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Clustering algorithms for disease classification

using mass spectrometry data

Abstract

Besides the availability of genomic data, life-science researchers study proteomics

in order to gain insight into the functions of cells by learning how proteins are ex-

pressed, processed, recycled, and their localization in cells. Proteomics are defined

as the study of proteome which refers to the entire set of expressed proteins in a cell.

In particular, functional proteomics involves the use of mass spectrometry (MS) to

study the regulation, timing, and location of protein expression. It has been recently

realized that the use of MS coupled with pattern recognition methodology can of-

fer tremendous potential for the early detection of complex human diseases, and

biomarker discovery. However, given the promising integration of several machine-

learning methods and MS data in high-throughput proteomics, this biotechnology

field still encounters several challenges in order to become a mature platform for

clinical diagnostics and protein-based biomarker profiling. Some of the major chal-

lenges include noise filtering of MS data, feature extraction, feature reduction of MS

datasets and selection of computational methods for MS-based classification. The

main objective of this research is to classify diseases using MS data. First, we investi-

gated feature extraction of MS data based on the fundamentals of signal processing

such as the theory of linear predictive coding. Then we present an unsupervised

kernel based fuzzy c-means (KFCM) approach, which is shown to be more robust

to noise than fuzzy c-means (FCM) for mass spectrometry dataset. The KFCM is

realized by modifying the original Euclidean distance in FCM by a kernel-induced

distance. We evaluated the performance of our classification methods with some

popular classification techniques such as support vector machine (SVM), principle

component analysis (PCA), linear or quadratic discriminate analysis (LDA/QDA)

and random forests.
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Chapter 1

Introduction

Cancer research is a major research area in the medical field. Modern proteomics

have made enormous progess in the past years, providing tools that have been ap-

plied to the study of biological information. Proteomics refers to the entire set of

expressed proteins in a cell and it helps to study and understand biological infor-

mation, which will lead to the discovery of pathways involved in normal processes

and in disease pathogenesis [78].

In its current state, Surface Enhanced Laser Desorption/Ionization Time-Of-

Flight mass spectrometry (SELDI-TOF MS) is the technology used to acquire the

proteomic patterns to be used in the diagnostics setting. In such an approach,

human tissue samples are collected from some easily accessible body fluids such as

serum, urine, or saliva to produce protein spectra [4, 14]. Every protein spectrum

consists of a sequence of peaks, each of which corresponds to a specific protein

and is characterized by its mass to charge ratio (m/z) and intensity. The intensity

distributions of control and disease are distinct at a specific m/z, this m/z ratio is a

useful feature for the classification of healthy and disease. The use of SELDI-TOF

MS profiling of serum proteins combined with advanced computation models, to

detect protein patterns associated wiht disease, has been reported as a promising

field of research to achieve the goal of early cancer detection. Research has shown

the potential of this proteomic method to diagnose the difference between control

and cancer datasets [45, 58].

Integration of mass spectrometry data in high-throughput proteomics still en-

counters several challenges such as feature extraction, feature reduction of MS data

and selection of computational models for MS-based classification [72, 73]. Biomed-

ical data is noisy and notoriously complex, so machine learning techinques cannot

be applied directly to the mass spectrometry dataset [72], so feature selection steps

are performed to find a moderate number of proteins (features), that contribute

most to correct classification [16]. Much of the effort in this thesis focuses on using

unsupervised clustering algorithms to evaluate prostate cancer datasets using the

1



CHAPTER 1. INTRODUCTION 2

features obtained from linear predictive coding, which try to detect the patterns

that allow the diagnosis of cancer versus non-cancer. Thus, this field represents an

active area of current research.

1.1 Proteomics for disease classification

Mass spectrometry (MS) is an experimental method for protein identification, which

provides the ability to characterize thousands of proteins present in a complex bio-

logical mixtures. MS plays a vital role in proteomics to analyse protein, peptides,

oligonucleotides, identification of protein by database searching, sequence confir-

mation and protein structure prediction. In particular, data produced by mass

spectrometers are affected by errors and noise due to sample preparation, sample

insertion into the instrument (different operators can lead to different results using

the same sample) and the instrument itself. Mass spectrometry based proteomics

experiments usually comprise a data generation phase, a data pre-processing phase

and a data analysis phase (data mining, pattern extraction or peptide/protein iden-

tification). Mass spectrometry produces a huge volume of data, called spectra, that

are represented as a very large set of measures (intensity,m/z), representing the

abundance (intensity) of biomolecules having certain mass to charge ratio (m/z) val-

ues. The capabilities of a mass spectrometer are determined by its ion source, mass

analyser and detector. Protein profiling of plasma and serum has been performed

primarily with a matrix-assisted laser desorption ionization ion source (MALDI) or

its derivatives, and the surface-enhanced laser desorption ionization (SELDI) cou-

pled to time-of-flight (TOF) mass analyser. Data are recorded as plots of intensity

versus mass-to-charge ratio (m/z), and referred as mass spectrum. For large sam-

ples such as biomolecules, molecular masses can be measured within an accuracy

of 0.01% of the total molecular mass of the sample i.e. within 4 Daltons (Da).

This is sufficient to allow minor mass changes to be detected, e.g. the substitution

of one amino acid for another or a post–translational modification. Though large

sequences of m/z data contain a lot of information in an implicit way, manual in-

spection of experimental data is difficult, so to tackle this problem, computational

and soft computing methods are used. Serum proteomic signatures obtained from

mass spectrometry are used as a diagnostic classifier of proteomic signatures from

high dimensional MS data. Such a proteome has given promising results in the

detection of disease in an early stage [33, 43, 57].
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Instrumentation

Mass spectrometry can be divided into three fundamental parts, namely the ionisa-

tion source to produce ions from the sample, one or more mass analyser, to separate

the ions according to their m/z ratios; a detector to register the number of ions

emerging from the last analyser; and a computer, to process the data, to produce

mass spectrum in a suitable form and to control the instrumentation through feed-

back. Each mass spectrometer also has an inlet device to introduce the analyte

into the ion source, for example a direct insertion probe or liquid chromotography.

The separated ions are detected and this signal is sent to a data system where the

m/z ratios are stored together with their relative abundance for presentation in the

format of m/z spectrum [32].

Figure 1.1: Overview diagram of mass spectrometer

Methods of ionisation

To analyse a sample by MS, it must be first vaporised and ionised. The ionisation

techniques most commonly used for the mass spectrometeric analysis of proteins

and peptides are electro spray inonisation (ESI), MALDI and SELDI [45].

Electrospray ionization (ESI)

The generation of ESI was first demonstrated by Dole et al. in 1968, but it was

Fenn’s group at Yale university that first coupled ESI with MS. The ESI process
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transfers ions in solution into gaseous ions at atmospheric pressure, which are sam-

pled into the vacuum system of the mass spectrometer through a series of sampling

apertus separating successive vacuum stages. The sample solution flows at low flow

rates through a capillary tube to which a high voltage (1-6 kV) is applied. The so-

lution flowing through the capillary experiences an electric field set up between the

capillary and a counter electrode and, assuming a positive potential is applied to the

capillary, positive ions in solution will accumulate at the surface of the tip, which

becomes drawn out, assuming a conical shape known as a “Taylor cone”. As the

liquid is forced to hold more electric charge, the cone is drawn out into a filament,

when the surface tension is exceeded by the applied electrostatic force, produces

positively charged droplets (<10 mm in diameter) via a “budding” process. Then

the droples fly towards the counter electrode, which is opposite in charge to their

own. As they fly towards the electrode, they pass through either a heated capillary

(180 − 270oC) or a curtain of heated nitrogen to allow solvent to evaporate. De-

pending on the initial size of the droplets, the particles leaving can either be smaller

droplets, or discrete solvated surface ions. At atmospheric pressure, collisions with

surroundings gases quickly desolvate the solvent-clustered ion, resulting in quasi-

molecular ion. Significantly, the ESI process occurs at relatively low temperatures,

and so large, thermally liable, polar molecules can be ionised without decomposi-

tion. The pre-requiste for gaseous ion production with ESI is that analyte can be

ionised in solution. If several ionisable sites are present, mutilply charged ions will

be produced. By observing such multiply charged species, the effective mass range

of the spectrometer can be extended to hunderds of thousands of daltons [1, 32].

Matrix assisted laser desorption/ionization (MALDI)

MALDI technique was first introduced in 1988 and successfully applied in biochem-

ical analysis of proteins, peptides, glycoproteins and oligonucleotides. The mass

accuracy depends on the type and performance of the analyser of the mass spec-

trometer. The sample to be analysed is co-crystallized with a large excess of matrix

material that will strongly absorb the light from a laser. Irradiation of the matrix

causes rapid heating and localised sublimation of the matrix crystals. Since the ma-

trix is in large excess and contains a chromophore for the laser light it will absorb

esstentially all of the laser radiation. As the matrix expands into the gas phase it

takes with it intact analyte molecules, allowing ionisation without fragmentation.

Ionisation can occur anytime during this process, but the extact origin of ions pro-

duced by the MALDI process is still not fully understood [43]. The most widely used

mechanism involves gas phase proton transfer in the expanding matrix plume with

photoionised matrix molecules, which is shown in Fig 1.2. The matrix molecules

absorb the energy from the laser light and transfer it into excitation energy of the
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solid system. The effect is an instantaneous phase transition of small molecular

layers of the sample into a gaseous state. It is also a soft ionisation method and

so results predominantly in the generation of single charged molecular-related ions

regardless of the molecular mass, hence the spectra are relatively easy to interpret.

The MALDI process is independent of the absorption properties and size of the com-

pound to be analysed and therefore allows the desorption and ionisation of analytes

with very high molecular masses [10, 32, 43].

Figure 1.2: MALDI Process

Surface-enhanced laser desorption-ionisation (SELDI)

As with genomics, chip technology is beginning to be applied in the proteomics field.

As proteins are heterogenous, a simple one-chip for all genes is not currently achiev-

able as no capture molecules capable of binding all possible proteins are available.

Therefore, a variety of protein and peptide arrays have been developed to analyse

a specific protein or group of proteins. Affinity-based MS techniques represent a

further proteomic tool. Ciphergen Biosystems, Inc. have developed SELDI protein

chip technology that allows for the non-destructive analysis of both large and small

molecules, coupled with automated MS analysis.

SELDI-TOF-MS can be considered as the extension of MALDI-TOF method, but it

differs in the construction of the sample targets, the design of the analyser and the

software tools used to interpret the acquired data. In the SELDI method, protein so-

lutions are applied to the spots of Protein Chip Arrays, which have been derivatized

with planar chromatographic chemistries. These protiens actively interact with the

chromatographic array surface, and become sequestered according to their surface

interaction potential as well as being separated from salts and other sample contam-

inats by subsequent on-spot washing with appropiate buffer solutions. Furthermore,
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protein interation studies or enzymatic reactions may be carried out directly on-spot

under physiological conditions. The chromatographic surfaces provide a very good

support for the co-crystallization of matrix and target proteins, resulting in the in-

formation of a homogenous layer on the spot, thereby delivering an ideal crystalline

surface for the subsequent analysis.

The SELDI platform has been successfully used to quantify relative levels of prostate-

specific anitgen (PSA) from serum, and in combination with PSA, can discriminate

between benign prostatic hyperlasia and prostate cancer patients. This approach

is very useful for detecting markers profiles of disease, however its use is limited in

discovery research due to the difficulties in determining the identity of the marker

polypeptides. The most widely heralded proteomics study to date is that of Lance

Liotta and Emanuel Petricoin III, who used SELDI to anlayse the protein patterns of

serum from prostate cancer patients, which shows some promising results in detect-

ing cancer in its early stage [58]. Though a vast amount of data has been produced

by SELDI-MS, computer algorithms are vital to screen for potential biomarkers.

Analysis and separation of sample ions

The main function of the mass analyser is to separate, or resolve, the ions formed in

the ionisation source of the mass spectrometer according to the mass-to-charge (m/z)

ratios. There are number of mass analysers currently available, the better known

of which include Time-Of-Flight (TOF) analysers, magnetic sectors, quadrupoles

and both Fourier transform and quadrupole ion traps. They are diverse in terms

of design and performance, and can be used as a stand-alone analysers or in some

cases, put together in tadem to take advantage of their different strengths.

Time-of-Flight (TOF)

In Time-Of-Flight (TOF) instruments, positive ions are produced by periodic bom-

bardment of the sample with brief pulses of electrons, secondary ions, or laser-

generated photons. The ions produced by the laser are then accelerated by an

electric field pulse and passed into a field-free drift tube. An accelerating potential

(ν) will give an ion of charge z an energy of zν, which can be quated to the kinetic

energy of the ion:

zν =
mν2

2
(1.1)

where m = mass, ν = velocity Ideally, all ions entering the tube will have the

same kinetic energies, and their velocities must therefore vary inversely with their
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masses, with lighter particles arriving at the detector earlier than the heavier ones.

With velocity (ν)=distance (d)/time(t), the equation can therefore be rewritten as
m
z

= 2νt2

d2
. The ions therefore drift through a field-free path and are separated in

space and time-of-flight. Mass-to-charge ratios are determined by measuring the

time that ions take to move through a field-free region between the source and the

detector [32].

1.2 Background and Motivation

The proteomics research field is progressing through the development of novel tech-

nology and the diagnosis of disease based on mass spectrometry is an emerging field

to revolutionize early medical diagnosis. It has recently been realized that the use

of MS coupled with pattern recognition methodology can offer tremendous poten-

tial for the early detection of complex human diseases, and biomarker discovery.

Because of the multi-factorial nature of MS data, it is clear that computational

methods are needed to analyse the given datasets which will help in detecting the

disease. The combination of data mining techniques with SELDI-TOF- MS must

overcome several challenges to become a mature platform. Thus, for early detec-

tion of cancer based on pattern analysis, we need more rigorous and systematic

approaches. Recent studies confirm that there is no universal pattern recognition

and classification model to predict molecular profiles across different datasets and

medical domains [72]. Many classification and knowledge discovery problems may

require the combination of multiple techniques not only to improve the accuracy

and efficiency of the analysis tasks, but also to support evaluation process. This

motivates the need for a comparative study on mass spectrometry datasets using

different machine learning approaches.

1.3 Aims and Objectives

This research is based on existing theories available in the pattern recognition tech-

niques. The primary aim of the research is to apply machine learning techniques

to classify mass spectrometry datasets that comprises a collection of methods for

extracting features from prostate cancer datasets and classifying healthy men from

disease using clustering techniques. The objectives of this research are:

• To understand, to a certain extent, the context and knowledge of medical

experts, in order to develop a knowledge base.
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• To design a model that can analyse and classify mass spectrometry dataset.

This model includes fuzzy clustering and kernel based fuzzy clustering algo-

rithms.

• To evaluate the performance of our clustering algorithms, by comparing the

results with popular classification methods.

• To identify the effectiveness and limitations of several machine learning tech-

niques in analysing a prostate cancer dataset.

1.4 Problem description

Fuzzy clustering is an unsupervised clustering algorithm that has been widely stud-

ied and applied in a variety of key areas. FCM attempts to find the most character-

istic point in each cluster, which can be considered as the centroid c of the cluster

and then, the grade of membership for each object in the clusters. Recent studies

in cluster analysis suggest that a user of clustering algorithm should keep certain

things in mind: 1) every clustering algorithms will find clusters in a given dataset

whether they exist or not; the data should, therefore subjected to tests for cluster-

ing tendency before applying a clustering algorithms, followed by a validation of the

clusters generated by the algorithm; 2) there is no best clustering algorithms on a

given dataset. Further, issues of data collection, data normalization, representation

and cluster validity are as important as the choice of clustering stagery. However,

the implementation of unsupervised clustering algorithms require a priori selection

of cluster centers c, so it is necessary to validate each of the fuzzy c-partitions once

they are found. In addition to the number of clusters c, the FCM clustering algo-

rithm and its various extensions require a priori choice of the “degree of fuzziness”

parameter m, also called as fuzzy exponent. When FCM is used in unsupervised

mode, cluster center c is determined by fuzzy validity measure and it leaves the

value of the fuzzy exponent m to be determined, which remains an open problem.

