
rownames(randvar.stats) = c('mean', 'upper', 'lower') 
 
for(i in 1:ngroups){ 
    sorted = sort(rand.var[,i]) 
    randvar.stats[1,i] = mean(sorted) 
    randvar.stats[2,i] = sorted[975] 
    randvar.stats[3,i] = sorted[25] 
} 
 
windows() 
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x = seq(1:4) 
plot(x, randvar.stats[1,], ylim=c(-0.005,0.045), 
      xlab='grps (alphabetical)', ylab='random comm variance +/- 95%CI') 
arrows(x, randvar.stats[2,], x, randvar.stats[3,], length=0.1, code=3, angle = 90) 
points(x, real.var, pch=19, cex=1.5) 
 
 
 
 
 
## BERNOULLI APPROACH 
 
spprich <- rep(1,nspp) 
 
# nspp x numsims matrix with group richnesses (for calculating expected values) 
spprichmat <- matrix(rep(spprich,nsites),nrow=nsites,byrow=T) 
 
 
# frequencies (as proportion) of spp 
sppfreq <- colSums(sppmat)/sum(sppmat) 
 
# calculate the expected richness of spp in each site 
fgfreqmat <- matrix(rep(sppfreq,nsites),nrow=nsites,byrow=T) 
richmat <- matrix(rep(siterich,nspp),nrow=nsites,byrow=F) 
expmat <- fgfreqmat*richmat 
 
# and the probability of occurrence for each 
# site & ssp  
probmat <- expmat/spprichmat 
 
# simulated incidence matrix 
sppsim <- array(NA,dim=c(nsites,nspp,numsims)) 
for (sim in 1:numsims) { 
    for (site in 1:nsites) { 
        for (spp in 1:nspp) { 
            # generate a random number for each species in group, determine 
            # stochastically whether species present or not 
            #if(probmat[site,spp]>1){ 
             #   x=1 
             #   }else{ 
               x=probmat[site,spp] 
            sppsim[site,spp,sim] <- sum(runif(spprich[spp])<x) 
        } 
    } 
} 
 
 
 
# summarise incidence matrix into group matrix 
 
grpmat.binom = array(NA,dim=c(nsites,ngroups,numsims)) 
colnames(grpmat.binom) = c('a', 'b', 'c', 'd') 
 
for(sim in 1:numsims){ 
    grpmat.binom[1,,sim] = c(sum(sppsim[1,1:3,sim]), sum(sppsim[1,4:7,sim]), sum(sppsim[1,8:13,sim]), 
sum(sppsim[1,14:20,sim])) 
    grpmat.binom[2,,sim] = c(sum(sppsim[2,1:3,sim]), sum(sppsim[2,4:7,sim]), sum(sppsim[2,8:13,sim]), 
sum(sppsim[2,14:20,sim])) 
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    grpmat.binom[3,,sim] = c(sum(sppsim[3,1:3,sim]), sum(sppsim[3,4:7,sim]), sum(sppsim[3,8:13,sim]), 
sum(sppsim[3,14:20,sim])) 
    grpmat.binom[4,,sim] = c(sum(sppsim[4,1:3,sim]), sum(sppsim[4,4:7,sim]), sum(sppsim[4,8:13,sim]), 
sum(sppsim[4,14:20,sim])) 
    grpmat.binom[5,,sim] = c(sum(sppsim[5,1:3,sim]), sum(sppsim[5,4:7,sim]), sum(sppsim[5,8:13,sim]), 
sum(sppsim[5,14:20,sim])) 
    grpmat.binom[6,,sim] = c(sum(sppsim[6,1:3,sim]), sum(sppsim[6,4:7,sim]), sum(sppsim[6,8:13,sim]), 
sum(sppsim[6,14:20,sim])) 
} 
 
 
# do chi-squared test on all randomised matrices 
 
chi.binom = rep(NA, numsims) 
 
for(sim in 1:numsims){ 
    chi.test = chisq.test(grpmat.binom[,,sim]) 
    chi.binom[sim] = chi.test$statistic 
} 
 
 
truehist(chi.binom, col='grey') 
points(real.chi,0,cex=2) 
 
lines(density(chi.binom, na.rm=T), col='red', lwd=2) 
 
 
 
## make binomial expected matrix using the means 
## of each cell over all randomisations 
 
binom.expmat = matrix(NA, nrow=nsites, ncol=ngroups) 
 
for(grp in 1:ngroups){ 
    for(site in 1:nsites){ 
        binom.expmat[site, grp] = mean(grpmat.binom[site, grp,]) 
    } 
} 
 
 
ttest.mat.bern = matrix(NA, nrow=nsites, ncol=ngroups) 
colnames(ttest.mat.bern) = c('a', 'b', 'c', 'd') 
 
for(site in 1:nsites){ 
    for(grp in 1:ngroups){ 
        data.string = grpmat.binom[site, grp,] 
        ttest.mat.bern[site,grp] = t.test(data.string, mu=chi.expect[site, grp])$p.value 
    } 
} 
 
