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Abstract

Machine condition monitoring has become a vital component of maintenance programs

in machine intensive operations, such as the mining, mineral processing and manu-

facturing industries. Vibration and oil analysis have become the two most commonly

used techniques for fault detection and tracking. These techniques are generally used

independently as expert knowledge is required in each field, and due to a lack of un-

derstanding about how to integrate them. However, numerous case studies of machine

failures have reported on the benefit of a correlated approach. This project focused

on the development of an analytical strategy that, for the first time analyses vibration

data in conjunction with oil and wear debris data for machine health assessment.

In order to achieve the goal of developing a strategy for correlated application of

vibration, oil and wear particle analysis using artificial intelligence, a number of project

objectives were identified. The project objectives were to investigate the fault detection

abilities of condition monitoring techniques as a basis for developing a correlated strat-

egy, and finally to implement this strategy using artificial intelligence. These objectives

were collated into a project plan that consisted of a comprehensive survey of condition

monitoring techniques and correlation investigation, correlation strategy development,

expert system development and a testing phase.

The project was performed in a number of stages to allow the progress to be mon-

itored. The first stage comprised a thorough literature review to ascertain the current

research status in the condition monitoring field, as well as confirming the project ob-

jectives. The second and third stages were concerned with the preparation of spur and

worm gearbox laboratory test rigs, and the operation of suitable experiments. The

measured condition monitoring data allowed the fault detection of the vibration, oil

vi
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and wear particle analysis techniques to be assessed. The data was also used for ver-

ification of the correlation strategy developed in stage four. Stage five was concerned

with the development of three expert systems for vibration analysis, oil and wear par-

ticle analysis, and correlated condition analysis respectively. The expert system for

correlated condition analysis was constructed using the correlation strategy of stage

four of the project. All expert systems were thoroughly tested using laboratory and

industry derived data to verify correct operation.

The outcomes of this research project contribute to the current academic knowledge

of the condition monitoring field, as well as provide industry with potential economic

and environmental benefits. The novel strategy for correlation of vibration, oil and

wear particle analysis techniques, as well as the demonstration of the effectiveness of

the developed expert systems are contributed to the academic research community.

The expert systems include additional innovative features such as a fault root-cause

analysis algorithm, and a new strategy for machine remaining lifetime estimation us-

ing a wear approach that can be updated using condition monitoring data. The fully

functional expert system software package complete with user interface is contributed

to the industry partner Industrial and Technical Services for potential future commer-

cialisation.

The developments of this project can provide significant benefits to the mining, min-

eral processing and manufacturing industries if the project outcomes are implemented.

The correlated condition monitoring strategy allows improved early fault detection,

more reliable fault diagnosis and the ability to perform root-cause analysis, compared

to conventional vibration, oil and wear particle analysis. These advances combine to

improve the efficiency of the maintenance program resulting in increasing machine up-

time, reduced maintenance costs and lower environmental impact. The adoption of

the project developments could therefore ultimately improve the profitability of the

venture, and help Australian operations to remain financially viable on a global scale.
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Chapter 1

Introduction

1.1 Project Purpose

The prime purpose of this research project was to improve the knowledge of vibration,

oil and wear particle analysis techniques for machine condition monitoring, to benefit

both industry as well as the research community. This purpose was embedded in the

three project objectives:

• To better understand the fault detection abilities of condition monitoring analysis

techniques, and

• To provide a strategy for improved fault detection of industrial machinery, and

• To automate the developed strategy.

As the absolute fault detection abilities of each condition monitoring technique were

not well established, it was not possible to perform an analysis of how the techniques

complemented or correlated with one another. This presented the need for a com-

prehensive study of possible condition monitoring techniques to be conducted, which

could then be used for a basis of a correlation investigation. The second dot point is

concerned with the investigation of how the analysis techniques correlate in fault de-

tection and diagnosis, and whether a correlated use would provide more accurate fault

diagnosis. Although case study type scenarios had confirmed potential benefits of a

correlated analysis [1], complications were also reported [2].

1
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The project objectives stated above focus on improving the efficiency of a main-

tenance program, and reducing the workload of the expert analyst. The improved

performance of a maintenance program would be facilitated through earlier fault de-

tection and better accuracy of fault diagnosis, as provided by the potential benefits of

a correlated condition monitoring approach. The automation of the correlated analysis

would reduce the manual labour associated with the data analysis which is typically

performed by an experienced analyst, thereby reducing the cost of the condition mon-

itoring program.

An improvement of a maintenance program has significant benefits for machine

intensive industries, such as the mining, mineral processing, manufacturing and avi-

ation industries. Economic benefits are generally the most significant [3], however

environmental benefits can also be considerable including less spare part replacement

(component energy of manufacture of spare parts), and improved lubricant life (lower

lubricant usage).

1.2 Scholarly Context of Research

Vibration, oil and wear particle analysis represent the most commonly used techniques

for machine condition monitoring. Although these techniques have been used individu-

ally for considerable time for fault detection and diagnosis, their combined use has not

been investigated in an academic manner. Vibration analysis has traditionally been

used for health monitoring of fixed plant (and aviation, due to the absence of road

noise), while oil analysis has often been selected for moving machines such as in the

transportation industry.

This project was aimed at using a correlated analysis approach for fixed plant instal-

lations typical in the mining, mineral processing and manufacturing industries. It was

therefore necessary in assessing the elements of vibration, oil and wear particle analysis

techniques used in industry, to allow easy adoption of the project developments by in-

dustry currently operating in Australia. This was considered beneficial for the project

industry partner Industrial and Technical Services (ITS), so the project developments
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could be commercialised at a later stage, and sold to industry with minimal training

and changes to data sampling procedures required.

Condition monitoring is predominately performed on a manual basis, with experts

interpreting the data and diagnosing machine faults. Due to the volume of data ob-

tained for analysis of large installations, expert staff are occupied by performing repet-

itive analysis of data. Companies could therefore benefit from automated data inter-

pretation, which would reduce the dependence on expert staff, and provide these with

more time to collaborate with the maintenance departments.

1.3 Explanation of the Project Structure

1.3.1 Rationale for the Research

The research project was structured into a number of sub-projects to allow each module

to be completed in an organised manner. The first sub project included a comprehensive

literature review as published in Chapter 2, in order to establish a strong academic

foundation of the project. An extensive literature review ensures that the project

can commence at the current research status of the field, while allowing the project

objectives to be confirmed. At this stage, local industry as well as the industry partner

ITS were surveyed about the condition monitoring techniques used, the type of plant

monitored, and the typical faults encountered. Spur and worm gearbox laboratory tests

were then designed that reflect the most common occurring faults.

Once the research stage was completed, the laboratory test rigs were prepared which

comprised sub-project 2. The spur gearbox test rig was already available, while a worm

gearbox test rig was designed and constructed. These test rigs are discussed in detail in

Sections 3.2.1.2 and 3.2.1.3, and the tests were performed as discussed in Sections 4.2

and 4.3. The objective of using the experimental test rigs was to obtain condition

monitoring data from gearboxes operating under controlled operating conditions. The

test rigs were sampled to allow the required data to be extracted, as determined in the

research stage of the project.

The laboratory derived data and research of sub-project 1 were used in a study of



CHAPTER 1. INTRODUCTION 4

sub-project 3 to assess the fault detection ability of each condition monitoring analysis

technique. As a machine fault may be detected by various indicators, the objective of

this sub-project was to identify all indicators for all possible faults of each technique

relating to gearboxes. This information was required in order to assess the possibility

of correlating vibration, oil and wear particle analysis techniques.

Sub-project 4 was concerned with the investigation into the ability of correlating

the analysis techniques, and subsequent development of a strategy to use a correlated

approach for improved fault detection of gearboxes. This component represents one of

the core components of this research project. The successful completion of the correla-

tion strategy allowed its implementation in an automated software package developed

in sub-project 5. This was a substantial development, as it included the design and

implementation of individual expert systems for vibration analysis, oil and wear parti-

cle analysis, and the implementation of the correlation strategy. This sub-project also

included substantial testing of the algorithms to ensure correct and reliable operation.

The developments of this sub-project are discussed in Chapters 5, 6 and 7.

The successful completion of all 5 sub-project 2 months ahead of schedule satisfied

the original research project aim and objectives. However, it was decided to expand

the research project into the machine remaining lifetime estimation field. This was

the case as remaining lifetime estimation has not generally been adopted by indus-

try in a structured manner, and the project developments presented an opportunity

to advance this field. This sub-project 6 consisted of a literature review of publica-

tions and wear estimating methodologies, followed by the development of a strategy

of integrating remaining lifetime estimation algorithm with the expert system develop-

ments of sub-project 5. The objective of this sub-project were to develop a strategy

to use the accurate machine condition information of the correlated expert system and

knowledge of operating conditions to estimate the remaining operating life of a gear-

box. Although this sub-project caused the research project to extend to 42 months,

the results complement the developments of sub-projects 1 to 5 well, as described in

Section 8. The remaining lifetime algorithm provides additional potential benefits to

end-users of the software, including further improved performance of the maintenance
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program by allowing more accurate planning of machine maintenance scheduling and

spare parts inventory management. This is in line with the primary project objective

of improving the available maintenance programs to benefit industry and the research

community.

1.3.2 Scope of the Research

The scope of the research and development conducted as part of this project consisted of

the development of an advanced automated algorithm for condition monitoring of spur

and helical gearboxes, as well as associated components. Spur and helical gearboxes

are common in industry, and represent a class of machines that can be monitored by

vibration, oil and wear particle analysis. It is therefore an ideal type of machine for

research into correlated strategies for condition monitoring. Apart from gears, the

additional machine components included in the project scope are roller and journal

bearings, V and cog type belts, couplings, centrifugal pumps and axial fans. However,

some of these components may not allow condition monitoring via all techniques. The

additional components were included solely to provide broader machine monitoring

ability and hence a more versatile product for future commercialisation.

In order to meet the scope stated above, the project outcomes would need to present

the development of a strategy on correlating the fault indicators from the vibration,

oil and wear particle analysis techniques. This would require all information obtained

from the condition monitoring techniques to be presented in a comprehensive machine

health report. The data processing and fault diagnosis would need to be performed

in an automated manner, and include a suitable user interface to allow operators to

execute the analysis procedure. The analysis algorithms should be verified for correct

operation and tested using real condition monitoring data. The completed software

package made up of the user interface and analysis algorithm back bone should be

operational, and thus suitable as a prototype for commercialisation by the industry

partner ITS.

It is anticipated that the success of this research project be evaluated by consid-

ering the scope and outcomes stated above. The anticipated outcomes would provide
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the research as well as the condition monitoring communities with a novel condition

monitoring technique in an automated software package. The intellectual property de-

veloped as part of the project outcomes would be of potential value to the industry

partner ITS, with the possibility of additional revenue from commercialisation.



Chapter 2

Literature Review

2.1 Introduction

The competitive nature of todays business environment has significantly impacted the

maintenance approaches of equipment used in industry. With a view to improve a

business efficiency and market share, company assets tied up in plant and equipment

was reduced to a minimum, resulting in a need to increase the availability of the equip-

ment. This was achieved by changing the maintenance procedure from a Run-to-Failure

approach to a Preventative Maintenance or even Condition-Based-Maintenance pro-

gram [3]. The move to a Preventative Maintenance program significantly reduces the

occurrence of unscheduled machinery downtime and thus increases the availability of

the machinery.

Machine condition monitoring is concerned with determining the condition of a

machine to allow the detection of faults at an early enough stage to allow the fault to be

corrected at the next scheduled service. Apart from increased availability and reliability

of machinery, machine condition monitoring also detects faults before secondary damage

results, thus also reducing repair costs.

Machine condition monitoring is applied to a machine by utilising appropriate moni-

toring techniques to be able to determine machine faults. The common monitoring tech-

niques include oil analysis and vibration analysis, which are discussed in Sections 2.2

and 2.3 respectively.

7
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2.2 Oil Analysis

The practice of oil analysis involves the sampling and analysis of oil from the machine

of interest. The sampling and analysis of oil can be performed either on the machine,

analysing the oil while passing between the oil pump and lubricated components (in-

line), on the machine but where oil is bypassed to the oil analyser (on-line), or an oil

sample is withdrawn from the machine and analysed in a laboratory (off-line). This

principle is demonstrated graphically in Figure 2.1, and in a flow chart in Figure 2.2.

The analysis of oil can be categorised into two main groups; oil condition moni-

toring and wear particle analysis. Oil condition monitoring was principally used to

establish an optimum oil change interval of machines with large oil sumps such as

truck engine sumps, to maximise the use of the oil until the additives were close to

depleted [3]. Maintenance cost reductions of up to 30 percent can be achieved through

monitored extension of oil drain intervals, while minimising unscheduled downtime of

machinery [4].

The oil condition is generally determined by the analysis of certain performance

indicators which relate to additive concentration or physical changes of the oil prop-

erties. The oil performance indicators chosen depend on the common failure modes

of the lubricant in the specific application and environment. Commonly used perfor-

mance indicators include Viscosity, Total Acid or Base Number (TAN or TBN), carbon

deposits (suspended/insoluble) and sludge, and water and fuel contamination [3–7].

The use of the oil condition monitoring technique in maintenance program versus

the more complicated oil particle analysis technique has the advantage of using simple

less-costly tests to determine the condition of the lubricating oil. If the oil is changed

before being contaminated or additives depleted, accelerated metal wear can be avoided.

Conversely, as oil particle analysis involves the analysis of wear metal, faults are de-

tected once initiated. Condition oil monitoring thus has the ability to notify faults due

to degradation of lubricating oil, before damage in the form of specific wear particles

results [3, 8]. Faults not due to degraded lubricating oil such as metal fatigue cannot

however be determined earlier by condition oil monitoring than oil particle analysis.
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Figure 2.1: Different types of oil analysis strategies.
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an optimum oil change interval of machines with large oil sumps such as truck engine

sumps, to maximise the use of the oil until the additives were close to depleted (Toms

1998). Maintenance cost reductions of up to 30 percent can be achieved through

monitored extension of oil drain intervals, while minimising unscheduled downtime

of machinery (Newell 1999).

Figure 2 – Flowchart of Oil Debris Analysis.

The oil condition is generally determined by the analysis of certain performance

indicators which relate to additive concentration or physical changes of the oil

properties. The oil performance indicators chosen depend on the common failure

modes of the lubricant in the specific application and environment. Commonly used

performance indicators include Viscosity, Total Acid or Base Number (TAN or

TBN), carbon deposits (suspended/insoluble) and sludge, and water and fuel

contamination (Bijwe, Garg & Gandhi 2000; Dalley 2002; Newell 1999; Toms 1998).
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Figure 2.2: Flowchart of oil debris analysis.
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The main difference between the two techniques is that in oil condition monitoring,

physical and chemical properties of the oil and oil additives are determined and com-

pared to the properties of new oil. Wear debris analysis however involves the collection

and analysis of the wear debris contained in the oil sample to determine the condition

of the machine. This section outlines the procedures required for undertaking the wear

debris analysis, as this machine condition monitoring technique applies to this project.

The general procedure detailed in Figure 2.2 includes sampling, sample preparation

and sample analysis (wear debris analysis). Several steps of the wear debris analysis

technique are also shared by the oil condition monitoring procedure, including sampling

and sample preparation.

2.2.1 Sampling

Sampling is the process of collecting a small quantity of the lubricant from the machine

to be examined. The sampling process is a critical step in the analysis process as the

sample must be collected such that it represents the true condition of the lubricant

while not introducing additional contaminants [9, 10]. A number of factors therefore

need to be considered when obtaining an oil sample for further analysis, including

not sampling directly after an oil change and using clean equipment. Industry practice

sampling procedure is outlined in the Australian Standard 4002—2001 [11]. The specific

factors for various sampling systems are discussed in the following sub-sections.

2.2.1.1 Sampling Positions

In order for the sample to a represent the oil condition including contaminants of the

bulk oil, the sample must be obtained when the machine is operating under normal

conditions, and before any oil filters or separators. If oil is sampled after filters, con-

taminants and wear particles may have been removed, and the sample is not a true

representation of the bulk oil. However, if the efficiency of the filter is to be determined,

sampling must be done after the filter.

When taking samples from pressurised oil lines, it is advantageous to install the

sampling valve at points of high oil turbulence, such as at elbows or sharp bends in the
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(a) (b)

Figure 2.3: Sampling positions (a) Drain-Line Vacuum Sampling (b) Pressure or Feed Line

Sampling [9].

flow line. This helps to mix the oil flowing in the line, and reduces the occurrence of

particle fly by where particles will flow past the sampling valve if installed at right angles

on a straight oil line [9]. Common sampling arrangements are shown in Figure 2.3.

Sampling points can also be located on oil return or drain lines from components

likely to wear, ingress particles or moisture. This is useful for machinery with large

oil sumps, as wear debris can be analysed at the true concentrations as it is produced,

rather than waiting for the general wear debris to accumulate in the oil sump [9]. If

an abnormal condition is detected by the sample analysis, samples can then be taken

from individual components to isolate the failing element.

Numerous machines utilise wet sumps where oil feed or return lines are not accessible

or do not exist, as the sump within the casing serves as the reservoir. These machines

typically include circulating gearboxes, circulating compressors and diesel engines. Oil

sampling can be performed by either collecting samples from the oil supply lines leading

to the gears or bearings, before the oil filter if one exists. Alternatively, if the equipment

has an external filtration system, a valve can be installed into the pressurised line

leading to the filter, as shown in Figure 2.4. These external oil filtration systems are

typically referred to as kidney loop filtration systems.
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Figure 2.4: Kidney loop oil filtration system [9].

While the collection of lubricants from circulating systems is the preferred method,

some machines may not allow samples to be collected from oil lines due to the absence

of pressure fed lubrication system. Sampling for non-circulating systems generally

involves the removal of oil from the sump at a position such that the sampled oil is a

representation of the bulk oil in terms of wear particles and contaminants. The removal

of the sump plug and collection of sufficient oil is considered to be an unacceptable

sampling practice as sediment accumulated at the bottom of the sump is allowed to

enter the sample bottle. Concentrations of both wear particles and contaminants are

therefore not representative of the wear debris found in the oil near the lubricated

components.

Commonly used and accepted sampling methods can be employed to collect oil

from non-circulating systems, including drain-port tap sampling, drain-port vacuum

sampling, and portable off-line sampling. Drain-port tap sampling involves a valve

installed instead of the drain plug, which has a thin tube extending up into the active

moving region of the sump, as shown in Figure 2.5(a).

Drain-port vacuum sampling is a modification of the first method, where the oil is

withdrawn from the valve by aid of a vacuum pump. Figure 2.5(b) displays the general

setup of the drain-port vacuum sampling technique, and the use of a Minimess valve.

Vacuum sampling is beneficial in systems using high viscosity oil, which is difficult to
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(a) (b)

Figure 2.5: Drain Port (a) Tap Sampling, (b) Vacuum Sampling [9].

sample through the small tube. Another vacuum sample technique is probe-on vacuum

sampling, which involves the valve and tubing to be installed on the side of the sump.

The tube extends into the moving region of the oil, as shown in Figure 2.6.

Portable off-line sampling involves the use of a portable oil pump and filter to set

up an off-line sampling system similar to the one used for wet sumps. The portable

pump is connected to valves installed into the oil sump, and allowed to circulate the

oil until the fluid becomes homogenous, typically 5 to 15 minutes depending on size of

the machine, sump and flow rate of the pump [9]. An oil sample can then be collected

from the sampling valve installed on the portable pump. Portable oil pumping carts

generally also include an oil filter, which can be connected into the pumping circuit

after the oil sample has been collected. Figure 2.7 shows a typical portable off-line

sampling setup.

2.2.1.2 Sampling Apparatus

Oil samples can be collected from valves installed into pressurised oil lines. Several

types of valves are used for the collection process, generally ball, needle or Minimess

valves. Minimess valves incorporate a sealing mechanism which is opened when the

corresponding quick fit connector is inserted. Common sampling configurations are
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Figure 2.6: Probe-on vacuum sampling [9].

Figure 2.7: Portable off-line sampling setup using portable filter cart [9].
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shown in Figure 2.8. If valves are not covered, additional flushing should be performed

before the sample is taken to avoid contamination. When sampling low pressure lines,

a vacuum pump may be required if the line pressure is not sufficient to force oil into

the sample bottle.

Sampling bottles and associated hardware such as vacuum pumps and tubes must

be of high cleanliness in order to avoid sample contamination. The equipment should

therefore be flushed with 5 to 10 times the volume capacity of oil before collecting the

sample. Bottles are produced in both clear plastic (PET) and glass, glass bottles usually

exceed the cleanliness of plastic bottles. The cleanliness is generally rated according to

ISO 3722-1976 [9, 12,13], which grades bottles according to three categories:

• Clean fewer than 100 particles greater than 10 microns per mL of fluid

• Super Clean fewer than 10 particles greater than 10 microns per mL of fluid

• Ultra Clean fewer than 1 particle greater than 10 microns per mL of fluid

Common bottle sizes range from 50mL to 200mL, the larger bottles are preferred if

a number of tests are to be conducted. For tests such as particle count and viscosity

analysis, 100 or 120mL bottles are generally used.

Sampling of machinery where the use of valves at standard sampling positions is

not possible such as bath or splash lubricated wet sumps, drop tube vacuum sampling

can be employed. This method involves a small tube to be inserted into the machine

through a fill or dipstick port, and approximately midway into the oil level. The

application of the drop tube vacuum sampling method for sampling through a dip-stick

hole is shown in Figure 2.9. While this method requires no machine modifications such

as the installation of valves for oil sampling, it should be avoided if another sampling

method can be used, due to the possibility of contamination and machine intrusion. As

the tube is inserted into the machine, debris can be allowed to ingress into the machine

from either dirt from the machine housing attaching to the tube, or a dirty tube from

manufacture or storage. Drop tube vacuum sampling also requires the removal of a

plug or dipstick in order to insert the tubing, which generally requires the machine to
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Figure 2.8: Common sampling arrangements from pressurised lines [9].

Figure 2.9: Drop tube vacuum sampling — sampling oil through dip-stick [3].
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Figure 2.10: Magnetic insert mounted on oil drain plug [14].

be shut down [3]. This is a disadvantage as it adds to the machinery downtime, as well

as the possibility of large particles settling to the bottom of the sump.

The collection of wear particles for wear debris analysis can also be done by col-

lecting the metallic particles with a magnet, and periodically inspecting the deposited

particles. This is a common system for gearboxes which are splash lubricated and thus

do not have a pressurised lubrication system [14]. Magnets are commonly mounted

on oil plugs and either inserted in special locations or to replace the standard filler

plug. Figure 2.10 shows a typical magnetic plug used for particle collection in gearbox

applications.

An advantage of the magnetic plug particle collection system is that metallic par-

ticles are collected on the magnet and removed from the lubricating oil. The particles

are therefore not able to cause abrasive wear by circulation with the oil [3]. Due to the

use of magnets for particle collection, non-ferrous and non-metallic particles cannot be

analysed using this sampling technique. Therefore, if all wear and contaminant par-

ticles are to be analysed, an oil sampling technique as discussed previously should be

adopted.

2.2.1.3 Sampling Frequency

The ideal sampling interval or frequency is dependent on the type and operating condi-

tions of the machine to be monitored. The sampling frequency should be chosen so that

it is at least two to four times the frequency of failure [3, 15]. High speed equipment

such as helicopter engines, gearboxes, and air force fighter planes are sampled at short

intervals, typically after every flight or 10 to 25 hours.
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Medium speed equipment including reciprocating engines are usually sampled at

intervals of 100 to 500 hours, depending on the duty of service, or if an abnormal

condition is anticipated. Low speed equipment is often sampled at intervals between

300 to 1500 hours, the longer interval being possible as the lubricant is not usually

exposed to high temperature or stresses as in the high and medium speed applications.

Sampling intervals for common machines are summarised in Table 2.1.

In general, the sampling frequency should be adjusted for each machine depending

on the load and speed of operation, as well as environmental factors including ambient

temperature, humidity and amount of dust [3, 14].

Table 2.1: Typical sampling intervals of common machinery [9,16].

Machine Hours

Diesel engines — off highway 150-250

Transmission, differentials, final drives 300-1000

Hydraulics — mobile equipment 200-500

Gas turbines — industrial 500

Steam engines 500

Air/gas compressors 500

Chillers 500

Gear boxes — high speed/duty 300-500

Gear boxes — low speed/duty 1000

2.2.2 Sample Preparation

Oil samples to be analysed in the laboratory should be mixed thoroughly prior to

analysis using either Ferrography or the filtergram method, to ensure that the portion

withdrawn from the sample bottle is representative of the oil of the machine.
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2.2.2.1 Ferrography (Analytical)

Ferrography involves the separation of ferrous particles from the oil sample by exposure

to a magnetic field. A measured amount of the oil sample is diluted to the required

viscosity by a fixer solvent, and passed over the ferrogram slide under the influence

of a graduated magnetic field [6]. Tetrachloroethylene is commonly used for the fixer

solvent.

The magnetic field causes large metallic particles to deposit near the entry position

on the ferrogram slide, while small particles deposit near the exit point on the slide. The

ferrographic oil analyser includes a bichromatic microscope with typical magnification

of 1000 times, which is used to examine the dispersed debris particles. Ferrous particles

can be distinguished by their alignment to the magnetic field lines, as well as their

size, morphology, particulate count and colour, compared to examples from the Wear

Particle Atlas [3]. Non-ferrous particles cannot be identified using the Ferrography

method, as these are not influenced by the graduated magnetic field.

The metallurgy of the debris particles can be determined by heat and/or chemical

treatment of the ferrogram slide, resulting in a change in particle colour or structure.

Particle data and metallurgical information is then used to determine the wear mecha-

nisms, wear source and degree of damage, using machine experience and maintenance

history [3]. The particle morphology, size, size distribution and elemental composition

cannot however be determined using Ferrography, which would require the use of other

equipment discussed in Sections 2.2.3.1 and 2.2.3.4 [17].

The analytical Ferrography technique can be used to obtain extensive information

about the wear debris found in an oil sample. It does however require high operator

experience and substantial sample preparation, generally making this technique too

expensive for routine oil analysis [18]. Even so, analytical Ferrography has been used

extensively for the condition monitoring of critical manufacturing process equipment

and in the aircraft maintenance industry.
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2.2.2.2 Filtergram

The filtergram method of wear debris analysis utilises the sampled oil to be passed

through a cellulose nitrate filter, generally of 3 micron pore size. Solvent is then flushed

through the filter to remove all traces of remaining lubricant. The collected particles

will then have a size of that corresponding to the filter pore size or larger. Analysis of

the particles can be done under an optical microscope after chemical and heat treatment

of the membrane filter in order to make it transparent.

This technique has the ability to collect both ferrous and non-ferrous particles,

allowing the wear debris to be analysed for impurity particles [3]. However, the particles

are not sorted according to size, as is the case with the ferrogram method.

The use of either Ferrography or filtergram techniques is dependent on the expected

failure modes of the particular machinery. In cases where ferrous, non-ferrous and liquid

debris is encountered, both techniques can be employed to analyse all of the wear debris

contained in the oil sample. The filtergram is also a cheap and quick method to test

for wear particle concentration qualitatively on-site, and has now become widely used

as a laboratory technique [17].

2.2.3 Wear Debris Analysis

Wear debris analysis involves the sampling of lubricating oil and the analysis of the

wear particles contained in the sample. Information obtained from the wear particle

analysis can be used to identify the type of wear occurring. This condition monitoring

technique can be used to determine if the components of a machine are wearing at a

normal rate, or whether a component is experiencing severe wear.

The wear debris analysis techniques are generally off-line techniques, as laboratory

microscopes are required for the particle analysis. This requires sampling intervals to be

established, of sufficient frequency to allow early detection of developing machine faults.

Limited particle information such as size and count distribution can be performed by

in-line techniques [19].

The typical information that can be obtained from wear particle/debris analysis
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includes particle size and count distribution, angularity, shape, surface roughness and

composition. Particle size and count distribution can be determined using a parti-

cle counter, while particle shape and morphology information can be obtained using

microscopy techniques, such as an optical microscope.

The accuracy of the description of the particle shape and surface detail results in

either a qualitative or quantitative description. Qualitative description of a particle

involves the analyst describing the particle using categories such as outline is round or

angular, and surface is rough, smooth or scratched. While qualitative analysis can be

used for successful identification of wear related faults, expert knowledge is required to

correctly associate the wear found particles with their corresponding wear mode [20].

Quantitative description of a particle involves the use of precise objective descriptors,

generally numerical values, which can describe the particle shape and surface features

with high repeatability, and not dependent on human judgement. The use of quanti-

tative numerical descriptors allows computers to be utilised to aid particle analysis, by

performing mathematical or Boolean operations on the numerical descriptors.

Elemental analysis of wear particles can also be an effective technique for determin-

ing the origin of particles, and components likely to wearing. As different components

are manufactured from different metallic alloys (due to special material property re-

quirements), the constituent elements found in wear particles can be used to identify

the material of the particle, and hence, the likely origin. While every machine con-

tains components of slightly differing materials or alloy constituents, specific metals

are commonly used for certain components due to their beneficial material property.

2.2.3.1 Particle Concentration and Size Distribution

The number of particles and size distribution in an oil sample can be obtained by

inexpensive methods such as particle counters, to warn of abnormal wear conditions.

While particle counts cannot be used to determine where in the machine the wear is

occurring, trending from the oil analysis history can be used to detect sudden increases

or decreases in particle of a certain size. This data can be used to determine whether

other machine condition monitoring techniques should be utilised in order to deter-
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Figure 2.11: Operation of direct reading ferrograph [3].

mine whether excessive wear is indeed occurring, and which parts of the machine are

responsible for the wear particles.

Wear particle counting is often done using either particle counters or using the Direct

Reading Ferrograph (DRF). The DRF can be used to measure the relative concentration

of ferrous particles above (large particle count, or DL) and below 5 microns (small

particle count or DS) [3]. The qualitative parameters of wear rate index, wear intensity

index and wear severity index can then be calculated by the following formulae:

• Wear Rate Index, WR = DL + DS

• Wear Intensity Index, WI = DL DS

• Wear Severity Index, SI = (DL + DS) (DL DS) [17].

The DRF uses optical methods to detect the presence of particles, as shown in Fig-

ure 2.11.

Particle Counters

Particle counters are commonly used to determine the number of particles of a cer-

tain size that exist in an oil sample. Sensors able to count particles and grade particles
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by size have been developed for on-line applications, and are therefore often part of

on-line machine condition monitoring systems [10, 19]. The concentration of particles

in the three size ranges are generally reported, which are: >4 microns, >6 microns and

>14 microns [18]. If particles are counted manually using an optical microscope, two

size ranges are used consisting of >5 microns and >15 microns according to ISO 4407-

2002 [21]. The concentrations are then converted into ISO cleanliness codes, a two

digit number for each size range and the numbers separated by a slash. Samples from

particle counters therefore receive three numbers, while manually counted samples are

reported in two numbers separated by a slash. In the manually counted case, the first

number indicates the quantity of particles found to be larger than 5 microns, while

the second number refers to the number of particles larger than 15 microns. The two

numbers correspond to the exponential coefficients of the particle counts expressed in

binary (to a base 2) [16].

Particle counters are an inexpensive wear debris analysis tool, which can be used

to detect the occurrence of an abnormal wear condition. Further analysis with more

sensitive and costly debris analysis techniques can be performed, based on particle

count and size distribution data.

The operating principals generally used for particle counting and determining the

size distribution are either by light extinction, such as the DRF, flow decay or mesh

obstruction. The counting techniques used by these three types of particle counters

are unable to distinguish between ferrous and non-ferrous particles. Light extinction

particle counters use a light beam and detector as shown in Figure 2.12, to sense the

presence of particles in the fluid.

Due to the use of a light beam, fluid opacity, air bubbles and water contamination

affect this type of particle counters, as these can either result in false readings or the

inability to detect particles, as is the case of very high fluid opacity. These types of

contamination can however be resolved, by agitation in case of air bubbles, or dilution

if the fluid has a high opacity.