Therefore, we experimented our dataset with three traditionanl validity measures

to solve the above specficied problems in clustering algorithms. In literature about

FCM, m is commonly fixed to 2 for easy computation, but when applied to mass

spectrometry datasets, we observed the membership values are similar, FCM failed

to extract useful clustering structure. Similar to the work of Dembele et al.(2003),

we determined the upper bound value m for the given feature extracted MS dataset,

which helped us to decide to choose m lower or equal to 2, to get high membership

values for data points related to clusters. According to my knowledge, it was noted

that, there was no strong theoretical justification or emprical evidence for these

choices.



CHAPTER 1. INTRODUCTION 9

1.5 Thesis outline

This thesis is mainly concerned with feature extraction and classification methods

for analysing mass spectrometry dataset. It is organized as follows:

• Chapter 2: This chapter gives the basis of machine learning perspective in

analysing mass spectrometry dataset. The literature is reviewed based on five

stages used for data analysis, namely 1)Pre-processing, 2)Feature extraction,

3)Feature selection, 4)Classifiers. These five stages are mutually dependent

and the best combination of methods to be used at each stage must be deter-

mined empirically.

• Chapter 3: This chapter describes the research methodology, structure and

major contributions of this thesis.

• Chapter 4: This chapter details the extraction of features from the mass spec-

trometry dataset using the principle of linear predictive coding (LPC). As

the data size of the protein spectra obtained by SELDI is 15,154 points, it is

impractical to use all data as the input features to the classification because

(a) some data points may contain noise, which reduces the performance of

classification methods; (b) a large number of features increase computational

complexity. Therefore, we performed feature extraction to select the most sig-

nificant points out from the SELDI data as the features for cancer detection.

We applied LPC to extract or select the features from the given MS dataset

(m/z), though the raw form doesn’t convey useful information for the task of

classification. Considering MS data as a signal, the features can be extracted

and it can be represented as LPC coefficients.

• Chapter 5: This chapter describes a number of unsupervised pattern recogni-

tion techniques. In section 5.1, we describe fuzzy clustering algorithms, which

can be used for clustering when the number of clusters is known. In section

5.2, we discuss popular kernel based unsupervised fuzzy clustering algorithms,

which includes the formulation, brief review about kernel functions and the

implementation of kernel trick into fuzzy c-means called kernel fuzzy c-means

(KFCM). KFCM is realised by replacing the original Euclidean distance in

the fuzzy c-means with a kernel induced distance metric. In section 5.3 and

section 5.4, we discuss some of the popular cluster validation techniques. As

we know fuzzy clusterings are mainly influenced by cluster centers c and expo-

nent value m, we carried out our experiments with traditional validity indices

namely VPC , VCE, VXB to determine the cluster centers and we followed the

procedure of Dembele (2003) to determine the exponent value.
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• Chapter 6: This chapter gives a broad overview of the application of distor-

tion measures to calculate the dissimilarities between two feature extracted

vectors. In addition, cross-validation is performed to evaluate the accuracy of

our clustering algorithms.

• Chapter 7: This chapter first introduces the dataset used in our experiments,

then shows the outcomes of FCM and KFCM with different parameters ini-

tialization. In addition, clustering algorithms is experimented using different

distortion measures and the results are compared with popular machine learn-

ing techniques.

• Chapter 8: This chapter concludes the whole thesis and summarizes the con-

clusions obtained in each chapter.



Chapter 2

Literature review

2.1 Introduction

Computational methods are needed in all levels of proteomics analysis [33]. Soft-

ware packages and tools are being developed to analyse protein patterns, which can

help in analysing protein spots on images, matching and editing. Data warehouse

technology is used to improve efficiency and accuracy in accessing the databases

and to enhance the schema to be flexible and comprehensive. New techniques and

new collaborations between computer scientists, biostatisticians and biologists are

needed to develop an integrated database for the various sources of data, to develop

tools for transforming raw primary data into forms suitable for public dissemination

or formal data analysis, to develop user interfaces to store and retrieve, to visualize

data from databases and to develop efficient methods to analyse data. Distinguish-

ing correct from incorrect pattern assignments can be regarded as machine learning

or supervised learning, a major topic in the machine learning field [33, 35]. Many

powerful methods have been developed to identify samples into different groups

based on the spectra generated by the mass spectrometer. Due to the huge number

of clustering and classification algorithms available, it is somewhat imperative to

study the comparative performances of such algorithms [31]. The literature is re-

viewed on the basis of machine learning prespective in analysing mass spectrometry

datasets. There are five stages of data analysis available, namely 1). Pre-processing

to reduce the influence of aspects of the data that are not expected to aid in the

goal of discrimination between diseases and healthy, 2). Feature extraction aims to

reduce the dimensionality of the data. Following feature extraction step it is neces-

sary to perform, 3). Feature selection in which subset of features that best enable

discrimination between two groups, 4). Machine models which are designed to dis-

tinguish control from diseased samples based on the selected features, will increases

the likelihood of successful classification. The five stages are mutually dependent

11
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and the best combination of methods to be used at each stage must be determined

empirically [33, 67, 76]. The goal of these efforts is to improve diagnostic methods

by either discovering the serological tests or bio-markers, or to improve pathological

analysis using tissue proteomics [72].

2.2 Preprocessing

Unfortunately, before standard classification algorithms can be employed, the “curse

of dimensionality” needs to be addressed. Due to the sheer amount of information

contained within the mass spectra, most standard machine learning techniques can-

not be directly applied. Therefore preprocessing has to be performed to reduce

the noise in the data such that machine learning can tease out the key information

and correctly classify new samples based on a limited set of examples [3, 35]. In

mass spectrometry, the noise is the undesired interfering signal caused by sources

unrelated to the biochemical nature of the sample being analysed and the signal is

the relative abundance of ions originating from the proteins in the sample. Many

studies to date have not employed explicit noise reduction schemes other than basic

noise reduction methods implemented on commercial mass spectrometers. However,

some investigators have explored methods for reducing noise, particularly the base-

line and high frequency noise [30, 39]. A variety of approaches have been explored to

estimate the baseline from mass spectra namely heuristic or model-based. Heuristic

approaches form non-parametric estimates of the baseline from a set of mass spectra

and is one of the most commonly used methods to estimate and eliminate the base-

line. Model-based approaches build a mathematical model of the baseline based on

the physics of the mass spectrometer and estimate the parameters of the model. A

local average or minimum intensity within a moving window has been used as a local

estimator of the baseline and the overall baseline is estimated by sliding the window

over the mass spectrum. Piecewise linear regression has been applied to the regions

with a monotonically decreasing baseline. For methods in which a sliding window

or piecewise linear regression are employed for baseline elimination, the window size

is a critical factor for determining the overall performance. If the window size is

too large, these methods may oversimplify the curvature of the baseline with a long

straight line. If the window size is too small, they may produce an overly complex

estimate of the baseline, which is very sensitive to high frequency noise [27, 31, 63].

All of the methods have made considerable contributions to high frequency noise

reduction in mass spectra. However, since no study has extensively compared the

methods introduced above on the same data set, it is difficult to conclude if one

method is better than the others. Moreover, the overall performance of those high

frequency noise reduction methods is highly dependent on the choice of the filter
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parameters (e.g., the size of the sliding window or the kernel weights) and the true

effectiveness of those methods is difficult to measure due to the lack of knowledge

on the statistical characteristics of the signal and noise in mass spectra [1, 31].

2.3 Feature extraction

In decision support systems utilizing mass spectra, feature extraction can be defined

as a process of extracting summary information reflecting the pathological status of

a sample from pre-processed mass spectra. These techniques are crucial for learning

high-accuracy classifiers and realizing the full potential of mass spectrometry for

disease diagnosis. In this section we discussed in detail about some of the existing

feature extraction techniques and the details are as follows.

2.3.1 Wavelets/Principle Component Analysis (PCA)

Wavelets are mathematical functions that divide data into different frequency com-

ponents, and then study each component with a resolution matched to its scale.

This technique achieved a broad and successful application to pattern recognition

in the last decades. It is also an efficient way of reducing or comprising the similar

data, and localizing a signal in both time and frequency. In recent years, there has

been a growing interest in the application of wavelet methods to biomolecular re-

lated signals. In [21], the researchers applied discrete wavelet transform (DWT) to

extract useful features from mass spectrometry dataset. The discrete wavelet trans-

form is like the Fourier transform, and can be used to obtain meaningful features

by mapping the spectrum into another space [64]. In Fourier analysis, the analyzing

functions are the set of sine function, whereas for DWT, wavelets are the analyzing

functions. The DWT is defined as

x(t) =
l∑

j=1

2l∑
k=0

cj,kψj,k (2.1)

where ψ0,0 is the father wavelet, which helps to calculate ψj,k, x(t) is the spectrum, l

is the decomposition level for the DWT and cj,k is the wavelet coefficient calculated

between the inner product x(t) and ψj,k.

Considering mass spectrometry data MS of length N , the DWT consists of Log2N

levels at most. The first level produces two sets of coefficients: approximation

coefficients and detail coefficients. These vectors are obtained by convolving MS

with the low-pass filter for approximation, and with the high-pass filter for detail.
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The next level splits the approximation coefficients in two parts using the same

scheme and so on. Though there are many types of analysis functions (wavelet)

available, but there is no clear idea about the selection of the wavelets, therefore the

researchers used linear combination of wavelets and referred as super-wavelets. The

wavelet transform (WT) has been also employed not only to reduce noise but also

to extract features from mass spectra in a similar fashion as PCA is used. The WT

also compresses data by projecting the original data onto pre-specified orthogonal

directions (wavelets) [49]. The coefficient of each wavelet becomes a feature in this

case, thus the wavelets representing high frequency components are usually ignored,

and noise reduction is simultaneously accomplished with feature extraction. In few

studies, features extracted by projecting the signals from the original space onto

another are done by principle component analysis (PCA), for more details refer to

section 2.5. PCA identifies the orthogonal directions in which data vary maximally

using the eigenvalue/eigenvector decomposition of the covariance matrix. Then the

original signals are projected onto those directions, the number of which is usually

smaller than the original dimension. The projections are called principle components

and are often used as features [16]. Both the approaches are very sensitive to the

choice of components (i.e., principle eigenvectors in PCA or wavelets in the WT);

therefore, it is important to determine criteria for selecting eigenvectors or wavelets

prior to feature extraction.

2.3.2 Genetic algorithms (GA)

Genetic algorithms (GA) are a family of computational models inspired by evolution

and can be used to solve problems efficiently for which there are many possible

solutions. GA’s are often viewed as function optimizers, although the range of

problems to which genetic algorithms have been applied is quite broad. In a broader

usage of the term, a GA is any population based model that uses selection and

recombination operators to generate new sample points in a search space. Many

genetic algorithm models have been introduced by researchers largely working from

an experimental perspective. Many of these researchers are application oriented

and are typically interested in genetic algorithms as optimization tools. In GA’s,

the initial step is to generate random data, consisting of predefined of individuals

(rows) and variables (columns). Each individual represents a subset of the original

variables with the larger superset of data under analysis. The next step in the GA

is analogous to the process of Darwinian evolution whereby, through the process

of crossover, mutation and survival of the fittest, individuals are selected for the

next generation until a particular stopping criterion has been reached. The GA

algorithm uses a fitness function to assess the robustness of the model proposed by
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each individual [38, 48].

In [58], GA is applied effectively to extract features from the given MS data. The

GA starts randomly selecting many small subset of key values along the spectrum

x axis using an iterative algorithm searching process. The fitness was conducted

to plot the patterns in N-dimensional space, where N is the number of m/z values

in the test set. The pattern formed by the iterative amplitude of the spectrum

data for this set of chosen values is rated for its ability to distinguish the two

preliminary population. Then they reshuffled the highest rated sets to form new

subset candidates and the resultant y-axis-defined amplitudes are rated iteratively

until the set that fully discriminates the preliminary set emerges. This subset which

was selected considered as important because the pattern of amplitudes at these m/z

values completely segregated the serum from patients with prostate cancer from the

unaffected populations.

2.3.3 Peak detection techniques

In feature extraction, a variety of peak detection and alignment algorithms are being

developed and tested. It is complicated to identify the peaks in mass spectrometry

dataset due to the mass error rate. The main goal of feature extraction is to identify

sets of m/z values which comprises peaks that are higher than the noise level of mass

spectrum. In many studies, commercial software has been used to find as many peaks

as possible and then applied threshold levels to select the peaks far higher than the

noise level [81]. In Ciphergen biosystems, they developed a software to detect the

peak from the noisy background. The working principle of this software is as follows;

first it selects the peaks with a high signal to noise ratio with in individual spectra

and then it search for the moderate peaks [72]. In [20], the researchers explored

alternative peak detetection algorithms for more rigorous peak finding. Most of

the peak detection algorithms in the literature find local maximum intensities from

the given mass spectrometry dataset and choose the local maxima higher than a

thershold of the noise level as peaks. But the researchers used a simple algorithm

to register all the m/z values with local maximum intensity, and then used both

absolute threshold and relative threshold, exceeding user specified threshold. In

addition to the peak detection, they used time wrapping method to align the peaks

obtained from each sample. Finally, they obtained reasonable amount of peaks to

get good classification rate. They reported even other spectra alignment algorithms

are also good candidate for the task. After peak detection and peak alignment,

one must define the metrics of a peak group that will serve as features. Feature

metrics related to peak heights have been used in most studies. Instead of retaining

the peak height as continuous feature data, binary and discretized feature values
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have also been investigated as a way to alleviate the variability of feature values

across samples that can deteriorate the generalization of the classifier. In feature

extraction, a variety of peak detection and alignment algorithms are being developed

and tested. It is necessary to take into consideration about the resolution and noise

of mass spectrometry, because it can be easily affected by the noise. It is possible

to develop better diagnostic systems if we could have the prior knowledge of mass

spectrometry and the proteins present in blood for the feature extraction process.

2.4 Feature selection

Feature selection is defined as a series of actions to choose a subset of features

that are relevant to correct classification based on specified evaluation and selection

criteria. Feature selection methods are often categorized as filters, wrappers, or

embedded methods. These techniques are now discussed in detail as follows:

2.4.1 Filter method

Filter methods attempt to select the features based on auxiliary criteria, such as fea-

ture correlation, to remove redundant features. A filter method evaluates and ranks

individual features based on a selection criteria (e.g., t statistic). Then, a subset of

features for classification is determined based on individual feature ranks [20, 47]. It

is the most commonly used feature selection method for complex disease classifica-

tion. A variety of statistical tests such as student-t test (T-test), the Kolmogorov-

Smirnov test (KS-test) and the P-test, have been investigated to define selection

criteria for the relevancy of individual features. The above specified tests deter-

mine the feature values of samples belonging to class 1 to feature values of sample

belonging to class 2. The key difference between these tests is the way it makes

the assumption in selecting the features. In [45], the researchers used the univariate

statistical techniques to rank the individual features, instead of using wrapper-based

approaches as a classifier to invoke the feature selection. They reported that T-test

assumes that both distributions have identical variance and makes no assumptions

as to whether the two distributions are discrete or continuous. In T-test, the null

hypothesis is µ1 = µ2, indicating that the mean of the feature values for class 1 is the

same as the mean of the feature values for class 2. In the case of KS-test, the null

hypothesis is represented as cdf(1) = cdf(2), meaning that feature values from both

classes have an identical cummulative distribution. Thus, the features are ranked

based on the statistic significance score. In addition they performed simple feature

ranking criteria called as P-test, which is the simplified version of T-test and can be

defined as
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P − test =
‖µ1 − µ2‖
σ1 + σ2

(2.2)

where σi is the standard deviation. The above specified P-test basically ignores

the sample size and rank features solely based on their mean and standard devia-

tion. The researchers even used greedy forward selection using internal leave-one-

out cross-validation (LOOCV), which can automatically detect the feature subsets.