 
## check row and column totals under bionomial approx 
 
row.total = matrix(NA, nrow=numsims, ncol=nsites) 
col.total =  matrix(NA, nrow=numsims, ncol=ngroups) 
 
for(sim in 1:numsims){ 
    row.total[sim,] = rowSums(grpmat.binom[,,sim]) 
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    col.total[sim,] = colSums(grpmat.binom[,,sim])     
} 
 
sort.row = apply(row.total,2,sort) 
sort.col = apply(col.total,2,sort) 
 
row.mean = colMeans(sort.row) 
row.sd = apply(sort.row,2,sd) 
row.upp = sort.row[975,] 
row.low = sort.row[25,] 
 
col.mean = colMeans(sort.col) 
col.sd = apply(sort.col,2,sd) 
col.upp = sort.col[975,] 
col.low = sort.col[25,] 
 
 
 
 
 
 
 
 
## STONE ET AL METHOD (RAND GROUPS SPP BELONG TO) 
 
nrow=length(sppmat[,1]) 
ncol=length(sppmat[1,]) 
reps=1000 
 
spp = c(rep('A',3), rep('B',4), rep('C',6), rep('D',7)) 
    # species occurring in the pool (in groups A-D) 
spp_sample=as.data.frame(spp) 
 
grp.list = c('A', 'B' , 'C', 'D') 
n.grps = 4 
 
spp.prob=colSums(sppmat)/sum(colSums(sppmat)) 
    # gives each spp same prob of being selected 
 
 
Amat = matrix(NA, nrow=nrow, ncol=reps) 
Bmat = matrix(NA, nrow=nrow, ncol=reps) 
Cmat = matrix(NA, nrow=nrow, ncol=reps) 
Dmat = matrix(NA, nrow=nrow, ncol=reps) 
    # matrices to record how many of each group occur at each site 
    # across reps number of randomisations 
 
rand.mat.array = array(NA, dim=c(nsites, ngroups, reps)) 
colnames(rand.mat.array) = grp.list 
 
max.guild = matrix(NA, nrow=reps, ncol=ngroups) 
 
chi.vec.stone = rep(NA, reps) 
 
for(r in 1:reps){ 
 
    rand.name=sample(spp_sample$factor, 20, replace=F, prob=spp.prob) 
        # randomly chose group for each genus (i.e. colname for site.spp mat) 
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    summ.group=matrix(NA, nrow, n.grps) 
    colnames(summ.group)=c('A', 'B', 'C', 'D') 
 
    for(i in 1:nrow){ 
        TF = sppmat[i,]==1 
            # records true if genus present 
        replace.row = rand.name[TF] 
            # replaces true with name of group that genus belongs to 
        summ.group[i,] = summary(replace.row) 
            # for that row, summarises how many genera in each group 
    } 
     
    chi.vec.stone[r] = chisq.test(summ.group)$statistic 
        # chisq stat from test on randomised matrix 
 
    Amat[,r] = summ.group[,1] 
    Bmat[,r] = summ.group[,2] 
    Cmat[,r] = summ.group[,3] 
    Dmat[,r] = summ.group[,4] 
        # number of genera in each group at each site for each randomisation 
 
    rand.mat.array[,,r] = cbind(Amat[,r], Bmat[,r], Cmat[,r], Dmat[,r]) 
 
    max.guild[r,] = apply(rand.mat.array[,,r], 2, max) 
} 
 
exceed.max = rep(NA, ngroups) 
for(i in 1:ngroups){ 
    exceed.max[i] = sum(max.guild[,i]>grp.rich[i]) 
} 
exceed.max/reps 
 
## Check if freq of occur for each group (i.e. mean col totals) 
## maintained at observed values in random mats 
 
 
expt = apply(rand.mat.array, c(1,2), mean) 
    # mean freq of occur of each group at each site 
 
 
sdev = apply(rand.mat.array, c(1,2), sd) 
    # st dev of freq of occur of each group at each site 
 
total.grp.occur = apply(rand.mat.array, 2, colSums) 
    # total occurrence of each group in the random guild mat 
 
mean.grp.occur = colMeans(total.grp.occur) 
    # mean occurrence of each group in random guild mats 
    # i.e. expected row totals 
 
sdev.grp.occur = apply(total.grp.occur, 2, sd) 
    # st dev of occurrence of each group in random guild mats 
    # i.e. times 2 for ~95% CI on row totals 
 