Flow decay can be measured by using the primary, secondary and tertiary block-

ing behaviour of a particle-size distribution exposed to a calibrated mono-size micro
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Figure 2.12: Operation of light extinction particle counters [3].

Figure 2.13: Flow decay counter principle [3].

sieve [3]. The device is calibrated by a standard fluid with known particle count and

size distribution, and results are then referenced to the standard. Flow decay particle

counters are generally calibrated for a number of viscosities, and the operator must

enter the relevant viscosity of the fluid to be tested. Standard sieve sizes of 5, 10 and

15 microns are generally used, which allows the correlation of flow decay data with an

ISO cleanliness code. The operation is demonstrated in Figure 2.13.

Mesh obstruction particle counters work on the pressure difference across three

precision micro-screens. As the number of pores in each screen is known, a relative

pressure drop across each screen can be correlated to a number of particles retained by
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Figure 2.14: Operating principle of pore blockage particle counter, and typical screen sizes [3].

the screen, for the particular fluid viscosity. This principle is shown in Figure 2.14.

The results of unknown oil samples depend on the accuracy of calibration with a

standard fluid with known particle count for each of the three mesh sizes [3]. The

count data is then generally converted into an ISO 4406 cleanliness code for further

evaluation.

Particle counters have two key disadvantages when used for wear debris analysis.

Firstly, particle counters are unable to distinguish wear particles from contamination

particles found in the wear debris. It is therefore difficult to assess whether a wear

problem condition is occurring. The second disadvantage of particle counters is that due

to lubricant contamination, random fluctuations of particle counts can occur for systems

in good condition, leading to either false alarms or high alarm levels [18]. Increased

contamination control of the lubricant system is therefore beneficial in reducing the

noise in wear particle detection, resulting in a more reliable analysis technique.

Despite the disadvantages, particle counting has become a popular and effective

technique for determining the onset of component wear [18]. Although debris particle

definition and characterisation are not possible, particle counting can serve as an indi-

cator to warn of failing seals or breathers, causing high concentrations of contamination

particles to enter the lubricant and leading to excessive wear. High particle counts can

therefore be used to highlight the possibility of an excessive wear problem or lubricant

contamination, allowing further analysis to be performed.
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2.2.3.2 Particle Analysis Techniques

Morphology and shapes of wear particles can enable the analyst to determine what type

of wear mode is occurring, as well as the degree of wear that has occurred. Machine

condition can therefore be determined more accurately with knowledge of wear particle

morphology and shape, than with just particle count and size distribution. Due to

the small size of most wear particles, determining the morphology accurately requires

high powered microscopes, and this topic has received attention by researchers [22,23].

The research outcomes, concerned with methods to quantify the shapes and surface

morphology of wear particles, are discussed in Sections 2.2.3.2.1 to 2.2.3.2.5.

Particle shape can be correlated to a specific wear mode by comparison with a wear

particle atlas. These databases contain large amounts of information about particle

morphology, shapes and sizes for each wear mode of common machines. Wear modes

are generally classified into the following categories: rubbing wear, cutting wear, rolling

fatigue, combined rolling and sliding, and severe sliding wear.

Rubbing wear particles usually occur when two surfaces rub against each other un-

der pressure, such as two gear teeth of a gearbox. The particles are generally small

platelets, ranging in size between 0.5 to 15 microns, and originating from the mixed

shear layer. Rubbing wear particles are generated in systems in good condition, al-

though contamination such as sand can cause the concentration of particles to increase

by an order of magnitude [24].

Cutting wear particles commonly have long elongated shapes, 2 to 5 microns wide

and 25 to 100 microns long. These particles are produced if one surface is penetrating

another, similar to a lathe tool creating swarf, although on a microscopic level. Hard

abrasive particles in the lubrication system can also cause cutting wear. Cutting wear

particles are a sign of an abnormal wear condition, and their concentration should be

monitored to avoid sudden component damage [24].

Rolling fatigue particles are the result of failing rolling contact bearings, due to

surface fatigue of the rolling elements or surfaces. Three types of rolling fatigue particles

have been observed: fatigue spall, spherical and laminar particles [24]. Fatigue spall
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particles are generated when a fatigue pit occurs on the surface, and generally reach

a maximum size of 100 µm during the micro-spalling process. During bearing failure,

macro-spalling produces particles in the form of platelets with larger sizes, and an

increase in the number of particles of 10 µm size. Spherical particles associated with

rolling bearing fatigue are generated in the bearing fatigue crack, and are usually below

3 µm in diameter. These can be detected before any spalling occurs, although spherical

particles may not be produced in significant quantities under certain loading conditions

during bearing failure. Spherical particles can also be the result of cavitation erosion

or welding or grinding processes, which generally produces spheres with diameters

commonly above 10 µm. Laminar particles are very thin free metal particles with a

length of 20 to 50 µm, and an aspect ratio of about 30:1. They can be used to diagnose

bearing failure together with the presence of spherical particles and detection of a severe

wear condition of uncertain origin.

Severe sliding wear occurs when the wear surface stresses become excessive due to

high load or low speed. High wear rates are usually encountered as the shear mixed

layer breaks down, while catastrophic wear rates results once the surface is worn away.

The ratio of large to small particles is dependent of how much the surface stress has

exceeded the stress limit of the material. Generally, the higher the stress level, the

higher the ratio [24]. Severe sliding particles typically range from 20 µm up, with a

major dimension to thickness ratio of 10:1. Straight edges and surface scratches due to

sliding wear can be used to identify these particles.

Combined rolling and sliding wear is often associated with gear systems experiencing

pitch line fatigue, scuffing or scoring. Particles produced from gear pitch line fatigue

are similar to those produced from rolling bearing fatigue. The particles generally have

major dimension to thickness ratios of 4:1 to 10:1, depending on the gear design. A high

ratio of large particles (about 20 µm) to small particles (about 2 µm) is also generally

observed. Scuffing is caused by too high a load and/or speed, and is the consequence of

excessive heat breaking down the lubricant film resulting in adhesion of the mating gear

teeth. Scuffing wear results in a large volume of wear debris, the particles tend to have

a rough surface and jagged circumference [24]. As scuffing occurs at high temperatures,
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oxides are usually present and particle oxidation may also be detected (brown or blue

temper colours).

2.2.3.2.1 Microscopy Techniques

The morphology and three-dimensional (3D) shape can be hard to detect, due to the

small size of most wear particles. Numerous techniques have been used for the analysis

of wear particles including Optical Microscopy, Scanning Electron Microscopy (SEM),

Atomic Force Microscopy (AFM), and Laser Scanning Confocal Microscopy (LSCM).

While optical microscopy requires the least expensive equipment and training, the low

magnification of about 100 times can be used to detect particle outlines, sufficient only

for qualitative wear particle analysis [14].

LSCM has higher resolution than the optical microscope with a significant increase

in setup cost and a resolution of 0.2 µm, which is sufficient to analyse the surface

morphology of wear particles above 5 µm in size [25]. SEM has again higher resolution,

with magnification up to 200,000 times. The highest resolution can be obtained with

AFM, in the nm region. However, this resolution and resulting cost is generally con-

sidered excessive for wear particle analysis [25]. The specific operating features of each

microscopy technique is discussed in the following Sub-sections 2.2.3.2.2 to 2.2.3.2.5.

2.2.3.2.2 Optical Microscopy

Optical microscopy (OM) is the simplest of the microscopy techniques and involves

placing the wear particles to be analysed onto a glass slide, and using the magnification

to observe the particle outline. A CCD camera is also often fitted to specially designed

optical microscopes, which allows the images to be saved for later analysis or review.

Particle outline and colour information can be used for qualitative wear particle anal-

ysis. Although the operation of the OM is simple, considerable operator expertise is

required for reliable evaluation of the observed wear particles. Due to the simplicity

and low cost, optical microscopy is still used [14].
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2.2.3.2.3 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) is a surface imaging technique where an elec-

tron beam is used to probe the surface of a specimen. This analysis technique can

therefore obtain a high resolution image of the specimen surface, at magnifications typ-

ically ranging to 200,000 times. Compositional information can also be obtained by

monitoring secondary x-rays generated by the electron beam-specimen interactions [3].

Images obtained from a scanning electron microscope are transferred to a computer

for visual and numerical analysis of the particle morphology. The accuracy of the

particle analysis is dependent on the amount of uncertainty or noise present in the

transferred image [26].

One form of noise often introduced by metallic particles is edge highlighting, and is

due to electric charge build-up at the edge of the particle. Treating the particle with a

special coating prior to scanning can reduce this problem [25]. However, this has the

potential to both alter the surface chemistry as well as modify the surface morphology

by covering holes and other depressions.

2.2.3.2.4 Atomic Force Microscopy

Atomic Force Microscopy (AFM) has good image resolution, typically around 0.1

nm in the vertical and about 0.2 nm in the horizontal direction, which enables the

AFM machine to provide very accurate surface morphology data [23]. However, the

application of AFM to wear particle analysis is limited by the vertical range, which

is typically 4 microns. Wear particles generally have surface features with surface

relief up to 10 microns [23]. The very high resolution of AFM is generally not required

for wear particle analysis, a lateral resolution of 0.2 µm is adequate [25]. Another

drawback of AFM is the difficulty of securing the wear particle such that it will not

move during the scanning process. The high cost of AFM is therefore not justified, as

the resolution is higher than required, and difficulties with mounting and vertical range

limit its use.
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2.2.3.2.5 Laser Scanning Confocal Microscope

The Laser Scanning Confocal Microscope (LSCM) technique can be used to study

the outlines of particles, as well as the 3D surface topography. The outline of a particle

can be obtained quickly, by positioning a light source behind the sample on the opposite

side of the sensor, and using a transparent slide. Edge effects of the beam, such as

bending are reduced by the use of a laser. The outline shape of a particle can be used

for wear particle identification, and correlation to a wear mechanism in the case of

cutting, spherical and rubbing particles [22].

The surface topography of a particle can be obtained by using the laser to illuminate

a very small section of the particle, and obtaining an image in the focused region. An

aperture is used to capture only light from the illuminated part of the particle. The

region in focus corresponds to a thin slice of the particle surface. The light that passed

through the aperture is detected using a photomultiplier, which converts the light into

a digital image [25]. Once images of the entire particle have been obtained, computer

software can be used to reconstruct the 3D surface. This technique is further discussed

in the Digital Image Acquisition Section 2.2.3.3.1.

LSCM is well suited for wear particle analysis, as it is easy to use (being similar

to an optical microscope), and the particles do not need to be pre-treated. Special

mechanisms or precautions for securing the particle on the slide are not required for

LSCM.

2.2.3.3 Quantitative Boundary & Surface Morphology Characterisation

Boundary and surface morphology can be used to characterise wear particles according

to the wear mode generating them. As discussed in the previous section, qualitative

analysis utilises simple visual inspection techniques for particle analysis, which requires

substantial operator experience for correct diagnosis. Quantitative wear particle char-

acterisation uses numerical descriptors of wear particles to be able to link a wear mode

with a set of unique numerical descriptors [20, 27, 28]. Extensive expertise is therefore

not required once the numerical descriptors have been determined for the particle. Un-

like qualitative analysis, quantitative analysis is not a subjective diagnostic process,
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resulting in consistent and reliable wear particle characterisation [29].

Quantitative analysis of wear particles requires three steps to be performed: sam-

ple preparation, digital image acquisition and image analysis. Sample preparation is

required by some image acquisition techniques, and generally relates to the cleaning

or securing of the wear particles to be analysed. The digital image acquisition stage

involves the scanning of the particle outline and/or surface in order to obtain a high

resolution image, in a digital format, suitable for computational analysis using com-

puters. Image analysis of the digital image can then be performed, and is concerned

with describing the particle outline and surface using numerical descriptors.

In order to examine wear particles using numerical descriptors, a digital image of the

wear particle must be obtained, detailing the particles shape and surface morphology.

The surface morphology can be calculated once a 3D surface map of the particle has

been compiled using a number of two-dimensional (2D) images. Image processing

techniques are then used to improve the quality of the obtained images, mainly by

removing noise which has been introduced in the digital image acquisition process [30].

Once a good quality 3D surface morphology map has been compiled, image analysis

techniques are performed to describe the particle using numerical descriptors. The

three steps of image acquisition, processing and analysis can be automated by using

computer software, allowing analysts to diagnose wear debris with minimal experience

or training [20].

2.2.3.3.1 Digital Image Acquisition

Image analysis is concerned with the acquisition of 3D surface morphology data

of wear particles. Five techniques have been developed which allow the acquisition of

3D data suitable for quantitative study of wear particle surfaces: stylus profilometry,

atomic force microscopy (AFM), interferometric microscopy (IM), scanning electron

microscopy (SEM) and laser scanning confocal microscopy (LSCM) [25]. The two more

common techniques for wear particle analysis are SEM and LSCM, which are discussed

in this report.

Conventional SEM machines have a major limitation for analysis purposes, that
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the signals do not directly reveal the topography of the particle surface [23]. Podsiadlo

and Stachowiak [23] developed a new SEM stereoscopy method which enables accurate

acquisition of 3D surface topography maps of wear particles. The surface elevation

map is obtained from a stereoscopic pair of SEM images, corresponding to two images

of the same object at slightly differing angles. Surface feature points are located on

both images, and the difference between the points, called the disparity, is determined

and used to calculate the surface elevation. The surface elevation map can then be

used to reconstruct the surface in three-dimensions, by using the elevation points and

interpolating between them. However, the 2D image compilation requires a substantial

amount of time, making stereo SEM impractical for large throughput wear particle

analysis at this time [23].

The LSCM technique can also be used efficiently for wear particle analysis as both

particle boundary and surface morphology information can be obtained. Two image

acquisition channels are often used to allow for boundary and surface scanning. A

typical layout of a LSCM is shown in Figure 2.15. The stage is often of variable height

design, and can be controlled by a stepper motor to allow sequential acquisition of par-

ticle images at set height intervals. The potential benefits of using confocal microscope

imaging to determine wear particle morphology and possible wear mechanism has been

widely accepted [31–33].

The image resolution of LSCM is generally lower than that of SEM, however the

resolution of a quality LSCM with lateral resolution of approximately 0.2 µm is usually

adequate to provide images for wear particle analysis. The resolution of LSCM is

significantly higher than that obtainable by optical microscopy (OM), by about one

to two orders of magnitude. Peng [25] found that 3D images of wear particles can

be obtained quicker and easier by using the LSCM technique compared to the SEM

technique. This is due to the absence of particle preparation, and less computer image

processing required to compile the 3D surface morphology map from 2D images [23,25].

2.2.3.3.2 Image Processing

Image processing involves the quality improvement of digital images by reducing
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Figure 2.15: Sketch of a laser scanning confocal microscope [34].

the noise introduced during image acquisition, followed by the compilation of a number

of 2D images to obtain a 3D surface topography map. Noise can result in an image

due to instrument error and quantisation of an analogue signal. Instrument noise can

result from both the limit of resolution of the scanning and detection mechanism, as

well as noise introduced by the electrical circuitry of the machine, introducing random

errors in pixel brightness. Electrical noise typically includes thermal noise arising from

the random motion of electrons in a conductor, and shot noise which is introduced by

the discrete nature of current flow in photodetector circuit components (diodes and

transistors) [35].

Digital image filters perform a particular mathematical operation on the brightness

of a pixel relative to the neighbouring pixels [36]. Many digital image filters have been

developed, for a diverse range of applications including noise reduction, altering the

brightness and contrast of an image, or sharpening edge details [35]. Podsiadlo and

Stachowiak [30] tested a median-sigma filter for its ability to reduce Gaussian and

shot noise, as well as preserve subtle details, edge and shape features. The test data

demonstrated that the median-sigma filter performs better than the Mean, Standard
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Median, Hybrid-Median, Recursive Separable Median and Sigma filters.

The use of digital filters for noise reduction has been applied by numerous re-

searchers. An important property of the digital filter is that additional image features

must not be introduced, such as reduced contrast across the particle boundary, or

distortion of the particle shape [37].

Random noise can be reduced by comparing multiple images from the same particle

section, and extracting information (surface features corresponding to pixel brightness

values eg dark places) common to all images [30]. Quantisation noise is introduced in

the conversion of an analogue signal with infinite shades of grey (between black and

white), to a digital image that has a finite number of grey shades. Digital images of

256 bits (colour variants) is typically used, leaving 254 shades of grey, and one for each

black and white. Noise introduced by quantisation can be reduced by increasing the

number of grey levels, but is generally low as 256 bit images can adequately show the

image details required for wear particle analysis [30,35].

The surface morphology of a wear particle can be reconstructed from a set of 2D

images to obtain a 3D surface topography map. The operation of this process is de-

pendent on the types of images being used for surface compilation. Two image formats

have been developed, the Maximum Brightness Image (MBI) and the Height Encoded

Image (HEI). Both images grade the height in terms pixel brightness, using a grey scale

of 256 bits; white corresponds to 0 and black to 255. The MBI classifies the height

according to the brightness of the pixel, where low numbers correspond to high places.

Alternatively, the HEI classifies the heights of the pixels at each strip in the case of

LSCM, since the thickness of each slice is known. The HEI image format is used for

the construction of a 3D surface map, while the MBI format is used to qualitatively

observe whether the obtained image is of good quality (low noise) and the microscope

settings were correct [38].

2.2.3.3.3 Computer Assisted Image Analysis

Computer assisted image analysis allows the wear particles to be analysed by quan-

titative numerical characteristics, and thus the development of expert systems for wear
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particle characterisation and interpretation becomes feasible. The use of computer

analysis for wear particle characterisation and identification reduces the need for ex-

pert technical staff and increases the throughput and efficiency of samples to be anal-

ysed [25].

Wear particles can be characterised using numerical parameters to describe shape

features [22, 39], such as particle length or area. Numerous parameters have been de-

veloped by researchers, in order to describe and successfully characterise the observed

wear particles. Fractal parameters were also developed, which are a measure of the

complexity of the particle outline. The rationale of fractal geometry is to use the

boundary to describe the shape or surface. While Euclidean geometry describes parti-

cles by shapes including circles, triangles and rectangles, Fractal geometry uses shapes

natural to the particle. The characteristic feature of natural irregular shapes is that

successive magnification of a section of the particle, reveals a structure that is closely

related to the original structure. Fractal parameters can therefore be a more effective

descriptor of the particle boundary, than by using Euclidean shapes [26].

Surface features of wear particles aid in the identification of the responsible wear

mode, thus effective parameters for surface description has become an area of interest to

researchers. The same authors [26] also recommended four parameters which could be

used to describe the surface of a particle. These parameters were RMS deviation (height

descriptor), ten-point height, skewness (symmetry descriptor of height distribution)

and kurtosis (a peakedness description of height distribution) [39]. Podsiadlo and

Stachowiak [40] applied three new texture surface parameters (texture aspect ratio,

texture minor axis and texture direction) together with the modified Hurst orientation

transform for surface topography characterisation of wear particles.

As many numerical parameters do not satisfactorily describe all the required geom-

etry and functionality of the surface [39], criteria for the use of parameters for wear

particle characterisation were developed by Dong, Sullivan and Stout [39]. The crite-

ria were (i) only some important topographic features are needed to be described; (ii)

parameters should describe a unique feature; (iii) parameter rash should be avoided;

and (iv) parameters should be based on mathematical and/or statistical principles and
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allow easy implementation on microprocessors.

The correlation between wear mode and wear particle characteristics, using com-

plex numerical descriptors, has been studied by a number of researchers. Peng and

Kirk [22] found that six types of wear particles, cutting, spherical, rubbing, laminar,

fatigue chunk and severe sliding wear, can be characterised and distinguished by using

nine descriptors. The nine descriptors are: area, length, roundness, fibre ratio, fractal

dimension, height aspect ratio, average surface roughness (Ra), root mean square of

Ra, and a spectral moment analysis descriptor.

Typically, numerical descriptors are ratios of different geometrical aspects of the

particles, such as angularity of a particle, being the ratio of the length (longest dimen-

sion) to width (shortest dimension). Numerical descriptors have been used for both

shape characterisation as well as surface description. The use of scale-independent

numerical descriptors, by fractal methods, has been applied for wear particle charac-

terisation [37]. Fractal methods are ratios of particle properties and thus describe the

particle in dimensionless form, allowing particle shapes and surface features to be com-

pared regardless of particle size [39]. Fractal parameters and computer image analysis

have been applied to wear particle morphology recognition, to increase the ability of

computer software to aid in wear particle identification and analysis [37]. The current

trend in wear particle characterisation is to use both shape and surface information to

distinguish particles from differing wear modes.

2.2.3.4 Elemental Analysis

Elemental analysis involves the analysis of the oil sample, and determining what ele-

ments are contained in the wear debris. This information can be used to locate the

machine components producing the wear particles, if the metallurgy of each type of

component is sufficiently different [3]. This technique is often used in wear debris anal-

ysis, even if a number of components are identified which could be responsible for the

wear particles. While the metallurgy is machine specific, common alloys, and hence

elements, have been used in certain machinery parts, as shown in Table 2.2.

Elemental analysis can be done on particles once collected from samples, such as
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by Ferrography. If particles are to be burnt and analysed by spectroscopic methods,

the particle size must be sufficiently small to be within the size limit of the spectrom-

eter [10]. Spectrometry utilises x-rays or high temperature (up to 10,000 K) in order

to excite the atoms of the particles, which give off energy in the form of a photon of

characteristic wavelength [10,41].

2.2.3.4.1 X-Ray Fluorescence

The X-ray fluorescence (XRF) method of wear debris analysis is gaining popularity

for on-line and on-site elemental analysis, and has been used in industry for automated

process control. Due to the ability of the XRF process to determine concentrations

and elements present in a sample, this technique can be used to give early warning of

equipment failures, where wearing components can be identified by metallurgy [3,42,43].

The operation of XRF is similar to spectrometric analysis, but uses x-ray radiation

and detection instead of atomic emission in the visual or UV range [18]. XRF can

be used to monitor solids, fluids or suspensions. However, as some absorption and

scattering occurs due to the oil, lighter elements such as aluminium, magnesium and

silicon need to be separated from the fluid, usually on a micro pore patch [3].

2.2.3.4.2 Spectrometric Oil Analysis

Spectrometric analysis techniques of wear particles in lubricating oils are often

used for elemental analysis. Elemental analysis can be performed by either atomic

emission (AE), atomic absorption (AA), or XRF as discussed in Section 2.2.3.4.1. AE

has become the most common wear metal analysis technique for general-purpose oil

analysis. It operates by exciting atoms to a high-energy state using a high temperature

source. Characteristic emission lines occur when the atoms loose energy by emitting

photons at specific wavelengths according to the elements present in the particle [44].

The spectral lines are separated into a diffraction grating by an entrance slit, and

are detected by a photomultiplier. The intensity is determined and correlated to a

concentration, measured in parts per million (ppm), of the particular element by prior

calibration with a standard of known concentration.
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Table 2.2: Elements used in common machinery parts [10].

Element Possible Source

Aluminium Spacers, shims, washers, pistons on reciprocating engines, cases on

accessories, bearing cages in planetary gears, some bearing surfaces.

Antimony Bearing alloys, grease.

Barium Oil additive, grease, water (leaks).

Boron Seals, airborne dust, water, coolants.

Calcium Oil additive, grease, some bearings.

Chromium Plating metal, seals, bearing cages, piston rings and cylinder walls on

reciprocating engines, chromate corrosion inhibitors (coolant leaks).

Copper Main or rod bearing thrust bearings, wrist pin bushes, oil coolers,

gears, valves, turbocharger bushes, washers, copper radiators (coolant

leaks). Also copper alloy, if tin also: bronze, if zinc also: brass.

Iron Reciprocating engine components, ball & roller bearings, spring gears,

safety wire, lock washers, locking nuts and pins, bolts.

Lead Bearing metal (usually in addition to high copper or aluminium),

seals, solder, paints, greases.

Magnesium Aircraft engine cases for accessories, component housings,

marine equipment (affected by water), oil additive.

Manganese Valves, blowers, exhaust and intake systems.

Molybdenum Piston rings (some diesels), electric motors, oil additive.

Nickel Bearing metal, valve train metal, turbine blades.

Phosphorus Oil additive, coolant leaks.

Silicon Airborne dust, seals, anti-foaming additive (some oils).

Silver Bearing cages (silver plating), puddle pumps, gear teeth, shafts,

bearings in some reciprocating engines.

Sodium Coolant leaks, grease, marine equipment (affected by water).

Tin Bearing metal and thrust metal bushes, wrist and piston pins, pistons,

rings, oil seals, solder.

Titanium Bearing hub wear, compressor blades and discs (aero-engines).

Zinc Brass components, neoprene seals, grease, coolant leaks, oil additive.
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Figure 2.16: Operation of a rotary disk spectrometer [3].

AE machines differ in the type of scanning as well as excitation source used. Scan-

ning can either be done in multiple runs, where the presence and concentration of each

selected element is measured, or simultaneous, where all selected elements are scanned

at a single run. Simultaneous machines can provide data on 20 to 60 elements in less

than one minute, and are well suited for laboratories with high throughput [3].

The two most common excitation sources for AE are the rotary disk electrode

(RDE) and inductively coupled plasma (ICP) method. RDE utilises a rotating carbon

disc immersed in the sample fluid, to transport fluid into a high temperature arc. The

arc can be established by several methods, generally either by an AC voltage source,

as shown in Figure 2.16, or by a low voltage AC source ignited by high voltage pulses

from an igniter circuit.

Direct current arcs are also sometimes used. RDE spectrometers are low cost in-

struments with good precision and repeatability, as well as allowing fast and simple

operation with no sample preparation.

ICP spectrometers operate on an argon gas, which is passed through a radio fre-

quency induction coil and heated to a temperature of 8,000 to 10,000 K, resulting in
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Figure 2.17: Operation of inductively coupled plasma spectrometer [3].

the production of plasma. The oil sample is diluted in xylene or kerosene, nebulised

and transported to the centre of the plasma torch by argon gas. This process is shown

in Figure 2.17.

The ICP spectrometers are available in both sequential and simultaneous scanning

modes, similar to the RDE spectrometers. The ICP method has superior accuracy, pre-

cision and repeatability over the RDE technique, while providing sensitivity to parts

per billion (ppb) for particles less than 3 microns in size. Disadvantages of the ICP

technique include low resolution for particles larger than 8 microns in size, more com-

plicated and expensive technique, higher operating cost, and higher waste costs due

to the use of hazardous chemicals. ICP spectrometers are commonly used in the oil

analysis industry, especially high volume used-oil analysis laboratories.

Atomic absorption (AA) spectrometers have become a popular use for determining

the wear metal concentration in lubricating oil samples. In AA spectrometers, a small

portion of the oil sample is burned in a high temperature flame, hot enough to dissociate

the sample into a plasma state of constituent atoms. The plasma cloud is irradiated
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Figure 2.18: Atomic absorption spectrometer [3].

by a hollow cathode lamp at the characteristic wavelength of the selected metal. The

absorption of light is dependent on the concentration of the metal, which is measured

and converted to ppm. As a different wavelength is required in order to detect each

element, the bulb needs to be changed and another portion of sample burned for each

element to be detecte [3]. The operation is shown in Figure 2.18.

The operation of the AA spectrometers is thus of sequential type, which increases

the required scanning time compared to simultaneous scanning spectrometers as dis-

cussed above. While modern machines feature automated scanning cycles, the longer

scanning time and sample preparation make AA spectrometers popular with smaller

oil analysis facilities [3]. The benefit of AA over RDS is increased accuracy, precision

and repeatability at comparable cost.

Computer assisted image analysis is being combined with artificial intelligence tech-

niques to allow more particle analysis to be done by computer software [27]. Research

into the use of expert system type computer software for wear particle recognition and

categorisation has been conducted [33, 45], however commercial applications of this

technology have not been developed.
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2.3 Vibration Analysis

The vibration analysis technique for machine condition monitoring has been applied

for fault diagnosis for decades, and has received substantial attention from researchers.

Improvements in the field are today concerned with improving the ability for early

fault detection, as well as more accurate fault diagnosis of complex machinery. The

relevant Australian Standard for the vibration analysis by measurement of non-rotating

machine surfaces is ISO 10816—3:1998 [46].

The generation of vibration frequencies in rotating machinery such as gears and

bearings is due to deformation of the gear teeth or bearing rollers at the point of

maximum force transmission. Typical frequencies emitted from machinery in good

condition can include gear mesh frequencies, imbalance, and blade pass frequencies in

the case of fans [47]. Modulation of these frequencies in the form of sidebands should

not be present in the spectral analysis, as this could indicate a fault condition. Gear

faults can generally be determined by frequency modulation of gear mesh frequencies

resulting in side lobes. These faults are discussed further in Section 2.3.2. Bearings in

good condition should not emit any frequencies [48].

The vibrations emitted by worn or damaged gears or bearings can be characteristic

of the particular fault and may provide evidence as to the fault severity. The identi-

fication of particular failure mechanisms of gears and bearings from vibration data is

the key research area of this field [47,49].

2.3.1 Causes of Bearing Damage and Fault Identification Signals

Bearings generally fail in three ways: flaking (spalling), cracking and cage damage [50].

Flaking occurs when the bearing contact surfaces have fatigued and pits are forming on

the surface, and is generally caused by the bearing reaching the end of its service life.

Premature flaking may occur however as a result of higher than anticipated loading,

excessive preloading due to incorrect installation, or thermal expansion. It may also be

caused by indentations, deep seated rust, electric current damage or smearing. These

forms of bearing damage are discussed in the following sub-sections. The development
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(a) (b) (c) (d)

Figure 2.19: The development of flaking — increased run time from (a) to (d) [50].

of flaking with bearing age is shown in Figure 2.19.

Cracking of the bearing ring can occur due to both rough treatment during instal-

lation, or by crack propagating from a fracture notch as a result of flaking or fretting

corrosion [50,51]. The result of cracking of the bearing ring is accelerated wear due to

the slot, and possible height difference between the two ends of the ring.

The third failure mode of bearings is cage damage, commonly caused by excessive

speed or vibration, wear or faulty assembly. A broken cage results in the uneven spacing

of the rolling elements around the bearing, and thus renders the bearing unserviceable.

Excessive speed and/or vibration result in high inertia forces on the bearing cage,

leading to fatigue of the cage material. The cage is usually made of softer material than

the other bearing components, causing it to wear preferentially in cases of inadequate

lubrication or the presence of abrasive particles. Hard particles can also become lodged

between the cage and a rolling element, causing accelerated wear of the cage. The

bearing cage can also fail if the bearing ring has been misaligned during assembly,

causing the balls to adopt an oval path. This leads to cyclic loading of the cage,

resulting in fatigue failure.

Fault conditions in bearings can be detected using spectral analysis of the vibrations

emitted from the machine. Due to the differing rotating velocities of the bearing com-

ponents (ie rollers, cage, inner ring), the location of faults inside the bearing can often

be determined with analysis of the vibration spectrum. Frequencies typically indicating

bearing fault conditions include ball pass frequency (BPF) of the outer (BPFO) and
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Figure 2.20: Deep seated rust development in the outer ring of a deep groove ball bearing [50].

inner (BPFI) bearing races, ball spin frequency (BSF) and fundamental train frequency

(FTF). The formulae for these frequencies are summarised in Appendix Section A.1.

The generation of sidebands of the BPF can sometimes be observed, and is due

to the movement of the rotating unit, thus modulating the BPF with the speed of

the rotating unit (ie ball or roller). The spectral peak is therefore at the BPF, with

the sidebands at BPF+ unit rotation speed and BPF - unit rotation speed. As the

defect grows, more sidebands are generated. Once the defect is longer than the length

required to generate one to two BPF, the BPF may no longer be generated [47]. This

phenomenon occurs for both radial and axial loads.

2.3.1.1 Corrosion / Acid Etching

Bearings operated in an environment of high humidity, acids or other corrosive condi-

tions will often fail by corrosion or acid etching. This occurs if the corrosive liquids or

vapours are allowed to enter the rolling elements of the bearings in quantities that the

additives of the lubricant cannot sufficiently protect the steel surfaces [50]. Faulty or

inadequate seals are often the cause for this fault condition [52].