In [50], the researchers studied the efficacy of relevancy measures on the basis of

information theory and signal processing as filters. For the given MS data, they

computed the mean and standard deviation of the feature i across the positive and

negative examples. They defined the signal-to-noise, known as MIT correlation as:

MIT (i) =

∣∣µ+
i − µ−i

∣∣
σ+
i + σi

(2.3)

When making selection they simply take those features with highest scores as the

most discriminatory features. The wavelet transform, which we discussed early in

this chapter, can also be used as a filter method for feature selection techniques.

The features are considered to be relevant when the features receives high scores

from multiple methods. This approach enables one to obtain features from different

perspectives and to make a more reliable decision regarding the selected subset of

features. Both the benefits and drawbacks of these statistical tests stem from the

assumption that features are independent. For more technical details of these and

other statistical tests can be found in [29].

2.4.2 Wrapper or embedded methods

Wrappers assess the relevancy of a subset of features based on evaluation metrics of

a classifier trained using that subset of features. A search algorithm is used to ex-

plore the space of feature subsets and identify a high-performing subset of features.

There are two types of search engines available, namely heuristic/greedy methods.

Sequential forward selection (SFS) and sequential backward selection (SBS) are the

most widely used greedy algorithms in search of features from MS data, which starts

with empty features and add up single feature to increase the performance. The SFS

technique is easily applicable to the MS data, where as SBS like full search over all

the subsets, and is computational intractable [16]. In [50], the researchers imple-

mented several heuristic approaches to track SBS algorithms. To do so they used
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KS-test to re-order and to rank all the features. Thus the SBS starts with test-

ing the features deemed most likely to be irrelevant. The second heuristic method

added to SBS helps to record the stopping position of the last iteration. Hence this

makes the SBS start at the previous stopping position rather than starting from the

beginning. Wrappers are different from filters in that classifier evaluation metrics

are used rather than selection criteria for individual features and wrappers assess

features in groups rather than individually. Filters employ selection criteria such

as statistical tests to evaluate individual features, while wrappers use evaluation

metrics of classifiers to estimate the discriminating power of a candidate subset of

features. The wrapper approach typically has better performance than the filter

approach. The combination of genetic algorithm with wrapper method is popular in

this field. Several kinds of classifiers have been combined with genetic algorithms,

including self-organizing maps (SOM), support vector machines (SVM) and simple

distance based classifiers (e.g., Mahalanobis distance). Embedded methods implic-

itly perform feature selection as a part of the classifier training process. Feature

selection can help to reduce running time and avoid overtraining if it succeeds in

finding a subset of independent and discriminating features. Unfortunately, there is

no guarantee that the feature selection process will improve the classification per-

formance. Moreover, features selected are relevant for classification still need to be

biologically validated in future studies [66, 75].

2.4.3 Nearest shrunken centroid

This is the special purpose selection algorithm developed by Tibshirani et al. This

algorithm tries to shrink the class prototypes µCj
towards the overall mean:

µ =
1

m

m∑
i=1

xi (2.4)

Their idea is to shrink the class centroid towards the overall centroid. Therefore,

they normalized with-in class deviation for each data and is defined as

dj =
µcj − µ
mj(s)

(2.5)

where mj =
√

1
|Cj | −

1
m

, s is a vector of pooled within class variance for each feature

and division is done component wise. We can view the class centroid as:
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µcj = µ+mj(s.dj) (2.6)

By decreasing dj, we can move the class centroid towards the overall centroid. To

decrease dj soft thresholding is used to produce d́j with:

d́j = sign(dj(i))(|dj(i)| − δ) (2.7)

where dj(i) is the ith component of the vector dj. Then the centroid is calculated by

replacing dj with d́j in equation (2.6). In [45], the researchers effectively applied the

above specified shrunken centroids method for mass spectrometry datasets, using

different values for δ. They reported that this method doesn’t perform well with

prostate cancer dataset, when compared to rest of the feature selection techniques.

2.5 Classifiers

Machine learning is a branch of artificial intelligence that is concerned with design

and application of algorithms that enable computers to learn from experience. In

recent years, several unsupervised (clustering) and supervised (classification) tech-

niques have been used for identifying samples into different classes based on the

spectra generated from the mass spectrometer [72]. In this section, we will provide

details about current state of research using classification methods within the devel-

opment of clinical decision supports systems utilizing mass spectrometry of blood

samples.

2.5.1 Support vector machine

The support vector machine (SVM) is a machine learning technique that produces

non-linear classification, applied successfully to diverse scientific and engineering

problems, including the biomedical sciences. It is applied both for classification and

dimensionality reduction of mass spectrometry (m/z) datasets. SVMs are a type

of kernel learning method, which project data from the current vector space to an-

other vector space where linear learning programming is applicable. The function

that projects the data onto the new space, which usually has a higher dimension

than the original, are called the kernel functions. Improper kernel functions may

worsen the classification accuracy, so care must be taken for choosing a kernel func-

tion when using SVM. But there is no proper guidelines for choosing the best kernels
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for a given data set. The most popular kernel functions are the polynomial, radial

basis function and sigmoid kernels [13, 23].

After data projection into linear space, SVMs guarantee the maximal margin be-

tween normal and disease samples through the optimization of the decision bound-

ary such that overtraining can easily be avoided. A penalty is given to the ob-

jective function, to optimize the margin size and misclassification rate. A small

penalty maximizies the margin size but increases the classification rate, where as

large one decreases the margin size, but minimizes the missclassification rate. SVM

can be utilized without any data projection if the data are linearly separable in

the current vector space. This method is usually called linear-SVMs that allows for

the maximum-margin separation based on few data samples closet to the decision

boundary, which are called support vectors, SVMs implicity reflect the contribution

of each features to successful classification and reduce the effect of irrelevant features

by performing dot product between the gradient and each sample [5, 24].

Figure 2.1: Diagramatic representation of SVM

The linear discriminant function can be defined as f(x) = wtx + w0 and can

be seen as defining a hyper–plane that maps from the space of data Dn to a space

of classes Cm, where in most cases m << n. When using SVM as a classification

method, feature selection has been performed as an embedded part of the training

process and it is better to select multiple classifiers to avoid complexity of mass

spectra patterns between normal and disease. In [20], the reseachers employed link-

test for finding the cancer biomarkers from SELDI mass spectromety. They used 16

unique biomarkers to train SVM with five-fold-cross-validation on prostate cancer

samples and obtained the average classification accuracy of 85.3± 1.9%. This study

states that mass spectrometry intensities are not reliable measurement of protein

concentration, so the models for extracting biomarkers from mass sepctrometry are

not fully quantitative. To avoid this, they cross-validated mass spectrometry dataset
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with micro array to find gene (protein) biomarkers, which will be helpful in pulling

out confirmed mass spectra markers. In [50], MIT correlation method was used as

the feature selection technique to extract the features from the mass spectrometry

dataset and they classified healthy men from those infected using support vector

machine (SVM). In this study, they performed ten-fold cross-validation to train

SVM with different kernel functions, which splits the dataset into ten subsets. They

utilized nine subsets to train the model and one subest to test the model. This

approach indicates that SVM with polynomial kernel worked well with prostate

cancer data, when compared to linear and radial kernel functions, achieving the

selectivity of 89.0% and the sensitivity of 79.0%, for an overall classification accuracy

of 81.0%. When using linear kernel with SVM, they obtained the selectivity of

86.0% and the sensitivity of 76.0%. In general, the researchers reported that SVM

performed well with prostate cancer dataset, in terms of sensitivity, selectivity, and

in accuracy. The weakness of the SVM is that it only estimates the category of

the classification, while the assignment probability p(x) may be of interest itself,

where p(x) = P (y = 1/X = x) is the posterior probability of a sample being in

class 1. Another problem with the SVM is that it is not trivial to select the optimal

parameters for the kernel and difficult to understand the structure of algorithm [51].

2.5.2 Self-organizing maps (SOM)

Self-organizing mapping are a particular type of neural network or pattern recog-

nition method known as unsupervised learning, which provide a very convenient

2-dimensional visual representation of multi-dimensional data. It was widely ap-

plied in the field of speech analysis, robotics, industrial and medical diagnostics.

Every neuron i of the map is associated with an n-dimensional reference vector,

where n denotes the dimension of the input vectors. The reference vectors together

form a codebook. The neurons of the map are connected to adjacent neurons by a

neighbourhood relation, which dictates the topology, or the structure of the map.

The most common topologies in use are rectangular and hexagonal. Adjacent neu-

rons belong to the neighbourhood Ni of the neuron i. In the basic SOM algorithm,

the topology and the number of neurons remain fixed from the beginning [41, 42].

During the training phase, one MS data say X is randomly drawn from the input

data set and its similarity (distance) to the codebook vectors is computed by us-

ing Euclidean distance measure. Every node is examined to calculate which one’s

weights are most like the input vector. The winning node is commonly known as

the Best Matching Unit (BMU). After the BMU has been found, the codebook vec-

tors are updated. The BMU itself, as well as its topological neighbours are moved

closer to the input vector in the input space i.e. the input vector attracts them.
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The magnitude of the attraction is governed by the learning rate. As the learning

proceeds and new input vectors are given to the map, the learning rate gradually

decreases to zero according to the specified learning rate function type. Along with

the learning rate, the neighbourhood radius decreases as well. The training phase

is repeated until there is no desirable changes. The number of training steps must

be fixed prior to training the SOM because the rate of convergence in the neigh-

bourhood function and the learning rate is calculated accordingly [42]. In [58], the

researchers used genetic algorithms for feature extraction and self organizing map

to differentiate healthy men from those infected with prostate cancer. This study

used SELDI-TOF MS to acquire the mass spectra which corresponds to our PC-

H4. This approach achieved a selectivity of 95% and a sensitivity of 71%, though

cross-validation was carried out, the results were not presented.

2.5.3 Linear or quadratic discriminate analysis

Statistical discriminant analysis is frequently and widely applicable tool in biology

and some related research areas. In practice, standard linear and quadratic methods

are often applied which assume equal costs of misclassification. The aim of the

discriminant analysis is to assign a unit to one of several groups on the basis of a

number of feature variables. The most widely used methods are parametric analysis

and Linear discriminate analysis (LDA) [16, 29]. The LDA is popular because of its

robustness against deviations from the assumption of multivariate normality of the

feature variables. Let us consider X = (X1, ..., Xp) which denotes the p-dimensional

random vector of feature variables which are used for the allocation of a unit to one

of g (≥ 2 ) groups G1, ..., G2. It is assumed that the vector of feature variables X is

multivariate normally distributed in group Gi, i = 1, ..., g with mean vector mui and

common covariance matrix
∑

in case of LDA or group specific covariance matrix∑
i for QDA. The fi(x) probability density function of X for group Gi, i = 1, .., g.

The fi(x) is defined as

LDA : fi(x) = (2π)−p/2
∣∣∣∑⌉−1/2

(2.8)

QDA : fi(x) = (2π)−p/2

∣∣∣∣∣∑
i

⌉−1/2

(2.9)

The posterior probability πi for group Gi, i = 1, .., g, πi(x) = τifi(x)∑g
j τjfj(x)
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For the practical application of the allocation rule the probability density func-

tions fi(x) and the prior probabilities τi have to be estimated. For the standard LDA

and QDA the estimated group specific density for group is given by simply plugging

in the sample mean vector and the sample covariance matrix s or si into the formula

of the multivariate normal density function. As we know, mass spectra m/z has a

relatively higher dimension than the intrinsic dimensionality of the training set, this

method cannot be applied directly to m/z data, though the dimensionality is larger

than the set intrinsic dimensionality. That is, in order to guarantee a nondegener-

ate solution for LDA, the dimensionality of the data must be reduced to at most

n − k, where n is the number of samples and k is the number of classes. In [45],

the researchers used PCA for dimensionality reduction and LDA for classification.

They used three-fold-cross-validation procedure, to train/test LDA and obtained a

selectivity of 71.0% and sensitivity of 62.3% for an overall BACC of 69.2%. In [21],

the researchers again analysed SELDI TOF MS data using LDA as a classifier. In

their study, they reported LDA model gave the better classification rate of 89.47%

for control, 94.73% for benign, 90.47% for cancer, when compared to Treeboost and

Random Forests. The primary weaknesses of LDA/QDA are they are not stable for

large number of datasets. It is unable to handle classes that curve around another

class, or clusters of points that are contained entirely within the outer radius of

another cloud of points [45, 77].

2.5.4 Centroid classification methods

In general, there are two types of pattern recognition techniques: supervised meth-

ods and unsupervised methods. In supervised learning we give a set of training

samples in different classes:

Samples in class 1: x
(1)
1 , x

(1)
2 , ..., x

(1)
n1

Samples in class 2: x
(2)
1 , x

(2)
2 , ..., x

(2)
n2

...............

Samples in class c: x
(c)
1 , x

(c)
2 , ..., x

(c)
nc

where x
(i)
k represents sample k in class i. For these training data, we need to find

a mapping function Φ(x
(i)
k ), or to build a classifier, which can be a set of fuzzy

rules, a neural network, a decision tree or simply mathematical equations. Once the

mapping function is determined, it can be used to classify an unseen sample x [11].

Unsupervised classification refers to situations where the objective is to con-

struct decision boundaries based on unlabeled training data (x1, x2, ..., xn) and is

also known as data clustering, which is a generic label for a variety of procedures
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designed to find natural groupings, or clusters, in multidimensional data similarities

among the patterns [37]. Clustering can be considered as the important unsuper-

vised learning problem, it deals with finding a structure in a collection of unlabeled

data. A loose definition of clustering is process of organizing objects into groups

whose members are similar in some way, therefore a collection of objects which are

“similar” between them and are “dissimilar” to the objects belonging to other clus-

ters, which is shown in Fig: 2.2. The goal of clustering is to determine the intrinsic

Figure 2.2: Graphical representation of clustering algorithm

grouping in a set of unlabeled data. The speed, reliability and consistency with which

a clustering algorithm can organize large amounts of data constitute overwhelming

reasons to use it in applications such as data mining, image segmentation, signal

compression and coding, and machine learning [36].

A fast and simple clustering algorithm for classifying mass spectrometry in lit-

erature is the centroid method. This algorithm assumes that the target classes

correspond to individual clusters and uses the cluster means to determine the class

of a new sample point. A prototype pattern for class Cj is defined as the arithmetic

mean

µ =
1

|Cj|
∑
xi∈Cj

xi (2.10)

where xi are the training m/z samples labeled as class Cj. It can work well with

many features and its run time complexity is proportional to the number of features

and the complexity of the distance or similarity metric used. During training, two

prototypes are computed and the cost of computing each prototype is O(mN), where

N is the number of features extracted from the mass spectrometry dataset and m
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is the number of training samples which belong to a given class. Though m only

varies between datasets and not during the feature selection process, so we can able

to conclude that the centroid classifier has O(N) cost in the training phase [29, 45].

In [45], the researchers used a special purpose feature selection algorithm called

nearest centroid algorithm to extract the features from the PC-H4 dataset and

applied centroid classification method to discriminate between healthy and cancer.

In their experiments they used 20 different values for δ and achieved a selectivity of

73.6% and sensitivity of 83.3% for an overall BACC of 79.1%.