rbind(mean.grp.occur+(2*sdev.grp.occur), mean.grp.occur, mean.grp.occur-(2*sdev.grp.occur)) 
 
colSums(grpmat.real) 
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grpmat.real 
 
expt 
 
ttest.mat.stone = matrix(NA, nrow=nsites, ncol=ngroups) 
colnames(ttest.mat.stone) = c('a', 'b', 'c', 'd') 
 
for(site in 1:nsites){ 
    for(grp in 1:ngroups){ 
        data.string = rand.mat.array[site, grp,] 
        ttest.mat.stone[site,grp] = t.test(data.string, mu=chi.expect[site, grp])$p.value 
    } 
} 
 
pseudochi.expt.stone = rep(NA, numsims) 
for(sim in 1:numsims){ 
    X2 = sum((rand.mat.array[,,sim] - expt)^2/expt) 
    pseudochi.expt.stone[sim] = X2 
} 
 
pseudochi.obs.stone = sum((grpmat.real - expt)^2/expt) 
 
 
truehist(pseudochi.expt.stone, col='grey', xlim=c(0, 25)) 
points(pseudochi.obs.stone, 0, cex=1.5, lwd=2) 
    # modified species matching plot 
 
 
 
plot(colSums(grpmat.real), mean.grp.occur, xlim=c(5,31), ylim=c(5,31), cex=1.25) 
abline(0,1) 
arrows(colSums(grpmat.real),mean.grp.occur+(2*sdev.grp.occur), colSums(grpmat.real),  
           mean.grp.occur-(2*sdev.grp.occur), length=0) 
 
 
 
 
# GETTING INITIAL MATRIX 
 
sppmat <- matrix(NA,nrow=nsites,ncol=nspp) 
sppmat[1,] <- c(rbinom(20, 1, p=0.3)) 
sppmat[2,] <- c(rbinom(20, 1, p=0.3)) 
sppmat[3,] <- c(rbinom(20, 1, p=0.3)) 
sppmat[4,] <- c(rbinom(20, 1, p=0.8)) 
sppmat[5,] <- c(rbinom(20, 1, p=0.8)) 
sppmat[6,] <- c(rbinom(20, 1, p=0.8)) 
 
colSums(sppmat) 
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CHAPTER 5 CODE 
 
 
# Script: Applying new gp test to algae data (Chapter 5) 
# Software: R2.3.0 (available at http://cran.au.r-project.org/) 
 
 
# Author: Ailsa Kerswell 
# Date: 15th September 2006 
 
 
# This script applies the Bernoulli trial method to the algae 
# data.  Starting at a regional level and scaling up to biome 
# ocean and global. 
  
# Results are plotted as frequency distributions of null model 
# statistics with observed statistic marked as point. 
# Statistics can be combined within same spatial scale due to  
# additive nature of chi-squared. 
# Significance determined by sorting null models values and  
# comparing observed to the 95% CIs of null in whichever 
# direction (<2.5th for homog and >97.5th for hetero). 
  
# This code is for taxonomic clasifications but use exactly the 
# same code for functional groups, just change the lables and 
# the input data to fxn groups 
 
 
rm(list=ls()) 
 
setwd("C:\\Ailsa's Documents\\Research\\R_data\\Community structure") 
library(MASS) 
 
 
fxngrps=c('cbr', 'crust', 'fbr', 'fila', 'gel', 'jcalc', 'leath', 'other.1', 'sheet', 'tuft') 
fxngrps_sample=as.data.frame(fxngrps) 
    # fxngrps in question 
 
reps=1000 
    # number of randomisations 
ngroups=length(fxngrps) 
    # number of fxngrps 
 
 
 
# Observed group incidence matrices with chi-squared tests 
 
robs<-read.table("Regions_all.txt",header=TRUE,sep="\t") 
attach(robs) 
 
robsF<-robs[,16:25] 
 
r1F<-robsF[1:20,] 
r2F<-robsF[21:50,] 
r3F<-robsF[51:60,] 
r4F<-robsF[61:74,] 
r5F<-robsF[75:95,] 
r6F<-robsF[96:120,] 
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  # indFividual matrices for each regions observed number of genera 
 
trop.biomeF<-rbind(r1F, r2F, r5F) 
temp.biomeF<-rbind(r3F, r4F, r6F) 
ipac.oceanF<-rbind(r1F, r2F, r3F, r4F) 
atl.oceanF<-rbind(r5F, r6F) 
  # individual matrices for each biome/ocean observed number of genera 
 
 
chi.indF=chisq.test(r1F)$statistic 
chi.tpacF=chisq.test(r2F)$statistic 
chi.npacF=chisq.test(r3F)$statistic 
chi.spacF=chisq.test(r4F)$statistic 
chi.tatlF=chisq.test(r5F)$statistic 
chi.natlF=chisq.test(r6F)$statistic 
 
chi.tropF=chisq.test(trop.biomeF)$statistic 
chi.tempF=chisq.test(temp.biomeF)$statistic 
 
chi.ipacF=chisq.test(ipac.oceanF)$statistic 
chi.atlF=chisq.test(atl.oceanF)$statistic 
 
chi.allF=chisq.test(robsF)$statistic 
 
 
 