Bearing corrosion will begin with acid etching patches and propagate rapidly and

form either deep seated rust or fretting corrosion, depending on the operating condi-

tions. Deep seated rust is generally formed, and can initiate secondary damage in the

form of flaking and cracks. Figure 2.20 shows the surface of a bearing which developed

deep seated rust.
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Figure 2.21: Fretting corrosion of the outside surface of a bearing [50].

Fretting corrosion is often formed when a corroding bearing also has a loose fit

between the bearing ring, shaft or housing. The relative motion of the loose components

can result in the removal of small particles from the corroding surface, as shown in

Figure 2.21. These small particles are quickly oxidised by the atmospheric oxygen,

adding to the wear debris accumulating in the bearing. The removal of small particles

from the rolling surface can result in the bearing rings not being evenly supported,

resulting in uneven load distribution.

Corroding bearings can be identified by vibration spectral analysis using a number

of indicators. The spectrum shape can have a low amplitude (0.15 IPS or below), with

amplitudes above 0.15 IPS indicating that spalling has occurred. The fundamental

BPFO, BPFI, or two times the BSF may or may not be present in the spectrum. How-

ever, harmonics, as well as sum and difference frequencies can be present, ranging to

2000 Hz and beyond. Ball bearings which have shallow flaking fatigue spall around the

inner race can generate approximately 6 true harmonics of BPFI, while bearings with

the same conditions around the outer race can generate 7 harmonics. In general, bear-

ings that generate many harmonics at low amplitudes can be diagnosed with probable

corrosion or acid etching [47].
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2.3.1.2 Fluting / Electric Current Damage

Electric current damage of bearings generally occurs on the inner and outer race, as well

as balls or rollers, as a result of electric current passing between these bearing elements.

The surfaces experience a condition similar to electric arc welding, with temperatures

in the tempering to melting ranges. This leads to discoloured areas where the material

has been tempered, re-hardened or melted. Fluting (corrugations) of the raceways and

rollers is a common result of bearings conducting electric current [50].

Bearings can be subjected to the conduction of electric current due to welder error,

or eddy current build-up and discharge. Equipment that requires electric arc welding

should be earthed such that electric current does not pass through bearings. Eddy

currents responsible for fluting can occur at eddy couplings used for speed control.

Some newer DC motor drives also cause fluting of the motor bearings [47].

Fluting damage results in the bearing generating the BPFI and/or BPFO har-

monics, with the fundamental frequencies not developing until spalling begins. The

typical spectra contains high frequencies (from 900 Hz to 5000 Hz) modulated by ball

passing frequencies. Frequencies in this range can also be caused by inadequate lubrica-

tion. Therefore frequencies not corresponding to modulation by the ball pass frequency

should be analysed for the inadequate lubrication fault condition [47].

2.3.1.3 Inadequate Lubrication / Smearing

Inadequate lubrication of bearings causes the wearing surfaces to slide together under

load, resulting in material being transferred from one surface to the other. Figure 2.22

shows the scored surface of a roller bearing, damaged due to inadequate lubrication.

The surfaces are generally heated to temperatures where rehardening occurs, producing

localised stress concentrations that may lead to flaking or cracking.

In roller bearings, smearing generally occurs at the roller end-guide flange interfaces,

due to insufficient lubrication between the flanges and rollers. Operating conditions

which may cause smearing in roller bearings include high axial loads in one direction

for prolonged time, as is the case with tapered roller bearings with excessive preload.
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(a) (b)

Figure 2.22: Smearing on the surface of (a) a roller from a spherical roller bearing magnifi-

cation 100x (b) the outer ring from a spherical roller bearing [50].

Smearing in these conditions can be reduced by either reducing the duration of the

axial load to allow lubricant to flow between the flanges and rollers, or the selection of

a suitable lubricant. Smearing may also occur if the bearing rings rotate relative to the

shaft or housing, or in thrust bearings operating at too light a load in relation to the

speed of rotation.

An ineffective lubricant film can also result in metal to metal contact of two surfaces,

causing small cracks to form in the surface, called surface distress [50]. These surface

cracks are distinct to fatigue cracks, and are microscopic, increasing very gradually until

they interfere with the smooth running operation of the bearing. If lubricant breakdown

due to a decrease in viscosity or inappropriate lubricant selection is avoided, surface

distress can be prevented.

The detection of bearings with inadequate lubrication has received substantial re-

search, as the addition of lubricant can increase equipment life and prevent catastrophic

failure [47]. Spectral analysis of bearings with an inadequate lubrication condition gen-

erally exhibit the following properties:

• When lubrication becomes marginal, the lubricant film may break down once

every shaft revolution. This pulse or impact of the balls excites the natural

frequency of the inner race assembly, as the oil film of the inner race is thinner



CHAPTER 2. LITERATURE REVIEW 48

due to rotation. The resulting natural frequency detectible in the spectra is

modulated by the BPFI to produce sidebands.

• The natural frequency is generally not evenly divisible by the BPFI, and is in the

range of 500 to 2500 Hz or beyond.

• The addition of lubrication should cause the spectral lines to disappear or reduce

in amplitude.

2.3.1.4 Looseness

Looseness in bearings is generally a problem of tapered spherical roller bearings, as these

require the adjustment of preload force. Apart from bad workmanship at installation,

internal looseness can be caused by the bushing becoming better seated on the shaft,

the lock nut becoming loose, or abrasive particles causing excessive wear. The typical

damage caused by excessive looseness is shown in Figure 2.23. Characteristic spectra

of looseness usually features low amplitude, a broad spectrum of random noise, and an

extreme change in balance sensitivity [47]. Frequency peaks commonly occur at one

times rotation speed or harmonics of the rotation frequency.

Vibration peaks at multiples of rotation frequency can also be caused by a bearing

turning on the shaft or in the housing. The two conditions can be distinguished by

the presence of the fundamental train frequency, which is usually only present in the

excessive internal clearance scenario. If the BPFO and harmonics of the BPFO are

generated, small defects in the outer race probably exist, which is common for bearings

that fail due to a worn cage.

Bearings turning on the shaft or housing can cause considerable damage to the

bearing, as well as the shaft or housing. The condition of a bearing turning on the

shaft will typically produce frequency peaks at rotation speed or harmonics, with a low

amplitude line at lower frequency than the main peak. These peaks correspond to the

shaft not turning at the centre of gravity (the main peak), and the rotational speed of

the inner race turning on the shaft. The difference in frequency between the two peaks

is the speed of rotation of the bearing on the shaft.
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WORLDWIDE LEADER IN BEARINGS AND STEEL

WARNING:
• Proper maintenance and handling practices are critical. Failure to follow installation instructions and

maintain proper lubrication can result in equipment failure, creating a risk of serious bodily harm.

• Never spin a bearing with compressed air. The rollers may be forcefully expelled creating a risk of serious bodily harm.

TechTips is not intended to substitute for the specific recommendations of your equipment suppliers.

HANDLING DAMAGE

Roller spaced nicking: Raised
metal on races from contact with
roller edges.

Roller nicking/denting: Rough
handling or installation damage.

Cup-face denting: Indentations
from hardened driver.

TRUE BRINELLING

Damage from shock or impact.

IMPROPER FIT

Cone bore damage: Fractured
cone due to out-of-round or over-
sized shaft.

Cup spinning: Loose cup fit in a ro-
tating wheel hub.

EXCESSIVE PRELOAD OR
OVERLOAD

Rapid and deep spalling caused by
unusually high stresses. Full race
width fatigue spalling is caused by
heavy loads creating a thin lubricant
film and elevated temperatures.

PEELING

Micro-spalling due to thin lubri-
cant film from high loads/low RPM
or elevated temperatures.

MISALIGNMENT

Irregular roller path from deflec-
tion, inaccurate machining or
wear of bearing seats.

EXCESSIVE END PLAY

Scalloping: Uneven localized
wear resulting from excessive
end play.

Cage pocket wear: Heavy contact
between the rollers and cage
pocket surfaces caused by bear-
ing operating too loosely.

CAGE DAMAGE

Cage Deformation: Improperly in-
stalled or dropped bearing.

Rollers binding and skewing: Cage
ring compressed during installation
or interference during service.

ELECTRIC CURRENT

Electric arc pitting: Small burns
created by arcs from improper
electric grounding while the bear-
ing is stationary.

Fluting:  Series of small axial burns
caused by electric current pass-
ing through the bearing while it is
rotating.

HIGH SPOTS IN CUP SEATS

Localized spalling on the cup race
from stress riser created by split
housing pinch point.

Figure 2.23: Bearing cup inner surface damaged by excessive looseness [53]. The scratches

caused by slipping of the roller are clearly visible.

A loose fit between the bearing and housing can generate second, third and fourth

harmonics of rotation speed, with the fourth harmonic generally being of highest am-

plitude. If the bearing supporting a gear shaft is loose in its housing, the gear mesh

frequency (GMF) would be modulated by the rotational frequency of the shaft. The

amplitude of the fourth harmonic will usually be higher on the low side of gear mesh

frequency, as looseness is an out of phase condition. In other applications, harmonics

of shaft speed, half-shaft speed and modulation of shaft speed, including sidebands can

also indicate looseness.

2.3.1.5 Wear

Excessive wear of rolling element bearings caused by factors other than those discussed

above, include the presence of abrasive particles, or vibration of the equipment by

external forces. Abrasive particles or grit can enter the lubricant through faulty seals,

unclean assembly or dirty lubricant. Bearing surfaces will begin with a dull surface,

and eventuate to a scratched appearance as the concentration of abrasive and wear

particles increases. Figure 2.24 shows the worn outer race of a spherical roller bearing.

Vibration of equipment containing bearings, by an external source can cause sig-

nificant wear in stationary bearings. This is the case as a sufficient lubricant film does

not exist when bearings are stationary [50]. The resultant wear can cause fluting of

roller bearings and sperical cavities in ball bearings, as shown in Figure 2.25. This

type of wear can occur in machinery that is close to other vibrating machinery such as

auxiliary equipment on ships, or equipment transported by rail, road or sea.
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Figure 2.24: Outer race of a spherical roller bearing worn by abrasive particles [50].

(a) (b)

Figure 2.25: Bearings damaged by external vibration (a) fluting of outer and inner ring

of a spherical roller bearing (b) outer ring of a self aligning ball bearing showing spherical

cavities [50].
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2.3.2 Causes of Gear Damage and Fault Identification Signals

The failure of gears can be attributed to a small number of factors, which significantly

influence the life of the gear system. These factors include design, production technol-

ogy and manufacture specifications, operating duty and environment [47,54]. Vibration

generated from gear systems is generally caused by tooth faults, which cause a varia-

tion in gear stiffness and thus rotational speed. The nature of gear tooth interaction

is typically non-linear due to the effects of friction, inter-tooth backlash and impact

loads caused by periodic changes in tooth stiffness. The inter-tooth forces may there-

fore exceed the design load of the gears, and lead to rapid wear of the gear system

components [54].

Gear vibrations can be used for fault detection and diagnosis, by analysing the vibra-

tion data and using various methods to compare to signature vibration data of known

faults. Common faults are discussed in the following Sub-sections 2.3.2.1 to 2.3.2.5.

Vibration generated by a gear system commonly contains a number of frequencies

which are characteristic of the system. The vibrational frequencies generated by two

gears are dependent on the number of teeth, rotational speed of the gears and eccentric-

ity. The gear mesh frequency is the multiplication of gear rotational speed by number

of teeth [55]. While this frequency is often displayed even for gears in good condition,

modulation by certain factors and side lobes are indications that a gear fault exists.

An example of frequency modulation is when a defective tooth on one gear produces

an impact which excites axial natural frequencies in helical gears, and radial natural

frequencies in spur gears. These natural frequencies are modulated by the impact

frequency of the defective tooth. Similarly, the gear mesh frequency is modulated with

the defect frequency resulting from misalignment, improper backlash or eccentricity of

the shaft, teeth or gear [47].

Frequencies produced by meshing gears are summarised in Appendix Section A.2.

Common gear faults and their corresponding vibrational information are discussed be-

low.
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2.3.2.1 Eccentric Gears

Eccentric gears problems can occur in many variations including meshing gears with or

without a common factor, out of round gears, gears with high places, and gears mounted

on a bent shaft. These scenarios can be differentiated by analysing the frequency spectra

for difference frequencies equal to common factors, gear mesh frequencies and gear ratio.

The common factors of gears relates to the number of times one gear has to rotate

in order for it to mesh to the other gear, at the starting position. If two gears have a

common factor, and one gear is eccentric, the eccentric part of the gear will wear the

round gear. This process can produce frequency peaks at the common factor multiplied

by the gear speed.

When meshing gears do not have a common factor and one or both gears are ec-

centric, the analysis of the spectra is more complex. Typically, fractional gear mesh

frequencies are the result of eccentric teeth meshing with a normal gear, or meshing

with another eccentric gear. These two cases can be differentiated by analysing the time

domain signal. The eccentric teeth can be determined by calculating the frequency cor-

responding to each time domain signal produced by two teeth meshing. The variations

in meshing time, and hence frequency, can be used to determine eccentricity.

Gears that are out of round or have high places will show spectral lines at the

frequency equal to the number of high places multiplied by gear speed. A second

harmonic can also be present, as well as side bands around the gear mesh frequency,

with difference frequencies equal to the gear speed.

Bent mounting shafts of gears may not produce meshing problems if the shaft is

only slightly bent and is less than the tolerance of the gears. As a high amplitude peak

at the gear mesh frequency is only detected if a gear problem exists, bent shafts may

not always result in a fault condition [47]. Bent shafts can be detected by measuring the

backlash of the meshing gears. If a condition is found where insufficient and excessive

amounts of backlash are 180◦ apart, then a bent shaft of one of the gears can be

suspected.
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Figure 2.26: Wear pattern of misaligned gears [56].

2.3.2.2 Loose and Worn Gears

Loose or worn gears can be a source of wide-banded white noise, corresponding to a

random motion of the gears. Specific frequencies can sometimes be detected, equal to

the speed of the loose gear. If the gear is loose on the shaft, a side lobe will appear on

the low frequency side of the 4 times running speed peak [47]. Alternatively, a bearing

loose in its housing, supporting the shaft of a gear will display a side lobe on the high

frequency side of the 4 times running speed (ie: GMF + 4 x Speed).

2.3.2.3 Misaligned Gears

The misalignment of gears can occur if gears are loose on the shaft, the supporting bear-

ings are loose in the housing, or due to manufacturing error. Shiny areas are generally

worn on the gear surface, as shown in Figure 2.26. The resulting vibrations usually

produce the first three harmonics of the gear mesh frequency. The fundamental gear

mesh frequency often has the highest amplitude, with the second and third harmonics

having lower amplitudes [47].

2.3.2.4 Backlash Problems or Oscillating Gears

Backlash or oscillating problems in meshing gears have similar vibrational character-

istics, by generating a high amplitude second harmonic of the gear mesh frequency

compared to the fundamental and third harmonic. While the true cause of backlash
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and oscillating gear problems are of a complex nature, it has been observed that oscil-

lation of gears is often caused by lightly loaded gears, inconsistent loading or excessive

backlash [47].

Specific diagnosis of oscillating gear faults requires analysis of the time domain

spectrum. Backlash faults can be identified by the second harmonic being 180◦ out

of phase with the fundamental gear mesh signal. If both signals are in phase, this

indicates that the gear fault may be a misalignment problem.

2.3.2.5 Broken, Cracked, or Chipped Teeth

Gears with broken, cracked or chipped teeth can generate a damped pulse, correspond-

ing to the transfer of load from the damaged or missing tooth to the next good tooth.

The generated pulse is damped due to the good tooth damping the impact, and stops

the system from vibrating.

Defective gear teeth can be detected by measuring the pulse frequency, pulse width,

repetition rate and amplitude [47]. The pulse frequency is generally an excited fre-

quency or frequencies, caused by the impact of the defect tooth. The pulse width is

also dependent on the system, as the damping and gearing systems impulse response

govern the duration of the excited pulse. Similarly, the amplitude of the pulse is af-

fected by the system transfer function, resonance, damping and loading conditions, as

well as defect size and frequency addition and subtraction. The pulse repetition rate is

equal to gear speed times the number of defective teeth. If the defective gear teeth are

not spaced equally, ie: 45◦, 90◦ or 180◦, the difference frequencies between the spectral

lines will be equal to gear speed.

The spectra generated by defective gears can be very complex to analyse due to the

number of spectral lines produced. However, the use of sum and difference techniques

of shaft speeds and gear mesh frequencies can reveal the gear faults of the system.

2.3.3 Measurement of Vibration

Vibration of machinery can be measured using three types of sensors: displacement,

velocity and acceleration. All sensor types are used in vibration analysis for differing
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Figure 2.27: Frequency response of various vibration sensors [57].

applications, as each sensor type has certain advantages making it suitable for specific

circumstances, as shown in Figure 2.27. Displacement between two surfaces can be

used to analyse the frequency of vibration or fluid film thickness in fluid film bearings

(hydrostatic and hydrodynamic). Another application of displacement sensors is the

movement of light-weight gears and shafts relative to a heavy gear casing [47]. The

vibration of the shaft and gears is insufficient to cause sufficient vibration in the gear

casing for satisfactory detection using other types of sensors. Low frequency vibration

can be detected with high accuracy. Tachometers also often utilise a displacement

sensor, to sense a surface mark or hole and output the rotational speed of the shaft [57].

Displacement sensors are generally constructed from two flat wire coils mounted

in a non-conducting protective sheath. An external power source is used to set up a

high frequency energising current to establish an electromagnetic field. The change in

proximity (displacement) of the conducting shaft being monitored alters the magnetic

field inducted in the second coil (the induction of eddy currents), allowing the displace-

ment to be determined to great accuracy [57]. Due to the small currents involved in

the sensing circuitry, the wires connecting the energising coil to the power supply, and

probe coil to the data collector must be impedance matched, to reduce the power loss

during signal transmission.
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Velocity vibration sensors are commonly used for applications with a frequency

response between 10 hertz and 1500 hertz, which includes the majority of non-turbo

machinery and general purpose vibration analysis [57]. The units of velocity (m/s) are

directly related to severity of fatigue failure modes, making velocity sensing a popular

choice for low to intermediate frequency range measurement. Vibration sensors are

generally manufactured from solid-state electronic components, incorporated in a steel

housing which is fitted to the machine to be monitored. Signal voltage is often used

as sensor output, which correlates directly to a velocity reading. An advantage of the

vibration sensor over the displacement sensor is the ease of fitment, as an external

power source is not required [49].

High frequency vibration signals up to and above 40kHz can be detected using

accelerometers. Accelerometers measure the acceleration of the base plate to which the

sensor has been fitted. Construction generally consists of a piezoelectric crystal with

a mass/spring arrangement which triggers the crystal. Internal circuitry is also often

included in the housing, for signal pre-amplification. Accelerometers are the most

common type of sensor for vibration analysis due to their small size, low cost, and

relatively constant linear response over a wide frequency range. Many data collectors

are capable of integrating the acceleration vibration data to obtain velocity data, for

further analysis [35,57].

2.3.4 Analysis of Vibration Signals

Analysis of vibration data of a machine can be used to assess its condition, and allows

the detection of operating faults. Fault detection of machinery is generally done by

analysis of time domain vibration data (amplitude variation with change in time),

and observing the amplitude of the vibrations. If the amplitude of the time domain

spectrum exceeds pre-determined threshold levels, further analysis for fault diagnosis

can be performed.

Diagnosis of machine faults can be determined by analysing the vibration spectrum

for characteristic vibration signals corresponding to common faults, as discussed in Sec-

tion 2.3.1 and 2.3.2. The analysis of the vibration spectrum for characteristic vibration
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spectra can be performed once the frequency domain (amplitude of vibration at each

generated frequency) has been calculated from the time domain signals.

Machine condition analysis using vibration data generally includes an investigation

of the root-cause responsible for the development of the fault. Root-cause analysis is

concerned with the primary damage of a machine, which led to the initiation of the

secondary, and major operating fault.

2.3.4.1 Vibration Analysis for Fault Detection

Machine faults can be detected by observing the amplitude of the vibration data, and

performing fault identification analysis if the amplitude exceeds pre-determined thresh-

old levels. As the vibration data is generally contained in a computer file, listing the

amplitude at increasing time intervals, simple computer programs can be used to graph

amplitude and occurrence or frequency and amplitude.

Vibration analysis for fault detection can become very complicated for complex

systems such as gearboxes with numerous stages or ratios, or engines. This is due to

the large number of different vibrations generated by the rotating components. The

measured vibration signals are therefore the result of interactions including frequency

modulation, and often represented by non-linear coupling. The non-linear coupling

effects are responsible for side bands of base frequencies, as detected in the vibration

spectrum [58].

Machine condition monitoring of complex machinery often involves computational

methods for fault detection, as spectral analysis is often ineffective in machine fault di-

agnosis of these complex signals. The techniques for condition monitoring are generally

quick and easy to perform on a computer, but with insufficient resolution to diagnose a

defect [59, 60]. Common techniques applied for this purpose include beta kurtosis and

the Kolmogorov-Smirnov test.

Beta kurtosis has been found to be a reliable time domain vibration analysis tech-

nique for fault detection [60]. It also has applications in fault feature extraction, due

to the ability to select significant terms from the transform equation. Various methods

have been employed to discard terms of no significance and obtain a set of wavelet
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coefficients useful for fault classification [61,62]. The beta kurtosis technique has been

successfully applied to the identification of faults in ball bearing, power distribution

systems and gears [61].

The Kolmogorov-Smirnov (KS) vibration analysis technique has been applied for

spur-gear condition monitoring by Andrade, Esat and Badi [63]. The KS technique can

be used to successfully identify and monitor the advancement of gear tooth failure, such

as a fatigue crack. Known gear conditions can be detected by statistical comparison

between the vibration data obtained from the machine under analysis, and a library of

signatures from known gear faults.

The statistical analysis involves the use of the null hypothesis on the cumulative

density function (CDF), of the machine vibration data. The null hypothesis states that

the CDF of the vibration signal can be traced to one of the signatures of known faults.

The sensitivity of the KS test is limited by the assumption that the fault condition is

significant enough to cause a variation in the CDF, compared to the CDF of a known

fault [63,64].

The complexity of vibration signals from gear systems with a number of gear ratios

can cause the signals to become too complicated for analysis. Specific sensor placement

strategies and digital signal processing techniques may therefore be required prior to

the statistical analysis. The KS technique for gear condition monitoring has been found

to be able to detect early fatigue crack initiation and propagation in simple spur gear

systems [63]. However, as it is a time domain analysis technique, it cannot be used for

fault localisation as the phase information of the vibration data is not considered in

the analysis.

When a fault condition has been detected, more computationally complex algo-

rithms can be used in order to extract characteristic vibration signatures of known

machine faults. This strategy is discussed in the next sub-section.

2.3.4.2 Extraction of Vibration Signatures for Fault Identification

Vibration data obtained from machines can be analysed by computational techniques

to identify faults. The vibration spectra is analysed for unique frequency components
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produced by common machine defects. The spectrum analyser has been developed to

extract information from vibration data in order to identify machine defects. Periodic

waveforms of time domain signals (signals varying with time) or peaks of frequency

domain signals (signals varying with frequency) can be extracted from the bulk infor-

mation obtained from the vibration sensor. The amplitude and frequency locations of

the signals can be used to identify specific problems of bearings and gear systems (as

discussed in Section 2.3.1 and 2.3.2).

The frequency information can be calculated from the time domain data using the

fast Fourier transform (FFT), which involves the use of a mathematical procedure per-

formed on the individual digitised (sampled) vibration data. The result is a frequency

spectrum, showing the amplitudes and frequencies of signals present. The FFT method

has become one of the most widely used and well established fault diagnosis techniques.

While the FFT can efficiently calculate frequency features from time domain data, it

is not able to reveal the inherent information of non-stationary signals. The output of

a running machine, such as reciprocating machines including engines and gearboxes,

can contain non-stationary components relating to changes in operating conditions or

machine faults. As the vibrations generated by these machines depend on the rotation

speed, the appearance of smearing and frequency modulation often occur [58]. The

analysis of non-stationary signals can aid in machine fault diagnosis, which has led to

the development and application of other computational methods for machine condition

monitoring. These techniques include the wavelet transform, and phase and amplitude

demodulation [61].

The wavelet transform is a linear transform, and uses window functions to sample

and translate the input signal. The window functions are a series of oscillating functions

with different frequencies. Narrow time windows are used for high frequencies, while

wide time windows are used at low frequencies, making the wavelet transform suitable

for non-stationary signal analysis [60,65]. The physical meaning of the modulus of the

wavelet transform is that it shows how the energy of the signal changes with time and

frequency. The wavelet scalogram [66] is also commonly used in engineering applica-

tions, which is the square of the continuous wavelet transform modulus. Although the
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wavelet transform has been used for many fault diagnostic applications, including gear,

bearing and internal combustion engine faults, there is no standard or general method

to select the wavelet function for different situations [61].

Modifications of the wavelet transform have been developed by numerous researchers.

Zheng, Li and Chen [65] applied the continuous wavelet transform to gear fault diag-

nosis, which can provide a finer scale resolution than orthogonal wavelet transform.

Peng, Chu and He [66] developed a reassigned wavelet scalogram, optimised for fea-

ture extraction of early fault detection, by decreasing the effects of interference terms.

Another modification to the wavelet transform for increased feature extraction ability

was developed by Wang and Gao [67]. The technique used for feature extraction was

the application of the wavelet transform, followed by the Fourier transform. The com-

bined techniques utilise the advantages from each technique, and the ability to detect

developing structural defects in bearings has been demonstrated [67].

Non-stationary vibration signals produced from reciprocating machinery such as

engines and gear systems can be analysed using the order bispectrum method, for ma-

chine condition monitoring. The order bispectrum method is similar to the estimation

of power spectrum approach of machine vibrations. It has been used successfully for

the condition monitoring of a car engine, using vibration data sampled uniformly in

angle with respect to the shaft rotation [58].

Machinery defects can also be diagnosed using phase and amplitude demodulation.

This technique involves the identification of frequencies responsible for the generation

of modulated signals, as discussed in Section 2.3.1 and 2.3.2, of gear and bearing faults.

Gear faults often cause the meshing frequency to be modulated with a fault frequency,

resulting from one or more defect teeth. Phase and amplitude demodulation allows the

type of fault to be determined, such as the number of defective teeth, as well as the

relative positions of the defect teeth on the gear [47].

Machine faults can also be detected by analysing the time domain signal obtained

from the vibration sensor. Techniques such as the time domain synchronous averaging

method allow the extraction of vibration produced by a single gear, from the vibration

data of the gearbox. Although the gear signature can be extracted using this approach,
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further signal processing is generally required in order to detect early gear faults [68].

Typical methods used for the signal processing include the FFT and other window

functions such as the wavelet transform.

Autoregressive model based fault detection and diagnosis has been developed and

applied to gear and bearing faults, with the ability to detect early defects in gear [69]

and bearing [70] systems. The autoregressive (AR) modelling involves the modelling of

a healthy section of the gear, and calculation of gear vibration data compared to the

model. Gear faults will generate variations to the linear predicted model, the magnitude

of the difference being equal to the severity of the gear fault.

2.3.4.3 Fault Root-Cause Analysis Using Vibration Analysis

Root-cause analysis is concerned with the identification of the primary machine fault

which led to the secondary fault (resulting in machine failure), detected using the

above mentioned techniques (Section 2.3.4.1 and 2.3.4.2). The detection of the root-

cause (primary fault) which led to the major fault developing is very useful, as the

primary fault would result in the same major fault developing again. The maximum

life of a machine can only be achieved if both the major fault condition (secondary

fault) as well as the primary fault are rectified. The flowchart in Figure 2.28 shows the

typical primary and secondary faults encountered in gearbox condition monitoring, as

well as the possible causes of the primary fault and common detection technique.

The correct diagnosis of the root-cause of a failure is of great importance economi-

cally, as it has the potential to result in short component lifetimes and high repair costs

if uncorrected. Vibration analysis can be used to detect many root-causes, including

bearing failure, lack of lubrication, and lubricant contamination [47].

Root-cause analysis can also be performed using a predictive approach rather than

the detection and diagnosis routine discussed above. Machine faults can be predicted

and diagnosed using mathematical modelling and computer simulations of the pro-

duction and operating factors. Bartelmus [54] simulated a one stage gearbox including

four factors: design, production technology, operation and condition change. The study

revealed that common machine faults can be predicted successfully before the faults
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Figure 2.28: Flowchart of primary faults (root-causes), secondary faults, and detection tech-

nique.

develop, using mathematical models evaluated using computers. Identification of the

relevant manufacturing and operating factors of a gearbox can therefore be used to

assess the likely failure modes, and help with fault diagnosis.

Tooth errors are a primary source of vibration generation of gearboxes, and typically

appear at the production stage and during a change in gear condition. Computer

simulations have shown that operating conditions of resonating gears (discussed in

Section 2.3.2.4) results in high inter-tooth forces, causing tooth errors including pitting,

scuffing of teeth flanks, and bearing failure [54].

2.4 Integration of Oil and Vibration Analysis

Machine condition monitoring has conventionally been concerned with the detection

and diagnosis of developing faults. Oil and vibration analysis are generally used as
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stand-alone techniques, depending on the machinery monitored and expected failure

modes [2].

Oil analysis has traditionally been used for the analysis of lubricating oil physical

properties (such as viscosity), the presence of vital oil additives (including anti-wear and

anti-corrosion additives), and oil contamination (particles, water, and other machine

fluids such as fuel or coolant) [3]. Wear debris analysis has become a common technique

included in the oil analysis program, to provide information on machine health by

examination of the wear modes and source of debris to assess the severity of wear

occurring [2].

Vibration analysis has primarily been used in industries which operate large number

of rotating equipment, and equipment from which it is difficult to obtain oil or grease

samples [1]. It has become a popular condition monitoring technique due to machin-

ery generally emitting vibration before failure, and the recent advances in computer

technology allowing the signal processing and analysis to be automated [49,71,72].

The integration of oil and vibration analysis for machine condition monitoring has

been proposed by a number of researchers, to take advantage of the unique detection

and diagnostic abilities of each analysis technique [2]. The use of both oil and vibra-

tion analysis techniques have been applied to critical machinery in some industries,

including nuclear power production. Maintenance departments have reported that a

greater number of machine faults were detected than with either technique used inde-

pendently [1].

2.4.1 Effect of Oil and Vibration Analysis Integration on Fault De-

tection

The oil and vibration analysis techniques currently used for condition monitoring have

been shown to provide reliable fault detection and diagnosis for different machine faults.

An effective machine condition monitoring program with high fault detection ability

should therefore utilise both oil and vibration analysis techniques. The complement-

ing nature of oil analysis and vibration analysis has been demonstrated by numerous

researchers [1, 71,73].
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The machine condition monitoring program of Palo Verde nuclear generation fa-

cility was investigated by Maxwell and Johnson [1]. Common failure modes included

vibration due to faulty couplings, belts, looseness and alignment, as well as internal

machinery faults due to gear and bearing wear. Bearing faults were found to account

for 16 % of machinery vibrations. The bearing faults were identified to consisted of 15

different types of defects, which needed to be diagnosed from the condition monitoring

program. Implementation of both oil and vibration analysis revealed that only 27 %

of bearing problems were detected by both techniques. Oil analysis techniques were

used to detect another 40 % of failures, while vibration analysis detected the remain-

ing 33 % of failures [1]. This study demonstrates that the oil and vibration analysis

techniques compliment each other, by broadening the ability to detect and diagnose

machine faults.

Laboratory testing of a worm gearbox under various operating conditions has been

used to demonstrate the benefits of an integrated condition monitoring system [71]. The

complementing nature of the analysis techniques was confirmed by vibration analysis

providing a reliable and fast means of ascertaining bearing condition, while oil analysis

provided insight into the true condition of the gear test rig.

The integration of oil and vibration analysis into a condition monitoring program

will increase the confidence and detection rate of the program. The program will

therefore provide improved reliability and equipment availability.

2.4.2 Benefits of an Integrated Condition Monitoring Program

The integration of oil and vibration analysis techniques incorporated in a machine

condition monitoring program increases the effectiveness of the program. This can be

achieved through better fault detection and diagnostic abilities as well as increased

decision confidence and resolution for determining remaining machine service life.