2.5.5 Boosting and Random forests (RF)

Boosting is a machine learning meta-algorithm used for improving the accuracy

of any machine learning algorithm. It is a procedure that combines many weak

classifiers to achieve a final powerful classifier. Most boosting algorithms proceed

in a series of rounds in which a new simple rule is trained according to the labeled

training examples. After each round, the training examples are updated to increase

the weight of those examples that were improperly classified in the current round. A

general boosting framework says neither how distributions and weights been updated

nor how the weak rules are to be combined [68]. The input to AdaBoost is a set

of m training examples (xi, yi), 1 ≤ i ≤ m where xi is a feature vector drawn from

some domain X and yi is drawn from a label set Y . For T rounds, a new simple rule,

or “weak learner”, is trained using examples drawn from the training set such that

example i is given weight Dt(i) on round t. Starting from the uniform distribution

(i.e. D1(i) = 1/m,∀i), each round selects a new weak rule ht(xi) that minimizes

the error: ∈t=
∑

i:yi 6=ht(xi)Dt(i). A weight ∂t is calculated: ∂t = 1
2
ln1−∈t

∈t
Next, the

distribution Dt is updated according to the rule

Dt+1(i) = Dt(i)exp(−∂tyihtx(i))/zt (2.11)

where zt is chosen such that
∑

iDt+1(i) = 1.

The equation H(x) = sign(
∑T

t = 1∂tht(x)) is the final strong classification rule.

Typically one may build hundreds or thousands of classifiers by this way. A final

score is then assigned to any input x, defined to be a linear (weighted) combination

of the classifiers. A high score indicates that the sample is most likely correctly

assigned and the low score indicating that it is most likely an incorrect hit. By

choosing a particular value of the score as a threshold, one can select a desired se-

lectivity or a desired ratio of correct to incorrect assignments. In [45], in addition to

SFS and SBS the researchers used a boosting method to increase the classification
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performance, which attained equal or balanced accuracy (BACC) than any other

algorithms tested. To determine the merit of the feature selection approach, first

they used a standard boosting algorithm, followed by extended version of boosting

algorithm called boosted feature extraction (boosted FE), which is similar in per-

formance to SFS. This approach achieved a selectivity of 100% and sensitivity of

81.2% for an overall BACC of 96.0% and this is the highest reported accuracy of this

dataset. Therefore, the researcher came to the conclusion that boostedFE fullfills

both roles as a feature selection and classification algorithm.

In a similar way to boosting, the random forests are also an ensemble method that

combines many decision trees, defined by Breiman [8]. Decision trees are presented

in a binary tree structure by repeatedly splitting data subsets into two descendant

subsets. Each terminal subset is assigned a class label and the resulting partition of

the dataset corresponds to the classifier. A random forests contains many decision

trees and outputs the class that is the mode of the classes output by individual trees.

The RF algorithms combines bagging idea to construct a collection of decision trees

with controlled variations [8]. The RF enjoys several nice features: like boosting, it

is robust with respect to input variable noise and over fitting, it can simultaneously

estimate the importance of variables in determining the classification and it can

efficiently handle high dimension data. In [21], the researchers effectively applied

random forests as a classifier and obtained correct classification rate (CCR) of 100%

for control, 68.7% for cancer, 98.24% for benign.

2.5.6 Principle component analysis

Principle component analysis(PCA) is a useful statistical technique that has found

application in fields such as face recognition and image compression, and is a com-

mon technique for finding patterns in data of high dimension. PCA aims at reducing

the dimensionality while determining orthogonal axes of maximal variance from the

given m/z data. For PCA to work properly, the mean has to be subtracted from

each dimension. The mean subtracted is the average across each dimension. So all

the x values have x (the mean of the x values of all the data points) subtracted,

and all the y values have y subtracted from them. This produces a data set whose

mean is zero. Therefore, the new dimensionality-reduced dataset can be derived by

projecting the original dataset onto these principle components. The drawbacks of

PCA is the computational complexity, which is known to be O(d2n)+O(d3), where d

is data dimensionality and n is the number of cases. PCA is computationally costly

because it performs the eigen decomposition of the covariance matrix. In [45], the

researchers used nearest centroid method for feature extraction and used stratified

three-fold-crossvalidation to train PCA. This approach obtained the selectivity of
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51.0% and sensitivity of 54.0% for an overall BACC of 53.0%. The researhers for-

mally states that PCA had poor performance with PC-H4 dataset. Although PCA

may be carried out more efficiently by using SVD decomposition and by omitting

zero eigen values in calculation, the computational overhead is still too high for

high-dimensional data sets like protein MS data.

2.6 Conclusion

This review has provided only a condensed snapshot of applications of machine

learning and the development of clinical decision support systems for disease screen-

ing from proteomic patterns obtained by mass spectrometry of blood samples. The

prior studies are presented in an explicit machine learning framework consisting of

five stages: pre-processing, feature extraction, feature selection, classifier training

and evaluation. Current techniques have already yielded putative molecular targets,

uncovered signal pathways and advanced early disease detection. The co-evolution

of genomics and proteomics as complementary approaches to complicated disease

will allow us to move closer to the goals of early detection, improved prevention,

and tumour-specific approach to the treatment of individual patient.



Chapter 3

Reflection on the Research

Method

This research uses a combination of mathematics, statistics, logic and bio-medical

science. The research objective is to create an effective technique that would classify

healthy men from those with cancer. This research combines knowledge of the dif-

ferent feature extraction and classification methods. The following sections discuss

the appropriateness of the research design for this research.

3.1 Research method construction

This research depends on an understanding of the expert knowledge contained in

the literature. This will be gathered during the requirements collection phase of the

system development. Current concepts of machine learning techniques will allow

the application of suitable concept combining knowledge to analysis a set of se-

lected mass spectrometry datasets. An in-depth review of the literature on machine

learning techniques and bio-medical science will help to generate knowledge for this

multidisciplinary research. The existing knowledge from literature will be fed into

the whole research process to achieve a better integration of pattern recognition

methods with proteomics.

This research addresses the combination of signal processing techniques with unsu-

pervised clustering algorithms. The underlying theory behind this research is the

implementation of kernel trick into fuzzy clustering algorithms to classify mass spec-

trometry datasets. The research will implement those concepts by constructing a

prototype that will also allow researchers to better understand the underlying the-

ory.

However, before we start discussing about the classification methods, it is important

28
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to discover what features (patterns) we most need to extract. One mass spectrome-

try data may contain many important features, however, the nature of the features

is complicated. Due to the time constraints of this research, we concentrated in

extracting features from prostate cancer datasets (PC-H4) to get better classifica-

tion. Furthermore, to apply these techniques to a set of dataset it is also essential to

have some understanding of the human and expert knowledge. The success of the

research lies on a thorough understanding of the datasets followed by application of

unsupervised clustering algorithms in a computer system.

3.2 Data collection procedure

An in-depth literature review will be the first source for data collection. The different

source of literature include-

• Journals

• Books

• Reliable online resources

This literature review will be the basis for creating the information about the

datasets and in gaining knowledge about the current state of research in the field of

proteomic pattern recognition.

3.3 Data analysis procedure

The analysis phase of the data is represented as the prototype testing phase. A

set of datasets have been selected for the whole analysis procedure to maintain the

consistency of the findings. During the data analysis phase, establishing the rela-

tionship between the data is the primary task. Reading the literature and observing

the prototype of the framework will allow me to write notes and help to get a better

understanding of the datasets and machine learning methods. On the otherhand, it

is helpful to write memos about related factors to develop organisational categories.

Developing organisational categories will be used to analyse the data. Finally, the

data will be theoretically categorised to formally answer the research questions.

3.4 My contribution to the research community

The contributions to this thesis includes two parts: (1) Linear predictive coding

(LPC) for feature extraction and (2) kernelized fuzzy c-means (KFCM) for classifi-

cation.
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• LPC for feature extraction : The mass spectrometry datasets downloaded

from the public database do not convey valuable information to classify healthy

men from cancer. Therefore, its important to extract the features to get better

classification, which is carried out using the principle of linear predictive coding

(LPC). LPC-based feature extraction is more straight forward when compared

to other feature extraction techniques available in the literature [45, 58, 21, 50].

The related work is published in:

Pham, T. D., Chandramohan, V., Zhou, X., and Wong, S. T. C. Robust feature

extraction and reduction of mass spectrometry data for cancer classification.In

ICDMW ’06: Proceedings of the Sixth IEEE International Conference on Data

Mining - Workshops (Washington, DC, USA, 2006), IEEE Computer Society,

pp. 202-206.

• Kernelized fuzzy c-means for classification: In unuspervised learning only the

feature extracted data a1, ..., an ∈ <n is given, i.e., the labels are missing. Stan-

dard questions of unsupervised learnings are clustering, density estimation,

and data description. As we know from the review, there are lot of methods

available to classify the mass spectromertry datasets, but the application of

fuzzy clustering algorithm in combination with signal processing techniques is

a fairly new idea in analysing mass spectrometry datasets. Biomedical data are

usually corrupted with noise, which may degrade the performance of fuzzyc-

means (FCM) in classifying mass spectrometry datasets. Inorder to overcome

the limitations of FCM, we propose kernelized fuzzyc-means (KFCM), which

is realized by replacing the original Euclidean distance with kernelized distance

metric.

The main objective of this framework is to reduce false positive and to improve

the accuracy of diagnosis. Moreover, the framework will enable the researchers

and scientists to understand the effectiveness and the limitations of several existing

pattern recognition techniques for processing mass spectrometry datasets. All the

prototypes of the framework and methods have been written in MATLAB program-

ming language.

3.5 Overview of the framework

Step1: The prostate cancer datasets are collected from FDA-NCI Clinical Pro-

teomics Program Databank.

Step2: The feature extraction and reduction has been investigated using liner pre-

dictive coding.
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Figure 3.1: Overview of the analysis pipeline

Step3: The clustering parameters for fuzzy clustering algorithms has been evaluated.

Step4: The features extracted from the datasets were classified using fuzzy c-means

and kernel fuzzy c-means.
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Step5: Cross-validation is carried out to check the performance of the clustering

algorithms.
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Feature extraction from MS data

In this chapter, we present feature extraction method for mass spectrometry data set,

that retains as much as possible initial information content of learning examples,

extracts biological meaningful features, reduces the degree of spatial redundancy,

and achieves a significant level of dimensionality reduction. This chapter is organized

as follows: section 4.2 explains the principle of linear predictive coding (LPC) and

its applications to mass spectrometry datasets, section 4.3 explains in detail about

semi-variograms and its application in estimating the number of pole values p for

the LPC analysis of mass spectra.

4.1 Introduction

Mass spectrometry datasets have several imperfections, thus direct application of

machine learning methods are not possible, therefore feature extraction methods

are used to determine an appropriate subspace of dimensionality m in the origi-

nal feature space d(m < d). Features are variables constructed from preprocessed

data to summarize the properties of the data and the process of constructing fea-

ture are called “feature extraction”. Before the definition of feature extraction, i

would like to describe the difference between feature selection and feature extrac-

tion. The term feature selection refers to algorithms that select the best subset of

the input feature set. Methods that create new features based on transformations

or combinations of the original feature set are called feature extraction algorithms.

Feature extraction can be defined as tool for extracting useful information or pat-

terns from the preprocessed datasets, though good choice of patterns can lead to

improvements in clustering performance. Note that feature extraction precedes fea-

ture selection; first, features are extracted from the sensed data and then some of

the extracted features with low discrimination are discarded [66, 72]. The features

generated by feature extraction may provide a better discriminative ability than the

best subset of given features, but these new features may not have a clear physical

33
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meaning. The simplest approach to feature extraction from mass spectra is to use

abundance(intensity) information of every m/z measured as features. While this ap-

proach to feature extraction is straight forward, it places additional demand on the

feature selection and classification stages since a very large number of features are

used (≈ 15, 000) and most studies employ a modest number of cases (' 500). More-

over, mass spectrometers can only distinguish the masses of proteins within a finite

resolution level. More than one m/z measures can correspond to the same protein.

Thus, high level of correlation are expected between close m/z values [77, 46]. From

a biomedical perspective, it is important to find a moderate number of proteins that

most contribute to correct classification, such that these potential biomarkers can

be identified and biochemically validated. Therefore it is necessary to extract useful

information or patterns from the preprocessed MS datasets, though good choice of

patterns can lead to improvements in clustering performance. Principal component

analysis (PCA), factor analysis and linear discriminative analysis has been widely

used methods in pattern recognition for feature extraction and dimensionality re-

duction. But recently being realized that signal processing based pattern recongition

can provide a set of novel and useful tools for solving highly relevant problems in

genomics and proteomics. In [62], the principle of linear predictive coding (LPC) has

been effectively applied in SELDI-MS datasets and promising results were obtained

in distinguishing healthy from cancer using simple LPC-based decision logic. The

researchers reported that the applications of signal-processing based pattern ananl-

ysis can offer effective tools for the study of complex biological problems. Therefore

in our experiment, we applied linear predictive coding (LPC) to extract or select

the features from the given MS dataset (m/z), though the raw form doesn’t convey

useful information for the task of classification. Considering MS data as a signal,

the features can be extracted and it can be represented as LPC coefficients[60, 62].

4.2 Linear predictive coding (LPC)

The theory of LPC, has been well understood for many years in the field of speech

recognition. In this section, we describe in detail about the basis of LPC and its

mathematical notations. Before we start describing about LPC, I would like to

describe why LPC has been so widely used:

• LPC provide a good model for signal processing.

• LPC is analytically tractable. The method is precise and is simple and straight-

forward to implement either in the software or hardware.

• LPC model works well in recognition applications.
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4.2.1 LPC model

LPC is defined as the correlation between the n-th sample and the p previous samples

of the target signal. Let us consider, MS data as a digital signal, the intensity value

sm at position or time n, denoted as s̃(n), can be calculated as linear combination

of previous p samples which can be defined as[44, 62]

s̃(n) = a1s(n− 1) + a2(s(n− 2) + ...+ aks(n− k) =

p∑
k=1

aks(n− k) (4.1)

where s̃(n) is the prediction of s(n), s(n − k) is the k − th step previous sample,

ak are called the linear predictive coefficients and p the number of poles. We now

perform the prediction error e(n) between the observed sample s(n) and predicted

value s̃(n)

e(n) = s(n)− s̃(n) = s(n)−
p∑

k=1

aks(n− k) (4.2)

From the above equation, we can optimally determine the predictor coefficients ak

directly from the MS signal by minimizing the sum of squared errors.

Em =
∑
n

e2(n) =

[
s(n)−

p∑
k=1

aks(n− k)

]2

(4.3)

To solve the above the equation for the predictor coefficients, we differentiate En

with respect to each ak and set the result to zero.

∂Em
∂aK

= 0 (4.4)

The result is a set of p linear equations with p unknowns, which can be expressed

in matrix form as

Ra = r (4.5)
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where R is a p × p autocorrelation matrix (Toeplitx matrix symmetric with all

diagonal elements being equal), r is a p× 1 autocorrelation vector and a is a p× 1

vector of prediction coefficients:

R =


rn(0) rn(1) . . . rn(p− 1)

rn(1) rn(0) . . . rn(p− 2)

rn(2) rn(1) . . . rn(p− 3)

· · . . . ·
rn(p− 1) rn(p− 2) . . . rn(p− 3)


aT = [a1, a2, ...ap],

where aT is the transpose of a, and

rT = [r(1)r(2)r(3)...r(p)],

where rT is the tranpose of r.

Thus the LPC coefficient can be obtained by solving [44]

a = R−1r (4.6)

The feature vectors extracted from MS dataset, will be used for data classification[59]

and in the following section we discussed in detail about variograms and its appli-

cation in estimating the pole values p for LPC analysis.