# Observed species - incidence matrices 
incid.mat<-read.table("incidence_allsites.txt",header=TRUE,sep="\t") 
attach(incid.mat) 
 
# Break up data by region etc 
 
indF.cols=incid.mat[,1:23] 
tempF.indF=rowSums(indF.cols[,4:23])>0 
indian=indF.cols[tempF.indF,] 
 
tpacF.cols=cbind(incid.mat[,1:3], incid.mat[,24:53]) 
tempF.tpacF=rowSums(tpacF.cols[,4:33])>0 
tpacF=tpacF.cols[tempF.tpacF,] 
 
npacF.cols=cbind(incid.mat[,1:3], incid.mat[,54:63]) 
tempF.npacF=rowSums(npacF.cols[,4:13])>0 
npacF=npacF.cols[tempF.npacF,] 
 
spacF.cols=cbind(incid.mat[,1:3], incid.mat[,64:77]) 
tempF.spacF=rowSums(spacF.cols[,4:17])>0 
spacF=spacF.cols[tempF.spacF,] 
 
tatlF.cols=cbind(incid.mat[,1:3], incid.mat[,78:98]) 
tempF.tatlF=rowSums(tatlF.cols[,4:24])>0 
tatlF=tatlF.cols[tempF.tatlF,] 
 
natlF.cols=cbind(incid.mat[,1:3], incid.mat[,99:123]) 
tempF.natlF=rowSums(natlF.cols[,4:28])>0 
natlF=natlF.cols[tempF.natlF,] 
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tropF.cols=cbind(incid.mat[,1:3], incid.mat[,4:53], incid.mat[,78:98]) 
tempF.tropF=rowSums(tropF.cols[,4:74])>0 
tropF=tropF.cols[tempF.tropF,] 
 
tempF.cols=cbind(incid.mat[,1:3], incid.mat[,54:77], incid.mat[,98:123]) 
tempF.tempF=rowSums(tempF.cols[,4:52])>0 
tempF=tempF.cols[tempF.tempF,] 
 
 
 
ipacF.cols=cbind(incid.mat[,1:3], incid.mat[,4:77]) 
tempF.ipacF=rowSums(ipacF.cols[,4:77])>0 
ipacF=ipacF.cols[tempF.ipacF,] 
 
atlF.cols=cbind(incid.mat[,1:3], incid.mat[,78:123]) 
tempF.atlF=rowSums(atlF.cols[,4:49])>0 
atlF=atlF.cols[tempF.atlF,] 
 
 
allF = incid.mat 
 
 
 
 
 
# Function to make randomised spp-incidence matrices 
# using binomial method 
 
rand.spp.mat = function(ncols, reg.incid, numsims){ 
    # ncols:number of columns in indFcidence mat for that region 
    # reg.incid: incidence matrix (to delete first 3 colunms) 
    # numsims: number of simulations to run 
 
    minus.cols=reg.incid[,4:ncols] 
    sppmat=t(minus.cols) 
        # observed spp incidence matrix 
 
    nsites=length(sppmat[,1]) 
        # number of sites in incidence matrix 
    siterich=rowSums(sppmat) 
        # spp richness at each site 
 
    nspp=length(sppmat[1,]) 
    spprich=rep(1,nspp) 
    sppfreq=colSums(sppmat)/sum(sppmat) 
        # matrix of expected frequency of spp for each cell   
        # of observed incidence matrix 
    spprichmat=matrix(rep(spprich,nsites),nrow=nsites,byrow=T) 
        # nspp x numsims matrix with spp richnesses  
        # (for calculating expected values) 
 
    freqmat=matrix(rep(sppfreq,nsites),nrow=nsites,byrow=T) 
    richmat=matrix(rep(siterich,nspp),nrow=nsites,byrow=F) 
    expmat=freqmat*richmat 
        # calculates the expected richness of spp in each site 
 
    #probmat=expmat/spprichmat 
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        # the probability of occurrence for each spp @ each site  
 