The ability of oil and vibration analysis to each detect certain machine faults has

been demonstrated by both practical and laboratory experiments, as discussed in Sec-

tion 2.4.1. Condition monitoring programs utilising both oil and vibration analysis

techniques can therefore detect more faults than either technique used by itself, as well
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as covering a broader range of faults [1]. The early detection of faults is essential to

allow for maintenance scheduling of the machinery, and prevent an isolated primary

fault to develop into extensive and expensive secondary component damage [3].

The diagnostic ability of a condition monitoring program is useful for determining

the components experiencing a fault, and to assess the extent of the damage inside the

machine. This information is vital for maintenance departments to aid with planning

the maintenance or overhaul period, regarding length of outage period and spare part

requirements. Once a fault has been detected and diagnosed, it is important that the

technique used has a high confidence that the machine does indeed have that fault.

The integration of oil and vibration analysis allows many faults to be detected by

both techniques, which increases the confidence of the maintenance decision. This has

important economic implications, as equipment that is overhauled prematurely wastes

machine parts which had not reached the end of their service lives. Alternatively,

if a machine is allowed to operate with a severe fault which has been categorised as

developing, other components in good condition could be allowed to wear excessively

due to secondary damage developing [3].

The economic advantages of an effective machine condition monitoring program

are significant savings in spare parts and machine down-time costs, as shown by the

industry trend to adopt proactive maintenance practices. If machinery breakdowns are

reduced through the use of an effective condition monitoring program, spare part inven-

tories and standby maintenance crews and equipment can also be reduced. Early fault

detection and diagnosis not only allow for increased equipment availability, but also for

maximising the efficiency of maintenance personnel and equipment. Extended time for

ordering of machine replacement parts is another benefit of an effective monitoring pro-

gram [3]. While these benefits can be achieved when comparing a program using either

oil or vibration analysis techniques with a preventative maintenance program, the in-

tegration of both oil and vibration analysis into one program will yield further benefits

as discussed above. The increased effectiveness of the condition monitoring program

will result in further efficiency increases of the maintenance department, personnel, and

standby equipment, and better machine availability.
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Significant benefits can be realised when using a machine condition monitoring pro-

gram that features an integrated approach of oil and vibration analysis. As machine

maintenance costs are often a substantial component of the operating costs of opera-

tions, an improvement in the condition monitoring program should ultimately increase

the efficiency and profitability of the operation.

2.4.3 Current Status and Research Trends

Research into the possibility of combining oil and vibration analysis has shown that

the detection and diagnostic abilities of each technique are complimented by the other

technique. This has been indicated by the numerous studies [1, 71, 74]. Troyer and

Williamson [2] reported of cases when the data obtained from oil and vibration analysis

did not correlate well. These authors have all indicated that the integration of oil and

vibration analysis would be beneficial for the resulting machine condition monitoring

program. The specific benefits mentioned by all authors were:

• Improved fault detection ability

• Improved fault diagnosis ability

• Increased confidence of the decision outcome, with less false alarms.

While the benefits of an integrated condition monitoring program have been well

documented, the application of an integrated program has not been adopted by main-

stream industry. This can be attributed to two main factors required in order to imple-

ment an integrated machine condition monitoring program: personnel with expertise in

both oil and vibration analysis, and data correlation between oil and vibration analysis

techniques.

The expertise of personnel in both oil and vibration analysis is required to im-

plement an integrated oil and vibration analysis program, to enable the company to

carry out and interpret the machine condition data of its equipment. As it is difficult

for companies to recruit skilled personnel in one field of expertise, the requirement of

staff skilled in two areas of expertise can be a limiting factor in the establishment of a



CHAPTER 2. LITERATURE REVIEW 67

machine condition program. Ideally, an integrated program would not result in more

test being conducted, but rather a more efficient use of available analysis techniques.

This could be achieved by using the quickest and cheapest tests from both oil and vi-

bration analysis to monitor the common machine faults. An integrated program would

therefore not require a larger workforce, but one that has expertise in both analysis

techniques.

The efficient implementation of an integrated oil and vibration analysis program

requires knowledge of the correlation between the two techniques. This would result

in an objective data evaluation system, of both oil and vibration analysis data, to

successfully detect and diagnose machine faults. Without data correlation, early fault

detection, (thereby relying on one analysis technique to detect the fault) could result

in a high occurrence of false alarms and consequent increase in unwarranted mainte-

nance costs. While the majority of simple laboratory machine faults indicated good

correlation between oil and vibration analysis, detailed correlation for machine faults,

including those of complex machinery, are not well understood.

The method of integration detailing the specific tests to be conducted from both

oil and vibration analysis in order to detect certain machine faults, and correlation of

data have not been a significant area of research. It would be beneficial to identify the

minimum number and quickest tests of each oil and vibration analysis, needed to be able

to detect the typical faults in a certain machine. Expensive and time consuming tests

designed to detect a certain fault using one technique may not be required, if another

technique could detect the same fault within a relatively short time. Comprehensive

tests in both techniques (oil and vibration analysis) would then only be required in

the diagnosis phase of the condition monitoring program, to confirm that the detected

fault actually exists.

Research into the integration of oil and vibration analysis has shown that one tech-

nique frequently acts as the primary indicator of a fault, while the other technique

confirms the presence of the fault. Due to the different detection abilities of each tech-

nique, the other technique may only be able to detect the fault after it has developed

further [2, 73]. The two factors limiting the implementation of integrated condition
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monitoring programs need to be overcome before this research can be utilised to ben-

efit industry. The use of computers applied with artificial intelligence software could

help reduce the dependence on human expertise for data evaluation and interpretation,

as well as aid researchers in data correlation.

2.5 Remaining Lifetime Estimation

Remaining lifetime estimation is concerned with the approximation of the remaining

operating time of a machine, either from the detection of a fault or from new condition.

The remaining lifetime is typically expressed in the number of hours from the current

condition to when the machine is anticipated to stop operating due to component

failure. This information is of great economic benefit, as spare parts, machine overhauls

and/or machine replacements can be scheduled for in advance, thereby minimising the

overall cost of machine operation.

Since the implementation of condition monitoring practices into pro-active mainte-

nance programs, remaining lifetime estimation algorithms have attracted research to

improve knowledge on wear processes and thus lifetime prediction. However, while

research into wear has received significant attention, the application of these princi-

ples into machine life estimation techniques have not been well developed [75]. Two

streams of algorithms have emerged, one focusing on the statistical nature of failures of

machines, and the other incorporating the research on wear of materials. Apart from

these two different approaches discussed in Sections 2.5.1 and 2.5.2, a third technique

has been commonly used to determine when to shut-down a machine using trending of

condition monitoring data.

Remaining lifetime estimation has often been used as a component of machine con-

dition monitoring by trending of vibration spectra or wear particle concentrations. This

technique is commonly used in industry to track the rate of deterioration of compo-

nents, and deciding on when the machine should be shut down to avoid catastrophic

component failure. While this technique is one of the most widely used lifetime esti-

mation algorithms, it has three distinct disadvantages. Firstly, significant experience
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is required to determine when the machine should be shut-down, which ideally is close

to the catastrophic failure occurrence in order to obtain the maximum lifetime from

the component. Secondly, this technique relies on historical trending of condition mon-

itoring data, thereby allowing remaining lifetimes to be estimated once the machine

fault has progressed to a substantial defect, and resulting short time to failure. The

third disadvantage of this technique is the inability to predict the remaining lifetime

of a machine from new condition, based on the operating conditions. Despite these

limitations, this technique is still commonly used in industry.

Machinery monitored using condition monitoring, and which would benefit from

remaining lifetime estimation information often contains numerous components such

as various bearings, gears and other power transmitting devices such as couplings.

Research into remaining lifetime estimation has generally concentrated on algorithms

for single component life estimation, such as rolling-element bearings [75–77].

2.5.1 Method 1 — Statistical Lifetime Prediction

The statistical prediction approach to lifetime prediction often uses the idea of the bath

tub curve of machine failure with time as an approximate probability function, in order

to compute a probability for failure at a certain time interval. The model discussed

by Adamidis and Loukas [78] uses a two parameter distribution with decreasing failure

rate. The decreasing failure rate distribution effectively operates in the first half of

the bath tub zone, commonly referred to as infant mortality or manufacture defects. A

similar approach is discussed by Chen [79], who proposed a new two parameter lifetime

distribution, which can be adjusted to a particular bath tub shape depending on the

value of the two parameters. This is shown graphically in Figure 2.29, where the λ

parameter is presented as 2.0 in Figure 2.29(a), and 0.5 in Figure 2.29(b).

The statistical prediction methodologies require the estimation of the parameters

which are used to control the shape of the distribution. These are generally calculated

by analysing the failure data of the particular machine, using various mathematical

operations, such as the method of maximum likelihood (used by Adamidis and Loukas),

or type-II censoring as used in Chen [79].
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156 Z. Chen / Statistics & Probability Letters 49 (2000) 155–161

Fig. 1. Failure rate functions with ! = 2.

where !¿ 0 and "¿ 0 are the parameters. The corresponding failure rate function of this distribution is

h(x) = !"x"−1ex
"
(x¿ 0): (3)

Since

h′(x) = !"x"−2ex
"
((" − 1) + "x") (x¿ 0);

h(x) may have a bathtub shape when "¡ 1. The distribution has increasing failure rate function when "¿1.
Figs. 1 and 2 show the failure rate functions for various values of " and !.
Comparing the distribution proposed in this paper with the other distributions mentioned above, the new

distribution has some merits. The con!dence intervals for the parameter " and the joint con!dence regions
for the parameters " and ! have closed form. Constructing joint con!dence regions is important in many real
world applications. Up to date, there are no existing two-parameter distributions with bathtub failure rates
that have exact joint con!dence regions for the parameters. The distributions used in this paper to construct
con!dence intervals and joint con!dence regions are common distributions: F-distribution and #2-distribution.
No Monte Carlo simulation is needed.

(a)
Z. Chen / Statistics & Probability Letters 49 (2000) 155–161 157

Fig. 2. Failure rate functions with ! = 0:5.

2. Interval estimations of parameters

Exact con!dence interval of the parameter " and exact joint con!dence region for the parameters " and !
are discussed in this section. The discussion is based on type-II censoring. That means only the k smallest
observations in a random sample of n items are observed (k6n). Suppose that X(1); : : : ; X(n) are the order
statistics of a sample X1; : : : ; Xn from a population distribution with cumulative distribution function (2). Then

!(eX
"
1 − 1); : : : ; !(eX "n − 1)

are i.i.d., each of which has a standard exponential distribution. Since the function

s(x) = !(ex
" − 1)

is increasing in x, !(eX
"
(1) − 1); : : : ; !(eX

"
(k) − 1) are the !rst k-order statistics of a sample from a standard

exponential distribution. The following lemma can be obtained by using the properties of the exponential
distribution (see Epstein and Sobel, 1954).

Lemma 1. Suppose that X(1); : : : ; X(n) are the order statistics of a sample from a population distribution
with cumulative distribution function (2). Then for any 36k6n

(b)

Figure 2.29: Effect of varying λ parameter for two parameter lifetime distribution (a) λ =

2.0; (b) λ = 0.5 [79].
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This type of prediction modelling operates only by a static probability distribution,

but does not take into account any condition monitoring data that may be available.

An alternate approach is discussed by Myötyri, Pulkkinen and Simola [80], where the

degradation of a component is considered when condition information is available. This

method uses a three step stochastic filtering approach, by firstly defining the relation-

ship between the lifetime and system degradation process. The second step is the

connection between the condition monitoring measurement and the degradation that

has occurred, and step three is the residual lifetime prediction using the Bayes rule

recursively. The authors demonstrated the operation of this method using a simplified

fatigue crack growth as degradation process. The data used to test this model was not

derived from actual test data, but rather the degradation process was assumed to be a

Markov process, and thus the data was obtained from a model.

The general principle used for statistical life prediction is to model the failure of

the machine under investigation, and use this model to predict the remaining life of the

operating machine. Previous failure data of the machine is typically required, as well

as various condition monitoring information depending on the type of model prepared.

2.5.2 Method 2 — Wear Prediction by Modelling of Individual Failure

Modes

The remaining lifetime of a machine can be predicted using models of wear modes, by

estimating the average material removal rate or crack growth rate, and calculating when

the condition becomes critical. This method contrasts the statistical method in that a

model needs to be used for each particular wear mode that is causing a failure, and that

detailed machine specifications are required. The required specifications are those that

facilitate the calculation when the fault condition becomes critical, and could include

type and hardness of materials wearing, lubrication regime, run-out limits for clearances

or critical crack sizes. This method assumes that the wear mode and resulting failure

mode can be diagnosed, as well as the damage that has occurred.

Many equations have been developed to calculate various wear phenomena, includ-

ing abrasive wear [81–85], sliding wear [86], fatigue wear [87], as well as operating
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time for surface pitting or scuffing to occur under elastohydrodynamic (EHL) lubrica-

tion [86]. Lubrication regime is an important parameter in these equations, as wear

rates are dependent on the amount of asperity contact and thus asperity stress imposed

on the wear surfaces. Karmakar et al [87] discusses the modelling of fatigue wear in a

rolling and sliding application, using data obtained from a pin on disc machine. The

model takes into account the stress at the asperity, and thus requires numerous calcu-

lations to approximate quantities such as surface roughness, asperity size, contact area

based on elastoplastic models, and contact pressure. Detailed machine specifications

are also required including lubricating oil viscosity, load, and the dimensions of the

wearing components [88].

The complexity of wear models developed such as by Karmakar et al [87] can limit

their application in industry, as specifications of machinery are generally not available

with the required details. Simpler models based on a limited number of calculations may

prove easier to apply to real machines, however lack the accuracy in lifetime prediction

to make significant maintenance decisions. These types of equations may miscalculate

the remaining lifetime of a component by the order of 100 % [89].

The simple wear models adopted by handbooks do not allow the possibility of using

data from machine condition monitoring to improve their accuracy. However, if machine

condition data was used in conjunction with these equations, this would ensure that

the correct equation was used only within its limitations, and the remaining machine

lifetime could be corrected as more up to date condition data becomes available. Thus,

a model could be constructed to operate on the commonly accepted wear equations

for the common wear modes, that allows machine condition data to be incorporated in

order to improve lifetime prediction accuracy.

2.5.3 Summary

The estimation of remaining machine lifetime has great potential in improving mainte-

nance program efficiency by complementing the actual machine condition as provided

by routine condition monitoring. Although numerous techniques have been developed

for various machine components, these techniques have not been adopted by machine
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intensive industries such as the mining, mineral processing and manufacturing indus-

tries.

2.6 Artificially Intelligent Systems

Artificial intelligence encompasses a large number of intelligent data analysis tech-

niques, for complex problem solving. This section discusses a number of common

artificial intelligence techniques for numerical data analysis, that could be used for the

analysis of data obtained from machine condition monitoring. As artificial intelligence

(AI) is an extremely broad topic, with significant ongoing research being conducted,

only a selection of possible techniques are discussed here.

Artificial intelligent techniques are useful for determining the relationship data has

with its input variables, of applications where conventional methods such as statistics

are too complicated or not valid. Non-linear systems are an example of applications

which can be evaluated by artificial intelligent techniques, and which are difficult or

impossible to analyse with conventional techniques [90].

2.6.1 Neural Networks

Artificial neural networks are based on the principle of biological neural networks, which

allows organisms to gradually learn new tasks over time, and the ability to perform

complex computations [90]. Numerical data with unknown relation to the system inputs

can thus be evaluated by a neural network that is trained with experimental data.

Additional attractive features of biological neural networks being modelled in ar-

tificial neural networks include rapid computation of complex problems and robust

processing. The robust processing of neural networks allows them to still operate if

parts of the network are damaged, or if data is corrupted, such as from background

noise or missing data. This is due to the inherent redundancy of the computational

architecture, which represents a group of models each optimised for specific conditions.

The neural network is therefore able to operate when parts of the network are damaged

or inoperative due to missing or corrupt data [90].
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The structure of biological neurons is transformed into a mathematical context by

correlating the biological nucleus with a mathematical summing operation, and the

neurons connecting to the nucleus are represented as scaling operations which are fed

into the summing node. The nodes in the network hence sum the values of the incoming

neurons, which were each scaled by a certain factor. This basic type of operation is com-

mon for all neural network systems, which differ in the flow of information around the

network, and the training algorithms used to grow the network [90]. These variations

of neural networks are referred to as architectures.

The different architectures used in neural networks result in variations of their

mathematical operations performed, and thus their data handling. The most commonly

used neural network architectures includes the Multilayer Perceptron [90], which is

discussed in detail in Section 2.6.1.1. More advanced architectures designed to improve

on some of the limitations of the Multilayer Perceptron are discussed in Section 2.6.1.4.

2.6.1.1 Multilayer Perceptrons

The perceptron is the simplest neural network architecture, which consists of a single

layer of nodes connected by uni-directional feed forward neurons, connecting the inputs,

nodes and outputs. Perceptrons can be trained by an input data set, in order to learn

several complex tasks, but are unable to compute problems which are not linearly

separable. This has been demonstrated by the logical operator XOR (exclusive OR) in

the late 1960s [90]. Due to the common occurrence of non linearly separable problems,

methods have been developed to transform the input vector into linearly separable

form. This can be achieved by using the multilayer perceptrons (MLP) approach.

The MLP operates on the perceptron architecture, using multiple processing stages

to pre-process the input space, while the second layer is concerned with the problem

solving process [90]. The architectural principle of a MLP network is shown in Fig-

ure 2.30.
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5.1.1  Multilayer Perceptrons

The perceptron is the simplest neural network architecture, which consists of a single

layer of nodes connected by uni-directional feed forward neurons, connecting the

inputs, nodes and outputs. Perceptrons can be trained by an input data set, in order to

learn several complex tasks, but are unable to compute problems which are not

linearly separable. This has been demonstrated by the logical operator XOR

(exclusive OR) in the late 1960’s (Berthold & Hand 2003). Due to the common

occurrence of non linearly separable problems, methods have been developed to

transform the input vector into linearly separable form. This can been achieved by

using the multilayer perceptrons (MLP) approach.

The MLP operates on the perceptron architecture, using multiple processing stages to

pre-process the input space, while the second layer is concerned with the problem

solving process (Berthold & Hand 2003). The architectural principle of a MLP

network is shown in Figure 29.

Figure 29 – Layout of a Multilayer Perceptron (2 layers shown).

5.1.2  Training of Neural Networks

Training of the neural network is generally done by processing of training data, where

the weighting of the network nodes is determined. The weighting of the nodes

corresponds to the linking of neuron paths, necessary to optimise the network for the

particular application. Depending on the availability of training data, a neural network

can be set up by processing test data, called supervised learning, or by processing

experimental data, referred to as unsupervised learning (Berthold & Hand 2003; Jain

2000). These training techniques are discussed in the following subsections.

5.1.2.1  Supervised Network Training

Supervised neural network training can be performed by the back-propagation

algorithm (Berthold & Hand 2003), which is a commonly used training technique.

The back-propagation training algorithm determines the node weighting configuration

by testing the output of the network to the training data input, and calculating the

difference between the obtained network output and the expected output. This

difference is called the error vector, and can be used to correct the node weighting by

back-propagating the network from output to input (reversing the flow of the

network). This training procedure has been used successfully for a wide range of

problem solving networks, including classification, prediction as well as function

approximation.

Input Output

1st layer 2nd layer

Figure 2.30: Layout of a multilayer perceptron (2 layers shown).

2.6.1.2 Training of Neural Networks

Training of the neural network is generally done by processing of training data, where

the weighting of the network nodes are determined. The weighting of the nodes cor-

responds to the linking of neuron paths, necessary to optimise the network for the

particular application. Depending on the availability of training data, a neural net-

work can be set up by processing test data, called supervised learning, or by processing

experimental data, referred to as unsupervised learning [90, 91]. These training tech-

niques are discussed in the following sub-sections.

2.6.1.2.1 Supervised Network Training

Supervised neural network training can be performed by the back-propagation al-

gorithm [90], which is a commonly used training technique. The back-propagation

training algorithm determines the node weighting configuration by testing the output

of the network to the training data input, and calculating the difference between the

obtained network output and the expected output. This difference is called the error

vector, and can be used to correct the node weighting by back-propagating the net-

work from output to input (reversing the flow of the network). This training procedure

has been used successfully for a wide range of problem solving networks, including

classification, prediction as well as function approximation.

The principle of the back-propagation training algorithm is that the node weighting
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values will converge to an optimal value, which represents a minimum error value. The

initial weighting configuration is generally chosen as small random values, in order to

avoid early local converging of nodes. As the initial weighting configuration signifi-

cantly influences the final node weighting, the network is generally trained a number

of times with differing initial weighting configurations, and the one with the smallest

error is then used. Numerous methods for determining the optimal initial weighting

configuration have been developed, including Newtons and quasi-Newton methods, Line

search routing, the Polak-Ribiere rule, Levenberg-Marquardt algorithm, and conjugate

gradients method [90].

Important considerations when training neural networks are their property of gen-

eralisation and effects of over-fitting. The generalisation property of a network means

that the relationship between input and output generated from the training data apply

to a new set of data, without the training data. The main feature of the training data

set is to establish the neuron connections (node weighting configuration) so that the

network can learn the required rules. The training data set must therefore accurately

and completely describe the rules. If too large a data set is used however, the net-

work can memorise the noise and errors typically contained in the training data and

thus result in poor generalisation for new data, due to being over optimised for the

training data set. This phenomenon is called over-fitting of data [90]. Over-fitting thus

occurs if a network is too large (has too many parameters) compared to the number of

constraints (independent training data scenarios).

Techniques for training neural networks and avoid the over-fitting problem have

been developed. The validation set technique is a common method, which requires

the use of a small set of independent data. As the network is trained, the ability of

the network to solve the validation data set is monitored by determining the resultant

error. The training of the network will result in a decrease in error vectors for both

training and validation data sets, followed by an increase in the error vector obtained

from the validation data set once the network is beginning to demonstrate over-fitting

behaviour. The principle is to stop the training algorithm once the error vector of the

validation set has reached a minimum [90].
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The validation set technique can be difficult to apply when sufficient data is not

available to construct two independent data sets. An alternative technique called train-

ing with noise has been developed to overcome this problem. The principle of the train-

ing with noise technique is to add random noise to the input vector of training data, and

thus make each vector of training data sufficiently different so that the network cannot

fit all the data exactly. Over-fitting of training data can therefore be avoided [90].

2.6.1.2.2 Unsupervised Network Training

Training data used for supervised network training is not available in all problem

solving applications, particularly if the relationship between input and output is un-

known. In this case, the neural network can only be trained by unsupervised techniques,

by which the network has to discover patterns, regularities and other relationships con-

tained in the data by itself. The unsupervised training technique is therefore also useful

even if a training data set is available, to test for unknown features and relationships

contained in the data [90].

Unsupervised network training requires that the neural networks possess a self-

organisation property, which allows the network to remember patterns and problem

solutions. Another requirement for unsupervised learning is redundancy in the data

used for training, as the network can only learn trends by reoccurring features in the

data [90].

The unsupervised training techniques can be categorised into two approaches: the

competitive learning, and the Hebbian learning methods. The competitive learning

approach is based on the principle that the network nodes compete for an answer, and

the node with the winning answer (based on the lowest error vector for example) will

get its weighting increased. The nodes are therefore trained for certain input vectors

corresponding to their weighting value, which results in the training of the network.

The Hebbian unsupervised learning technique utilises the observation that patterns

presented to a node most often will give the strongest answers [90].
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2.6.1.3 Network Size

The network size is dependent on the complexity of the problem to be solved, with

more complex problems such as an XOR operation, requiring an increased network size

compared to simple problems such as AND, OR and NOT operations. As the network

grows during the training process, the size is also dependent on the effectiveness of the

training algorithm. The smallest network size that is capable of fitting the training

data is generally considered the ideal network size, as this avoids over-fitting of data

while providing good generalisation and relatively quick training [90].

The smallest network size cannot be calculated before training the network, al-

though it has been proven that any function can be approximated to arbitrary accuracy

using a network of two hidden (middle) layers, and a sufficient number of nodes [90].

Iterative techniques have been developed to allow optimising of the network size. These

techniques include growing and pruning algorithms. Growing algorithms are concerned

with the training of initially small networks, and allow the addition of new nodes and

neuron connections during the training process. Pruning algorithms operate with an

inverse principle to the growing algorithm, by starting with a relatively large network,

and either decreasing the node weightings or removing redundant nodes.

2.6.1.4 Improvements in Neural Network Architectures

Modifications of the multilayer perceptron neural network architecture have been de-

veloped to improve certain aspects of the MLP network, including increased decision

transparency. The MLP architecture results in a network where the decisions do not

translate into symbolic knowledge, as there is no systematic processing by regions of the

network. One approach has been to divide the network up into regions of specialisation,

where the network is trained by only allowing that region to grow whose specialisation

best corresponds to the problem description of the input vector. This architecture is

called the Radial Basis Function (RBF) network, which apart from easier interpretation

of the systems results, provides a quicker learning algorithm than achieved with the

back-propagation method [90].
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The learning algorithms of modified perceptron neural networks have also been

modified to increase the speed of the learning process, and optimise network effi-

ciency [90]. Training techniques developed for RBF networks include the modified

back-propagation, hybrid learning, orthogonal least squares algorithms.

2.6.1.5 Problem Solving Using a Neural Network

The use of neural networks for problem solving involves a number of steps, begin-

ning with the selection of an architecture, training and testing of the network, and

finally, applying the network for the particular problem or situation. Selection criteria

for a neural network architecture include the network transparency, preferred training

methods (including whether supervised or unsupervised), and network efficiency. Re-

quirements for network training is an important consideration, as the training method

differ for supervised and unsupervised training. Unsupervised training algorithms can

also be used to detect relationships of input data, which can aid in the classification of

data [91].

Once a network architecture and training algorithm have been selected, and the

network is trained, testing of the network is done to verify the operation of the AI

system for the particular application. If the network performance meets the required

benchmarks, it can then be applied to the particular data set or problem [90].

2.6.2 Fuzzy Logic

Fuzzy logic is an artificial intelligence data analysis technique designed to deal with

information that cannot be classified into precise categories or groups. This kind of

data is often found in practical applications, where the category boundaries are not

well defined either due to imprecise measurement or subjective judgement [91]. Typical

examples of data with vague boundaries is the classification of a continuous scale or

population into discrete regions, such as labelling a temperature scale into regions of

cold—warm—hot, or the age groups of a population into young—middle aged—old [90].

The operation of fuzzy logic is a data analysis technique that allows data to be

displayed in both numerical and graphical representations, and uses Boolean logic to
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aid analysts to understand and draw conclusions from the data. Once established, the

resulting fuzzy model can be used to analyse the underlying system, and help predict

data [90].

2.6.2.1 Fuzzy Sets

Discrete cut-off limits of each region of a function with continuous domain may not

be well defined, as the difference between one region to the next, such as warm to hot

in the temperature example, may only correspond to 1 degree. It could therefore be

argued that the temperature is already hot even though it is 1 degree below the hot

category cut-off. The category boundaries may overlap, to correspond to the intuitive

idea that the temperature is shifting from warm to hot, for example. The resulting

category is an imprecise region, or referred to as a fuzzy set [90].

The principle of categorising a continuous variable into a number of fuzzy sets is

generally called granulation, as the data is grouped into imprecise regions or fuzzy

granules. Specific information of interest can thus be extracted (granulated) from a

data set using fuzzy logic [90].

2.6.2.2 Operation of Fuzzy Logic Systems

The use of fuzzy logic results in the input data being grouped into fuzzy sets. This is

generally done using mathematical functions which define the fuzzy sets, the graphical

representation of common functions is shown in Figure 2.31. The centre value of the

graphs is the typical value, and the decreasing slope on either side of trapezoidal, trian-

gular and Gaussian functions represents the fuzzy boundary of the set. The grouping

process (granulation) is typically performed using either five or seven overlapping fuzzy

set functions, as shown in Figure 2.32.

Data analysis is performed on the granulated data, using common Boolean rules.

As the fuzzy sets consists of a data interval, the Boolean logic operations are performed

on two data intervals rather than discrete values. The output of the logic operation is

therefore also a range of values. In fuzzy logic, Boolean rules are therefore referred to

fuzzy rules.
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Figure 2.31: Graphs of common fuzzy set functions [90]. The functions are (left to right):

Trapezoidal, Triangular, Gaussian and Singleton.

Figure 2.32: Standard granulation procedure using seven functions.
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outcomes of the fuzzy rules, using fuzzy logic constraints rather than discrete

conditions (Berthold & Hand 2003). The concept of a decision tree is demonstrated in

Figure 32, for the viscosity of oil, at various temperature ranges.

Figure 32 – Decision Tree Concept for Operating Oil Viscosity, with decisions for

Viscosity Grade of Oil, and Operating Temperatures.

5.3  Expert Systems

Expert systems are a class of artificial intelligence developed to allow the use of

computers in decision making applications, which would normally be done by human

experts. Their operation is dependent on the efficiency and knowledge of the three

components that make up the expert system: knowledge base, reasoning mechanism,

and output interface to communicate decision to users (Rich & Knight 1991).

The use of expert systems has shown that a wide variety of problems can be solved by

this artificial intelligence technique. Problem classification is an important technique

which allows the use of generic problem-solving algorithms to be applied, with only

minimal modification for the specific application (Rich & Knight 1991).

5.3.1  Advantages of Expert Systems over Human Experts

The use of an effective and efficient expert system has many advantages over a

human expert, including reduced cost, increased availability and reliability. Expert

systems can be established with knowledge equivalent to that of a team of experts,

which is therefore significantly cheaper than if a number of experts were employed

for problem solving purposes. As an expert system can operate continuously if

required without decreased performance, shift work applications can clearly benefit

from the use of expert systems (Giarratano & Riley 1989).

The knowledge base of an expert system, being in a form that can be read by experts

as opposed to the knowledge of a human expert, allows it to be updated and refined.

This improves the quality of the knowledge base, and results in improved expert

system performance. A faster response time can also be achieved with expert systems,
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Figure 2.33: Decision tree concept for operating oil viscosity, with decisions for viscosity grade

of oil, and operating temperatures.

The fuzzy logic data analysis technique allows features of the data to be extracted,

and a model of the system to be identified. It also allows the construction of a decision

tree, which is a graphical representation of the possible outcomes of a system. Similarly

to the use of Boolean logic in fuzzy logic, decision trees display the outcomes of the

fuzzy rules, using fuzzy logic constraints rather than discrete conditions [90]. The

concept of a decision tree is demonstrated in Figure 2.33, for the viscosity of oil, at

various temperature ranges.

2.6.3 Expert Systems

Expert systems are a class of artificial intelligence developed to allow the use of comput-

ers in decision making applications, which would normally be done by human experts.

Their operation is dependent on the efficiency and knowledge of the three components

that make up the expert system: knowledge base, reasoning mechanism, and output

interface to communicate decision to users [92].

The use of expert systems has shown that a wide variety of problems can be solved by

this artificial intelligence technique. Problem classification is an important technique

which allows the use of generic problem-solving algorithms to be applied, with only

minimal modification for the specific application [92].
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2.6.3.1 Advantages of Expert Systems over Human Experts

The use of an effective and efficient expert system has many advantages over a human

expert, including reduced cost, increased availability and reliability. Expert systems

can be established with knowledge equivalent to that of a team of experts, which is

therefore significantly cheaper than if a number of experts were employed for problem

solving purposes. As an expert system can operate continuously if required without

decreased performance, shift work applications can clearly benefit from the use of expert

systems [93].

The knowledge base of an expert system, being in a form that can be read by

experts as opposed to the knowledge of a human expert, allows it to be updated and

refined. This improves the quality of the knowledge base, and results in improved

expert system performance. A faster response time can also be achieved with expert

systems, especially in real time operation where fast responses are required, such as

emergency situations [93,94].

Expert systems can be designed to incorporate the features necessary for a particular

application, and can operate at peak efficiency without the human problems of stress

and fatigue. Well designed systems with mechanism to counteract the limitations, as

discussed in Section 2.6.3.3, expert systems can provide problem solving services with

significant advantages over human experts.