4.3 Variograms

4.3.1 Introduction

Geostatistics is a term commonly used to describe a set of techniques that model spa-

tial variation in data and researchers use these models to estimate or classify other

data based on these models. Geostatistics developed out of empirical approaches

developed by (Krige 1989) and were given theoretical validity by the development of

random function theory in 1960s (Matheron 1970). The application of geostatistics

to the estimation of ore reserves in mining is most well known use. Though, it has

been emphasised with time, this estimation techniques can be used wherever a con-

tinuous measure is made on a sample at a particular location in space (or time), i.e.,

where a sample value is expected to be affected by its position and its relationship

with neighbours. Therefore, these methods are now widely applied to many areas of

mathematical geology and science as a special branch of applied statistics. In order
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to provide sufficient background for the present work, we discussed in detail about

semi-variograms and interested readers can refer to [17, 34, 61].

4.3.2 Semi-variogram

A variogram is a statistically-based, quantitative and characterizes the spatial con-

tinuity or roughness of MS dataset. A variogram is a function of separation vector:

this includes both distance and direction. The variogram function yields the average

dissimilarity between points separated by the specified vector.

Let we assume, if we had a pairs of samples for a specific h then we could calculate

an experimental value for m(h):

m(h) =
1

n

∑
[g(x)− g(x+ h)] (4.7)

where g stands for grade, x denotes the position of one sample in the pair and x+h

denotes the position of other sample, and n is the number of pairs which we have.

Having a rig ourselves of m(h), let us turn to the variance of differences. This is

called as 2γ(h) and is usually known as variogram, since it varies with time h. In

practice, having made our notrend assumption, we can calculate:

2γ(h) =
1

n

∑
[g (x)− g (x+ h)]2 (4.8)

The 2 in front is for the mathematical convenience. The term γ(h) is called the

experimental semi-variogram. Once a experimental semi-variogram are computed,

we can built the model variogram to fit the experimental variogram.

Four types of model functions are supported for building model variograms, but we

discussed in detail about two models, which are very commonly used, are as follows

1. Spherical model or Matheron model:

The ideal semi-variogram is the spherical model which was mathematically de-

rived by Matheron. The spherical variogram begins at the origin (zero), raises

smoothly to an upper limit, then continues constantly at that level; that is

γ(h) =


c[3

2
h
a
− 1

2
h3

a3 ] if h
a
≤ a,

c if h
a
≥ a,

0 if h
a

= 0

(4.9)
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Figure 4.1: Spherical representation of semi-variogram

where c is called the “sill” of the semi-variogram, a is the range of the semi-

variogram, which can be considered as an optimal number of poles p in the LPC

analysis, and h is the lag distance. From the Fig 4.1 [34], it can be seen that the

function smoothly increases for all distances up to the range of the semi-variogram,

then beyond the range it stays constant at the value of the sill. This model was

originally derived from theoretical grounds but has been found to be widely appli-

cable in practice.

2. Exponential model:

The exponential model is defined as

γ(h) = c[1− exp(3h

a
)] (4.10)

This model rises more slowly from the origin than the spherical and never quite

reaches its sill. Fig 4.2 [34] shows the spherical and exponential models with the same

“range” and “sill”, and even shows the comparison of spherical with exponential

model, in which the distance between pairs of samples is plotted along the horizontal

axis and the value of the semi-variogram along the vertical. The experimental and

spherical variograms plotted using prostate cancer dataset (PC-H4) is discussed in

chapter 5.

4.4 Conclusion

Mass spectra exhibits an additive high frequency noise component, which affects the

both classification methods and human observers in finding meaningful patterns in

mass spectra. As we know from the review, many pattern recognition techniques
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Figure 4.2: Comparison of the exponential and spherical models

were not designed to cope with large of irrelevant features. Therefore, feature extrac-

tion is performed to extract summary information reflecting the pathological status

of a sample from preprocessed mass spectra. We performed the feature extraction

for our given mass spectrometry dataset using LPC, and obtained the feature vec-

tors as LPC coefficient. In order to determine the pole value p for LPC analysis, we

first used experimental semi-variogram, then we constructed spherical model to fit

experimenal semi-variogram. Thus, a suitable number of poles should be assumed

equal to the range of the spherical semi-variogram, which is shown in Fig 7.2.



Chapter 5

Clustering algorithms

In this chapter, we describe fuzzy clustering algorithms, particularly those related

to the fuzzy c-means (FCM) algorithms. Our aim in this chapter is to define and

describe the FCM model. We then describe kernel based algorithms that are based

on this model. We also highlight the strength and shortcomings that these various

algorithms have in the following subsections.

5.1 Fuzzy clustering

In this section a detailed discussion of fuzzy clustering algorithms is presented.

Implementations and results are presented in chapter 6.

5.1.1 Introduction

Clustering involves the task of dividing data points into homogeneous classes or

clusters so that items in the same class are as “similar” as possible and items in

different classes are as “dissimilar” as possible. Clustering can also be thought as

a form of data compression, where a large number of samples are converted into

a smaller number of prototypes or clusters. Depending on the data and the appli-

cation, different types of similarity measures control, how the clusters are formed.

Some examples of values that can be used as similarity measures include distance,

connectivity, and intensity.

For clustering techniques generating crisp partitions, each data point belongs to ex-

actly one cluster. This requirement has led to the development of fuzzy clustering

methods. One of the widely used fuzzy clustering methods is the fuzzy c-means

(FCM) algorithm. FCM is a fuzzy partitional clustering approach, and can be seen

as an improvement and a generlisation of k-means. In fuzzy clustering, the data

points can belong to more that one cluster center, and associated with each of the

points are membership grades which indicate the degree to which the data points

40
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belong to different clusters. However, it is often useful for each data point to admit

multiple and non-dichotomous cluster memberships.

5.1.2 Fuzzy c-means algorithm (FCM)

Fuzzy clustering algorithms has been widely used in the field of bioinformatics,

engineering and pattern recognition. It was proposed by Dunn [9] and generalised by

Bezdek [6] and best understood by contrasting it with more common hard clustering

of a dataset. The FCM algorithm, partitions the data into groups with different

membership grade between 0 and 1.

The aim of the FCM algorithm is to find the desired point in each cluster, which

can be considered as the centroid of the cluster, and then, the grade of membership

for each object in the clusters. Such an aim can be achieved by minimizing the

objective function and can be defined as follows [6]

JFCM(U, V ) =
n∑
i=1

c∑
j=1

umij ‖ai − vj‖
2 , 1 < m <∞ (5.1)

where

• n is the total number of patterns in a given data set, and c is the number of

centers.

• A = {a1, a2, .., an} ⊂ Rs and V = {v1, v2, .., vc} ⊂ Rs are the feature extracted

MS training set and cluster centroids.

• m is the fuzziness parameter that determines the fuzziness of the centroids.

At m = 1 FCM collapses to HCM, giving crisp results. At very large values

of m, all the points will have equal memberships with all the clusters.

• uij is the degree of membership.

• vj is the cluster centers, and ‖ai − vj‖ denotes the Euclidean distance.

5.1.3 Conditions for optimality

Fuzzy partitioning is carried out by iterative optimization with the update of mem-

bership uij and the cluster centers vj. These conditions are derived in [Bezdek, 1981]

and are defined as follows
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uij =
1∑c

k=1

(
‖ai−vj‖2

‖ai−vk‖2

) 2
m−1

(5.2)

vj =

∑n
i=1 uijai∑n
i=1 u

m
ij

(5.3)

For the calculation of a cluster center vj, all input samples are considered and

the contributions of the samples are weighted by the membership values. For each

sample, its membership value in each class depends on its distance to the correspond-

ing cluster center. The weight factor m reduces the influence of small membership

values. The large the value of m, the smaller the influence of samples with small

membership values.

5.1.4 The algorithm

1. Input the number of clusters c, fuzzifier m and the distance function ‖∗‖.

2. Intialize the cluster centers v0
j (j = 1, 2, ..., c).

3. Calculate uij(i = 1, 2, ..., n; j = 1, 2, ..., c) using Eq. (5.2).

4. Calculate the centroids v1
j (j = 1, 2, ..., c) using Eq. (5.3).

5. If max1≤j≤c(
∥∥v0

j − v1
j

∥∥ /∥∥v1
j

∥∥) ≤ ε then go to step 6; else let v0
i = v1

i (1 =

1, 2, ..., c) and go to 3.

6. Output the clustering results: cluster centers v1
j (j = 1, 2, ..., c), membership

matrix U .

7. Stop.

By iteratively updating Eqs. (5.2) and (5.3), fuzzy partition uij and cluster center

vj are updated, until the cost function reaches the minimal value or can’t be reduced

further.

5.1.5 Strength and weakness

The FCM algorithm has proven a very popular method of clustering for many rea-

sons. It is relatively straight forward in the programming implementation. It em-

ploys an objective function that is intuitive and easy-to-grasp. FCM works well
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with data sets composed of hyper-spherically-shaped well-separated clusters in de-

termining the clusters accurately. Though FCM is based on fuzzy basis, it performs

robustly: it always converges to a solution, and it provides consistent membership

values.

The drawbacks of FCM are as follows :

1. Cluster centers to be determined based on priori knowledge.

2. It requires the initialization of prototypes, good initialization are difficult to

assess.

3. It is an iterative algorithm aims for finding the solutions of the objective

function, it may find more than one solution depending on the initialization.

4. It look for same cluster shapes, different shapes cannot be mixed.

5. Its accuracy is sensitive to noise and outliers. This is studied comprehensively

in chapter 7.

5.2 Kernel based fuzzy c-means algorithm(KFCM)

Despite the weakness of FCM have led researchers to generalize and extend it fur-

ther to make a mature platform for clustering. To overcome the above mentioned

problems in FCM, the researchers proposed a lot of algorithms by replacing the

original Euclidean measure with other similarity measures. A recent development

is to use kernel trick to construct the kernel versions of the FCM algorithm. In this

section, we discussed about kernel based methods for unsupervised learning algo-

rithms [71, 23, 15, 84]. The common philosophy of these clusterings algorithms is

to perform the clustering in the feature space. Then we discussed about the im-

plementation of kernel methods into fuzzy clustering algorithms and some variants.

Finally, we described about strength and short comes out of KFCM.

5.2.1 Kernel methods

In machine learning, the use of the kernel functions has been introduced by Aizerman

et al.[2] in 1964. Kernel representations offer an alternative solution by projecting

the data into a high dimensional feature space to increase the computational power.

In the mid of 90’s Cortes and Vapnik introduced support vector machines (SVM)

which perform better than other classification algorithms in several problems. The

success of SVM has bought to extend the use of kernels to other learning algorithms

(e.g Kernel PCA, KFD)[70]. Figure 5.1 shows an example of a feature mapping

from an two dimensional input space to a two dimensional feature space, where the
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Figure 5.1: Two-dimensional classification example, using the second-order mono-
mials x2

1,
√

2x1x2 and x2
2 as features a separation in feature space can be found using

hyperplane [69]

data cannot be separated by a linear function in the input space, but can be in the

feature space. Since the computation of a linear classifier in the feature space uses

only the scalar products, the whole leearning process can be expressed in terms of

kernels [53].

Consider the mapping function

φ : <N → τ

x→ φ(x)

and the computation between two scalar product between two feature space vectors,

can be readily formulated in terms of kernel function K

φ(xi).φ(xj) =
(
x2

1,
√

2x1x2, x
2
2

) (
y2

1,
√

2y1y2, y
2
2

)T
=
(
(x1, x2)(y1, y2)

T
)2

= (x.y)2

= K(x, y).

(5.4)

This find generalizes:

• For x, y ∈ <N , and d ∈ N the kernel function
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K(x, y) = (x.y)d (5.5)

computes a scalar product in the space of all products of d vector entries

(monomials) of x and y.

• If K : C × C → < is a continuous kernel of a positive integral operator on a

Hilbert space L2(C) on a compact set C ∈ <N , i.e.,

∀f ∈ L2(C) :

∫
C×C

K(x, y) f(x)f(y)dxdy ≥ 0 (5.6)

then there exists a space τ and a mapping φ : <N → τ such that K(x, y) =

(φ(xi).φ(xj)), which can be seen directly from the Mercer’s theorem [69].

One of the most relevant aspects in applications is that it is possible to compute

Euclidean distance in τ without knowing explicitly φ. This can be done using the

so called distance kernel trick. The kernel trick transforms any algorithm that

solely depends on the dot product between two vectors. Wherever a dot product is

used, it is replaced with the kernel function. Thus, a linear algorithm can easily be

transformed into a non-linear algorithm. This non-linear algorithm is equivalent to

the linear algorithm operating in the range space of φ and defined as follows [23]:

‖φ(xi)− φ(xj)‖2 = (φ(xi)− φ(xj)).(φ(xi)− φ(xj))

= φ(xi).φ(xi) + φ(xj).φ(xj)− 2φ(xi).φ(xj)

= K(xi, xi) +K(xj, xj)− 2K(xi, xj)

(5.7)

in which the computation of distances of vectors in feature space is just a function

of the input vectors. Inorder to simplify the Gram matrix K where each element

Kij is the scalar product φ(xi).φ(xj). Thus, Eq. (5.7) can be rewritten as

‖φ(xi)− φ(xj)‖2 = Kii +Kjj − 2Kij (5.8)

Three commonly used kernel functions are

(1) Gaussian radial basis function (RBF) kernel :
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K(x, y) = exp(
−‖x− y‖2

σ2
) (5.9)

(2) Polynomial kernel :

K(x, y) = (1 + 〈x, y〉)d (5.10)

(3) Sigmoid kernel:

K(x, y) = tanh(α 〈x, y〉+ β) (5.11)

where σ, d, α, β are the adjustable parameters of the above kernel functions. For

the sigmoid function, only a set of parameters satisfying the mercer theorem can be

used to define a kernel function.

In literature, there are some applications of kernels in clustering. These methods

are broadly classified into three categories which are based on:

• Kernelization of the metric: Kernelization of metric methods are based on

centroids and the distance between patterns (a) and centroids (v) is computed

by means of kernels:

‖φ(ai)− φ(vj)‖2 = K(ai, ai) +K(vj, vj)− 2K(ai, vj) (5.12)

• Clustering in feature space: Clustering in feature space is made by mapping

each pattern using the function φ and then computing in feature space. Con-

sidering φ(vi) the centroids in feature space and φ(ai) as the feature extracted

MS data, it is possible to calculate the distances ‖φ(ai)− φ(vj)‖ using kernel

trick.

• Description via support vectors: The description via support vectors make use

of one class SVM to find a minimum enclosing sphere in feature space. The

support vector clustering algorithm allows to assign labels to patterns (a) in

input space enclosed by the same surface[23].
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5.2.2 Kernel fuzzy c-means

Given the feature extracted MS data set A = {a1, a2, a3, ..., an}, we map our data

into some feature space τ , by means of nonlinear mapping φ, therefore the clustering

process can be carried out in feature space rather than input space, which avoids

the restriction of FCM [?]. Minimization of objective function with respect to U is

given by [15, ?]

JKFCM(U, V ) =
n∑
i=1

c∑
j=1

umij ‖φ(ai)− φ(vj)‖2 , 1 ≤ m ≤ ∞ (5.13)

where φ is an implicit nonlinear map, then with kernel trick we have

‖φ(xi)− φ(vj)‖2 = K(ai, ai) +K(vj, vj)− 2K(ai, vj) (5.14)

Here we adopt Gaussian RBF kernel, so K(x, x) = 1 and can be simplified to

JKFCM(U, V ) = 2
n∑
i=1

c∑
j=1

umij (1−K(ai, vj)) (5.15)

In similar way to standard FCM algorithm, the objective function JKFCM can be

minimized under the constraint of U .

uik =
(1/(1−K(ai, vj)))

−1/(m− 1)∑c
k=1(1/(1− (K(ai, vk)))−1/(m− 1)

(5.16)

vj =

∑n
i=1 u

m
ijK(ai, vj)ai∑n

i=1 u
m
ijK(ai, vj)

(5.17)

The above Eqs. (5.16) and (5.17) are derived using Gaussian RBF kernel. The

reason is that the derivative of JFCM(U, V ) with respect to vj using a Gaussian

kernel is particularly simple since it allow us to use the kernel trick and even more

appropiate for noisy data.