    # simulated incidence matrix 
    sppsim =array(NA,dim=c(nsites,nspp,numsims)) 
    for (sim in 1:numsims) { 
        for (site in 1:nsites) { 
            for (spp in 1:nspp) { 
                # generate a random number for each species in group, determine 
                # stochasticallFy whether species present or not 
                x=expmat[site,spp] 
                sppsim[site,spp,sim] = sum(runif(spprich[spp])<x) 
            } 
        } 
    } 
    return(sppsim) 
} 
 
 
 
# Make random spp-incidence matrices for allF regions 
randspp.indF=rand.spp.mat(23, indian, reps) 
randspp.tpacF=rand.spp.mat(33, tpacF, reps) 
randspp.npacF=rand.spp.mat(13, npacF, reps) 
randspp.spacF=rand.spp.mat(17, spacF, reps) 
randspp.tatlF=rand.spp.mat(24, tatlF, reps) 
randspp.natlF=rand.spp.mat(28, natlF, reps) 
 
 
 
 
## Function to make spp-incidence matrix into grp-incidence matrix 
 
make.grp.matF = function(real.incidence, randspp.array, nsites, ngroups, numsims){ 
 
    table.mat=table(real.incidence[,2]) 
    table.mat.cum=cumsum(table.mat) 
 
    randgrp.mat = array(NA,dim=c(nsites,ngroups,numsims)) 
    colnames(randgrp.mat) = fxngrps 
 
    for(site in 1:nsites){ 
        for(sim in 1:numsims){ 
            randgrp.mat[site,,sim] = c(sum(randspp.array[site, 1:table.mat.cum[1], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[1]+1):table.mat.cum[2], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[2]+1):table.mat.cum[3], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[3]+1):table.mat.cum[4], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[4]+1):table.mat.cum[5], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[5]+1):table.mat.cum[6], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[6]+1):table.mat.cum[7], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[7]+1):table.mat.cum[8], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[8]+1):table.mat.cum[9], sim]),  
                                           sum(randspp.array[site, (table.mat.cum[9]+1):table.mat.cum[10], sim])) 
        } 
    } 
    return(randgrp.mat) 
} 
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randgrp.indF=make.grp.matF(indian, randspp.indF, 20, 10, reps) 
randgrp.tpacF=make.grp.matF(tpacF, randspp.tpacF, 30, 10, reps) 
randgrp.npacF=make.grp.matF(npacF, randspp.npacF, 10, 10, reps) 
randgrp.spacF=make.grp.matF(spacF, randspp.spacF, 14, 10, reps) 
randgrp.tatlF=make.grp.matF(tatlF, randspp.tatlF, 21, 10, reps) 
randgrp.natlF=make.grp.matF(natlF, randspp.natlF, 25, 10, reps) 
 
 
 
 
# Function to do chi-squared test on allF randomised matrices 
# different ones for tropFical and tempFerate (b/c laminariales) 
 
get.chirand.trop = function(randgrp.array, numsims){ 
    chirand = rep(NA, numsims) 
 
    for(sim in 1:numsims){ 
        chi.test = chisq.test(randgrp.array[,-8,sim]) 
        chirand[sim] = chi.test$statistic 
    } 
    return(chirand) 
} 
 
 
get.chirand.temp = function(randgrp.array, numsims){ 
    chirand = rep(NA, numsims) 
 
    for(sim in 1:numsims){ 
        chi.test = chisq.test(randgrp.array[,,sim]) 
        chirand[sim] = chi.test$statistic 
    } 
    return(chirand) 
} 
 
 
chirand.indF=get.chirand.temp(randgrp.indF,reps) 
chirand.tpacF=get.chirand.temp(randgrp.tpacF,reps) 
chirand.npacF=get.chirand.temp(randgrp.npacF,reps) 
chirand.spacF=get.chirand.temp(randgrp.spacF,reps) 
chirand.tatlF=get.chirand.temp(randgrp.tatlF,reps) 
chirand.natlF=get.chirand.temp(randgrp.natlF,reps) 
 
 
par(mfrow=c(2,3)) 
par(pty='s') 
 
 
truehist(chirand.indF, col='grey', xlim=c(min(chirand.indF), max(chirand.indF))) 
points(chi.indF, 0, cex=1.5) 
title("indian") 
 
truehist(chirand.tpacF, col='grey', xlim=c(min(chirand.tpacF), max(chirand.tpacF))) 
points(chi.tpacF, 0, cex=1.5) 
title("tropF pac") 
 
truehist(chirand.tatlF, col='grey', xlim=c(min(chirand.tatlF), max(chirand.tatlF))) 
points(chi.tatlF, 0, cex=1.5) 
title("tropF atlF") 
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truehist(chirand.npacF, col='grey', xlim=c(min(chirand.npacF), max(chi.npacF))) 
points(chi.npacF, 0, cex=1.5) 
title("north pac") 
 
truehist(chirand.spacF, col='grey', xlim=c(min(chirand.spacF), max(chi.spacF))) 
points(chi.spacF, 0, cex=1.5) 
title("south pac") 
 
truehist(chirand.natlF, col='grey', xlim=c(min(chirand.natlF), max(chi.natlF))) 
points(chi.natlF, 0, cex=1.5) 
title("north atlF") 
 