2.6.3.2 Elements of Expert Systems

Expert systems are composed of three major parts, including the knowledge base,

reasoning mechanism, and output interface. The knowledge base is the element which

contains the knowledge normally possessed by the human expert, which allows the

expert system to reason, and make expert decisions. While the knowledge base contains

the information required to make expert decisions, an efficient reasoning mechanism is

required to make a decision, given the type of problem and a set of conditions.

In order for expert systems to make decisions which are of value to the system users,

the knowledge base must be as complete and accurate as possible. The establishment
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of the knowledge base using the information known by human experts is therefore a

vital step in the construction of an efficient expert system. The collection of knowledge

from an expert can be incorporated into a knowledge base by either interaction with

a human, or by the program learning the conditions and rules from raw data, which

contains the decisions from a human expert.

The purpose of the output interface is to communicate the decision of the expert

system to the user. This is generally combined with the input interface, and is typically

custom designed computer software for the particular application. An important prop-

erty of the user interface, consisting of the user input and system output interfaces, is

to allow easy operation of the expert system by the users. The user interface therefore

often includes directions and hints for data entry, and extra explanations for decisions

and recommendations output by the system.

2.6.3.3 Characteristics of an Expert System

Expert systems must have certain abilities to allow them to be used effectively in

applications which would otherwise require a human expert. These abilities include high

performance, sufficiently fast response time, high reliability, and be easily understood

by users [93].

High performance of the expert system is required, so that resulting decisions are

at least of a standard equivalent to a human expert. This requires that the information

entered into the knowledge base is of high quality, and the information is gathered from

one or more true experts in the specific field. An advantage of using expert systems is

that information from a team of experts can be incorporated into the system, which

can lead to more accurate decision outcomes [93].

Expert systems are commonly used for a wide range of uses including real time

applications. Sufficiently fast response time is therefore required, which is the time the

expert system needs to make a decision from a set of input parameters. The response

time for small general purpose expert systems is not usually a design problem, due to

the speed of todays computers. However, the response time for large expert systems

operating in real time or high priority applications such as those for medical purposes,
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must be sufficiently small to guarantee a decision within the required timeframe [93].

The use of expert systems in industry has demonstrated that significant amounts

of money can be saved, by improved decisions [92]. High expert system reliability

is therefore required, as wrong decisions or system crashes can result in substantial

financial losses, or even loss of human life in the case of medical expert systems [93].

The final characteristic of an expert system is the successful communication between

the user and the expert system program, through the user interface. The user interface

and decision output recommendations must therefore be designed and written in a

way that the user can easily and quickly understand the inputs and outputs. Reports

of expert system decisions should also contain information on how the decision was

obtained. This allows the user to verify the reasoning performed by the system, as well

as helping the system developers with debugging [94]. Output reports also help update

the expert system knowledge base if an error has been detected.

2.6.3.4 Design Challenges of Expert Systems

The design of effective expert systems should include measures to minimise the effects

of their limitations. Expert system designers are faced with a number of challenges,

including brittleness, lack of own process understanding, efficient knowledge acquisition,

and knowledge verification [92].

System brittleness is often referred to the condition when general rather than expert

knowledge is required to make a decision. As expert systems possess expert knowledge,

situations that require general knowledge, like the reversal of two fields of input data,

can generally not be detected by the system. This is accompanied by the fact that

expert systems lack knowledge about their own operating processes, which prevents

them reasoning about their limitations [92]. System checks on the input data including

notifications if values are out of the common range, could be used to minimise this

problem.

The acquisition process of knowledge and processing to establish the knowledge

base is generally a difficult and time consuming process. This is due to the difficulty

of obtaining information from human experts and translating this into a number of
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rules. In order to help automate the process, a number of software tools have been

developed, which interact with an expert to compile an initial knowledge base. The

initial knowledge base is then refined, typically by supervised problem solving tech-

niques. The human expert hence either supervises the expert system while it solves

problems, or verifies the output of the system [92, 94]. Extensive testing of the expert

system allows incorrect reasoning and decisions to be corrected.

Knowledge verification, including refining and debugging of the knowledge base, is

a process which is required to ensure high performance and reliability of the expert

system. The difficulty with knowledge verification is that non-quantitative data cannot

easily be tested as formal proofs cannot be provided easily. In these circumstances,

the knowledge base can be tested by real problems, and the decisions evaluated by a

human expert [92]. This method of testing expert systems will also allow the expert

to assess the systems key required characteristics, as discussed in Section 2.3.4.2, and

design challenges.

2.6.4 Artificial Intelligence for Machine Condition Monitoring

Artificially intelligent systems have been applied for machine condition monitoring by

numerous researchers [22, 95–99], to help with machine fault detection and diagnosis.

However, these systems were designed to use either the wear debris or the vibration

analysis machine condition monitoring technique. These systems developed for condi-

tion monitoring have focused on applications where maintenance, repair and downtime

costs make up the principle business outlay. Typical applications include diesel en-

gine faults, encountered in both on-highway, off highway and marine industries, as well

as fault diagnosis in gearboxes, as used in industry and aviation, and electric motor

malfunctions.

Diesel engine fault detection systems have focused on the use of vibration analysis

for combustion malfunctions and water entry detection, which are detrimental problems

in marine engines [95,96]. The diagnostic system for diesel engine condition monitoring

developed by Grimmelius et al [95] was based on a neural network technique, to de-

tect and classify complex faults without extensive knowledge about the fault patterns
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and signals. Results indicated that the neural network featured fast operation, and

was found to be very tolerant to noisy signals. Limitations to the neural network ap-

proach were discovered to be the time consuming training requirement, lack of decision

transparency, and inflexibility of the network for problem solving under new conditions

outside of the trained region.

The diesel engine condition monitoring system developed by Li et al [96] was also

based on vibration analysis and the neural network technique, utilising an unsupervised

training technique. The system was reported to be able to distinguish from vibration

signals of normal and faulty engines, using vibration feature extraction techniques to

pre-process the signals. A similar approach by Parikh, Pont and Jones [100] allowed

a system based on the fusion of classifiers by fuzzy logic, to detect static thermostat

valve faults in diesel engines.

Artificial intelligence techniques have also been used successfully in the condition

monitoring of gearboxes. Peng and Goodwin [101] developed an expert system to help

interpret comprehensive data collected from particle analysis of oil samples. The expert

system was able to assess the wear modes and wear rates present in the gearbox, and

thus diagnose the most common wear related faults. The user interface was designed

in order for ease of use, to allow the system to be used for training purposes. While the

system was designed for routine analysis, limitations of the system include difficulty

with complicated gearbox faults, which requires human expert assistance. As the expert

system was found to correctly diagnose the common encountered faults, the researchers

commented that the system could be expanded to laboratories. An expert system that

could be used for this purpose is still in the development stages.

Artificially intelligent systems using both oil, wear debris and vibration analysis

have to date not been developed for the condition monitoring of machinery. This is

due to the limitations discussed in Section 2.4.3 — the difficulty of obtaining experts in

both oil and vibration analysis fields, and a lacking knowledge of correlation between

the two techniques. Systems utilising AI may help researchers with correlating the

two techniques, which would allow the establishment of an expert system with better

detection and diagnostic abilities for condition monitoring than currently available.
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2.7 Summary

Machine condition monitoring has become an essential element of maintenance strate-

gies, aimed at increasing the availability of machinery, and decreasing repair costs by

reducing secondary component damage. Commonly used techniques for machine con-

dition monitoring are oil analysis and vibration analysis.

Oil analysis consists of the investigation of an oil sample, in order to collect in-

formation to assess the condition of the machine under observation. Traditionally, oil

analysis has been concerned primarily with the physical and chemical properties of the

lubricating oil, also referred to as oil health monitoring. The rationale behind this is

that while the lubricant has the correct viscosity and additive concentrations, and con-

taminants are not present, lubricant related faults will not occur. Lubricant utilisation

is also maximised, as it is only replaced when the physical or chemical properties have

exceeded a predetermined threshold.

An extension to the common oil analysis has become the analysis of particles con-

tained in the oil sample. Particle analysis can reveal the presence of contaminant

particles as well as the size and concentration of wear particles. Wear particle anal-

ysis involves the study of particles produced due to component wear, and allows the

identification of wear modes and likely components experiencing the determined wear

modes.

Vibration analysis is a popular machine condition monitoring technique, which

utilises vibration signals with frequency components produced by wearing components

to detect and diagnose machine faults. Once the vibrations produced by a machine

have been recorded, signal processing and analysis techniques can be used to detect

and diagnose faults.

The detection ability of oil (including wear debris analysis) and vibration analysis

has been estimated to be in the vicinity of 67 % and 60 % respectively [1]. The

overlap in fault detection ability for this study was 27 %, indicating that a machine

condition monitoring program could greatly benefit from an integrated oil and vibration

analysis approach. Despite the indications of researchers of the advantages in detection
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and diagnosis ability, integration of the two techniques has not been done successfully.

Correlation of oil analysis and vibration analysis data has not yet been performed, such

that efficient fault detection using both techniques is not possible. Another difficulty of

integrating the two techniques is that expert knowledge of both techniques is required

to implement an integrated condition monitoring program.

The difficulties currently limiting the integration of oil and vibration analysis tech-

niques may be overcome with the use of artificial intelligence. Experimental data

obtained from both techniques could be analysed using fuzzy logic and neural networks

in order to correlate the two techniques. Once the correlation has been established, an

expert system could be utilised to reduce the dependence on human experts for both

oil and vibration data interpretation.

Successful correlation and integration of the oil and vibration analysis techniques

would greatly improve the fault detection and diagnosis ability of machine condition

monitoring programs. This therefore presents a potential for substantial cost reductions

of maintenance and equipment overhaul, one of the key expenses of todays industrial

operations.



Chapter 3

Methodology

3.1 Introduction

This chapter is concerned with the application of the knowledge contained in the liter-

ature review to the research project. The research project has been devised to help the

mining, mineral processing and manufacturing industries to improve their maintenance

programs by utilising a methodical and systematic approach to data processing of the

common machine condition monitoring techniques: vibration, oil and wear particle

analysis. The specific aims of the research project are to develop an artificially intelli-

gent (AI) system that is capable of analysing machine condition monitoring data using

commonly used techniques, and to correlate the results to obtain an accurate and com-

prehensive report. Furthermore, the AI system should include a suitable user interface

and structure to allow it to be operated in a commercial environment by technically

skilled operators who are not experts in the condition monitoring field.

In order to meet these project objectives, a survey of possible machine condition

monitoring (MCM) techniques was conducted to decide on the techniques best suited

to the mining, mineral processing and manufacturing industries. Once the suitable

techniques with the best overall fault detection ability for the anticipated machines

were selected, an investigation of their correlation ability was performed and compared

to conflicting results in literature. This was the first step in verifying the existence of

the complementing ability of MCM techniques.

90
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The large amount of MCM data associated with using multiple techniques to diag-

nose the health of a machine has resulted in an additional difficulty to implementing

this type of analysis in industry. The development of an AI system would negate this

limitation, by automating the data fusion and interpretation process. The selection,

development strategy and methods of appropriate AI type has been discussed in Sec-

tion 3.3, which includes planning of the AI system structure and implementation. As

the case-study type analyses presented in literature and verified in the correlation in-

vestigation could only be used for a small range of faults in specialised machines using

manual data interpretation, the integration of the MCM techniques relied on the de-

velopment of a knowledge base. In order to meet the project objectives, this innovative

knowledge base would need to be able to diagnose a broad range of faults that can

occur in the diverse range of machinery used in industry.

The development of a knowledge base and associated AI system for automated in-

tegrated fault detection allows additional features to be implemented that rely on the

correlated analysis. These features include root-cause analysis and machine remaining

lifetime to failure estimation. Root-cause analysis is very useful for maintenance de-

partments in determining the chronological order of failures, and thus the impact of

developing faults on other wearing parts of the machine. This information can be used

to reduce the costs of secondary faults occurring, thereby improving both profitability

and machinery availability. Remaining lifetime estimation is related to the root-cause

analysis, by predicting the possible time until component failure will result. This is

therefore a useful tool to assess fault severity, and aids in the timely replacement of

the affected parts prior to unexpected failure. In order for these novel diagnostic and

reasoning knowledge bases to be developed, the AI system utilising integrated fault de-

tection techniques must be operational to allow accurate machine condition information

to be available.

The root-cause knowledge base was developed using laboratory and industry ma-

chine failure data, as well as comprehensive machine failure analysis to construct the

interaction between possible primary and resulting secondary faults. The comprehen-

sive machine health report compiled by the integrated AI system allows the use of the
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developed automated root-cause analysis knowledge base to be applied for the first

time. The remaining lifetime estimation knowledge base was constructed using the re-

sults of the machinery failure analysis as well as wear and lifetime prediction methods

from literature. While remaining lifetime prediction techniques have been developed

as discussed in Chapter 2, the inability to accurately determine the machine condition

hindered the practical implementation of these techniques. The AI system allowed the

knowledge base developed by integrating multiple remaining lifetime concepts to be ap-

plied to real-life machines, in an automated multiple-fault lifetime estimation system.

3.2 Experimentation and Correlation Analysis

The sub-project focused on a comprehensive analysis of fault detection abilities of each

technique, and possible strategy to successfully correlate the analysis results. In order

to verify the possibility of integrating these techniques, a series of experiments were

conducted using laboratory test rigs. A spur and worm gearbox test rig were used

to obtain MCM data for typically encountered faults utilising vibration, oil and wear

particle analysis. The data was then analysed for fault detection of each technique, and

potential overlap in diagnostic abilities. Once real MCM data had been obtained using

the discussed test rigs, the feasibility of correlating vibration, oil and wear particle anal-

ysis was determined. The data was used to perform the initial correlation investigation,

as well as for knowledge base development during the comprehensive analysis. Due to

the large amount of information that needs to be processed for these comprehensive

machine health analyses, an artificially intelligent system was developed to reduce the

dependence on both operator time and expertise.

3.2.1 Experimental Verification of Correlation

The primary investigation of the project involved a study of the machine condition

monitoring techniques to determine whether the results really complement each other

for machine health assessment. This study included a number of experiments using

two laboratory gearbox test rigs to collect real condition monitoring data of vibration,
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oil and wear particle analysis. The tests were organised to include common gearbox

failure modes, which were analysed as case-study scenarios and thus determine both

the fault detection ability of each individual technique as well as the extent of detection

overlap. The use of laboratory testing equipment was chosen as the machines could be

operated under controlled conditions to provide quality data on the individual gearbox

failure modes. This contrasts to industrial machinery which may be subjected to several

abnormal operating conditions, including overload, corrosive environmental factors or

inherent installation faults.

3.2.1.1 Laboratory Testing Equipment

In order to verify whether vibration, oil and wear particle analysis complement each

other in machine condition monitoring, a series of experiments were carried out to

obtain MCM data under controlled conditions. The application of accelerated wear

tests of specifically designed test rigs allowed multiple common machine failures to be

investigated within the project timeframe, not possible with real industry data where

machine lifetimes of several years are considered short. The laboratory test equipment

contained similar machine components as typically used in the mining, mineral pro-

cessing and manufacturing industries to allow the data collection and hence study of

the failures associated with machinery used in these industries. Other equipment also

commonly found in industry includes conveyor belts, pumps, fans, compressors, augers

and turbines. Of these machines, gearboxes lend themselves for data collection as these

can be monitored using vibration, oil and wear particle analysis. The test equipment

was designed to enable the fault conditions to be imposed in a controlled manner, and

conducted in a procedure that allows the results to be obtained independently.

3.2.1.2 Spur Gearbox Test Rig

The spur gearbox test rig was specifically designed for the study of gear wear under

controlled conditions. The gearbox is equipped with a dedicated oil sampling port near

the gear meshing point, and tri-axial (x, y and z axes) accelerometer mounting points

(horizontal, vertical and axial directions) at each drive shaft to facilitate the acquisition
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of oil and vibration data. The gear ratio has a multiple other than 1, which allows the

effects of preferential wear to be studied, when operating the gearbox for long periods,

light load and no seeded faults.

The test rig was designed to include a mechanism for varying a uniform load trans-

mitted through the gearbox. This enabled the equipment to be operated under normal

and overloaded conditions, while a uniform load negates the problems of unknown com-

ponent damage caused by sudden bursts of high amplitude impact loads. A loading

device with these characteristics corresponds to a centrifugal pump, which is suitable

for small spur gear type transmissions.

The experimental spur gear test rig set-up consisted of a single stage gear system

with a 4:3 ratio, and an approximate power transmission capacity of 900 W. The

gearbox parameters are summarised in Table 3.1. The gearbox was driven by a 2.2 kW

three phase electric motor and variable speed drive, while the input load of the gearbox

was determined by a strain gauge fitted to the motor.

Table 3.1: Spur gearbox specifications.

Input Shaft Output Shaft

Gear material 1045 1045

Number of teeth on gear 40 30

Gear pitch circle diameter (mm) 40 30

Gear width (mm) 8 8

Pressure Angle (degrees) 20 20

Bearingsa 6001 6001

aMost tests were conducted using 63001 bearings which have identical internal and external diame-

ters, but are wider. The equipment specifications of each test is summarised in Appendix Section B.

The output of the gearbox was used to drive an Onga 183 centrifugal pump to

circulate water in a 200 litre reservoir. The recommended motor input power of the

pump is 2.4 kW, with an approximate fluid power load of 1.2 kW. The schematic

representation of the test rig set up is shown in Figure 3.1.
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Number of teeth on gear 40 30

Gear pitch circle diameter (mm) 40 30

Gear width (mm) 8 8

Pressure Angle (degrees) 20 20

Bearings 6001 6001

The output of the gearbox was used to drive an Onga 183 centrifugal pump to circulate water

in a 200 litre reservoir. The recommended motor input power of the pump is 2.4 kW, with an

approximate fluid power load of 1.2 kW. The schematic representation of the test rig set up is

shown in Figure 2.1.

The gears and bearings were splash lubricated, with no provisions for cooling or filtering. A

synthetic oil of 320 ISO viscosity grade (321cSt@40ºC) was used. The sampling point of the

gearbox was located in the top gearbox cover, and allows oil to be drawn from adjacent to and

below the gear meshing point. This allowed oil samples to be obtained while the gearbox was

in operation. The gearbox has been designed to improve oil circulation, and features a small

oil capacity of 125 mL, and a rounded bottom.

Figure 2.1 – Schematic Diagram of Experimental Spur Gearbox Test Rig

Each test included the use of a new gear set, which demonstrated the three stages of machine

wear – wear in, steady wear and rapid wear out phases. The tests were concluded once the oil,

wear debris and vibration analysis techniques indicated that severe wear was occurring. This

was also confirmed by visual inspection of the gear teeth surfaces. Detailed specifications of

each test performed using the spur gear test rig is discussed in section 3.

Failure of spur and worm gearboxes can be attributed to either operational or installation

related causes. Operational related failures can occur due to the overload or over-speed of the

equipment, and environmental conditions where corrosive or abrasive substances enter the

gearbox resulting in an increased wear rate. In order to collect MCM data on this array of

possible faults, the experimental test rigs were operated under controlled fault conditions,

including overload, contamination, inadequate lubrication, and bent drive shaft operation. The

overload test was performed by operating the rig at 125% rated load. This value was chosen as

it represents an overload that may be imposed unintentionally by minor machine modification

using non-OEM components. This scenario may occur when replacing the motor with a

slightly larger unit due to availability or to simplify spare parts inventory, and an operator

running the machine at maximum throughput.
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Figure 3.1: Schematic diagram of the experimental spur gearbox test rig.

The gears and bearings were splash lubricated, with no provisions for cooling or

filtering. A synthetic oil of 320 ISO viscosity grade (321cSt @ 40◦C) was used. The

sampling point of the gearbox was located in the top gearbox cover, and allows oil to be

drawn from adjacent to and below the gear meshing point. This facilitates oil samples

to be obtained while the gearbox was in operation. The gearbox has been designed

to improve oil circulation, and features a small oil capacity of 125 mL, and a rounded

bottom.

Each test included the use of a new gear set, which demonstrated the three stages

of machine wear — wear in, steady wear and rapid wear out phases. The tests were

concluded once the oil, wear debris and vibration analysis techniques indicated that

severe wear was occurring. This was also confirmed by visual inspection of the gear

teeth surfaces. Detailed specifications of each test performed using the spur gear test

rig is discussed in Chapter 4.

Failure of gearboxes can be attributed to either operational or installation related

causes. Operational related failures can occur due to the overload or over-speed of the

equipment, and environmental conditions where corrosive or abrasive substances enter

the gearbox resulting in an increased wear rate. In order to collect MCM data on this

array of possible faults, the experimental test rig was operated under controlled fault

conditions, including overload, contamination, inadequate lubrication, and bent drive

shaft operation. The overload test was performed by operating the rig at 125 % rated
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load. This value was chosen as it represents an overload that may be imposed unin-

tentionally by minor machine modification using non-OEM components. This scenario

may occur when replacing the motor with a slightly larger unit due to availability or

to simplify spare parts inventory, and an operator running the machine at maximum

throughput.

Contamination is a common operating condition that is common encountered in the

mining and material handling industries. The corresponding wear test was conducted

by adding a 3740 ppm concentration of silicon dioxide particles to the lubricating oil,

which is a common constituent of dust [89]. Although typical dust contamination can

lead to lubricant silicon dioxide concentrations of about 50 ppm, the higher concen-

tration was chosen as other contaminants would be present with the dust, resulting in

a significantly higher total contaminant concentration than 50 ppm. One objective of

this test was to analyse the effects of contamination by sharp abrasive particles, under

controlled concentration. The silicon dioxide particles have a high hardness value com-

pared to the steel gears, and tend to fracture with sharp edges, thereby representing

contamination of sharp hard particles, such as hard rocks and crushed ore. The size

range of the silicon dioxide particles were determined to be 8 to 50 microns.

Typical installation related causes of failure can be linked to either component dam-

age due to rough handling during storage or installation, or unsatisfactory maintenance

practices where contaminated or incorrect lubricants were used. The improper lubri-

cation condition was achieved by filling the gearboxes with a lower viscosity lubricant

than required to operate in elestio hydrodynamic lubrication. Another installation fault

condition studied using the spur gearbox test rig was bent drive shaft operation. This

condition can occur due to the installation of a faulty component, which may have

been salvaged from a wrecked gearbox previously subjected to severe overload. High

interference fits between the shaft and supporting bearings on shafts with high length

to diameter ratios may also result in bent shafts due to rough installation practices.

In order for each test to be operated independently to the other tests, all wearing

components including gear sprockets, bearings and seals were replaced between tests.
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3.2.1.3 Worm Gearbox Test Rig

The worm gearbox test rig was designed to allow the impact of various operating

conditions on worm gear wear modes and rates to be investigated. In order to facilitate

the equipment to be positioned in the laboratory, as well as keep the cost associated

with each test to a minimum, a relatively small gearbox was selected. As the selected

gearbox is a commercially sourced product, the entire gearbox is replaced for each test.

The test rig was constructed so that the gearbox is mounted in the centre of a

circular water trough, and rotates a water paddle as a load dissipation device. Energy

input is via a 0.37 kW 3 phase electric motor and variable speed drive to allow the speed,

and hence transmitted power to be varied. The transmitted power can also be varied

by the water level in the tank. Detailed specifications of the test rig are summarised in

Table 3.2, while a photo depicting the test rig is shown in Figure 3.2. The fluid stirrer

in a circular tank allows smooth power transmission through the gearbox and for the

entire rotation of the stirrer. As the paddle is rigidly connected to the output gear —

one rotation of the paddles is equivalent to one rotation of the gear — smooth loading

of the paddles is essential for even gear loading and wear.

The worm was made from an alloy steel with a ground finish, while the pinion gear

was manufactured from a shell cast high-strength phosphor bronze. The worm was case

hardened to a depth of 0.2 mm, with a hardness value of Rockwell C58/60.

The power transmitted through the gearbox can be determined by using a strain

gauge fitted to the gearbox housing, and measuring the torque transmitted by the

motor. Loosening the bolts of the flange mount between the gearbox and motor fa-

cilitates the strain gauge to be activated. To aid with oil sampling of the otherwise

sealed gearbox housing, three ports were installed into the housing comprising a filler,

oil sampling, and oil drain port. Apart from the addition of oil ports, accelerometer

mounting positions were installed at the top rear and front of the worm, as well as at

each output shaft support bearing. These mounting positions allowed the acquisition of

vibration data from the front and rear of the worm including the supporting bearings,

and at both sides of the pinion gear and bearings. Due to the confined design of the
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Table 3.2: Worm gearbox specifications.

Item Specification

Motor Power Rating (kW) 0.37

Number of Poles 4

Gearbox Manufacturer & Model No Bonfiglioli VF-44

Gearbox Power Rating (W) at zero safety factor 250

Gear/Worm Material Bronze/Steel

Reduction 28:1

Recommended Oil Grade ISO 320 synthetic

Lubricant Used Shell Tivela S 320 (321cSt@40◦C)

Type of Synthetic Oil PAG

Oil Capacity 65 mL

gears within the housing, good circulation of the oil through the gears is maintained

throughout the gearbox operation.

The worm, pinion and bearings operated within the oil, while the upper drive

bearing was splash lubricated, with no provisions for cooling or filtering. The sampling

point of the gearbox was located at the front of the gearbox, mid way on the pinion

gear. The oil filler was positioned at the top of the gearbox which allowed the oil to

be filled to capacity, with excess running out of the same tube doubling as a breather

hose. The oil samples were taken while the gearbox was in operation, and the position

of the sampling port enabled oil to be extracted directly above the pinion gear.

3.2.2 Data Collection and Preparation

The data collection of wear tests conducted as part of the correlation investigation

involved the monitoring and storage of vibration, oil and wear particle analysis infor-

mation. This sampling of data must be performed at suitable operating time intervals,

which coincided with the accelerated rate of wear experienced by the test rig. Sampling
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Figure 3.2: Photo of the worm gearbox test rig. Note that the water level is not at operating

level, and the strain gauge is not connected to the wheatstone bridge at the time of the photo.

intervals that allow approximately 10–12 samples to be obtained between the commis-

sioning and de-commissioning of the gearbox test rig were selected, as this provides

sufficient resolution to detect the wear-in, normal operation, and wear-out stages of

the gearbox, and allowed the fault detection of each MCM technique to be evaluated.

This sampling strategy has been based on analytical analysis of the gearbox as well

as previous wear tests. The effective lifetime of the gearbox can be considered to be

the operating time until the primary fault can be detected with accuracy. Analytical

analysis of the gearbox with respect to the load, lubrication regime and operating speed

was used to estimate the effective lifetime of the gearbox, using literature on EHL and

boundary lubrication theory. The operating time to the onset of gear tooth fatigue or

scuffing was therefore determined, and used as a guide in planning the duration of the

individual wear tests.

Sampling of the spur gearbox was performed using a single use plastic pipette, and

plastic sampling bottles. The regular sampling size was 5 mL of oil, which is sufficient

for filtergram analysis. A larger oil sample of 16 mL was taken every second interval,

in order to perform particle count and size distribution analysis. Four samples were
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collected in the initial 24 operating hours, with sampling intervals then extended to

every 24 hours.

Data collection of the worm gearbox was performed similar to the spur gearbox,

with four vibration and oil samples collected during the first 24 hours of operation,

and then extended after this period. Due to the slower operating speed of the worm

gearbox compared to the spur gearbox, sampling intervals were correspondingly longer.

The regular sample size was 5 mL of oil, with 60 mL being collected during oil changes.

The data acquisition for vibration analysis includes the collection of time, frequency

and demodulated frequency domain spectra, at a suitable frequency bandwidth that

allows all desired faults to be detected. Typically, a suitable frequency bandwidth

for condition monitoring of a gearbox would allow the detection of 3 times the gear

mesh frequency. The data was collected by mounting the accelerometer to the specified

mounting points on the gearboxes, and allowing the vibration analyser to sample and

store the emitted frequencies. As the data acquisition was performed by the vibration

analyser, numerical data preparation was performed automatically, which involved de-

modulation of the spectra scan, and an FFT on the time domain data to obtain the

frequency domain spectra. Manual data analysis would also require the spectra to be

graphed, which was performed automatically by the vibration analysers PC software.

Oil and wear particle analysis rely on the collection of an oil sample, which is

representative of the bulk fluid. This means that the sample should contain similar

concentrations of the wear particles found throughout the oil, and should therefore be

withdrawn at a location where the oil is subject to sufficient turbulence and mixing. The

oil sample must also contain sufficient volume to allow all desired tests to be performed.

For this project, the requirements by each test include: wear particle analysis — 1mL,

particle counter — 10 mL, and viscometer — 10 mL. Once the oil sample had been

collected, the preparation included the production of a filtergram for microscopic wear

particle analysis, and the analysis of oil using the particle counter and viscometer.

Microscopic analysis of wear particles was used to reveal both the physical dimensions

of the wear particles, as well as the particle colour. The physical dimensions of wear

particles were obtained by scanning individual wear particles using a Laser Scanning
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Confocal Microscope, and performing digital image processing techniques. Numerical

descriptors such as length, angularity and surface roughness [27] were obtained in this

process, yielding quantitative data that allows further processing.

3.2.3 Data Processing and Fault Diagnosis

Maintenance programs require an efficient methodology for using available machine

condition information for fault detection and diagnosis. This typically involves the

manual analysis of vibration spectra and oil analysis results data by experts. In order

to verify the existence of complementary interaction between vibration, oil and wear

particle analysis, manual analysis of the collected data was performed together with

post test visual inspection of the test apparatus.

The data processing and fault diagnosis is an important step in the machine condi-

tion monitoring operation, as the hints in the collected data are combined in order to

detect existing and developing faults. The techniques of data analysis as discussed in

Chapter 2 need to be applied to the collected data for fault detection. Vibration analysis

was performed by using knowledge from literature, handbooks, as well as consultation

with experts in the vibration analysis field. Similarly, oil analysis was performed by

consulting literature and standards such as the draft ISO/TC 108/SC5 standard [102].

Wear particle analysis was performed by evaluating the filtergram microscopic slides

using an optical microscope and comparing the wear particles to images from a wear

particle atlas and 3D wear particle analysis techniques developed in [27] to categorise

the particles. All of the information was then analysed together, and the overlap in

fault detection evaluated.

The data collected for each experiment consisted of four components, including oil

analysis, wear debris analysis, vibration analysis, and visual inspection of the wearing

surfaces. The oil analysis was conducted on a CSI Oil View 5200 Trivector Analyser,

which provided particle count, size distribution data and viscosity. Wear debris analysis

was conducted using the filtergram method for slide preparation. This included the

dilution of 1mL of oil sample with solvent, and passing this mixture through a 3 micron

filter patch. Curing of the patch on a glass slide to render it transparent was followed
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by image acquisition using a LSCM, resulting in particle images at 0.05 micron height

increments. The images were compiled into a single 3D surface morphology image

using Matlab, which allowed the surface roughness values to be calculated. The use of

numerical descriptors like surface roughness improves the reproducibility of wear debris

analysis, by reducing the reliance on subjective operator judgements [22,27].

Vibration analysis was conducted by analysing both time and frequency domain

data, of the input and output gearbox shafts. Visual inspection of the gear teeth was

performed during the oil changes, and after each test had concluded. This allowed

the determination of the actual type and extent of damage that had occurred, and the

degree of accuracy of the oil, wear debris and vibration analysis techniques.

Data processing as described here is the typical procedure that is followed for the

respective analysis of vibration, oil and wear particle analysis. While these techniques

are used for the purposes of MCM, the difficulty in correctly assigning each abnormal

operation with the appropriate fault has been a primary reason why a correlation anal-

ysis has not been performed until now. The correlation investigation focused on using

all indicators of abnormal machine operations provided by the three techniques, and

linking the indicators of each technique that signal the same faults. This differs consid-

erably from conventional analysis, where each technique is applied for fault detection

individually, and correlation is not performed. This effectively means that not all of the

information supplied by each technique is used, limiting the accuracy and reliability of

the resulting machine health report.