CHAPTER 5. CLUSTERING ALGORITHMS 48

5.2.3 Strength and weakness

As we know FCM uses the square-norm to measure similarity between prototypes

and data points, it can be effective in clustering spherical clusters, which is being

overcome by replacing the original distance metric with kernel-induced distance

metric. The problem of outliers and noise is rectified by using gaussian RBF kernel

functions. The drawbacks are as follows:

1. In kernel methods, the choice of the kernel has a crucial effect on the perfor-

mance, i.e., if does not choose the correct kernel property, one will not achieve

the excellent performance in classification.

2. In kernel clustering, the clustering prototypes lies in high dimensional space

and hence lack clear and intuitive descriptions unless using additional projec-

tion approximation from the feature to the data space.

5.3 Cluster validation

5.3.1 Introduction

Clustering plays a vital role in many engineering fields such as pattern recogni-

tion, system modeling, image processing, communication, data mining and so on. It

serves as a tool to assess the relationships among patterns of the data set by organiz-

ing the patterns into groups or clusters. Many algorithms for both hard and fuzzy

clustering were developed to accomplish this. An intimately is the cluster validity

which deals with the significance of the structure imposed by clustering method.

In practical application, we need cluster validity methods to measure the quality of

the clustering results. Many factors can influence the quality of clustering results

such as the method of initialization, the choice of the number of classes c, and the

clustering method. A validity function is a function which assigns the output of

FCM a number which is intended to measure the quality of the clustering provided

by the output. By evaluating the output for a variety of choices of c, one hopes

to be able to determine the values of these parameters for which the corresponding

clustering best identifies the structure in the data. The quality of a clustering algo-

rithm is indicated by how closely the data points are associated to the cluster centers.

5.3.2 FCM-based model selection algorithm

1. Choose cmin and cmax

2. For c= cmin to cmax
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(a) Initialize cluster centers (V ).

(b) Apply clustering algorithm to update the membership matrix (U) and

the cluster centers (V ).

(c) Test for convergence; if not, go to (b).

(d) Compute a validity value Vd(c).

3. Compute cf such that the cluster validity index Vd(cf ) is optimal.

Fuzzy clustering algorithm and kernel based fuzzy clustering algorithm are run over

a range of c values(2, ..., cmax), and the resulting fuzzy partition is evaluated with

the validity indices to identify the optimal number of clusters. A number of validity

measures for fuzzy clusters exist in the literature, but we take into consideration

three well known measures to validate FCM and KFCM with our dataset.

5.3.3 Validity indices

A validity function has been performed to measure the quality of the clustering

provided by FCM and KFCM. We briefly review some of the most frequently referred

validity indices for fuzzy clustering [7, 65, 80, 79].

Bezdek proposed two cluster validity indices for fuzzy clustering. These indices,

which are referred to as partition coefficient (VPC) and classification entropy (VCE)[6,

79]. Partition coefficient (VPC) is defined as

VPC =
1

n

n∑
i=1

c∑
j=1

(uij)
2 (5.18)

Classification entropy is defined as

VCE =
1

n

n∑
i=1

c∑
j=1

(uij)loga(uij) (5.19)

where uij ,(i = 1, 2, ..., n; j = 1, 2, ..., c) is the membership of datapoint i in cluster

j.

The above mentioned VPC and VCE are based on using the membership values uij

of fuzzy partition. The drawback of these indices are monotonous dependency on the

number of clusters c and lack of direct connection to the geometry of the data(Dave,

1996), since they do not use the data itself. The following indices simultaneously

take into account the membership functions and the structure of data.
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Xie and Beni (1991) [79] proposed a validity index VXB which overcome the above

problems in VPC and VCE and mainly focus on two following properties: compactness

and separation [65, 79]. In the equation (5.20) for VXB, the numerator indicates the

compactness of the fuzzy partition, while the denominator indicates the strength of

the separation between clusters.

XB(c) =

∑j=1
c

∑i=1
n

[
(uij)

m ‖ai − vj‖2
]

n
[
mini,j ‖ai − vj‖2

] (5.20)

The main disadvantage of this index is that it tends to decrease monotonically when

c is very large. They stated that good partition produces a small value for the com-

pactness, and that well-separated vj will produce a high value for the separation [79].

Hence the most desirable partition is obtained by minimizing VXB for cj=2,3,...,cmax .

Zahid et al. (1999) [83] proposed the validity index VZLE, based on the concepts

of fuzzy compactness and fuzzy separation to the traditional validity indices, which

considers the geometrical properties of the data structure and membership functions.

It is defined as

VZLE = SC1(c)− SC2(c), (5.21)

where

SC1(c) =

∑c
j=1 ‖vj − v̄j‖

2 /c∑c
j=1(

∑n
i=1 u

m
ij ‖ai − vj‖

2 /
∑n

i=1 uij)
(5.22)

and

SC2 =

(∑c
j=1

∑n
l=i+1(

∑n
i=1 [min(uij ,ulj)]

2∑n
i=1min(uij ,uij)

)
(∑n

i=1 (max1≤j≤cuij)2∑n
i=1max1≤j≤cuij

)
(5.23)

The index VZLE uses a fuzzy union and a fuzzy intersection to obtain the fuzzy

compactness/fuzzy separation degree. The maximum of VZLE, as a function of the

number of clusters c, is sought for a well-defined c-partition.

Geva et al. (2000) [28], proposed the fuzzy hypervolume validity VFHV , based

on the concepts of hyervolume and density, which is defined as
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VFHV =
c∑
j=1

[det(Fj)]
1/2 , (5.24)

where

Fj =

∑n
i=1(uij)

m(ai − vj)(ai − vj)T∑n
i=1(uij)

m.
(5.25)

The matrix Fj denotes the fuzzy covariance matrix of cluster j. A fuzzy partition

can be expected to have low VFHV value if the partition is tight. Thus, we can find

the optimal c, by solving min2≤c≤n−1VFHV to produce best clustering performance

for the given dataset.

Sun et al. (2004) [74] proposed an index that measures separation between the

clusters and the cohesion within clusters. This index is based on the linear combina-

tion of the average within cluster scattering (inversely realted to compactness) and

between–cluster separation. A cluster number which minimizes VWSJ corresponds

to the best clustering.

VWSJ(U, V, c) = Scat(c) +
Sep(c)

Sep(cmax)
, (5.26)

where scat(c) represents the compactness of the obtained clusters.

Scat(c) = (
1

c

c∑
j=1

‖σ(vj)‖)/(‖σ(A)‖) (5.27)

and the separation between clusters is defined as

Sep(c) =
D2
max

D2
max

c∑
j=1

(
c∑

k=1

‖vj − vk‖2
)−1

(5.28)

Bougessa et.al (2006) [7] proposed a validity measure, based on the concept of sep-

aration and compactness, which utilize the covariance structure of clusters. It is

defined as
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VSC(c) = Sep(c)/Comp(c) (5.29)

In the above formula, Sep(c) represents the fuzzy separation of fuzzy clusters given

by Sep(c) = trace(SB) where SB is the fuzzy scatter matrix, defined as

SB =
n∑
i=1

c∑
j=1

umij (vj − v̄)(vj − v̄)T (5.30)

The large value of Sep(c) indicates that the fuzzy c-partition is characterized by

well-separated fuzzy clusters.

Comp(c) represents the total compactness of the fuzzy c-partition, and is given by

Comp(c) =
c∑
j=1

trace(
∑
j

) (5.31)

where
∑

j represents the covariance matrix. Hence the most desirable partition is

obtained by maximizing VSC for cj=2,3,...,cmax .

For our experiments, we choose three traditional validity indices namely VPC ,

VCE, VXB for fuzzy clustering. They have a common objective of finding a optimal

c with each of these c centers. Note that since no single validity indices performs

well for all the datasets. As Bezdek [55] stated, “no matter how good your index is,

there is a data set out there waiting to trick it”.

5.4 Exponent value validation

5.4.1 Introduction

As we know that, fuzzy clustering results are mainly influenced by two factors namely

the cluster center c and the weighting exponent or smooth factor m. In unsuper-

vised fuzzy clustering, the number of classes is determined using validity measures,

which we discussed early in this chapter. This leaves the value of the fuzzy exponent

m to be determined and its determination is problematic. As m approaches 1, the

clustering becomes harder. As m becomes very large (i.e m ≥ 100), the membership
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becomes almost constant and so fuzzy that virtually no cluster would be distin-

guished. Since the parameter m is not constrained at the upper end, it poses the

question, what m value should be taken and whether there is a value that optimizes

classification. In the literature about FCM, various proposals or the use of single

m-value(m=2 being the most popular) for the FCM, processing of any particular

datatype would not be good enough and may be misleading. This is because every

dataset has a unique data structure. The optimal m− value should be peculiar to

each particular data set and should be sought from within the data structure of each

data set. Thus an initial stage in any further application of fuzzy methods is the

determination of optimal number of exponent value. Over the years, different range

and values for the optimal choice of m have beeen proposed and used by different

researchers. In the following subsection we discussed about some of the techniques,

which is available to determine the exponent value m for fuzzy clustering.

5.4.2 Estimation of m value

Bezdek suggested the range 1-30, with the range 1.5-3 gives good results. He also

gave an interesting interpretation of the special case where m = 2. It was noted,

however there is no strong theoretical justification or emprical evidence for these

choices[54].

McBratney and Moore (1985) [52], made investigations about determining the

optimal m-value for fuzzy clustering algorithms. They reported that objective func-

tion, decreases monotonically with increasing number of groups and increasing values

for m, and thats its rate of change with changing m is not constant. Then they ob-

served the greatest change occured around when m = 2. Their procedure involves

the combination of optimal number of classes c and the fuzzy exponent m, which is

defined as

φ = −
[(

dJm
dm

)√
c

]
(5.32)

where dJm

dm
is the derivative of the objective function Jm and the fuzzy exponent

value m. They carried out some numerical tests using this procedure and got m = 2

as an optimal value for fuzzy clustering.

Choe and Jordan (1992) [12], proposed fuzzy decision theory to determine the

optimal value m for fuzzy c-means. They defined fuzzy goal as a good cluster criteria

and a fuzzy constraint for minimizing the sum of square errors, they choose the

value of m based on the maximum membership value obtained by the intersection

of the fuzzy goal and fuzzy constraint. They reported that the FCM algorithm was
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relatively insensitive to the value choosen for m in the range between 8 and 30, and

they further suggested that the value m = 2 was optimal.

Deer and Eklund (2003) [18], investigated the value of the fuzzy exponent, m, in

a supervised mahalanobis distance fuzzy classifier by requiring that the fuzzy class

memberships reflect proportions of contributing classes in the pixels of a remotely

sensed image. They finally came to the conclusion that the range lies between 1.6

and 3 to obtain good classification accuracy using FCM.

Dembele et al. (2003) [19], presented an investigation to determine the fuzzy

exponent value m for micro array datasets. As a intial start they decided to choose

the upper bound value mub for m, above which the membership value resulting from

FCM are equal to 1
j
, where j is the cluster centers, which is showm by (Bedzek

1981, p.73). In their study, they hypothesise that when m varies, there might be

a relationship between the FCM membership values and the coefficient of variation

(CV) of the set of distance between genes, which is defined as

Ym =
{[
d2(xi, xj)

] 1
m−1 ; j 6= 1, 2, ..., c

}
(5.33)

They carried out some numerical experiments by varying m and determined CV of

Ym. In each case, they observed that the values of m which leads to membership

values close to 1
j

gave a CV of Ym close to 0.03p, p represents the dimensionality

of the data. But they dont have any theoretical justification for that observation.

They proposed the following equation to evaluate the upperbound value mub, which

is given as

cv {Ym} =
σYm

Ȳm
≈ 0.03p (5.34)

where σYm and Ȳm are respectively the standard deviation and the mean of the

set Ym. They solved the above equation using dichotomy search strategy. After

conducting the experiment, they decided the fuzzy exponent value m lies between

1-3.

Yu et al. (2004) [82], presented theoretical and numerical analysis of the fuzzy

exponent. They proposed a new approach to determine the weighting exponent in

the FCM. The two theoretical rules for selecting the fuzzy exponent value are as

follows:

α : m ≤ min(s, n− 1)

min(s, n− 1)− 2
, if min(n− 1, s) ≥ 3. (5.35)
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β : m ≤ 1

1− 2λmax(Fu)
, if λmax(Fu) < 0.5. (5.36)

where Fu = HTH/n; s and λmax(Fu) are the number of nonzero eigen-values and

the maximum eigen-value of the matrix Fu respectively and

H =

[
(x1 − x)

‖x1 − x‖
,

(x2 − x)

‖x2 − x‖
, ...,

(xn − x)

‖xn − x‖

]
(5.37)

The above specified rules will provide theoretical upper bounds for the valid fuzzy

exponent in the FCM. However, when max(Fu) ≥ 0.5, both the rules become invalid

and the selection of fuzzy exponent then depends on the discretion of the user.

Most recently, Francis et al. (2006) proposed a linear mixture model approach

to select the fuzzy exponent value in the fuzzy c-means algorithm, which is the

extended work of Deer and Eklund (2003). They determined the optimal cluster

centers using existing validity measures and implemented the FCM algorithm to

compute fuzzy prototypes and fuzzy membership grades with intializing m = 1.1.

They computed and recorded σ, the difference between the original data set and the

predicted data, which is calculated using Euclidean distance measure and choose

the appropiate maximum value for m. They reported that the optimal value for the

fuzzy clustering algorithm lies between 1.4 and 2.5 [54].

Inorder to determine the exponent value m, we carried out our experiments,

similar to the work done by Dembele et al. (2003). Generally, there has not been

universely accepted procedures or unified approach for choice of optimal exponent

value for m. In review study, they stated that all the proposals lack appropiate

approaches for selecting optimal m-value and that the open problem of choice for

optimal m-value still calls for future investigation.

5.5 Conclusion

Unsupervised clustering is the classical problem in pattern recognition. Many clus-

tering algorithms using Euclidean distance construction may have problems with

different sizes and cluster shape and even sensitive to noise environment. However,

to overcome this above mentioned problem we used kernel based fuzzy clustering

algorithm which seems to be robust to noise and outliers and also tolerates unequal

cluster size. As we know there are different types of kernel functions available, but

we used gaussian RBF kernel, because their derivatives are simple and even this
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is the most commonly cited kernel functions in the literature. The relationship be-

tween FCM and KFCM was also being discussed. The experimental results dicussed

in chapter 7 shows that KFCM has the best performance among other classification

methods available in the literature. We report that KFCM is the better choice in

analysing prostate cancer dataset.

In fuzzy clustering algorithm, it aims to identify the structure that is present in

the dataset. Though the environment is fuzzy, the aim of the clustering algorithm

is to generate well defined fuzzyc-partition that is as close as to the structure of

the given data. Thus, it raises a question like how partition fits the “unknown”

structure that is imposed by the used clustering algorithms? and which groupings is

better?. Therefore, it’s necessary to validate the cluster, which helps to determine

the optimal number of clusters. In addition to the number of clusters c, FCM requires

a priori choice of the degree of fuzziness (m−value), called as fuzzy exponent value.

In the literature of clustering, a large number of cluster validity indices and even

various other methods being proposed for determining the optimal m-value, but

still it remains a open problem. More developments are expected before it can be

effectively used in practical applications.