 
 
# Combine the obs stats from each region into one combined regional statistic 
# Do the same for the null distributions (sort chirand vectors first, then add) 
 
region.matF = rbind(sort(chirand.indF), sort(chirand.tpacF), sort(chirand.tatlF), 
                   sort(chirand.npacF), sort(chirand.spacF), sort(chirand.natlF)) 
 
chirand.regionF = colSums(region.matF) 
chi.regionF = sum(chi.indF, chi.tpacF, chi.tatlF, chi.npacF, chi.spacF, chi.natlF) 
 
truehist(chirand.regionF, xlim=c(min(chirand.regionF)-20, chi.regionF+20), col='grey') 
points(chi.regionF, 0, cex=1.5) 
 
 
# plot tropF regions combined and temperate regions combined 
 
chirand.region.tropF = colSums(region.matF[1:3,]) 
chi.region.tropF = sum(chi.indF, chi.tpacF, chi.tatlF) 
 
par(mfrow=c(1,2)) 
par(pty='s') 
truehist(chirand.region.tropF, xlim=c(min(chirand.region.tropF)-20, max(chirand.region.tropF)+20), 
col='grey') 
points(chi.region.tropF, 0, cex=1.5) 
 
chirand.region.tempF = colSums(region.matF[4:6,]) 
chi.region.tempF = sum(chi.npacF, chi.spacF, chi.natlF) 
 
truehist(chirand.region.tempF, xlim=c(min(chirand.region.tempF)-20, chi.region.tempF+20), col='grey') 
points(chi.region.tempF, 0, cex=1.5) 
 
 
 
## Do the same procedure for biomes/oceans/globe 
 
randspp.tropF=rand.spp.mat(74, tropF, reps) 
randgrp.tropF=make.grp.matF(tropF, randspp.tropF, 71, 10, reps) 
chirand.tropF=get.chirand.temp(randgrp.tropF,reps) 
 
 
randspp.tempF=rand.spp.mat(52, tempF, reps) 
randgrp.tempF=make.grp.matF(tempF, randspp.tempF, 49, 10, reps) 
chirand.tempF=get.chirand.temp(randgrp.tempF,reps) 
 



 171

 
randspp.ipacF=rand.spp.mat(77, ipacF, reps) 
randgrp.ipacF=make.grp.matF(ipacF, randspp.ipacF, 74, 10, reps) 
chirand.ipacF=get.chirand.temp(randgrp.ipacF,reps) 
 
 
randspp.atlF=rand.spp.mat(49, atlF, reps) 
randgrp.atlF=make.grp.matF(atlF, randspp.atlF, 46, 10, reps) 
chirand.atlF=get.chirand.temp(randgrp.atlF,reps) 
 
 
randspp.allF=rand.spp.mat(123, allF, reps) 
randgrp.allF=make.grp.matF(allF, randspp.allF, 120, 10, reps) 
chirand.allF=get.chirand.temp(randgrp.allF,reps) 
 
 
 
par(mfrow=c(2,3)) 
par(pty='s') 
 
truehist(chirand.tropF, col='grey', xlim=c(chi.tropF-20, max(chirand.tropF))) 
points(chi.tropF, 0, cex=1.5) 
title("tropF") 
 
truehist(chirand.tempF, col='grey', xlim=c(min(chirand.tempF), chi.tempF+20)) 
points(chi.tempF, 0, cex=1.5) 
title("tempF") 
 
truehist(chirand.ipacF, col='grey', xlim=c(min(chirand.ipacF), chi.ipacF+20)) 
points(chi.ipacF, 0, cex=1.5) 
title("ipacF") 
 
truehist(chirand.atlF, col='grey', xlim=c(min(chirand.atlF), chi.atlF+20)) 
points(chi.atlF, 0, cex=1.5) 
title("atlF") 
 
truehist(chirand.allF, col='grey', xlim=c(min(chirand.allF), chi.allF+20)) 
points(chi.allF, 0, cex=1.5) 
title("allF") 
 
 
 