3.2.4 Comparison of Diagnostic Results

The comparison of diagnostic results obtained from the individual condition monitoring

techniques presented the major step in the correlation investigation. While the three

analysis reports can be used to approximate the machine condition, a case study type

investigation for each performed test is crucial to observe the possible links between the

techniques. Post test machine component inspection was also conducted to aid with

assessing the fault detection ability of each technique.

The diagnostic results obtained from each technique were compared on a detected
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fault basis. Each technique was used individually to diagnose two types of faults —

component defects, and general fault indicators. Component faults included those faults

where the technique could identify the faulty component or component type directly

from the collected data. General fault indicators incorporated faults where an abnormal

condition was detected, but could not be used to identify a particular component. The

correlation investigation focused on both of these fault categories, as directly detected

faults reveal the overlap in fault detection by the three techniques, while the general

fault indicators were used to assess the possibility and potential benefit of correlation.

When the techniques are used individually to assess a machines condition, only the

direct detectable faults are identified. The general fault indicators are essentially dis-

carded as these cannot usually be used with sufficient accuracy to make maintenance

conclusions. It was therefore concluded that the success of correlation lies in correctly

linking up of the general fault indicators, using the post test inspections to verify the

reasoning.

3.3 Development of AI Systems for Fault Diagnosis

Condition monitoring of fixed plant operating in the mining, mineral processing and

manufacturing industry sectors is commonly performed using vibration, oil or wear par-

ticle analysis techniques, or a combination of these. The information obtained by each

technique differs where vibration analysis can detect imbalance and looseness type sit-

uations, oil analysis provides the lubricant status, while wear particle analysis provides

an insight into the prevalent wear modes, cleanliness and component wear. Studies, and

the work done in Section 3.2 have shown that the techniques therefore generally com-

plement each other [1,2], which has led to the adoption of hybrid condition monitoring

programs. Due to contamination being a common occurrence in the targeted indus-

tries, oil analysis has typically been included in the condition monitoring programs,

while vibration analysis is often used for general fault detection.

The correlation of vibration, oil and wear particle analysis techniques would there-

fore enable a comprehensive machine condition report to be obtained, using the various
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fault indicators provided by the individual techniques. The potential benefits of this

approach would be earlier component fault detection, and the ability to treat root

failure causes such as contamination or imbalance before causing excessive secondary

faults. More accurate condition monitoring information also allows better management

of maintenance resources by mitigation of typical failure modes and developing faults

due to improved fault detection ability.

The research project therefore focused on the construction of artificially intelligent

(AI) systems utilising these three techniques, in order to investigate how the analysis

results can be correlated into a comprehensive machine condition report. While the

analysis methods are typically performed manually by trained maintenance staff, the

use of AI systems was included in the project to allow the analysis to be executed in an

objective approach thus reducing reliance on the operator. The benefit of an AI system

is that once the individual analysis of each technique is performed, the AI system has

all the results in the required digital format to continue to perform the correlation

analysis.

As the use of hybrid condition monitoring programs is becoming more widely

adopted, an AI system capable of a correlated analysis of machinery condition could

be implemented easily. While oil and vibration analysis can be automated, these are

generally chosen by maintenance departments and laboratories. Development in the

automation of wear particle identification may make this effective technique commer-

cially viable, and further increase the accuracy of condition monitoring. The use of

an AI system for routine machine condition utilising a correlated technique approach

would be a valuable tool for any maintenance department, especially those with large

machine inventories.

3.3.1 Selection of Artificial Intelligence Systems

Artificially intelligent systems encompass a large group of software designs and algo-

rithms designed to allow computers to interpret data using human expert like reasoning.

The forms of artificial intelligent systems considered in this project include neural net-

works, gray systems, and expert systems. Neural networks are very useful for relating a
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trend in the input data with a certain outcome or result. This type of operation is often

referred to a black box, where a direct relation between input and output was initially

unknown, and established by the AI system. Gray systems are useful for implementing

mathematical models, thereby relating output to the system inputs. These systems

have been used successfully to identify wear particles according to shape and surface

morphology characteristics [27, 73]. This AI system for particle characterisation can

be used as a pre-processing step for the AI system developed in this project, thereby

allowing quantitative wear particle identification.

The type of data analysis performed in machine condition monitoring utilises well

proven rules to diagnose machine faults using distinctive features of the input data.

Black box and mathematical model type AI systems are therefore not required for data

analysis, as the links between input and output are already well defined, and widely

used by experts in the machine condition monitoring field. The type of AI systems well

suited for this application are expert systems, which follow predefined reasoning logic

in order to relate features in the input data to the possible outputs. Expert systems are

categorised into the transparent type of AI systems, as the relation between input and

outputs is clearly defined, as opposed to neural networks and gray systems. The AI

system chosen for this project are expert systems, as these simulate the data analysis

performed by human experts.

3.3.2 Development of Integrated Expert Systems

The development of expert systems for the correlation of vibration, oil and wear de-

bris analysis will be undertaken by designing separate expert systems for each analysis

technique, such that a third expert system can be used to correlate the two condition

reports into one comprehensive report. This approach was selected to allow the de-

velopment of each expert system to be thoroughly tested, before proceeding with the

analysis of the integration expert system. The thorough testing of each expert system,

designed to operate as an individual module, ensures the integrity of the development.

The principal of this data processing procedure is shown in Figure 3.3. This method-

ology allows the design and testing of the expert system for each technique, while also
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output to the system inputs. These systems have been used successfully to identify wear

particles according to shape and surface morphology characteristics [ref – Peng etc]. This AI

system for particle characterisation can be used as a pre-processing step for the AI system

developed in this project, thereby allowing quantitative wear particle identification.

The type of data analysis performed in machine condition monitoring utilises well proven

rules to diagnose machine faults using distinctive features of the input data. Black box and

mathematical model type AI systems are therefore not required for data analysis, as the links

between input and output are already well defined, and widely used by experts in the machine

condition monitoring field. The type of AI systems well suited for this application are expert

systems, which follow predefined reasoning logic in order to relate features in the input data to

the possible outputs. Expert systems are categorised into the “transparent” type of AI systems,

as the relation between input and outputs is clearly defined, as opposed to neural networks and

gray systems. The AI system chosen for this project are expert systems, as these simulate the

data analysis performed by human experts.

2.2.2  Development of Integrated Expert Systems
The development of expert systems for the correlation of vibration, oil and wear debris

analysis will be undertaken by designing separate expert systems for each analysis technique,

such that a third expert system can be used to correlate the two condition reports into one

comprehensive report. This approach was selected to allow the development of each expert

system to be thoroughly tested, before proceeding with the analysis of the integration expert

system. The thorough testing of each expert system, designed to operate as an individual

module, ensures the integrity of the development.

The principal of this data processing procedure is shown in Figure 2.3. This methodology

allows the design and testing of the expert system for each technique, while also providing the

ability to diagnose machinery faults when only vibration or oil and wear particle analysis data

is available. The individual vibration, and oil and wear debris analysis expert systems will

operate so that each expert system analyses the respective data independently. The results

from each expert system can then be correlated by the third (secondary) expert system.

Figure 2.3 – Data Process Flow Chart of Expert Systems

The fault detection ability of the vibration analysis, and oil and wear particle analysis

techniques differ significantly, resulting in the two analysis reports complementing each other,
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Figure 3.3: Data process flow chart of the expert systems.

providing the ability to diagnose machinery faults when only vibration or oil and wear

particle analysis data is available. The individual vibration, and oil and wear debris

analysis expert systems will operate so that each expert system analyses the respective

data independently. The results from each expert system can then be correlated by the

third (secondary) expert system.

The fault detection ability of the vibration analysis, and oil and wear particle anal-

ysis techniques differ significantly, resulting in the two analysis reports complementing

each other, especially for weak or developing faults. The secondary expert system is

therefore required to correlate all the detected faults of each analysis technique in the

final condition monitoring report.

The vibration analysis knowledge base was developed by compiling a list of all

possible component faults that can be diagnosed and are relevant to machinery found

in mining and processing industries. Once all of the relevant faults were identified,

the detection strategies using tri-axial frequency spectra and demodulated spectra,

as well as amplitude-time spectra were compiled to construct the knowledge base.

This fault oriented approach was also used during the knowledge base development

for oil and wear debris analysis. The included detection techniques are oil viscosity,

water and dust concentration, ISO cleanliness code, wear particle type and colour, and

elemental analysis. These techniques have proven success for diagnosing wear conditions
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in gearboxes and hydraulic systems. The knowledge base was constructed by compiling

the results obtained from each oil analysis technique, and formatting the reasoning

logic into one integrated knowledge system.

The developed knowledge bases were implemented in software code as expert sys-

tems, featuring quantitative analysis of the input data according to the compiled rea-

soning logic rules. The aim of the integrating expert system was to correlate the results

of each of the two expert systems the vibration analysis, and the oil and wear debris

analysis expert systems. The possible difficulties with integrating these techniques is

well documented in literature, and are predominately concerned with the possibility

of conflicting results from the individual expert systems. Extensive investigations of

the results of the two techniques for various gearbox failures allowed three scenarios

of conflicts to be identified. These include only one technique detecting a fault, both

techniques detecting a fault but with differing severity, or both techniques detecting

different (or numerous) faults. In these cases, the technique which has the lower uncer-

tainty was used in the analysis if possible, while the more severe fault report was used

in cases where the uncertainty is unavailable, such as the presence of water in oil. This

strategy was also implemented for scenarios when the main fault is unknown as numer-

ous faults have been detected. The fault with the lowest uncertainty was considered to

be the predominant fault. However, this methodology does not indicate whether the

predominant fault was actually the first fault to develop (the primary fault), or any

information about the failure process. This kind of analysis can only be performed by

a root-cause analysis.

The comprehensive diagnosis of machine faults obtained by the operation of the

three expert systems allows the prediction of the chronological order of progressive

failure. This type of analysis commonly called root-cause analysis, was included in

the expert system, and involved the development of a dedicated analysis algorithm,

by studying machine failure modes and construction of a knowledge base on the find-

ings. Using root-cause analysis, faults can be categorised as either primary or secondary

faults, depending on whether a fault was caused by another fault, or whether it is an in-

dividual failure mode. Faults resulting from individual failure modes including bearing
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and gear fatigue, bent drive shaft, lubrication faults and imbalance can be categorised

as primary faults. Component faults that are the result of a primary fault occurring

can therefore be categorised as secondary faults, such as misalignment resulting from

a worn bearing or unacceptable installation practices. While some faults such as bent

drive shaft can generally be considered primary faults, many faults could be grouped

into either category depending on what other faults are present. Failure mechanisms

were studied and organised in a table format to allow the categorisation of primary

and secondary faults based on what component faults were detected. The results were

arranged in flow charts as shown in Appendix Section E.

The development of the complete AI system concentrated on satisfying the research

project objectives; to design an AI system capable of correlating vibration, oil and

wear particle condition monitoring data using a software package that can be used

as a prototype in a commercial setting. The expert system structure proposed above

allows the AI system to process and interpret vibration, oil and wear particle data in a

logical sequence, then correlate the preliminary results to obtain one machine condition

report. The inclusion of additional features such as a root-cause analysis algorithm, and

maintenance recommendations enabled the system to be operated by general technical

staff rather than highly trained staff. The development of a dedicated user interface

allows the expert system analysis algorithms to be used in a commercial environment,

thereby satisfying the design objectives.

3.3.3 Interface Development

The user interface is an important component of the project development, as it enables

the developed knowledge base and AI system to be used in a commercial application.

As this is an industry linkage project, contribution to industry in a practical way is of

prime significance. The objectives relating to the interface development therefore focus

on the ease of use, compatibility with Microsoft Windows type operating systems, and

reduction of operator interaction.

In order to meet the user interface objectives, a graphical type of user interface was

used, as this has numerous advantages over text based systems. The interface develop-
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ment differed to the research and knowledge base development, as human interaction,

visual appeal and predjustice must be taken into account, apart from efficient operation

from an analytical perspective. A graphical interface (GUI) with a Microsoft Windows

style operation was therefore deemed most appropriate as it allows operators familiar

with Windows to navigate the interface using intuition. This helps reduce operator

training time as well as provide an easy to use system. The GUI also allows the place-

ment of strategic help menus and active mouse cursers (help message pops up when

mouse is hovered over object) at strategic positions to provide the operator with the

required information.

The required reporting standards used to present the results were developed by

considering the required operator input for each machine analysis, and information

flow within the different departments within an operation. As machine maintenance

and condition records are a valuable tool for maintenance departments, text file based

reporting was selected over on-screen reports. In order to reduce operator time, the

expert systems were designed to report pre-defined text messages into the text file,

thereby compiling a ready-to-use output report.

The input information required for the expert systems to operate consists of the

raw data, machine specifications, and analysis specific information. As the machine

specifications and analysis information do not change for each machine, it was decided

that two data input menus would be used, and each menu would be able to save the

information to text files for future re-use. The raw data of vibration analysis is available

as an exported data file, while a data input menu was required to allow oil and wear

particle analysis data to be saved as a text file. The use of text style data files for all

input information simplifies the analysis menu, as only browse buttons are required to

select the appropriate data files.

While the data input mechanisms were designed to be menu driven and text file

based, a text file only output for individual expert systems, and a menu only output

for the combined analysis expert system was deemed most appropriate. The text file

outputs allow these to be used in analysis reports or to be archived for future refer-

ence, while the on-screen menu style output permits the results to be presented in a
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logical and simplified manner. It was considered important to give the operator a quick

overview of the health of the machine, with the details being available by selection of

an additional menu button called Details. Similarly, the results from the root-cause

analysis and analysis recommendations can also be accessed from the overview menu.

As this layering is not possible in a text file, it was decided to only offer an on-screen

display for output.

3.3.4 Testing Criteria of AI System Developments

The project relies on the correct implementation of analytically developed knowledge

bases into software code, in order to achieve an AI system capable of meeting the stated

project objectives. A testing strategy needs to be in place to verify that the completed

AI system performs as planned, as well as verifying the conducted analytical research.

These two goals were used when deciding on the testing strategy.

The initial testing of the AI system developments was performed to ensure that the

operation coincided with the knowledge base, including data processing, fault detection,

result reporting, and interface operation. Testing of this phase was performed by

assessing the correct operation of all If-Then-Else loops, by manipulating the input

data and testing for the corresponding outputs. As the expert systems were developed

in sequential order, the performance of each system could be verified before proceeding

with further development. This simplified the software code error checking and testing

process, as small sections of code can be de-bugged easily, and subsequently saved

development time.

Once each expert system operated as planned, real machine condition data from the

laboratory tests and industry were used to verify that the correct machine condition

conclusions were reported. The criteria used to assess the success of analysis was to

test whether the reported faults coincided with the faults detected by manual condition

analysis, and post-test visual inspection of the laboratory rigs. The laboratory data

obtained from the spur gear wear tests described in Section 3.2.1.2 was used for the ver-

ification purpose, as well as data from industrial reduction gearboxes sourced through

collaboration with BHP Queensland Nickel. This rigorous testing phase therefore in-
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cluded the verification of each of the conducted laboratory test rig wear investigations,

each analysed as a case study. The conclusions of the developed integrated analysis ex-

pert system were compared to the results of the manual condition analysis, and verified

using the post-test visual inspections.

3.4 Summary

The development of data analysis and interpretation techniques was a main component

of this research project. These range from the initial design of experiments to obtain

machine condition monitoring data, to the comparison between vibration, oil and wear

particle analysis data, the development of a user interface, and the development, testing

and verification stages of the analysis algorithms. The methodologies discussed in this

chapter were used throughout the project, and hence relate to the developments of the

successive chapters.



Chapter 4

Experimentation and Results

4.1 Introduction

The acquisition of condition monitoring data from laboratory testing equipment was

an important component of the project, as it enabled the investigation into the com-

plementing abilities of vibration, oil and wear particle analysis. Data obtained from

laboratory equipment as opposed to machinery used in industry has the advantage

that abnormal operating conditions can be imposed individually and under controlled

conditions, providing more accurate diagnostic information for the particular failure

mode investigated. This single fault condition specific machine condition information

allowed the identification of sequential component failures, which was compiled into

a root-cause analysis knowledge base. The experimental data was also used to verify

the correct operation of the developed expert systems, in terms of fault detection and

diagnostic ability.

4.2 Spur Gear Tests

The test rig utilised to run the experiments was a single reduction spur gearbox and cen-

trifugal pump arrangement, powered by an electric three-phase motor. The abnormal

conditions imposed onto the gearbox were selected to correspond to those frequently

encountered in industry, and capable of significantly reducing the service life of the

112
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gearbox. The conditions leading to gearbox failure investigated in this project were

constant and cyclic overload, contamination, and bent gear mounting shaft operation.

These tests were selected by studying common gearbox failure modes as well as based

on the experience of Industrial and Technical Services, the industry partner of this

project.

The experiments were conducted using a set method, which consisted of the wear-in

of the components prior to imposing the abnormal operating condition. The only test

which did not undergo this step was the bent drive shaft test, as this shaft was installed

during the gearbox overhaul. Once the overhauled gearbox was fitted to the test rig, the

strain gauge amplifier was zeroed, so that the load cell output voltage could be recorded

throughout testing. The experimental rig was started and initial voltage readings were

recorded from the digital multimeter. The motor shaft speed was measured using

a digital tachometer. Throughout testing, vibration data, motor characteristics, oil

temperature, and ambient temperature were recorded at regular intervals. Oil samples

were also taken during data collection. After each data collection, the vibration data

was uploaded into a PC, while all temperature and motor speed values were entered

into a spreadsheet. The operating time of each test varied, depending on the severity of

the wear experienced by the gearbox, and resulting operating time at the normal wear

to wear-out transition. The transition from wear-in to normal operation was monitored

using trend information of wear particle concentration and size.

4.2.1 Normal Operation

The aim of this test was to study the lifetime of the gearbox and inherent failure modes

when operating the gearbox at 80 % load rating, as well as identify the transitions be-

tween wear-in and normal operation, and normal operation to wear-out stages. During

the test which consisted of 120 hours of continuous operation, 11 slides in total were

taken with data collected at the initial 6, 12, 24 operating hours, with a 24 hour interval

for the remainder of the test. The analysis of the test data was performed using each

technique individually, thereby evaluating the machine health using vibration analysis,

and oil and wear particle analysis.
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Figure 4.1: Acceleration-frequency spectrum at the output side of the gearbox.

4.2.1.1 Vibration Analysis Results

Figure 4.1 shows the acceleration-frequency plot for 0 – 4000 Hz taken on the output

side of the gearbox. This plot distinctly shows the fundamental gear mesh frequency

and its harmonics. The frequency amplitude for each of the gear mesh frequencies is

extremely low which represents smooth initial operation of the system.

Some associated sideband activity can also be seen around these frequencies but is

representative of the gears running-in stage. Figure 4.2 shows the velocity-frequency

spectrum for the region 0 – 400 Hz at the gearbox input. It can be seen that there is a

distinct peak at 1X, which may be an indicator of imbalance or eccentricity. This vibra-

tion feature however, is common for a normal operating system. From this plot, there is
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Figure 4.2: Velocity-frequency spectrum at the input side of the gearbox.

no evidence of bearing defects, misalignment or imbalance, and the only peaks are due

to running speed harmonics that show low levels of velocity amplitude. Examination

of a waterfall plot on the input side of the gearbox (as shown in Figure 4.3) indicated

that the vibration levels throughout the normal testing of the gearbox remained fairly

constant.

4.2.1.2 Oil and Wear Particle Analysis Results

Microscope slides were prepared using the filtergram method, which involved the dilu-

tion of 0.3 mL of the oil sample in a solvent followed by passing through the 3 micron

filter patch. After curing of the slide to make the patch transparent, it was examined

and the following results recorded. The large concentration of rubbing wear particles is

common for the wear-in period of a gearbox. The small number of fatigue and severe
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Figure 4.3: Waterfall plot of 4000 Hz acceleration at the input side of the gearbox.

sliding particles are indicative of the asperities present on the gear surfaces being worn

down.

As shown in Table 4.1, the elimination of fatigue and sliding wear particles which

appeared in the first oil sample indicates that these were produced as a result of the

wear-in process and not due to a gearbox fault developing. Slides 3 to 6 feature a

decrease in quantity and size of the laminar particles, typical for the transition to

normal operating regime, as demonstrated by the little change in wear debris features

during slides 7 to 10.

In slides 3 to 6, the size and quantity of the rubbing particles remained fairly

constant through this interval. The quantity and size of laminar particles decrease

through this interval of the wear-in process of the gears. In slides 7 to 10, the quantity

and size distribution of both the rubbing and laminar particles remained fairly constant

over this interval. This indicates that the gears have entered the normal operating



CHAPTER 4. EXPERIMENTATION AND RESULTS 117

Table 4.1: Wear debris analysis of the normal operation test.

Slide Operating Time (hours) Wear Debris Features

1 6.5 85 % rubbing wear particles,

10 – 13 % laminar particles,

<1% fatigue and severe sliding particles

2 12 90 % rubbing wear particles,

15 % laminar particles

3 – 6 24 – 60.7 Decrease in quantity

& size of laminar particles

7 – 10 72.75 – 108.75 No significant change in particles present,

concentrations and size

11 120.3 Increase in quantity

& size of laminar particles

region. A very small amount of fatigue particles were still present. Finally, in slide 11,

the rubbing particle quantity and size distribution remaining constant. There was a

slight increase in the quantity and size of laminar particles relative to slide 10. This

observation has been confirmed using a particle analyser. Figure 4.4 shows a laminar

particle found in slide 1. Rubbing wear particles are similar to laminar particles in

shape, but are smaller in size.

The laser scanning confocal microscope (LSCM) was used to confirm surface rough-

ness values for representative wear particles during the wear-in, normal and wear-out

operation stages of this test. This is an advanced technique of wear particle analysis,

allowing quantitative wear particle identification. Seven laminar particles were anal-

ysed from slides 1, 5 and 9, to represent the wear-in, transition and normal operation

stages. The results of the surface roughness values, Ra, for the laminar particles are

given in Table 4.2. The results from Table 4.1 show that the surface roughness for the

laminar particles decrease over the duration of the test. This trend demonstrates that
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Figure 4.4: Laminar particle generated during the normal operation test.

Table 4.2: Surface roughness values for wear stages of the 5 tests.

Test Number Start of Test (µm) Middle of Test (µm) End of Test (µm)

Normal Operation 0.247 0.244 0.220b

Constant Overload 0.166 0.130 0.173

Cyclic Overload 0.191 0.207 0.262

Contamination 0.110 0.085 0.080

Bent Shaft 0.051 0.035 0.074

bEnd of Test 1 was still in normal operation, with no significant change in value observed.

Figure 4.5: Gear tooth surfaces before (left) and after (right) the normal operation test.
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the surface roughness of the laminar particles is decreasing during the wear-in period.

This test monitored the wear debris resulting during the wear-in period of new gears,

and demonstrates the change in wear particles and size distribution in the transition

from wear-in to normal operation. Figure 4.5 shows the gear wear surfaces before and

after the test. Wear debris analysis revealed that the wear modes present during the

transition was rubbing wear. This coincides with the rolling contact of the meshing

gear teeth, and no major faults have been detected.

4.2.1.3 Correlation of Vibration, Oil and Wear Particle Analysis

The wear debris and vibration analysis techniques both exhibited evidence for a de-

creasing wear rate as is typical for the running-in to normal operation transition. The

reduction of laminar particles, and presence of limited quantity of small fatigue parti-

cles found by wear debris analysis demonstrate good correlation with the findings of

vibration analysis: a decrease in vibration amplitude, and low amplitude of gear mesh

harmonic frequencies and sidebands. Post test inspection confirmed the conclusion

drawn from the correlated wear debris and vibration analysis approach. The results of

this test verified that the gearbox operates satisfactorily with little wear rate when no

initial seeded faults are triggered, and the transmitted load is limited to 80 % of the

rated transmission power. Machine faults during the test were not detected by either

analysis technique, while the wear-in stage was characterised by a general decrease in

vibration amplitudes, a reduction of fatigue and sliding wear particles, as well as a

decrease in surface roughness of laminar particles.

4.2.2 Constant Overload

The overloaded operating condition was imposed onto the gearbox by operating the

test rig at an input motor speed that resulted in the centrifugal pump absorbing the

desired amount of power. The transmitted power was determined by measuring the

motor torque using a strain gauge, and noting the motor shaft speed. The duration of

the wear-in process of this test was observed for the first 133 hours of operation, and

an oil change was completed after the first 108 hours of operation. Once the gears were
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operating in the normal regime, the 125 % overload condition was initiated, and the

gearbox operated for another 109 hours.

4.2.2.1 Vibration Analysis Results

Three spectra ranges were sampled during this test consisting of a broad scan at 4000

Hz, mid range of 1000 Hz, and another to 400 Hz. The resolution of the data was 3200

lines for the spectra, and 4096 samples for the time domain data. The vibration data

taken for this test revealed that a number of defects existed throughout the duration

of the test. The low frequency velocity spectra indicated the presence of a loose fit be-

tween the gearbox output shaft and bearings, while a demodulated and high frequency

acceleration spectra gave evidence of gear looseness, and eccentricity on the output

gear.

The overloaded condition of the gearbox could be identified by vibration analysis

using historical spectra for normal operation, as the higher load resulted in an increased

amplitude of vibrations. The increase of sidebands around the harmonics of gear mesh

frequencies towards the end of the test indicated that a gear meshing fault had occurred

and that the gears were wearing severely. However, the type of gear mesh fault and wear

mechanism could not be diagnosed using vibration analysis. Figure 4.6 shows a trend

in vibration of the gearbox input frequency spectra to 4000 Hz, with an increasing time

axis being out of the page. The gear mesh frequency and the first two harmonics at

40, 80 and 120 orders respectively, indicate that misalignment possibly due to excessive

looseness may have developed.

4.2.2.2 Oil and Wear Particle Analysis Results

Oil samples were taken when the vibration measurements were made, with wear debris

analysis being performed using computerised image analysis techniques, while a particle

counter was also used for particle concentration and size distribution analysis. The

wear debris obtained from this test was analysed using the filtergram method for slide

preparation, and an optical microscope. The wear particles were analysed for size

and size distribution, shape, and surface roughness. The initial wear-in period of the



CHAPTER 4. EXPERIMENTATION AND RESULTS 121

Figure 4.6: Trend of input gear frequency spectra (normalised to input gear speed).

Figure 4.7: Fatigue particle generated during the constant overload test.
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Table 4.3: Fatigue particle concentrations on filtergram microscope slides.

Slide Operating Time (hours) % Concentration

1 - -3 18 55

4 – 6 41 60

7 – 8 60 60

9 – 11 133 70

12 – 14 204 70

15 – 16 242 70

gearbox was characterised by a decrease in the generation of laminar particles and an

initial increase in larger rubbing particles.

The wear particles generated during the overload period exhibited a continuous

increase in fatigue particles for the initial 70 hours of operation, followed by a rapid

increase in fatigue particles during the final 50 hours of operation (the wear-out phase)

as shown in Table 4.3. Figure 4.7 shows an image of a fatigue particle, found in slide

12. Rubbing and laminar particles were found to represent around 30 and 10 percent of

particles respectively, with the size of laminar particles decreasing from 20-50 microns to

20-30 microns. The roughness values of the laminar particles is listed in Table 4.2. The

increase in fatigue particles was accompanied in a large increase in particles in general,

which was shown by both particle count information as well as visual inspection of the

lubricant colour during the wear-out phase. The surface of the fatigue particles was

found to be significantly rougher than of the laminar particles.

The fatigue particles were suspected to originate from the gear teeth surface by the

pitting wear mode, due to their generally smooth surface with holes and presence of

straight edges. Numerical surface roughness data for fatigue particles of this test using

the LSCM were not obtained as these only appeared in the wear-out stage of the test,

and trending was thus not possible. However, the surface roughness trend of the laminar

particles shows that the particle surface became smoother during the wear-in to normal
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Figure 4.8: Cutting wear particle generated during the constant overload test.

operating stage, and then increased again during the wear out stage. Although sliding

wear particles were not observed during the duration of this test, a small number of

cutting particles were noticed at the end of the test, as shown in Figure 4.8. This could

be an indication that gear looseness had developed which resulted in gear misalignment.

The conclusion that can be drawn from the wear debris analysis is that the gears

were wearing out due to surface fatigue (pitting). As the operating hours of the test

are known, the presence of fatigue particles at low operating hours suggests that an

overload condition may have caused the gears to fail prematurely. In an industrial

application where gear hardness data is not obtained during overhaul, the wear debris

data could also have suggested that the gears were too soft for the imposed load.

4.2.2.3 Correlation of Vibration, Oil and Wear Particle Analysis

The effects of the overloaded condition relating to gear wear were identified by both

analysis techniques. While vibration analysis detected a gear mesh fault with increasing

severity, wear debris analysis revealed fatigue particles suspected to originate from

pitting. This diagnosis was confirmed when the gearbox was dismantled and inspected.

The majority of gear teeth showed the onset of pitting, caused by high localised surface

stress. Other wear modes such as sliding wear were not present, as shown by the

otherwise smooth gear tooth surfaces in Figure 4.9.

Of the wear particle analysis techniques, particle shape and morphology inspection

allowed the detection of an increase in pitting fatigue particles approximately 24 hours

before particle counting revealed a significant increase in the number of particles. Simi-
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The conclusion that can be drawn from the wear debris analysis is that the gears were wearing

out due to surface fatigue (pitting). As the operating hours of the test are known, the presence

of fatigue particles at low operating hours suggests that an overload condition may have

caused the gears to fail prematurely. In an industrial application where gear hardness data is

not obtained during overhaul, the wear debris data could also have suggested that the gears

were too soft for the imposed load.

3.2.2.3  Correlation Investigation of Vibration, Oil and Wear Particle Analysis

The effects of the overloaded condition relating to gear wear were identified by both analysis

techniques. While vibration analysis detected a gearmesh fault with increasing severity, wear

debris analysis revealed fatigue particles suspected to originate from pitting. This diagnosis

was confirmed when the gearbox was dismantled and inspected. The majority of gear teeth

showed the onset of pitting, caused by high localised surface stress. Other wear modes such as

sliding wear were not present, as shown by the otherwise smooth gear tooth surfaces in

Figure 3.8.

Figure 3.8 – Photo of gear teeth after constant overload test.

Of the wear particle analysis techniques, particle shape and morphology inspection allowed

the detection of an increase in pitting fatigue particles approximately 24 hours before particle

counting revealed a significant increase in the number of particles. Similarly, vibration

analysis showed an increasing sideband activity of gearmesh harmonics throughout the

overload test.

The wear evidence given by vibration analysis can be used for root cause analysis, as it is

possible to diagnose other machine faults including gear misalignment and looseness. While

the chronological order of these fault being detected can be used for root-cause analysis, the

detection of wear modes can also verify this information. The nature of oil analysis however

requires a fault and resulting component damage to occur before the coinciding wear particles

can be detected. Given a case where both analysis techniques can detect a fault condition,

vibration analysis would therefore be expected to yield the first discovery.

3.2.3  Cyclic Overload
This test was conducted to allow the effects of a cycling load on a spur gearbox to be

investigated. This condition may be imposed to industrial spur gearboxes due to varying ore

Figure 4.9: Photo of gear teeth after constant overload test.

larly, vibration analysis showed an increasing sideband activity of gear mesh harmonics

throughout the overload test.

The wear evidence given by vibration analysis can be used for root-cause analysis,

as it is possible to diagnose other machine faults including gear misalignment and

looseness. While the chronological order of these fault being detected can be used for

root-cause analysis, the detection of wear modes can also verify this information. The

nature of oil analysis however requires a fault and resulting component damage to occur

before the coinciding wear particles can be detected. Given a case where both analysis

techniques can detect a fault condition, vibration analysis would therefore be expected

to yield the first discovery.

4.2.3 Cyclic Overload

This test was conducted to allow the effects of a cycling load on a spur gearbox to be

investigated. This condition may be imposed to industrial spur gearboxes working in

material handling due to varying material feed rates or different operator shifts. The

overload range for this test was set at 120 to 160 % of the rated power transmission of

the gearbox. This was achieved by operating the test rig at a line frequency of 75 Hz,
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resulting in gearbox input and output shaft speeds of 2125 and 2833 RPM respectively.