When specially considering RBF kernel for replacing the original Euclidean dis-

tance in fuzzy clustering, it raised the following questions regarding 1) Choice of the

type of kernel: This is one of the major questions under consideration regarding re-

search being undertaken in kernel methods. Clearly the choice of kernel will depends

on the data, however in the specific case of data partioning then a kernel will have

universal approximation qualities such as the RBF is most appropiate [23]. This

specific RBF kernel provides a simple and elegant method of feature space data

partitioning based on a sum-of-squares as defined in Eq: (5.13), 2) Choice of the

kernel width: The other problem raises out of this method is then the choice of the

kernel width σ. This particular concern is pervasive in all methods of unsupervised

learning, the selection of an appropiate model parameter, or indeed model, in an

unsupervised manner. Clearly cross-validation are required to estimate the width

of the kernel in the model. Therefore we carried out leave-out-one cross-validation

method to determine the σ (kernel width) and the parameter value is shown in

chapter 7.



Chapter 6

Classification measure

6.1 Clustering-based decision rule

6.1.1 Introduction

The MS cancer classification based on LPC and unsupervised fuzzy clustering algo-

rithms is as follows: As first step towards classification, we analysed PC-H4(prostate

cancer) dataset using LPC to extract useful information and then the resultant LPC

vectors Ai = {a1i, a2i, ..., ani}, where i = {1, ..., n}, are then grouped into c cluster

centers V = {v1, v2, ...vc} using fuzzy clustering algorithms according to the num-

ber of different classes. The distortion with respect to the fuzzy cluster centers are

accumulated across the whole test to determine the minimum distortion measure

beteween an unknown sample A∗m and the particular known class i.

Measuring the dissimilarities between two feature vectors is the key component of

most pattern-recognition algorithms. Let us consider, two vectors, x and y defined

on a vector space <. We can define the cartesian product as τ × τ as a real-valued

function in the distance function d on the vector space τ , if it satisfies the following

properties [44]:

1. 0 ≤ d(x, y) <∞ for x, y ∈ τ and d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x) for x, y ∈ τ

3. d(x, y) ≤ d(x, z) + d(y, z) for x, y, z ∈ τ

The above specified properties are commonly referred as the positive definiteness,

symmetry, and the triangle conditions. If a measure of dissimilarity, satisfies the pos-

itive definiteness, then we say as distortion measure when vectors are representations

of signal spectra. In the following subsection, we discussed about the mathematical

properties of these distortion measures and we denote distortion measure in terms

of D. To calculate a distortion measure between two vectors x and y, denoted as

57
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D(x, y), we calculate a cost of reproducing any input vector x as a reproduction

of vector y. Given a distortion measure, the mismatch between two signals can be

quantified by an minimum distortion between the input and the final reproduction.

The distance measure for comparing vectors x and y is of the form

D(x, y) = D

= 0 ifx = y

> 0 otherwise
(6.1)

There are several measures of distortion developed for speech recognition [59] such as

the log-likelihood-ratio distortion, Itakura-saito distortion measure, likelihood-ratio

distortion and cepstral distortion measure. But the most commonly used distortion

measures for LPC vectors are cepstrum and likelihood, which is discussed in detail

in the following subsection.

6.1.2 Cepstral distortion measure

A formal way of justifying the use of cepstral window is to consider the Fourier

representation of the log magnitude spectrum. The Fourier transform is used to

transform a continuous time signal into the frequency domain. It describes the

continuous spectrum of a nonperiodic time signal [44]. Therefore, we consider the

complex cepstrum of MS signal as the Fourier transform of the log of the signal

spectrum. For the power spectrum S(ω), which is symmetric with respect to ω =

0 and is periodic for sampled data sequence, the Fourier series representation of

logS(ω) can be expressed as

logS(ω) =
∞∑

n=−∞

ane
−jnω (6.2)

where an = a−n are real and referred as cepstral coefficients, e−jnω is the fourier

transform of the given MS signal. Note that

c0 =

∫ π

−π
logS(ω)

dω

2π
. (6.3)

Consider S(ω) and S ′(ω) to be the power spectra of two MS signals and apply the

Parvesval’s theorem, the L2-norm cepstral distance between S(ω) and S ′(ω) can be
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related to the root-mean-square log spectral distance as [44]

D2
c =

∫ π

−π
|logS(ω)− logS ′(ω)|2 dω

2π
=

∞∑
n=−∞

(an − a′n)2, (6.4)

where an and a′n are the cepstral coefficients of s(ω) and s′(ω), respectively. Though

the power spectra are even functions, the cepstral coefficients are real. Since the

cepstrum is a decaying signal, the summation in Eq (6.4) doesnot require infinite

number of terms [59]. For LPC models it represents the highly smoothed signal and

it is usually truncated to only small number of terms. A turncated cepstral distance

is defined by [44, 59]

D2
c (L) =

L∑
m=1

(am − a′m) (6.5)

6.1.3 Likelihood distortion measure

Consider the two spectra, magnitude-squared Fourier transforms, S(ω) and S ′(ω) of

the two signals s and s′, where ω is the normalized frequency ranging from −φ to

φ. The log spectral difference between the two spectra is defined by [44].

V (ω) = logS(ω)− logS ′(ω) (6.6)

which is the basis for the distortion measure proposed by Itakura and saito in their

formulation of linear prediction as an approximate maximum likelihood estimation

The Itakura-saito distortion measure (DIS) in the formulation of linear prediction

as an approximate maximum likelihood estimation is defined as

DIS =

∫ π

−π
[eV (ω) − V (ω)− 1]

dω

2π
=

∫ −π
π

S(ω)

S ′(ω)

dω

2π
− log

σ2
∞
σ′2∞
− 1 (6.7)

where σ2
∞ and σ′2∞ are the one-step prediction error of S(ω) and S ′(ω), respectively,

and defined as

σ2
∞ ≈ exp

{∫ π

−π
logS(ω)

dω

2π

}
(6.8)
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It was stated that Itakura-Saito distortion measure is connected with many sta-

tistical and information theories [44] including the likelihood ratio test, discrimina-

tion information and the Kullback-Leibler divergence.

The Itakura-Saito distortion measure can be used to illustrate the matching prop-

erties of linear prediction by replacing S ′(ω) with a pth order all-pole spectrum

σ2/
∣∣A(ejω)

∣∣2, leading to

DIS

(
S,

σ2

|A|2

)
=
aTRpa

σ2
∞
− logσ2

∞ − 1. (6.9)

where aT is the transpose matrix, Rp is the autocorrelation matrix and a is the LPC

coefficient. Based on the above information, we can gain-independent distortion

measure derived directly from the Itakura-Saito distortion measure. Traditionally

it is called the likelihood distortion measure and defined as [44]

DLR

(
1
|Ap|2

, 1
|A|2

)
= DIS

(
1
|Ap|2

, 1
|A|2

)

=
∫ π
−π
|A(ejω|2
|Ap(ejω |2

dω
2π
− 1

= aT Rpa

σ2
p
− 1.

(6.10)

That is, when the distortion is small, the Itakura distortion measure is not very

different from the likelihood ratio distortion measure. To illustrate the above dis-

cussion at this point, the LPC likelihood ratio distortion measure can be derived [62]

and defined as follows

DLR =
a′TRpa

′

aTRpa
− 1 (6.11)

where Rp is the autocorrelation matrix of sequence s associated with its LPC coeffi-

cient vector a, and a′ is the LPC coefficient vector of signal s′. Thus, the distortion

measure between an unknown MS samples sm and from a particular known class i

can be determined using the minimum rule as follows:

Dmin(Xm, c
i) = minj D(Xm, c

i
j) (6.12)
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where D is the distortion measure, Xm is an LPC vector of sm, cij is the j cluster

center of a particular class represented by centroids ci is minimum.

Using this decision logic, the unknown signal sm is assigned to class i if the minimum

distortion measure of its LPC vector xm and the corresponding cluster center for

LPC features ci is minimum, that is

sm → i∗, i∗ = arg mini Dmin(xm, c
i) (6.13)

6.2 Accuracy estimation

Basically there are two reasons for wanting to know generalization rate of classifier

on a given problem. One is to see if the classifier perform well enough to be useful;

another is to compare its performance with that of a competing design. Estimating

the final generalization performance invariably requires making assumptions about

the classifier or the problem or both, and fail if the assumptions are not valid. We

should stress, then, that all the following methods are heuristic. Occasionally our

assumptions are explicit, but more often than not they are implicit and difficult to

identify or relate to the final estimation (as empirical methods). One approach to

estimating the generalization rate is to compute it from the assumed parametric

model. In simple validation we randomly split the set of labeled training samples D

into two parts: one is used as the traditional training set for adjusting model param-

eters in the classifier. The other set-validation is used to estimate the generalization

error. Since our goal is to low generalization error, we train th classifier until we

reach a maximum of this validation error. It is essential that validation (or the test)

set into include points used for training parameters in the classifier-a methodological

error known as “testing on the training set” [26, 29]. There are different types of

validation techniques available in literature, like Bootstrap, Jackknife and crossval-

idation. But we restrict ourself to leave-one-out cross-validation and discussed in

detail about its own benefits and drawbacks in the following subsection.

6.2.1 Cross-validation

Cross-validation (CV) is an empirical approach that tests the classifier accuracy ex-

perimentally. Once we train the classifier using cross-validation, the validation error

gives an estimate of the accuracy of the final classifier on the unknown set [22]. Let V

be the space of an unlabeled instances (eg: features) and Y the set of possible labels

(centroids). Let χ = V×Y be the space of labelled instances and D = {a1, a2, ..., an}
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be a feature extracted MS dataset (possibly multidimensional) consisting of n la-

belled instances, where ai = (vi ∈ V, yi ∈ Y). A classifier C maps an unlabelled

instance v ∈ V to a label y ∈ Y and an inducer τ maps a given dataset D into a

classifier C (FCM or KFCM). This notation τ(D, v) will denote the label assigned

to an unlabelled instance v by the classifier built by inducer τ on dataset D, i.e.,

τ(D, v) = (τ(D))(v) [40].

Leave-one-out cross validation(LOOCV)

LOOCV involves using a single observation from the original sample as the valida-

tion data, and the remaining as the training data. It can be easily confused with

Jackknife, because both involve omitting each training case in turn and retraining

the network on the remaining subset. But cross-validation is used to estimate gen-

eralization error, while the Jackknife is used to estimate the bias of a statistic. In

the Jackknife, you compute some statistic of interest in each subset of the data. The

average of these subset statistics is compared with the corresponding statistic com-

puted from the entire sample in order to estimate the bias of the latter. You can also

get a Jackknife estimate of the standard error of a statistic. Jackknifing can be used

to estimate the bias of the training error and hence to estimate the generalization

error, but this process is more complicated than leave-one-out cross-validation [22].

When using the leave-out-one method, the inducer is trained and tested k times,

each time t ∈ {1, 2, ..., k}, it is trained on D
Dt

and tested on Dt. The cross-validation

estimate of accuracy is the overall number of correct classification, divided by the

number of instances in the dataset D. Formally, let Di be the test set that includes

feature vector xi = (vi, yi), where vi is an unlabeled instance (eg: feature) and yi

is a labelled instance (centroid), then the LOOCV estimation of accuracy (acc) is

defined as [40]

acccv =
1

n

∑
(vi,yi)∈D

δ (τ (D/Di, vi) , yi) (6.14)

The form of the algorithm is as follows:

For i=1 to k (where k is the number of feature vectors)

1. Let (vi, yi) be the ith record

2. Temporarily remove the ith feature vector from the training set.

3. Train the learning algorithm on the remaining k − 1 feature vectors.
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4. Test the removed data point and note the error.

Leave-one-out cross-validation is useful because it does not waste data and works

well for estimating generalization error for continuous error functions such as the

mean squared error. When training, all but one of the points are used, so the

resulting regression or classification rules are essentially the same as if they had

been trained on all the data points. The main drawback to the leave-out-on method

is that it is expensive-the computation must be repeated as many times as there

are training set data points. Repeated cross-validation runs can be used to estimate

the average classification accuracy of the given classification methods. In order to

evaluate the performance of our clustering algorithms, we adopt LOOCV and the

results are discussed in chapter 6 [26, 29, 40].



Chapter 7

Experiments on PC-H4 Dataset

We conducted our experiments with prostate cancer dataset (PC-H4), which has

been previously used in [20, 21, 45, 58]. The detailed description of these datasets

and the experimental setup are as follows.

7.1 Overview of datasets

7.1.1 Prostate Cancer:

Cancer is a major public health concern in the world. Currently, the best way of

reducing the morality of cancer is to detect and treat in the earliest stages. It is self-

evident that the best way to cure cancer is to detect it before it has metastasized.

Prostate cancer is now the most commonly diagnosed cancer in men and second

leading cause of male cancer deaths, which is detected by measuring the concentra-

tion of the prostate specific antigen (PSA). Screening of prostate cancer detects the

majority of prostate cancer patients; however severely hampered by a lack of selec-

tivity. Among the men who are screened, 20%-26% will have an abnormal serum

PSA and are likely to receive a recommendation for a prostate biopsy [25]. To avoid

the unnecessary biopsies, efforts have focused on characterizing patient groups with

an abnormal PSA who have a low likelihood of a positive biopsy. Proteomic tech-

nologies like mass spectrometry and micro array have been emerging to bring some

hope for discovering biomarkers and building diagnosis models. Unfortunately, past

biomarker discovery efforts have centered on laborious approaches looking for the

elusive single over expressed protein in blood. Since there are tens to perhaps hun-

dreds of thousands of intact, modified and cleaved protein isoforms in the human

serum proteome, most of them has not be elucidated, therefore finding biomarkers is

like searching for a needle in a haystack, requiring the separation and identification

of each protein biomarker. The very small number of newly approved biomarkers is

64
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an unfortunate reflection of the inability and failure of hypothesis-driven and low-

throughput approaches to deliver clinically useful biomarkers. A major source of

this problem is due to our lack of basic knowledge about the proteomic components

of serum and plasma [56]. Clinical applications will be eventually applied to a hu-

man population, not only in their respective proteomics, but also underlying disease

process itself. Thus, it seems reasonable that the presence of cancer, with high sen-

sitivity and selectivity, will be detected by multiplexed panels of clinical tests that

measure modified and clipped/cleaved host and tumor-derived proteins, produced

as a consequence of aberrant cellular function and cellular interactions [20, 63].

In recent years, the use of mass spectrometry for the identification of biomarkers

seems to be giving promising results, reported that positive predictive value (PPV)

is 90% for mass spectrometry. Thus, the patterns obtained from mass spectrom-

etry can be immediately validated on blinded machine learning study sets. The

National Cancer Institute-Food and Drug Adminstration (NCI-FDA) clinical pro-

teomics program was formed to develop and apply novel technology to improve our

ability to understand the biology of cancer. Applying this knowledge in practice,

we hope to detect and identify molecular events that may be targets for preven-

tion and treatment of cancer. Genomics and proteomics advances will help to guide

our judgement with regard to the best treatment for each individual patients [14, 20].

7.1.2 Dataset description

The mass spectra (MS) profile consisting of 15,156 features was downloaded from

http://www.home.ccr.cancer.gov/ncidfaprotoemics/ppatterns.asp and the detailed

description of the dataset can be found in [58]. The dataset contains 322 total

samples collected to investigate the biomarkers presence for prostate cancer. Out

of these 322 samples: 190 samples were diagnosed with benign prostate hyperplasia

with PSA levels greater than 4, 63 samples diagnosed with no evidence of disease

and PSA level less than 1, 26 samples diagnosed with prostate cancer with PSA

levels greater than 10. This set of data was collected using H4 protein chip, and a

Ciphergen PBS1 SELDI-TOF mass spectrometer. The chip was prepared by hand

using the recommended protocol and the spectra were exported with the baseline

subtracted.
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(a) prostate control

(b) prostate cancer

Figure 7.1: Example of mass spectrum in which the relative intensity is plotted
against mass-to-charge ratio(m/z). The data in this example are from the FDA-
NCI Clinical Proteomics Program Databank. Every point of the mass-spectra is a
candidate feature and usually the spectra of a cancer patient differs from that of a
healthy person.