# Combine the obs stats from each biome/ocean into one combined statistic 
# Do the same for the null distributions (sort chirand vectors first, then add) 
 
par(mfrow=c(1,2)) 
par(pty='s') 
 
biome.matF = rbind(sort(chirand.tropF), sort(chirand.tempF)) 
chirand.biomeF = colSums(biome.matF) 
chi.biomeF = sum(chi.tropF, chi.tempF) 
truehist(chirand.biomeF, xlim=c(min(chirand.biomeF)-20, chi.biomeF+20), col='grey') 
points(chi.biomeF, 0, cex=1.5) 
 
 
ocean.matF = rbind(sort(chirand.ipacF), sort(chirand.atlF)) 
chirand.oceanF = colSums(ocean.matF) 
chi.oceanF = sum(chi.ipacF, chi.atlF) 



 172

truehist(chirand.oceanF, xlim=c(min(chirand.oceanF)-20, chi.oceanF+20), col='grey') 
points(chi.oceanF, 0, cex=1.5) 
 
 
 
# Plot each full model (region,biome,ocean,global) 
 
par(mfrow=c(2,2)) 
par(pty='s') 
 
truehist(chirand.regionF, xlim=c(min(chirand.regionF)-20, chi.regionF+20), col='grey') 
points(chi.regionF, 0, cex=1.5) 
title('regions model F') 
 
truehist(chirand.biomeF, xlim=c(min(chirand.biomeF)-20, chi.biomeF+20), col='grey') 
points(chi.biomeF, 0, cex=1.5) 
title('biomes model F') 
 
truehist(chirand.oceanF, xlim=c(min(chirand.oceanF)-20, chi.oceanF+20), col='grey') 
points(chi.oceanF, 0, cex=1.5) 
title('oceans model F') 
 
truehist(chirand.allF, col='grey', xlim=c(min(chirand.allF), chi.allF+20)) 
points(chi.allF, 0, cex=1.5) 
title("global model F") 
 
 
 
save(randspp.indF, randspp.tpacF, randspp.npacF, randspp.spacF, randspp.tatlF, randspp.natlF, 
file="binomial_randomisation_functional_region_spp_arrays.Rdata") 
 
  
save(randgrp.indF, randgrp.tpacF, randgrp.npacF, randgrp.spacF, randgrp.tatlF, randgrp.natlF,  
file="binomial_randomisation_functional_region_grp_arrays.Rdata") 
 
 
save(randspp.tropF, randspp.tempF, randspp.ipacF, randspp.atlF, randspp.allF, 
file="binomial_randomisation_functional_over_region_spp_arrays.Rdata") 
 
save(randgrp.tropF, randgrp.tempF, randgrp.ipacF, randgrp.atlF, randgrp.allF, 
file="binomial_randomisation_functional_over_region_grp_arrays.Rdata") 
 
 
save(chirand.indF, chirand.tpacF, chirand.npacF, chirand.spacF,chirand.tatlF,chirand.natlF, 
       chi.indF, chi.tpacF, chi.npacF, chi.spacF,chi.tatlF,chi.natlF, 
       chirand.tropF, chirand.tempF, chirand.ipacF, chirand.atlF, chirand.allF, 
       chi.tropF, chi.tempF, chi.ipacF, chi.atlF, chi.allF, 
file="binomial_randomisation_functional_chis.Rdata") 
 
 
 
 
## LIKELIHOOD METHODS TO DISTINGUISH BETWEEN BEST 
## MODEL (TROP BIOME OR REGION) 
 
 
## To get Expected value for each group at each site for the  
## tropical biomes model 
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ngroups=10 
nsites=71 
siterich=colSums(tropF[,4:74]) 
 
Emat.tropB = matrix(NA, nrow=nsites, ncol=ngroups) 
colnames(Emat.tropB)=fxngrps 
 
for(site in 1:nsites){ 
    for(grp in 1:ngroups){ 
        prop.mat = randgrp.tropF/siterich 
        Emat.tropB[site,grp] = mean(prop.mat[site,grp,]) 
    } 
} 
 
 
 
## For indian, tpacF, tatlF - then combine these into 
## Expected value for each group at each site for the  
## tropical regions model 
 
nsites=20 
siterich=colSums(indian[,4:23]) 
 
Emat.ind = matrix(NA, nrow=nsites, ncol=ngroups) 
colnames(Emat.ind)=fxngrps 
 
for(site in 1:nsites){ 
    for(grp in 1:ngroups){ 
        prop.mat = randgrp.indF/siterich 
        Emat.ind[site,grp] = mean(prop.mat[site,grp,]) 
    } 
} 
 
 
nsites=30 
siterich=colSums(tpacF[,4:33]) 
 