The test was operated for a total duration of 80 hours, during which 8 oil and vibration

data samples were taken.

4.2.3.1 Vibration Analysis Results

The vibration data of this test indicated that the sidebands of gear mesh harmonic

frequencies increased over the duration of the test. Although the cyclic load condition

could not be detected directly, the consequent developing gear mesh fault was thought

to be responsible for the increased sideband activity of gear mesh frequencies.

The presence of gear eccentricity and slight misalignment, indicated by the harmon-

ics of the gear mesh frequency was also detected, as shown in Figure 4.10. Installation

defects including bearing defects, shaft misalignment and imbalance were not detected

in the low frequency velocity spectra. The low frequency velocity spectra was not shown

as no faults were detected in this region.

The vibration analysis data therefore suggests that one of the present wear modes

occurring in the gearbox is sliding wear, resulting from the misalignment. Other wear

modes may also be present, but cannot be identified using the available vibration data.

4.2.3.2 Oil and Wear Particle Analysis Results

The wear debris analysis of this test revealed that both rolling as well as sliding wear

was occurring, and increased in severity for the duration of the test. The wear particles

from slide 1 were composed of around 75 % of rubbing wear particles, 20 % laminar

(the roughness values of the laminar particles is listed in Table 4.2 ) particles and the

remainder being shared by fatigue and sliding wear particles. At slide 6 (60 hours of

operation), the quantity and size of fatigue and sliding wear particles present increased

significantly, which was also accompanied by an increase in the quantity and size of

laminar particles. One of the sliding wear particles is shown in Figure 4.11.

The results obtained by wear particle analysis using an optical microscope were also

confirmed by a particle count and particle surface roughness values for particles of slides

1 and 8 (80 hours). The wear debris analysis resulted in the conclusion that pitting
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Figure 4.10: Vibration spectra of output gear collected during the cyclic load test.

Figure 4.11: Sliding wear particle collected during the cyclic load test.
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of the gear teeth had occurred due to the presence of fatigue particles, combined with

scuffing and/or scoring which resulted in the production of sliding wear particles. The

trend in surface roughness of laminar particles shows a significant increase during the

wear-out phase, indicating that the gearbox no longer operated in the normal stage.

The numerical surface roughness of laminar particles therefore confirms that a gearbox

fault exists, as diagnosed by visual wear debris analysis.

4.2.3.3 Correlation of Vibration, Oil and Wear Particle Analysis

Both the wear particle and vibration analysis techniques were unable to detect the

root-cause of failure, that a cyclic loading condition was occurring. However, both

techniques detected the resulting damage of the gears wearing out. Wear particle

analysis provided evidence that both gear fatigue (in the form of pitting) and sliding

wear modes were occurring, and increasing in severity towards the end of the test.

Vibration analysis added to the evidence by indicating that while a gear mesh fault

was developing, bearing faults did not exist. This supports the conclusion of wear

debris analysis that the fatigue particles originated from the gears. Vibration analysis

also complemented the wear particle analysis in the detection of misalignment which

could have resulted in the gears not meshing at a constant centre distance, thus creating

sliding wear particles. Post test inspection of the gears proved that both pitting as well

as scuffing and scorching wear did indeed occur, as shown in Figure 4.12, as predicted

by both analysis techniques.

The three tests demonstrated that both wear debris and vibration analysis tech-

niques complement each other, by correlating of the faults determined by vibration

analysis with the wear modes detected by wear debris analysis.

4.2.4 Contamination

The contaminant selected for this test was silicon dioxide, to allow the study of hard

particle abrasive wear while also being a common constituent of dust [89,103]. A silicon

dioxide concentration of 3740 ppm was used in the tests, to allow the gearbox to wear

severely within the expected normal lifetime of the gearbox, and to account for other
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Figure 3.11 – Photo of gear teeth after test 3.

The three tests demonstrated that both wear debris and vibration analysis techniques

complement each other, by correlating of the faults determined by vibration analysis with the

wear modes detected by wear debris analysis.

3.2.4  Contamination

The contaminant selected for this test was silicon dioxide, to allow the study of hard particle

abrasive wear while also being a common constituent of dust [6, 7]. A silicon dioxide

concentration of 3740 ppm was used in the tests, to allow the gearbox to wear severely within

the expected normal lifetime of the gearbox, and to account for other contaminant which

would generally be present had contamination of dirt occurred. This test was conducted for

162 hours of continuous operation, at the conclusion of which both vibration, oil and wear

particle analysis indicated that the gearbox was operating in the wear-out stage. During the

test, 10 oil samples and vibration scans were taken, in order to monitor the gearbox condition

and developing faults.

3.2.4.1  Vibration Analysis Results

The vibration analysis indicated that the gearbox underwent wear-in and normal operation

stages during the initial 89 hours of operation before the contaminant was added. Although the

audible noise emitted from the gearbox decreased for the first few hours after contaminant

addition, an increase in bearing and gear looseness could be detected, as well as a gear

backlash fault and misalignment were detected within 7 hours of operation. These defects

were easily recognisable after 24 hours of contaminant operation. At the conclusion of the test,

73 hours of contaminant operation, all defects mentioned had progressed to advanced stages,

while detectable bearing faults consisted of ball fault, and inner and outer race faults.

3.2.4.2  Oil and Wear Particle Analysis Results

The wear particles found during the wear particle analysis indicated that the gearbox was

operating in the normal stage at 89 hours running time. After the addition of contaminant,

rolling element fatigue particles appeared at approximately 20% concentration, which

increased to 30% during the test. Cutting wear particles (approximately 5%) also appeared

during the same time, and increased to 15% concentration after 52 hours of contaminant

operation. Examination of the cutting particles revealed that the size was generally smaller

than 5 microns in length. This indicates that the dominant wear mode resulting in the cutting

Figure 4.12: Photo of gear teeth after cyclic load test.

contaminant which would generally be present had contamination of dirt occurred.

This test was conducted for 162 hours of continuous operation, at the conclusion of

which both vibration, oil and wear particle analysis indicated that the gearbox was

operating in the wear-out stage. The load imposed on the gearbox was adjusted to

80 %, which conformed to the condition of the normal test. During the test, 10 oil

samples and vibration scans were taken, in order to monitor the gearbox condition and

developing faults.

4.2.4.1 Vibration Analysis Results

The vibration analysis indicated that the gearbox underwent wear-in and normal op-

eration stages during the initial 89 hours of operation before the contaminant was

added. Although the audible noise emitted from the gearbox decreased for the first

few hours after contaminant addition, an increase in bearing and gear looseness could

be detected, as well as a gear backlash fault and misalignment were detected within 7

hours of operation. These defects were easily recognisable after 24 hours of contami-

nant operation. At the conclusion of the test, 73 hours of contaminant operation, all

defects mentioned had progressed to advanced stages, while detectable bearing faults

consisted of ball fault, and inner and outer race faults. Figure!4.13 shows a waterfall

plot of the acceleration spectra over the test duration.
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Figure 4.13: Waterfall plot of acceleration spectra from the contamination test.
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4.2.4.2 Oil and Wear Particle Analysis Results

The wear particles found during the wear particle analysis indicated that the gearbox

was operating in the normal stage at 89 hours running time. After the addition of

contaminant, rolling element fatigue particles appeared at approximately 20 % concen-

tration, which increased to 30 % during the test. Cutting wear particles (approximately

5 %) also appeared during the same time, and increased to 15 % concentration after 52

hours of contaminant operation. Examination of the cutting particles revealed that the

size was generally smaller than 5 microns in length. This indicates that the dominant

wear mode resulting in the cutting particles may be due to a grinding process involving

the silicon dioxide particles. This claim has been further confirmed by the results of the

numerical analysis of the laminar particles. The average surface roughness values were

0.110, 0.085, and 0.080 µm for wear-in, normal, and wear-out operation respectively.

This indicates that the particles became smoother during the test. Towards the end of

the test, both rolling element and gear fatigue particles dominated, while the general

particle size decreased. This could be due to larger particles being modified and broken

into smaller ones by the wear process.

Particle count and concentration confirmed that particle concentration of all sizes

doubled during the initial 28 hours after addition of contaminant. The concentration

of particles smaller than 25 microns in size doubled again during the final 10 hours of

the test.

After the test, the gearbox was dismantled and the parts inspected visually for

wear. It was found that both gears had experienced severe wear from the tooth tip to

approximately a third down from the tip, and had a definite wear mark at the tooth

pitch line. The pitch line had a fine polished appearance with no apparent pitting,

scuffing or scoring damage, as shown in Figure 4.14. Gear wear was found to be more

severe on one side, indicating that misalignment had occurred. The drive shafts showed

signs of scoring and localized spalling at the bearing seats, which confirmed the presence

of bearing looseness. An oil leak had also occurred towards the end of the test, due to

worn seals and the misaligned shaft.
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Figure 4.14: Photo of one of the gears from the contamination test.

4.2.4.3 Correlation of Vibration, Oil and Wear Particle Analysis

The result of a high concentration of sharp abrasive material in lubricating oil is rapid

gear wear, which was detected by both oil and wear particle analysis. Wear particle

analysis indicated that a bearing surface fatigue fault had developed, and that cutting

wear was occurring. The cutting wear is an indicator of excessive looseness, caused by

worn bearings. This hypothesis was confirmed by vibration analysis, which detected

looseness, gear backlash and a misalignment fault.

The severity of gear faults were monitored by vibration amplitude, sideband activity

and baseline level using vibration analysis, and particle concentration using oil analysis.

Wear particle analysis was becoming complex at detecting wear particles due to the

large number of particles in the oil, and high occurrence of wear particle modification

by numerous passes through wear zone. Examining the trend of changing particle size

and surface morphology assisted in detecting wear particle modification.

The high occurrence of wear particle modification was also confirmed by the aver-

age roughness trend, which indicated that particles were becoming smoother with less

jagged edges. The effect of particles being broken into a number of other particles could

have been aided by the grinding processes occurring within the gearbox.

The benefits of using both wear debris and vibration analysis in this test are twofold.

Firstly, oil analysis was able to detect the large number of small contaminant particles,

which lead to the increased wear rate. Wear particle analysis was again able to detect
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the wear modes present as cutting wear, and fatigue particles generated from bearings.

Secondly, vibration analysis was able to confirm the secondary faults predicted by the

wear debris analysis. The combined use of analysis techniques therefore allows primary

and secondary faults to be identified, allowing the gearbox condition to be determined

with a high level of confidence.

4.2.5 Bent Shaft

The bent shaft was installed into the driven gear, which resulted in the majority of the

gear teeth not meshing at the pitch line. Due to the inward and outward movement

of the gear, sliding wear would be expected to occur. This phenomenon was verified

by both wear debris analysis and visual inspection of the gear teeth. The test was

operated for a duration of 293 hours, representing one of the longest operating tests.

The wear severity of the bent shaft can therefore be contrasted to the duration of the

other tests, such as overload. The bent shaft test was conducted at 80 % power rating

of the gearbox.

4.2.5.1 Vibration Analysis Results

Vibration analysis of collected data revealed the presence of a bent output shaft, as well

as gear looseness and misalignment. Trending of vibration data as shown in Figure 4.15

revealed evidence of the gears wearing in during the first 84 hours of operation, followed

by a period of normal wear, and then wear-out. The wear-out region was identified

by significant sideband frequency components around the gear mesh frequency. The

severity of bearing looseness and outer race defect were also found to increase towards

the end of the test. Figure 4.16 illustrates the faults detected on one of the frequency

spectra generated from this test. The bearing looseness and gear misalignment are

evident by the haystack, and high 1 times peak respectively.

4.2.5.2 Oil and Wear Particle Analysis Results

The oil analysis depicted a general trend of increasing concentrations of small particles

(smaller than 10 microns) throughout the test. Particles in the 10 to 50 micron range
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Figure 4.15: Waterfall plot of 4000 Hz acceleration at the input side of the gearbox, for the bent

shaft test. The rotational speed of the input shaft was 1327 RPM, the 4000 Hz corresponding

to 180.9 orders.
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Figure 4.16: Frequency spectra of input gear (frequency normalised for speed of input gear)

for bent input shaft test.
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were found to increase in concentration during the wear-in phase, and then continuously

decrease for the remainder of the test.

Throughout the test, rubbing and laminar wear particles were present, as well as

rolling element fatigue particles. The rolling element fatigue particles were diagnosed

as an outer race defect using vibration analysis. Severe sliding particles were first

noticeable after 45 hours of operation, at approximately 20 % of particles present. The

concentration of severe sliding particles increased gradually to 55 % by the end of the

test, at 290 hours of operation. The surface striations and roughness increased during

the final 100 hours of operation. Cutting wear particles were present at approximately 5

% during the initial stages of the wear-in phase, and again during the normal operation

and wear-out phases.

Numerical analysis of the laminar particles was conducted from oil samples corre-

sponding to wear-in, normal, and wear-out operation. The average surface roughness

values for each stage were 0.051, 0.035, and 0.074 µm respectively indicating that the

particles became smoother during the wear-in to normal operation, and then signifi-

cantly rougher.

4.2.5.3 Correlation of Vibration, Oil and Wear Particle Analysis

The results obtained from this experiment demonstrate that the wear particle, oil and

vibration analysis techniques correlate well in both detecting the fault, a bent drive

shaft, as well as monitoring the severity of damage that has occurred. As the imposed

fault is of the mass imbalance type, it is directly detectible with vibration analysis.

Wear particle analysis did however detect severe sliding wear after only 45 hours of

operation, corresponding to only 16 % of the test.

The transition between the wear-in to normal operation, and normal to wear-out

operation was judged by monitoring the gearbox using oil, wear particle and vibra-

tion analysis. Vibration analysis displayed a decrease in amplitude at the gear mesh

frequency (GMF) at the onset to the period referred to as normal operation, and a

significant increase in amplitude at the GMF at the wear-out transition. The three

operating periods have been used for comparison to machine wear stage and the other
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test, although the gearbox did not undergo a true normal operation due to the imposed

fault being present for the entire test.

The data from the numerical wear particle surface morphology analysis indicates

that while the particles became smoother during the wear-in stage, the Ra increased

significantly during wear-out. This trend corresponds to the surface roughness of the

gear teeth, which start off with a machined surface, gradually becoming smoother

during the wear in phase. Once surface fatigue commences, the surface roughness

again increases due to the arbitrary removal of material. The surface morphology of

wear particles is therefore an indicator of the surface roughness of the gear teeth.

The use of wear debris, oil and vibration analysis allowed all faults of the gearbox

to be detected, as well as classified into primary and secondary faults. The primary

fault in this test was the bent shaft, as detected by vibration analysis. The resulting

wear modes were severe sliding wear and cutting wear as detected by wear debris

analysis after 45 and 117 hours respectively. The sliding wear was due to the gear teeth

meshing at varying pitch centre distances, while the cutting particles were generated

from misalignment caused by gear and bearing looseness. The excessive looseness was

also detected by vibration analysis. Oil analysis revealed an increase in the total number

of particles towards the end of the test, which is generally a sign of rapid wear occurring

in a machine.

The benefit of utilising wear debris analysis as well as vibration analysis for this

test is that faults present in the gearbox can be detected with greater confidence. Wear

particle analysis allowed the detection of wear modes present within the gearbox, which

confirmed the gear looseness and suspected misalignment faults identified by vibration

analysis.

4.3 Worm Gear Tests

Worm gearboxes differ in wear modes to spur gearboxes, by inherently relying on pre-

dominately sliding wear as opposed to rolling wear of spur gears. Due to the high

sliding component, gearbox designers often select differing worm and pinion materials,
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with very different hardness properties. The design and operating differences of worm

gearboxes, including the slow operational speeds common with worm gear reductions,

result in significant differences in machine condition monitoring data obtainable from

this style of gearbox when compared with that from spur gearboxes. Although the

expert systems developed in Chapters 5, 6, and 7 are for spur and helical type gear-

boxes, the worm gearbox tests discussed in this section were used to verify the ability

to correlate the vibration, oil and wear particle analysis techniques for gearboxes other

than spur gears.

The output shaft of worm gear reductions is generally significantly lower than the

input shaft, resulting in the vibration analysis data of the output shaft generally being

of low frequency. This can make the early detection of bearing faults difficult. The

generated wear debris can include rubbing and sliding wear particles, as well as particles

from the usually softer pinion gear (bronze in the case of the test gearbox). Apart from

these differences to spur gears, the vibration, oil and wear particle analysis techniques

are used successfully for worm gear condition monitoring.

The worm gear test rig discussed in Section 3.2.1.3 was used to conduct 3 tests,

consisting of a normal operation test, contamination, and low oil viscosity with iron

particles. The normal operation test was used to observe the wear-in and wear-out

stages of the gearbox, and to obtain the vibration, oil and wear particle data during

these stages. The other two abnormal operation tests were used to establish the ability

of each technique to detect the resulting faults, as well as assess the degree of correlation

of these techniques.

4.3.1 Normal Operation

The normal operation test was conducted over a duration of 4 weeks, comprising of

approximately 664 hours of operation. Oil samples and vibration data were taken after

every 166 operating hours, after which the lubricating oil was replaced with Shell Tivela

S320, the recommended lubricant.

The vibration analysis trending was used to monitor the transition from wear-

in to normal operation, with a general decrease in vibration amplitude. The wear
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Table 4.4: Surface roughness of the worm gearbox normal operation test.

Sample 1 2 3 4

Surface Roughness, Ra (µm) 0.235 0.252 0.208 0.170

particles found during this test included laminar, rubbing and cutting wear particles.

The concentration and size of wear particles was observed to decrease during the test,

which is the typical results for the wear-in to normal operation transition. Quantitative

wear particle analysis was also performed, and the trend of surface roughness was

observed to decrease during the test, as shown in Table 4.4.

4.3.2 Contamination Test

The contaminant test was conducted by operating the gearbox for 166 hours, with oil

and vibration samples taken every 48 hours. The contaminant chosen for this test was

the same as used in the spur gear contamination test — silicon dioxide power, with

an average particle size range of 8 to 50 microns. The contaminant was mixed to the

recommended lubricant at a concentration of 15000 ppm (w/v), which corresponds to a

severe contamination condition. The oil was changed and the gearbox dismantled and

cleaned at every oil sample.

4.3.2.1 Vibration Analysis Results

The vibration analysis consisted of 1000 Hz frequency domain spectra at each ac-

celerometer mounting position on the gearbox, as discussed in Section 3.2.1.3. The

peaks detected in the spectra shown in Figure 4.17 consist of 1 times (1X) running

speed, line frequency, 2 times line frequency, and outer ball pass frequency.

The line frequency and harmonic result from motor induced vibrations being trans-

mitted to the gearbox due to the close coupled mounting arrangement, and is a common

component of vibration spectra of electrical machines. The 1 time running speed and

BPFO are gearbox vibrations. The BPFO indicates that bearing damage has occurred

due to the high contaminant concentration.
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Figure 4.17: Velocity-frequency spectrum at the drive end of the worm gearbox for the con-

tamination test.

Table 4.5: Surface roughness of the worm gearbox lubricant contamination test.

Sample 177 Hrs 402 Hrs 495 Hrs

Cutting Wear Particle Surface Roughness (avg), Ra (µm) 0.395 0.391 0.470

Rubbing Wear Particle Surface Roughness (avg), Ra (µm) 0.619 0.571 0.615
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4.3.2.2 Oil and Wear Particle Analysis Results

Wear particle analysis consisted of optical microscopy and quantitative wear particle

analysis. Optical microscopy revealed that the generated wear particles were of cutting

and rubbing types, which is typical from an abrasion type of wear mode. Approximately

two thirds of the generated particles were bronze particles, originating from the soft

pinion gear when compared to the hardness of the worm or bearing metal. The surface

roughness values of the cutting and rubbing wear particles was found to decrease slightly

initially, after increasing significantly during the end of the test, as shown in Table 4.5.

The increase in surface roughness of the wear particles indicates the increase in surface

roughness of the abrading gear surfaces.

4.3.2.3 Correlation of Vibration, Oil and Wear Particle Analysis

The conclusions drawn from this test are that vibration analysis was able to detect

a bearing fault, while oil and wear particle analysis could detect the contamination

directly. However, due to the large quantity of particles, bearing wear particles were

not detectable. It is therefore evident that the two analysis techniques to not overlap

at all, but rather complement each other for this contamination case.

Post test inspection of the gearbox components confirmed the severe wear that had

occurred, with a significant part of the worm and pinion gear worn away. Figure 4.18

shows the worm before and after the test, while Figure 4.19 shows the pinion gear prior

to and after the test.

4.3.3 Inadequate Lubrication

This test was performed to simulate a lack of lubrication condition achieved by the use

of an oil with low viscosity. The oil used was Shell Tecoma 68, an ISO 68 grade mineral

lubricant without anti-wear and extreme pressure additives. The aim of this test was

to study the efficiency of MH300.29 iron particle powder as possible anti-wear additive,

by suspending it in the lubricating oil at a concentration of 15000 ppm (w/v), which

corresponded to 1.0 gram into the sump capacity of 65 mL. This test was conducted
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(a)

(b)

Figure 4.18: Worm gearbox — worm (a) before contamination test; (b) after contamination

test.
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(a)

(b)

Figure 4.19: Worm gearbox — pinion gear (a) before contamination test; (b) after contami-

nation test.
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Figure 4.20: Velocity-frequency spectrum at the drive end of the worm gearbox for the lack of

lubrication test.

over a 4 week period (approximately 470 hours), with vibration data and oil samples

taken on a weekly basis (approximately every 168 hours). No oil change was performed

during the operating period of the test.

4.3.3.1 Vibration Analysis Results

The vibration analysis detected the electrical line frequency and the 2 times harmonic,

which may be characteristic or indicative of an electrical fault of the test rig motor.

The gearbox relating faults detected was a BPFO peak, indicative of a bearing fault

in the input shaft. Due to the tight clearances within rolling element bearings, the

iron particles may have been responsible for causing high surface pressure at the roller–

race interface when entering the load zone [85, 104]. The low viscosity oil would have

caused the lubricating regime to shift from an elasto hydrodynamic (EHL) towards

a boundary lubrication regime, and resulting in an increased wear rate. Figure 4.20

shows the velocity-frequency spectra of the worm at the driven end accelerator mount.
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4.3.3.2 Oil and Wear Particle Analysis Results

The inspection of filtergram slides revealed that five types of wear particles were present

throughout the test, which included laminar, rubbing, cutting, sliding and fatigue. The

low viscosity oil resulted in significant volumes of wear particles being present on all

slides. The cutting particles were found to increase in size, indicating that wear was

becoming more sever. Sliding wear particles are generally the result of a breakdown

of the shear mixed layer, which would be expected due to the low viscosity oil and

resulting boundary lubricating regime. The breakdown of the sheer mixed layer would

explain the absence of fatigue particles at the end of the test.

Wear particle analysis using an optical microscope revealed that the soft iron parti-

cles added to the lubricant were decreasing in size during the test. This means that the

anti-wear ability was decreasing, as evident by the increase in cutting wear particle size.

The surface roughness of the laminar wear particles was observed to decrease slightly

over the test from 0.191 at the beginning (45 hours) to 0.178 at 402 operating hours.

4.3.3.3 Correlation of Vibration, Oil and Wear Particle Analysis

The wear and lubricating conditions of this test were more complex than the contamina-

tion test case, due to the varied effect of the mild anti-wear iron particles and prevalent

low viscosity oil. Vibration analysis again demonstrated that individual faults can be

detected, as illustrated by the bearing outer race fault detected in the worm support

bearing. The low rotational speed of the output shaft made output shaft bearing fault

diagnosis difficult however. Oil and wear particle analysis complemented vibration

analysis well by detecting cutting and sliding wear particles, indicative of abnormal

wear and shear mixed layer breakdown respectively. Although not performed, a viscos-

ity analysis would have detected the low oil viscosity directly, and is a routine test in

general oil analysis performed in industry.

Post test inspection revealed that while both the worm and pinion gear had sus-

tained wear, the total worn volume was not as great as the contamination case, as shown

in Figure 4.21. It is therefore evident that low oil viscosity and the mild anti-wear agent
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is not as critical an operating condition as severe contamination. The gradual deteri-

oration of the shear mixed layer demonstrates that the soft iron particles did indeed

act as a mild anti-wear agent. However to ensure continued anti-wear performance, the

concentration of suitably sized particles would need to be maintained as small particles

were found to be less efficient in reducing wear.

4.4 Summary

The test rig specifications, procedure and types of operating regimes used to obtain

laboratory testing data were outlined in this chapter. The generated data was used

to investigate the fault indicators of the vibration, oil and wear particle analysis tech-

niques, made possible as the test gearboxes were operated with only one fault condition.

This data was also used for the verification of the expert systems discussed in detail in

Chapters 5, 6 and 7.
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(a)

(b)

Figure 4.21: Worm gearbox components after test (a) worm; (b) pinion gear.



Chapter 5

Vibration Analysis Expert

System

5.1 Introduction

Vibration analysis is a commonly used machine condition monitoring technique for

fixed-plant rotating machinery, due to relatively fast data collection and interpretation

when compared to other available off-line techniques. Since the data is collected as

digitally sampled time domain signals, the vibration analysis technique has allowed

further manipulation using computers. The development of transforms, such as the

fast Fourier transform (FFT) [61], have allowed the conversion of the time domain data

into frequency spectra with ease, as the data was already stored in a digital format.

This contrasts to oil and wear debris analysis techniques, which often rely on extensive

chemical analysis [3] and data interpretation by experienced/trained analysts.

Artificially intelligent systems have been applied to a large range of technical prob-

lems, in order to automate an otherwise tedious or complex analysis algorithm. Of the

artificially intelligent methods, expert systems are well suited for the vibration analysis

technique, as a known set of rules are used to diagnose various machine faults. The rules

were developed by relating the physical fault condition to the frequencies emitted by the

machine, and analysing the vibration data for the unique fault signatures, which can

be high amplitude peaks at a characteristic frequency or several frequencies, depending

147
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on the fault. This type of analysis is typically performed by experienced maintenance

engineers by manually examining the vibration time histories and frequency domain

spectra.

The use of computers for digital signal processing (DSP) has allowed the implemen-

tation of filters and signal enhancing calculations to be performed on the vibration data

for improved noise reduction and signature detection. This technology has enabled vi-

bration analysis to be used for monitoring road vehicles, which inherently have a high

noise component in the raw vibration data. Many of the DSP algorithms have been in-

cluded in the data acquisition units, which feature time to frequency domain conversion

using FFT, demodulated spectra acquisition, as well as coupling with a tachometer to

allow the analysis of variable speed machinery.

Despite the use of computers for manipulation of vibration data, the interpretation

of the vibration spectra and diagnosis of machine faults has generally remained the

job of highly trained experts. The difficulty of building a knowledge base from human

experts, and implementing the expert system for a broad range of possible faults are

common drawbacks of artificially intelligent systems [92].

Although artificially intelligent systems have been developed for vibration analy-

sis, they have been developed for a particular machine component, including rolling

element bearings [105], and transformers [106, 107]. One expert system was recently

developed to analyse frequency domain vibration analysis data for general machine

condition monitoring, using decision table and decision tree techniques [99]. This de-

velopment demonstrated that expert systems can be useful for analysing vibration data

and can successfully diagnose faults of rotating machinery. While this expert system

is useful in application, expert analysts typically employ tri-axial as opposed to single

axis frequency domain analysis, as well as demodulated frequency spectra which allows

better fault frequency detection in the selected region. Time domain analysis is also still

commonly used by analysts to detect faults such as imbalance and gear tooth cracks.

An expert system that truly incorporates the techniques used by maintenance engineers

for high accuracy fault detection of vibration data has not yet been developed.

The expert system development discussed in this chapter focuses on establishing a
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knowledge base, peak detection algorithm and user interface to analyse tri-axial fre-

quency domain, demodulated frequency domain, and time domain vibration data. The

objective was to develop an expert system to analyse vibration data with similar ac-

curacy as an expert maintenance engineer in an automated software package allowing

high analysis throughput, and hence suitable for commercial condition monitoring lab-

oratories or on-site use. The ultimate goal is to develop a first artificially intelligent

system for fault diagnosis and machine condition monitoring using integrated analysis

of vibration, oil and wear debris analysis technique.

5.2 Expert System Development

The design of an expert system to analyse vibration condition monitoring data was con-

sidered the first step in the development of the integrated artificially intelligent system

using vibration, oil and wear debris analysis techniques. The development objectives

were to interpret vibration data of fixed plant using proven techniques, provide an easy

to use interface for stand-alone operation, and output results in a way that can be

used for further processing by the comprehensive analysis expert system discussed in

Chapter 7.

The expert system was developed to be used for high throughput condition mon-

itoring laboratories of fixed plant, common in mineral processing and manufacturing

industries. Due to the requirement to operate in a commercial environment, the effi-

cient use of human resources is of prime importance. This was achieved by using proven

analysis techniques, allowing operators familiar with manual fault detection to use the

expert system with minimal training. Many new vibration analysis techniques operate

by black box methodologies, and do not provide the operator with transparent fault

detection.

The expert system was developed in a number of stages, coinciding to the design of

the constituent sub components. The development stages were comprised of the design

and development of the knowledge base, analysis algorithm, and menu structure. The

knowledge base includes all of the logical rules for the vibration data analysis, and
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forms the core of the analysis algorithm, which is the software code that executes the

knowledge base rules. The user interface makes the analysis algorithm accessible to

the operator by enabling data input via a dedicated software environment, while also

providing additional useful features.

5.2.1 Machine Information

The vibration analysis technique for machine condition monitoring is concerned with

relating the discrete frequencies emitted by a machine to the motion of the components.

Components emit vibrations when a fault enters the load zone, such as the meshing

gear teeth or load carrying rollers of a roller bearing for example. As the vibration

frequency is a function of the rotational speed of the element, as well as the number of

rotating elements (number of gear teeth, or rollers), the frequency emitted by a certain

component operating at a certain rotational speed can be calculated. The frequencies

detected in a frequency spectra can therefore be diagnosed to a fault in a certain

component.

In order for frequency spectral analysis to be performed, the typical frequencies

emitted by faulty components (called fault frequencies) must be known, as well as the

number and types of components present on the machine. This information is accessed

by the expert system by reading of a text file, which contains the required data. In order

to simplify the construction of the text file, as well as to prevent accidental mistakes

in data entry, a dedicated user interface menu was constructed to perform this task.

Apart from easy data entry, the machine information menu also includes data checks

to help preserve data integrity.

Machine information is required by the Vibration Analysis Expert System (called

VES) in order to calculate component fault frequencies as well as scan for characteristic

faults. The information is entered in the machine information menu, as shown in

Figure 5.1. This menu guides the operator through the process of determining the

mechanical components found on the machine, including bearings, coupling, pump,

gears and belts. Interference frequencies can also be entered, which could arise due

to other rotating equipment being close to the machine. The bearings, spur gears,
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belts and interference frequencies include an additional menu, where specific component

information is entered. The additional bearing menu allows the operator to enter the

fault frequencies of each bearing, running speed and whether it is of rolling or ball

design. This information must be entered for every bearing that is either of different

design, or operating at different speeds and thereby creating dissimilar fault frequencies.

The additional spur gear information menu prompts the operator to enter the num-

ber of teeth and rotational speed of the input and output gears for each gear set, while

the belt input menu includes pulley diameters and rotational speeds, and whether the

belt is of the cog type.

Once all the relevant information has been entered, the data is saved to a text file.

Since machine components are rarely changed, this information only needs to be entered

once for the particular machine. However, should a change in operating conditions such

as running speed be undertaken, the text file can either be edited in the machine setup

menu, or a new file can be created.