7.2 Experiment setup

Linear predictive coding (LPC) is applied to extract the features from mass spec-

trometry dataset as LPC coefficient. The number of poles p for the LPC is es-

timated using experimental semi-variogram (see chapter 4 for more details) from

the given mass spectra, which revealed the number of poles lies between 50-70 (see
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Figure 7.2) for LPC analysis. After constructing experimental semi-variogram, we

build a model variogram using spherical model to fit the experimental variogram,

which is shown in Figure 7.2. The dotted curves are constructed using spheri-

cal semi-variogram, whereas non-smooth curves are constructed using experimental

semi-variogram. Based on the different pole values, features have been extracted

from the given mass spectrometry dataset and are considered as the feature vectors

for training and testing the proposed clustering algorithms.

(a) variograms of control

(b) variograms of cancer

Figure 7.2: Experimental and spherical semi-variogram representation of SELDI-MS
samples

FCM and KFCM are the two proposed clustering algorithms used to extract the

prototypes from the training set for effective classification accuracy. As we know
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fuzzy clustering is greatly influenced by cluster centers c and the exponent value m,

so it is a key issue for the users to properly evaluate the clustering parameters for

fuzzy clustering algorithms.

Figure 7.3: Graphical representation of PC and CE

Figure 7.4: Graphical representation of XB

7.2.1 Parameters of study

Initially, we set the fuzzifier m in the algorithm to 2, the test for convergence in the

basic FCM algorithm was performed using ε = 0.001, and the distance function ‖∗‖
was defined as Euclidean distance. For the determination of the number of clusters,
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the validity indices VPC , VCE, VXB were used (for more details see chapter 4), which

shows the cluster centers lies between 8 − 20 and the graphical representation is

shown in Figure 7.3 and 7.4. The maximum number of iteration and minimum

amount of improvement was set to 1000 and 10−5 (the stopping criterion of the

iteration). In the current implementation of KFCM, only gaussian kernel function

is adopted by replacing the Euclidean distance (more details refer chapter 4) and

the kernel parameter σ was set to 0.25 (Gaussian RBF kernel width), based on

the variance obtained from the feature extracted datasets. For every method and

every possible combination of parameters, we compute the classification rates and

then choose the best parameters results based on selectivity and sensitivity. This

process can be repeated until all the training samples have been counted, which is

carried out using leave-one-out crossvalidation method (LOOCV). We estimated the

performance accuracy of clustering algorithms using statistical methods.

7.2.2 Results

After initializing these parameters for the proposed classification methods, we car-

ried out the experiments with different distortion measures such as cepstrum dis-

tortion measure and likelihood distortion measure for computing the dissimilarities

between the given MS dataset. We calculated sensitivity (Sen) and selectivity (Sel)

using all possible parameters.

Sensitivity is the percentage of diseased samples that are correctly classified;

Sensitivity =
TP

TP + FN
(7.1)

and selectivity is the percentage of the healthy samples that are correctly classified;

Selectivity =
TN

TN + FP
(7.2)

where true positive (TP) denote the correct classifications of positive samples; true

negative (TN) are the correct classification of negative samples; false positive (FP)

represent the incorrect classifications of negative samples into the positive class; and

false negative (FN) are the positive samples incorrectly classified into the negative

class. This process was repeated until each observation is used once as the validation

data and the results are averaged, which is shown in the tables below:

Table 7.1 and Table 7.2 shows the classification accuracy of FCM and KFCM,

when we used ceptrum and likelihood distortion measure to calculate the dissimi-

larties between the signals (MS data).
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From Table 7.1 and Table 7.2, we can see the classification accuracy of the pro-

Case Data dimension FCM KFCM
Selectivity% Sensitivity% Selectivity% Sensitivity%

1 50 85.73 82.67 92.10 94.27
2 54 85.73 83.25 91.34 93.70
3 58 82.65 88.92 91.34 90.52
4 62 82.65 88.92 95.26 89.94
5 66 82.65 90.52 96.87 88.92
6 70 81.20 92.10 95.26 89.94

Table 7.1: Classification accuracy with m = 2 using cepstrum distortion measure

Case Data dimension FCM KFCM
Selectivity% Sensitivity% Selectivity% Sensitivity%

1 50 73.93 92.10 87.00 93.73
2 54 76.86 90.52 85.54 95.26
3 58 78.37 88.92 87.00 95.26
4 62 78.37 87.38 82.63 95.26
5 66 76.86 88.92 85.54 93.72
6 70 79.73 87.37 84.17 96.87

Table 7.2: Classification accuracy with m = 2 using likelihood distortion measure

posed computational models obtained using LOOCV, shows that KFCM has a best

performance than FCM. FCM with membership value m = 2 failed to extract use-

ful information to classify healthy and control from the given mass spectrometry

dataset. Therefore, similar to the work of Dembele and Kastner (2003), we decided

to select the exponent value for FCM algorithm. As a first step towards the evalua-

tion, we first attempted to estimate upper bound value for m(mub). For our feature

extracted mass spectrometry dataset, we varied m and determined the cv of Ym.

In each case, we observed that the values close to 1
c
, where c is the cluster center,

gave a coefficient of variation (cv) of Ym close to 0.05p, p being the data dimension,

but there is no theoretical justification for this observation. Initially, we set m = 2

and computed cv {Y2}. This value allowed us to decide the direction of search: in

]1,2[if cv {Y2} < 0.05p, in]2,∞[ if cv {Y2} > 0.05p and mub = 2 if cv {Y2} ≈ 0.05p.

If mub 6= 2, we performed successive choices of m in the correct direction and com-

puted cv {Ym}. Therefore, we decided to choose m lower or equal to 2, to get high

membership values for data points related to clusters. We choose m = 1 + m0,

where m0 = 1 if mub ≥ 10 and m0 = mub

10
if mub < 10. This choice leads to m = 2

when mub > 10 and to m < 2 when mub < 10. Thus for the given prostate canacer
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dataset, we obtained the membership value (m = 1.12) and for more details refer

to [19].

Case Data dimension FCM KFCM
Selectivity% Sensitivity% Selectivity% Sensitivity%

1 50 93.74 97.13 92.10 95.72
2 54 90.52 95.72 89.92 94.28
3 58 92.10 98.65 92.10 100
4 62 90.52 95.72 90.52 95.72
5 66 93.74 94.28 93.74 94.28
6 70 95.29 97.13 90.52 94.28

Table 7.3: Classification accuracy with m = 1.12 using cepstrum distortion measure

We followed the same principle for parameter initialization, as we discussed early

in this chapter and the experiment is carried out once again by changing the expo-

nent value for clustering algorithms. Table 7.3 and Table 7.4 shows the classification

accuracy obtained with m = 1.12, using different distortion measures.

Case Data dimension FCM KFCM
Sensitivity% Selectivity% Sensitivity% Selectivity%

1 50 91.34 88.91 90.56 91.37
2 54 92.83 90.56 94.28 85.78
3 58 94.28 90.56 92.83 92.10
4 62 92.83 92.10 94.28 90.56
5 66 91.34 87.32 91.34 88.91
6 70 92.83 88.91 94.28 90.56

Table 7.4: Classification accuracy with m = 1.12 using likelihood distortion measure

7.2.3 Comparison

In this section, first we compared our results between different distortion measures

and evaluated the classification accuracy with some popular machine learning tech-

niques.

Table 7.5 shows the comparison of results obtained using two different distor-

tion measures, we show here the best results obtained using different parameters

on FCM and KFCM. Table 7.5, shows the effectiveness of the proposed distortion

measures. The model is both physically and mathematically tractable. In speech

recognition [44], as well as this study, the performance of LPC cepstral distortion

measure appears to perform better than that of the LPC likelihood distrotion mea-

sure. Therefore, classification accuracy of the proposed methods are evaluated using

the results obtained by cepstrum distortion measures.
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Case Classification methods Exponent value Cepstrum Likelihood
Sel% Sen% Sel% Sen%

1 FCM m = 2 85.73 92.10 79.73 92.10
m = 1.12 95.29 98.65 92.10 94.28

2 KFCM m = 2 96.87 94.27 96.87 87.00
m = 1.12 93.74 100 92.10 94.28

Table 7.5: Comparative study of cepstrum and likelihood distortion measure

Table 7.6 shows the comparative study of proposed methods with some sphosti-

cated methods. In [45], the researchers increased the performance of PC-H4 dataset

by the use of boosting. For feature selection, they used nearest shrunken centroid,

filter-based feature selection and wrapper-based feature selection to extract useful

information from the given MS dataset and they analysed the feature extracted

dataset using several classifiers. The researchers used stratified three-fold cross-

validation procedure to train the classifiers, whereby each dataset split into three

subsets of equal size. They reported that boosted FE obtained good classification

accuracy on PC-H4 with a selectivity of 100% and sensitivity of 81.2% and this is the

highest reported accuracy of the dataset in [45]. The results in Table 7.6 shows that

kernel based fuzzy clustering algorithm outperforms the Boosted (boosted nearest

centroid algorithm) and Boosted FE (boosting based feature extraction), which was

shown to be a superior method. In addition, Table 7.6, also shows some results

obtained using various other methods [21, 45, ?].

In [21], the researchers used LDA as classifier to classify the feature extracted data

obtained using discrete wavelet transforms (DWT) method and they reported LDA

model gave the better classification rate (for cancerous patients) of 89.47% for con-

trol, 90.47% for cancer, when compared to Treeboost and Random Forests. But our

clustering algorithms obtained the classification rate of 100% for cancer and 93.7%

for control, which outperformed the classification rate of LDA.

In [58], the researchers used self-organizing map to classify feature extracted PC-H4

dataset obtained using genetic algorithms. They performed cross-validation and ob-

tained the selectivity of 95% and a sensitivity of 71%, which is compared with our

clustering algorithms and the results are shown in Table 7.6.

In [50], MIT correlation method was used as the feature selection technique to ex-

tract the features from the mass spectrometry dataset and they classified healthy

men from those infected using support vector machine (SVM). This approach indi-

cates that SVM with polynomial kernel worked well with prostate cancer data, when

compared to linear and radial kernel functions, achieving the selectivity of 89.0%

and the sensitivity of 79.0%, for an overall classification accuracy of 81.0%, which

is been referred as SVM1 in Table 7.6.
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In [20], the researchers once again investigated linear SVM as a classifier on PC-

H4. They performed feature selection using peak detection method and trained the

linear SVM with five-fold cross-validation method and obtained the classification

accuracy of 85.3±1.9. In our study of unsupervised fuzzy clustering algorithms on

prostate cancer dataset, we used radial kernel functions by replacing the original

Euclidean distance, which seems to give more promising results than linear kernel

and polynomial kernel and the results are shown in Table 7.6.

The above discussion shows that we compared results with several well-known clas-

sification methods to distinguish prostate cancer patients from normal individuals

based on MS data obtained on serum samples. But overall, we found that the kernel

based fuzzy c-means approach leads to lower misclassification rate as well as to a

stable assessment of classification errors, which is stated in Table 7.6. Although

many methods have been compared in this research, there are also some additional

methods, e.g. hidden markov models, that we have not yet compared. This is an

ongoing endeavour, and we are in the process of evaluating those other methods for

future work.

Case Classification methods Classification accuracy
Selectivity% Sensitivity%

1 KFCM 93.74 100
2 FCM 95.29 98.65
3 SVM 85.30 85.30
4 SVM1 89.00 79.00
5 LDA/PCA 71.00 62.30
6 LDA 89.47 90.47
7 Random forest 94.73 76.12
8 Tree boost 100 68.75
9 PCA 54.00 49.30
10 SFS 92.90 72.50
11 SBS 80.60 65.20
12 Boosted 88.10 73.90
13 Boosted FE 100 81.20
14 SOM 95.00 71.00

Table 7.6: Comparative study with other techniques



Chapter 8

Conclusions and Future work

8.1 Conclusions

The proteomics research field is progressing through the development of novel-

technology, with the hope of discovering biomarkers that can be used to diagnose

diseases, predict susceptibility, and monitor progression. A revolutionary approach

in proteomic patterns analysis can offer tremendous potential for the early detection

of complex human diseases like prostate cancer. Proteomic pattern analysis relies on

the patterns of proteins observed and doesn’t rely on the identification of a tractable

biomarkers. Hundreds of clinical samples are generated each day using some popular

proteomic techniques such as 2D-gel electrophoresis, mass spectrometry, and micro

arrays. Such large high-throughput collections of data require powerful tools to assist

data analysis. Machine learning has increasingly gained attention in bioinformatics

research and its the subfield of artificial intelligence which focuses on methods to

construct computer programs that learn from the experience with respect to some

class of tasks and a performance measure. Because of the multi-factorial nature of

MS data, it is clear that computational methods are needed to analyse the given

datasets which will help in detecting the disease. In my research, I applied unsu-

pervised clustering algorithms to serum proteomic pattern analysis for cancer early

detection.

Mass spectrometry data are characterized by high dimensionality, high levels

of redundancy, information irrelevant to particular disease data and measurement

noise. Therefore, feature extraction techniques are crucial to extract valuable infor-

mation for learning high-accuracy classifiers and gaining the full potential of mass

spectrometry based disease diagnosis. Given the features obtained from the mass

spectrometry datasets, using the principle of LPC, we then applied FCM and KFCM

algorithms on feature extracted dataset to discriminate healthy from cancer. For

every possible combination of parameters, we compute the classification rates and

74
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then choose the best parameters results based on selectivity and sensitivity using

leave-out-one crossvalidation method. In this thesis, kernel methods for cluster-

ing have been analysed by paying attention to fuzzy kernel methods and even we

explored the notion of data clustering in a kernel defined feature space.

The classification results obtained using kernel (RBF kernel) based fuzzy cluster-

ing algorithms shows that KFCM is the best among the compared classifiers includ-

ing the most popular applied methods like support vector machines, PCA/LDA and

random forests. We also demonstrated that kernel based clustering algorithms with

exponent value m = 1.2, can accurately classify the cancer samples based on serum

proteomic patterns. Thus, we believe these approaches have significant potential in

proteomic pattern analysis for early cancer detection and to identify biomarkers.

Recent studies confirm that there is no universal pattern recognition and clas-

sification model to predict molecular profiles across different datasets and medical

domains. Many classification and knowledge discovery problems may require the

combination of multiple techniques not only to improve the accuracy and efficiency

of the analysis tasks, but also to support evaluation procedures. Therefore we can

hypothesize that improvement in these components will yield the greatest increase in

system reliability and that the approaches most likely to achieve those improvements

will be based on explicit models of the data generation.

8.2 Directions of future work

• Analysis of MS data: In our research, we have implemented unsupervised

kernel based clustering algorithm to analysis prostate cancer dataset (PC-

H4). Therefore, it would be worth investigating this approach with other MS

datasets.

• Feature extraction: As shown in chapter 3, we implemented LPC as a

feature extraction technique to process the whole MS data, instead we might

concentrate on selecting the desired peak in our future research. Efforts to

identify the proteins corresponding to relevant features should follow feature

selection and classification studies.

• Parameter study on FCM: According to my knowledge from review, there

is no standard theoretical justification or empirical evidence for the choice

of the exponent value m for fuzzy clustering algorithms. So future research

will investigate on developing the novel technique, which could determine the

optimal m value for FCM.
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• Kernel methods: In chapter 4, we mainly discussed about the implementa-

tion of RBF kernel method into fuzzy clustering algorithms. Therefore, our

future research will focus on analysing different kernel methods with FCM.

In addition, we might do a comparative study to evaluate the performance of

kernel methods.

• Fuzzy hidden Markov model (FHMM): In addition to the above specified

future work, we might extend hidden Markov models to include the fuzzy-set

modelling of the model parameters for robust classification.
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