Emat.tpac = matrix(NA, nrow=nsites, ncol=ngroups) 
colnames(Emat.tpac)=fxngrps 
 
for(site in 1:nsites){ 
    for(grp in 1:ngroups){ 
        prop.mat = randgrp.tpacF/siterich 
        Emat.tpac[site,grp] = mean(prop.mat[site,grp,]) 
    } 
} 
 
 
nsites=21 
siterich=colSums(tatlF[,4:24]) 
 
Emat.tatl = matrix(NA, nrow=nsites, ncol=ngroups) 
colnames(Emat.tatl)=fxngrps 
 
for(site in 1:nsites){ 
    for(grp in 1:ngroups){ 
        prop.mat = randgrp.tatlF/siterich 
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        Emat.tatl[site,grp] = mean(prop.mat[site,grp,]) 
    } 
} 
 
 
Emat.tropR = rbind(Emat.ind, Emat.tpac, Emat.tatl) 
 
 
## Calculate log likes for each model 
## See paper for formula explanation 
 
LL.region = sum(trop.biomeF*log(Emat.tropR)) 
LL.biome = sum(trop.biomeF*log(Emat.tropB)) 
 
 
aicR = -2*LL.region + 2*3*9 
aicB = -2*LL.biome + 2*9 
    # AIC for each model 
 
 
## TRADITIONAL GP TESTS 
## Get guild prop variance for each group (across sites 
## within the region in question) 
## Do this for each randomisation and plot histogram 
## of random community variances 
 
 
wilson.gp = function(numsims, grpmat, grpmat.real){  
 
    siterich = rowSums(grpmat.real) 
 
    rand.var = matrix(NA, nrow=numsims, ncol=ngroups) 
    colnames(rand.var) = fxngrps 
 
    for(mat in 1:numsims){ 
        propmat = grpmat[,,mat]/siterich 
            # converts number of gen in group to proportion 
        rand.var[mat, ] = apply(propmat, 2, var) 
    } 
 
    real.prop = grpmat.real/siterich 
    real.var = apply(real.prop, 2, var) 
        # real variance values 
 
    gp.index = matrix(NA, nrow=numsims, ncol=ngroups) 
    colnames(gp.index) = fxngrps 
        # guild prop index (Wilson 1989) Vobs/Vnull 
        # if this is >1 then no guild prop if <1 guild prop 
 
    for(mat in 1:numsims){ 
        gp.index[mat,] = rand.var[mat,]/real.var 
    } 
 
    gp.sig = rep(NA, ngroups) 
    names(gp.sig) = fxngrps 
        # significance level for gp index.  Sig gp at alpha =0.05  
        # if gp.sig<=0.025 (2-tailed test) 
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    for(grp in 1:ngroups){ 
        TF = gp.index[,grp]<1 
        gp.sig[grp] = sum(TF)/numsims 
    } 
 
    randvar.stats = matrix(NA, nrow=3, ncol=ngroups) 
    colnames(randvar.stats) = fxngrps 
    rownames(randvar.stats) = c('mean', 'upper', 'lower') 
 
    for(i in 1:ngroups){ 
        sorted = sort(rand.var[,i]) 
        randvar.stats[1,i] = mean(sorted) 
        randvar.stats[2,i] = sorted[9] 
        randvar.stats[3,i] = sorted[2] 
    } 
 
    return(list(var.rand=rand.var, sig=gp.sig, plot.stats=randvar.stats, var.obs=real.var)) 
} 
 
trop.wilson.gpF=wilson.gp(reps, randgrp.tropF, trop.biomeF) 
temp.wilson.gpF=wilson.gp(reps, randgrp.tempF, temp.biomeF) 
 
 
save(trop.wilson.gpF, temp.wilson.gpF, 
file="binomial_randomisation_functional_biome_wilson.Rdata") 
 
 
par(mfrow=c(1,2)) 
par(pty='s') 
 
x=seq(1,10) 
 
trop.o = order(trop.wilson.gpF$plot.stats[1,], decreasing=F) 
new.trop = trop.wilson.gpF$plot.stats[,trop.o] 
 
plot(x, new.trop[1,], ylim=c(0,max(new.trop))) 
arrows(x, new.trop[2,], x, new.trop[3,], length=0.1, code=3, angle=90) 
points(trop.wilson.gpF$var.obs[trop.o], pch=19) 
 
 
temp.o = order(temp.wilson.gpF$plot.stats[1,], decreasing=F) 
new.temp = temp.wilson.gpF$plot.stats[,temp.o] 
 
plot(x, new.temp[1,], ylim=c(0,max(new.temp))) 
arrows(x, new.temp[2,], x, new.temp[3,], length=0.1, code=3, angle=90) 
points(temp.wilson.gpF$var.obs[temp.o], pch=19) 
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