5.2.2 Knowledge Base Development

The development objectives of VES were to diagnose common machine faults of fixed

plant, as commonly found in minerals processing and manufacturing industries, us-

ing proven vibration analysis techniques currently used by maintenance engineers in

these industries. The expert system is composed of a knowledge base for fault detec-

tion and diagnosis, and a peak detection algorithm that is used to scan the data file

and determine the frequencies where peaks are positioned. The knowledge base was

constructed to detect the faults associated with mechanical systems typically used in

fixed plant, including roller and journal bearings, spur gears, belt drives, couplings,

and centrifugal pumps. Fault charts for each component type were constructed us-

ing tri-axial frequency spectra, demodulated spectra and time domain techniques from

handbooks and literature [56, 108], outlining the detection algorithm. The faults as-

sociated with each component type are summarised in Table 5.1, and the relationship

with the knowledge base shown in Figure 5.2.

The developed flow charts were discussed with three independent experts, working
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Figure 5.1: The VES Machine Specification menu, for the analysis by amplitude threshold

peak detection (see Section 5.2.2.2 for details).
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Table 5.1: Possible faults of machine components.

Machine Component Fault

Roller Bearings Cage Fault or Cage Loading

Ball or Roller Fault

Race Defect

Inadequate Lubrication

Installation Fault

Bearing Loose in Housing

Bearing Turning on Shaft

Journal Bearings Excessive Clearance (and Looseness)

Oil Whirl

Oil Whip

Coupling Misalignment

Pump/Fan Hydraulic related pumping problem

Spur Gears Input & Output Gear Looseness

Input & Output Gear Eccentricity

Misalignment

Bent Shaft (Input & Output)

Backlash or Oscillating Gears

Broken, Cracked Chipped or Pitted Teeth (Input & Output Gear)

Gear or Pinion Fault (due to Manufacture or Mishandling)

Preferential Wear

Belt Worn, Loose or Mismatched Belts

Belt / Sheave Misalignment

Eccentric Sheaves

Belt Resonance

General Imbalance

Bent Drive Shaft

Looseness
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Machine Info
• Bearing fault frequencies

• Number of gear teeth

• Type of power transmission

belt (V or cog)

• Pulley diameters and

rotational speed.

Raw Data
• Frequency spectra

• Time domain

• Demodulated

frequency spectra

Knowledge Base

Analysis Info
• % amplitude of peak of

max peak in spectra

• Width of haystack

• Amplitude & % of

samples over amplitude

for baseline detection

Bearing Faults
• Race defects

• Loose (housing or shaft)

• Ball or Roller defect

• Lubrication fault

• Installation fault

Gear Faults
• Misalignment

• Eccentricity or

Looseness

• Backlash or

Oscillating gears

• Bent shaft

• Gear fault

Other Faults
• Pump hydraulic faults

• Belt faults (misaligned

belts/pulleys, loose

belts)

• Rotational looseness

Figure 5.2: Flow chart of knowledge base inputs and outputs. Note: refer to Table 5.1 for a

complete list of all detectable faults.
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Data

If BPFO is 

present

Rolling Element Bearing Present
Race Defect

If 2 BPFO is 

Present or 

Strong

Race Defect

Low-Medium 

Severity

If Amplitude of 

BPFO > 2 BPFO 

Race 

Defect

If BPFI is 

present

If 2 BPFI is 

Present or 

Strong

If Amplitude of 

BPFI > 2 BPFI 

If sidebands 

present

If sidebands 

present

Race 

Defect

Race Defect

Medium-High 

Severity

With Historical Machine Data Case:

Compare amplitudes of time waveform

for BPFI and BPFO frequencies, to

assess severity.

Possible faults include:

Brinelling,

False Brinelling,

Fatigue Flaking,

Static Arc Damage,

Fretting Corrosion.

No

Yes Yes

Yes

Yes

Yes

Yes

No No

Yes Yes

NoNo

No No

If harmonics as well as sidebands

present then fault more severe than

if only harmonics or sidebands present.

Figure 5.3: Knowledge base flow chart for bearing race defect diagnosis.

in the vibration analysis condition monitoring industry. The flow charts were com-

piled into one set of reasoning algorithms, and implemented in Microsoft Visual Basic

software code. Microsoft Visual Basic was selected for implementation due to the re-

quirements of the user interface, allowing ease of use including on-line help screens. The

implemented flow chart of detecting a roller bearing race defect is shown in Figure 5.3,

including fault severity assessment.

The expert system incorporates 75 rules implemented in If-loop type statements as

outlined in Appendix Section C, in order to diagnose 54 different machine component

faults shown in Table 5.1. The pseudo code used to implement the flow chart of
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If (Amplitude of BPFO or BPFI is above Alarm Threshold) then

If (Amplitude of 2 BPFO or 2 BPFI is above Alarm Threshold) then

If (Amplitude of (2 BPFO < BPFO) or (2 BPFI < BPFI)) then

Race Defect — Moderate-High Defect Severity

Else If

Race Defect — Low-Moderate Defect Severity

End If

End If

Else If (Sidebands present on BPFO or BPFI peaks) then

Race Defect — Low-Moderate Defect Severity

End If

Figure 5.4: Pseudo-code for bearing race defect diagnosis.

Figure 5.3 is outlined in Figure 5.4.

Data and analysis integrity checks have also been included in the expert system, to

reduce the likelihood of analysis errors occurring. In the event that the loaded vibration

data spectra file is of insufficient range to detect higher frequency fault peaks, an error

message is displayed to the operator advising to load a data file with higher frequency

range.

The VES analysis algorithm utilises nine operator defined variables to determine

the peak detection sensibility, which the operator can edit using the Analysis Setup

menu. The variables have been categorised into three groups, depending on whether

the variables are required for analysis by amplitude ratio, amplitude threshold, or both.

In order to improve software usability for operators, the analysis modes were designated

according to whether alarm amplitudes are available for machinery, or whether a spectra

is to be analysed purely by peak pattern recognition.

Peak detection in frequency domain spectra is performed by searching for the high-

est peak within a frequency window around the target frequency. The frequency window

allows for measurement inaccuracies, where the particular peaks can be several Hertz
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Figure 5.5: The influence of the percentage deviation and maximum size in Hz factors on the

frequency window used to detect peaks in frequency spectra. Solid line is window size limited by

both factors, while dotted line shows window size without maximum size limit. In this figure,

the ‘percent deviation’ is 5 %, while the ‘maximum size in Hz’ frequency window is 10 Hz.

off their theoretical frequency. The frequency window size is calculated using two user

defined parameters that relate to the percentage deviation of the target frequency (Per-

centage Deviation variable), as well as to a maximum window size in Hertz (Frequency

Limit variable). These two factors allow the operator to define a window size that is

suitable for the spectra sampling rate and scanning range (which together define the

spectra resolution). As shown in Figure 5.5, the percentage deviation factor is useful

for limiting the window size at low frequencies, while the finite maximum window size

limits the deviation for high frequencies.

5.2.2.1 Peak Detection Algorithm — Amplitude Ratio

The analysis algorithm relying only on relative peak amplitudes was developed to allow

the examination of machines without knowledge of their condition and typical fault
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amplitude alarm levels. The algorithm is especially useful for analysing machines that

are new to a plant, or that have been obtained from companies that are unable to

provide detailed vibration specifications. The objective was to develop an algorithm

that would detect characteristic fault signatures in amplitude-frequency spectra. Since

amplitude could not be used as a fault detection indicator, detection sensitivity was

achieved by normalising all peaks with respect to the highest peak in the spectra, and

only considering peaks above an operator defined amplitude ratio.

The analysis algorithm operation can be summarised into a three step process.

Firstly, the vibration data files are read into memory. The second step involves the

calculation of fault frequencies for the particular machine, which are calculated using

the machine specifications data file, and scanning the data in memory for the fault

frequencies. Each fault frequency is categorised either as strong, present, or not-present

depending on its amplitude ratio, and the operator defined high and low normalised

alarm threshold values. This principle is demonstrated in Figure 5.6. The third step

is concerned with compiling two output data files to report the analysis results to the

operator, as well as for further expert system analysis.

The user interface guides the operator through the analysis process, by prompting

for the location of the vibration analysis data files as well as the machine specification

and analysis setup files, as shown in Figure 5.7. While the vibration spectra file is

mandatory, the analysis of a time-domain and demodulated frequency spectra files are

optional. For each vibration data file, the number of lines and frequency or time range

need to be specified, to allow the data to be read into memory and associated to the

correct frequency. The file format of the data files was set to be two columns of data

corresponding to frequency and amplitude respectively for the spectra files, and time

and amplitude for the time domain file.

The text based results output file reports all faults in the order of increasing com-

ponent number, ordered by component type. This file allows the operator to view the

results of the expert system, and is useful when the expert system is used for stand-

alone data interpretation. If certain fault analysis could not be run as the frequency of

the fault was higher than that contained in the vibration data file, a warning message is
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Figure 5.6: Normalised amplitude peak detection principle. The low and high normalised

alarm threshold values are operator defined, and in this case set at 50 % and 80 % respectively.



CHAPTER 5. VIBRATION ANALYSIS EXPERT SYSTEM 160

Figure 5.7: The VES Analyse menu.



CHAPTER 5. VIBRATION ANALYSIS EXPERT SYSTEM 161

written into the output file. The message states which faults could not be scanned for,

and the required frequency range of the data file to scan for these faults. This enables

the operator to select the correct spectra when analysing another Analysis Data file,

in order to scan for the missed faults. The end of the output file contains information

about the analysis, including the file names and paths of each of the selected files, the

values of the variables contained in the Analysis Setup file, as well as the test specific

information which is entered in the Analyse Menu (the frequency range of the selected

Analysis Data file, and the scanning resolution). This information allows the opera-

tor to check which files were selected for the vibration analysis, and the values of the

changeable variables. The second output file also contains the analysis results, but in a

numerical format. This file is compiled to deliver the analysis results to the combined

analysis expert system discussed in Chapter 7, which combines the output of VES with

those from the oil and wear debris analysis expert system.

5.2.2.2 Peak Detection Algorithm — Amplitude Threshold

The analysis procedure using fault detection by amplitude alarm limit is similar in

operation to the analysis based on amplitude ratio. However, instead of normalising

the peaks of the frequency spectra, each fault frequency requires an alarm amplitude

to be set up as part of the machine specifications setup menu, which is used in the

analysis operation. Fault detection sensitivity is therefore done by setting a threshold

amplitude which acts as an alarm trigger. A second threshold can be set to recognise

a strong peak amplitude, and alert the operator for a severe fault condition. These

two amplitude threshold levels allow the peaks in the spectra to be classified as strong,

present, or not-present. The analysis based on amplitude alarm thresholds allows the

VES software to be easily implemented by industry, as these thresholds have already

been established for plant currently monitored using vibration analysis.

The categorisation of detected fault frequencies with respect to their amplitude

allows the calculation of a confidence factor, determined by fuzzy logic relation to the

threshold limits, shown in Figure 5.8(b). The frequency calculation process is also

used to calculate a confidence interval using the relation of how close the detected



CHAPTER 5. VIBRATION ANALYSIS EXPERT SYSTEM 162

peak was to the theoretical peak position, shown in Figure 5.8(a). Both confidence

factors are calculated to be between zero and 0.5, and are summed to obtain a final

confidence factor between zero and one. This confidence factor allows the operator

to gain an insight into how closely the detected peak resembles the frequency and

amplitude characteristics of the theoretical fault peak.

The use of threshold type fault detection has the advantage over amplitude ratio

detection, that the effect of interference vibration on the vibration spectra can be eval-

uated. If an interference peak happens to be in the vicinity where a fault frequency

may exist, the analysis algorithm takes into account the typical amplitude of the in-

terference peak and hence will trigger an alarm only if the detected peak is greater

than the typical interference peak amplitude. The threshold type analysis is therefore

recommended for reliable fault detection of plant, such as routine condition monitoring

applications.

5.2.3 Interface Development — Input

The requirement of the user interface is to successfully portray the operation mechanism

and data entry modules of the expert system to the operator. The graphical layout and

menu structure is an important component of the user interface, to ensure that data

entry and analysis can be performed in a manner that is intuitive, thereby minimising

accidental data integrity errors or misinterpretation [93]. Appendix Section H.4 shows

the structure and menu screens of the user interface. The design objectives for the VES

user interface focused on operator usability and efficiency, by minimising the operator

time per machine analysis. The objectives were to minimise the required training time

of new operators, and allow rapid data analysis by reducing the amount of informa-

tion that needs to be entered for each analysis. The design goals were implemented

by the use of a user friendly interface, programmed in the Microsoft Visual Basic 6

programming language, featuring quick help comments throughout the VES program.

The input data layout of the interface was designed so that analysis specific informa-

tion, and machine specific information is entered in dedicated data input menus, which

include relevant data integrity checking. During the analysis process, the only operator
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Figure 5.8: Principle of confidence factor calculation using linear fuzzy logic. (a) Frequency

confidence factor for frequencies where the target frequency is 1000 Hz, and the allowable fre-

quency deviation is 5 Hz; (b) Amplitude confidence factor for amplitudes between Alarm and

Severe Alarm thresholds, set at 1.2 and 1.6 mm/s2.
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Figure 5.9: The VES Main menu.

input required is the selection of the relevant analysis and machine specification files.

As the analysis and machine specification variables are not changed frequently, high

machine analysis throughput is possible.

The menu layout has been constructed so that the choice of data input or analysis

can be made at the main menu, as shown in Figure 5.9. The selection buttons for

machine specification and analysis has been duplicated for the two types of analysis

processes, as the menu content differ slightly depending on which analysis process is

chosen. In the case of machine specification menu, alarm threshold values need to be

entered if analysis by amplitude threshold (with historical data) is selected.

Other functions accessible from the main menu include the Help, and Analyse

Healthy Spectra menus. The Help menu contains instructions on program operation,

frequently asked questions, and detailed specifications of variables. The text of the help

menu is shown in Appendix Section I.3. The Analyse Healthy Spectra menu allows the

analysis of a spectra file in terms of baseline amplitude, as well as the amplitude of a



CHAPTER 5. VIBRATION ANALYSIS EXPERT SYSTEM 165

specific frequency. The baseline amplitude function is useful for obtaining the ampli-

tude at which a certain percentage of peaks are below or equal to. When this amplitude

and percentage is entered in the Analyse Setup menu, a raised baseline can be detected

in the spectra. The second function in the Analyse Healthy Spectra menu allows the

operator to find the amplitude of a peak at a certain frequency. Again, this information

is useful for entering the healthy amplitude of frequencies in the Machine Specifications

Setup menu (selecting the button in the With Machine Historical Data frame from the

Main menu). The alarm amplitudes can then be calculated using the healthy ampli-

tudes and guidelines of the ISO 10816 standard [46]. This menu is discussed further in

Section 5.2.5.

Another design criteria of the VES interface is the ability of the analysis to be per-

formed while the menu is hidden, and used by another expert system. This requirement

was important in the development stage, as the VES is only one expert module of the

combined analysis expert system that was developed later.

High analysis throughput efficiency has been achieved by structuring the interface

such that machine specific information and analysis setup variables are saved to a text

file once, requiring the operator to only select the appropriate file during the analysis

process. This saves time as redundant information does not need to be entered for

every spectra analysis. The machine specific information is entered in the Machine

Specifications Setup menu, while analysis variables are entered in the Analysis Setup

menu. This arrangement enables the VES program to be used in a commercial situation,

as many vibration spectra can be evaluated quickly, and the output file comments

incorporated in a report for customers.

5.2.4 Interface Development — Output

The analysis results of the expert system are displayed in the form of two text files. One

text file lists the detected faults by selecting one of 75 pre-defined comments for each

machine component. The results are ordered by machine component type and number,

starting with general misalignment and imbalance faults, roller and plain bearings,

spur gears, pumps, and finally belt and pulley faults. The layout of the file, including
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full text comments, allows it to be used directly as an analysis report for customers,

or easily incorporated into a comprehensive report using cut and paste. The second

text file was designed to allow the results to be saved for further processing by the

comprehensive analysis expert system. The file format is therefore purely numerical,

with data arranged in a fixed format.

5.2.5 Other Functionality of Developed Expert System

The interface was developed with additional features to improve the versatility. Apart

from a detailed help menu, a menu for spectra file peak detection analysis was devel-

oped. The objective of this menu was to enable an operator to assess the amplitude

of a particular frequency, and analyse the spectra baseline using the peak detection

algorithm of the expert system. The menu is shown in Figure 5.10.

The frequency detection menu was designed to help the operator to establish am-

plitude alarm thresholds, by monitoring the fault frequencies manually of a machine

which has a developing fault. The algorithm searches the tri-axial spectra file and lists

the amplitude of the desired frequency in each axis. This feature is useful as it allows

the operator to use the peak detection algorithm rather than having to manually look

at the spectra and calculating the amplitude.

Apart from distinct peak detection, the detection algorithm also features an algo-

rithm for raised baseline detection, as well as haystack detection. The Average Baseline

Amplitude and Percentage variables are used in detecting a raised baseline, as is often

the case for severe looseness type faults. The raised baseline detection algorithm op-

erates by counting the number of sampled peaks that have an amplitude equal to or

below the operator defined ‘average baseline amplitude’ variable. If the percentage of

peaks equal to or below the ‘average baseline amplitude’ is less than the value defined

in the ‘percentage of peaks with an amplitude below or equal to the average baseline

amplitude’ variable, a raised baseline condition is triggered.

The haystack detection algorithm has been developed to scan for regions of consec-

utive peaks of detectable amplitude (peaks classified as ‘Present’ or ‘Strong’ using the

amplitude ratio analysis method). The minimum width in frequency of such a region
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Figure 5.10: The VES Healthy Spectra Analysis menu. This menu allows (a) Amplitude

detection of a particular frequency (selected in figure), (b) Baseline analysis.
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before it is categorised as a haystack is defined using the Min Haystack Width variable.

The haystack detection algorithm can be applied over the entire frequency spectra, or

be used to detect a haystack around a particular frequency. The Haystack Search %

Run Speed variable can be used to adjust how far on each side of a specific frequency

the algorithm searches for a haystack. In order to reduce the likelihood of a one times

running speed harmonic being mistakenly detected as a haystack, this variable allows

the width of spectra which is searched to be limited to a percentage of the running

speed.

5.3 Expert System Testing

The VES software was thoroughly tested using vibration data obtained from a labo-

ratory single reduction spur gear test rig, as well as a spur gearbox connected to a

grain auger. The operating conditions analysed for the system testing phase consisted

of bent output shaft, overload, and contamination. Three tri-axial vibration spectra

of 400 Hz, 1000 Hz, and 4000 Hz were analysed, as well as a 400 ms time domain file.

The sampling rates for the vibration spectra were 3200 lines, while the time domain

file was 4096 lines. Two sets of spectra were obtained, one on the input shaft of the

gearbox, and another at the output shaft.

The alarm amplitude limits were determined from spectra taken when the gearbox

was overhauled and in good condition, and increasing the amplitudes by approximately

30 %. The gearbox condition was confirmed using oil and wear particle analysis tech-

niques. Each spectrum was then analysed using the analysis by normalised amplitude,

and amplitude alarm threshold options. For the peak detection by normalised am-

plitude, peaks smaller in amplitude than 5 % of the largest peak in the spectra were

disregarded. This setting corresponds to high sensitivity fault detection, as even small

peaks are recognised.

The VES detected the bent output shaft condition in all output shaft spectra, for

both analysis modes. The 1000 Hz horizontal spectra is shown in Figure 5.11. The high

amplitude peak at low frequency causes the remaining spectra to appear quite small.
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Figure 5.11: 1000 Hz horizontal acceleration spectra (at output gear) of worn spur gears with

a bent output shaft.

This high amplitude spike at the low frequency region of the spectra is believed to be

due to operating limit of the accelerometer used to obtain the data.

The overloaded operating regime of the laboratory gearbox resulted in the gears

showing signs of mild gear looseness and backlash, as well as surface fatigue pitting,

scuffing and misalignment. The gear looseness and backlash were detected, as was a

low severity input shaft bearing race fault, and a medium to severe output shaft race

defect. The bearing faults, gear looseness and misalignment faults were detected by

both analysis modes of VES. Other detected bearing faults include a loose fit between

the bearing, shaft and housings. Inspection of the gear teeth revealed that although

the gears were pitted and showed scuffing marks, the teeth profile had not changed

significantly.

The contamination laboratory test resulted in the gears becoming severely worn

by a polishing action, causing excessive looseness and a misalignment secondary fault.
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Figure 5.12: 4000 Hz horizontal acceleration spectra of the contamination test.

The looseness was found to be a combination of the worn gear teeth as well as the

worn bearings and shafts. The VES analysis revealed that one or both input and

output bearings developed ball faults, as well as gear misalignment and backlash. The

horizontal 4000 Hz spectra is shown in Figure 5.12. Evidence of loose and eccentric

gears was also detected. The gear eccentricity may have come about due to preferential

wear of the laboratory gearbox, as the gears have a greatest common divisor higher

than 1.

The capability of the expert system to assess the condition of a multistage-reduction

gearbox operating in an industrial environment was determined by analysing the data

obtained from a two-stage reduction spur gearbox operating in the agricultural industry.

The gearbox was powered by a 0.55 kW four pole flange mount electric motor, and used

to operate a grain auger of 50 mm diameter. All 4 gears were of the spur gear design,

with consecutive reduction ratios of 3.33:1 and 1.44:1, giving an overall reduction of
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(a) (b) (c)

Figure 5.13: Wear marks on the output gear of reduction 1. (a) wear on side of gear teeth,

typical for misalignment, (b) wear extending across whole of width of gear teeth, (c) wear marks

of neighbouring pinion gear, indicating looseness.

4.8:1. The intermediate and output shafts were supported in brass plain bearings, while

the input pinion was mounted directly to the motor shaft. Data from two gearboxes

was collected, in order to obtain amplitude levels of a gearbox in good condition and

of a gearbox in the wearing out stage. The operating hours of the two gearboxes were

approximately 300 hours and 3000 hours respectively. The faults detected by the expert

system were:

• Reduction 1: Loose output gear, misalignment, preferential wear.

• Reduction 2: Possible eccentric pinion and output gears.

• Possible lubrication problem of bearings, or other machine resonance.

Dismantling and visual inspection of the gearbox components confirmed the loose

output gear, misalignment and preferential wear of reduction 1. The loosening of the
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Figure 5.14: Scratched surface of brass bush supporting intermediate drive shaft.

press fit between the gear and shaft resulted in the gear looseness and misalignment,

as shown in Figure 5.13. The looseness of the output gear is evident by the rubbing

marks of reduction 2 pinion on the side of the gear. Possible gear eccentricity of the

reduction 2 gears could not be confirmed by visual inspection, as the gears had not

worn sufficiently to show typical wear marks. The plain bearings were found to have a

worn and scratched surface, which resulted in a polished shaft, as shown in Figure 5.14.

The bearing wear may have been caused by a low oil level, as the gearbox had a leaking

input oil seal.

5.4 Summary

An expert system was successfully developed for the condition monitoring of fixed plant,

using proven industry analysis methods traditionally performed in a manual manner.

The developed vibration analysis expert system (VES) has been specifically designed

to allow it to be integrated into a planned comprehensive analysis expert system, which

will be used to analyse vibration, oil and wear debris analysis data and provide a single

correlated condition report. The interface and data handling operations of the software

therefore reflect this goal.

The development of the expert system has allowed the verification of vibration anal-

ysis techniques commonly used in industry, including tri-axial spectra, time domain,
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and demodulated spectra, for machine condition monitoring. The VES analysis al-

gorithm has been tested using laboratory data collected from a single reduction spur

gearbox, and a two-stage reduction spur gearbox operating in the agricultural indus-

try. The robust fault detection algorithm of VES successfully identified the gear faults

that occurred, which included bent output shaft, continuous overload, contamination,

as well as loose and misaligned gears [109]. The successful completion facilitates the

design of a comprehensive machine condition monitoring expert system utilising oil,

wear debris and vibration analysis techniques, discussed in Chapter 7.



Chapter 6

Oil and Wear Debris Analysis

Expert System

6.1 Introduction

Oil and wear particle analysis has become a popular technique in machine condition

monitoring for detecting wear related faults of gears, bearings and hydraulic compo-

nents operating with oil lubrication [2, 14, 19, 110]. Analysing the used oil and con-

stituent wear particles of a machine allows the condition of both the machine and lu-

bricant to be assessed, using wear particle analysis and oil analysis respectively. Wear

particle analysis is concerned with identifying wear modes and severities by the size,

shape and surface morphology of the wear particles. Elemental analysis of the wear

particles can also be useful in diagnosing wearing components by relating high element

concentrations to unique elements in the component alloys. Oil analysis conversely

is concerned with the physical and chemical properties of the oil including viscosity,

chemical index and total acid number (TAN)/ total base number (TBN). Apart from

assessing the machine condition, oil analysis also provides information as to the per-

formance of the machinery protection systems including oil filtration, oil cooling and

water desiccators on breathers.

Oil analysis data is interpreted by comparing the physical and chemical properties of

the used lubricating oil to new oil specifications, and identifying those properties which

174
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are not acceptable based on standards such as ISO 4406 [11] or ISO/TC 108/SC5 [46].

Similarly, wear particles can be characterised by their physical properties including

shape, size, angularity, surface roughness, and hence linked to wear mode responsible

for the particles. The identified wear modes can be associated with the typical failure

modes of the machine components, as well as other condition monitoring information

such as elemental analysis, in order to diagnose the component and specific fault oc-

curring.

Oil and wear particle analysis techniques are commonly used for machine condition

monitoring, and are carried out by either dedicated laboratories or on-site maintenance

departments. While oil analysis utilises quantitative data, wear particle analysis is gen-

erally performed qualitatively using optical microscopy, where the percentages of wear

particles are judged by the operator. This analysis procedure therefore requires exten-

sive experience to identify the correct particle percentages with acceptable repeatability

using this subjective process. Additionally, the use of wear particle percentages to diag-

nose machine faults is also performed manually, resulting in the complete wear particle

analysis process being subjective and time consuming.

The data analysis of oil and wear particle analysis can be performed using artificial

intelligence, such as an expert system, by simulating the reasoning logic used by a hu-

man expert. The input parameters for the expert system include all of the possible test

results that are commonly performed for oil and wear particle analysis. The output

parameters consist of the possible machine component faults associated with oil lubri-

cated gears and bearings. As the input parameters for the possible outcomes (output

parameters) are known, an expert system type of AI is well suited for this type of data

analysis.

Due to the high throughput of oil samples common for large plants, an expert sys-

tem for data interpretation and reporting would allow more human resources to be

directed at operational and design changes to improve machine lifetime and reliabil-

ity. An additional benefit could be obtained when wear particle analysis technology

advances further to allow numerical characterisation parameters to be performed by

automated analysis equipment. These parameters could be input directly into an ex-
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pert system, and hence enable wear particle to be performed in an objective manner,

without subjective requiring operator expertise.

This section is concerned with the development of an expert system for machine

condition monitoring using the oil and wear particle analysis techniques. The devel-

opment stages include the design of an analysis algorithm that is capable of analysing

data as supplied by oil laboratories, the development of a user interface to allow stand-

alone operation, and the testing phase of the completed package using laboratory and

industry derived machine condition monitoring data.

6.2 Expert System Development

The design objectives of the expert system developed for oil and wear particle analysis

were to interpret oil and wear particle analysis data using logical reasoning processes

to diagnose machine faults as well as lubricating oil contamination and deterioration.

The expert system would accept input parameters corresponding to those commonly

tested by oil analysis laboratories, and the ability to interpret wear particle analysis.

The design objectives of the expert system require the analysis algorithm to inter-

pret the oil and wear particle analysis data taking into consideration the machine and

analysis information, in order to compile a list of possible machine faults. Another

design objective of the expert system is that it would be suitable for use in a commer-

cial situation for routine condition monitoring. In order to meet this goal, the expert

system structure as well as the user interface were designed so that machine specific

and analysis information would only need to be entered once for each machine. The

user interface was designed such that the data entry for laboratory raw data, machine

information and analysis information is entered in separate menus, and saved to text

files. These text files are then retrieved during the analysis process, as shown in Fig-

ure 6.1. The analysis algorithm contains the developed knowledge base on how oil and

wear particle analysis is carried out, and is used to interpret the input data in order

to diagnose machine faults which are reported to the operator. The conclusions by the

expert system are also saved to a text file, which allows the report to be archived for

future reference.



CHAPTER 6. OIL AND WEAR DEBRIS ANALYSIS EXPERT SYSTEM 177

Thesis Draft #17 Version: 16-04-07

– 47 –

5.2  Expert System Development

The design objectives of the expert system developed for oil and wear particle analysis were to

interpret oil and wear particle analysis data using logical reasoning processes to diagnose

machine faults as well as lubricating oil contamination and deterioration. The expert system

would accept input parameters corresponding to those commonly tested by oil analysis

laboratories, and the ability to interpret wear particle analysis.

The design objectives of the expert system require the analysis algorithm to interpret the oil

and wear particle analysis data taking into consideration the machine and analysis information,

in order to compile a list of possible machine faults.  Another design objective of the expert

system is that it would be suitable for use in a commercial situation for routine condition

monitoring. In order to meet this goal, the expert system structure as well as the user interface

were designed so that machine specific and analysis information would only need to be

entered once for each machine. The user interface was designed such that the data entry for

laboratory raw data, machine information and analysis information is entered in separate

menus, and saved to text files. These text files are then retrieved during the analysis process,

as shown in Figure 5.1. The analysis algorithm contains the developed knowledge base on

how oil and wear particle analysis is carried out, and is used to interpret the input data in order

to diagnose machine faults which are reported to the operator. The conclusions by the expert

system are also saved to a text file, which allows the report to be archived for future reference.

Figure 5.1 – Expert System Data Flow

5.2.1 Information required for condition monitoring
The input parameters for the expert system are composed of the raw oil and wear particle

analysis input data, the machine related information, and factors that relate to how the expert

system executes the analysis algorithm. The raw input data consists of the information

provided by the oil analysis laboratory, in the form of numerical values of tests used to

determine the condition of the oil, and concentrations of wear particles and constituent

elements. In order to diagnose machine faults, an expert analyst would need to know the type

of components of the machine, including gears and bearings, as well as the alloy composition

of each component. This type of information is machine specific, and has therefore been

categorised accordingly.
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Figure 6.1: Expert system input & output data flow.

6.2.1 Information required for condition monitoring

The input parameters for the expert system are composed of the raw oil and wear

particle analysis input data, the machine related information, and factors that relate to

how the expert system executes the analysis algorithm. The raw input data consists of

the information provided by the oil analysis laboratory, in the form of numerical values

of tests used to determine the condition of the oil, and concentrations of wear particles

and constituent elements. In order to diagnose machine faults, an expert analyst would

need to know the type of components of the machine, including gears and bearings, as

well as the alloy composition of each component. This type of information is machine

specific, and has therefore been categorised accordingly.

The third type of input parameters relates to how the analysis algorithm is executed.

Due to the numerical nature of oil analysis reports, the data interpretation typically

consists of either monitoring a change in a parameter with respect to that of new oil,

or a change between consecutive oil samples. Each parameter is therefore compared to

either the new oil or previous sample, and if the difference is above a preset threshold,

an alarm is triggered. The thresholds for each parameter are defined by standards

including ISO/TC 108/SC5 [102]. In order for the oil and wear particle analysis data
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to be interpreted by the expert system, these threshold values must be defined.

The physical and chemical properties of lubricating oil typically tested by oil anal-

ysis laboratories include viscosity, dielectric constant, concentration of water present,

TAN/TBN, and a particle count and size distribution according to ISO 4406-1999 [11].

Wear particle parameters generally included analysis reports includes the general colours

of the wear particles and their relative concentration, as well as the type and concen-

tration of wear particles present. The wear particles are categorised into Rubbing,

Laminar (rough and smooth), Cutting (<15 µm and 20-100 µm), Fatigue chunk (<20

µm and >20 µm), Flat Fatigue, Fatigue Spall, Severe Sliding, and Spherical (<3 µm,

3-10 µm and >10 µm). A comprehensive report will also usually contain the concen-

trations of various elements detected in the oil, reported in parts per million (ppm).

The common elements identified include iron, lead, tin, copper, aluminium, chromium,

nickel, silicon, sodium, boron, calcium, magnesium, phosphorous, molybdenum, zinc,

sulphur, antimony, manganese, silver and titanium.

The expert system interface was constructed using a central main menu, with all

data input and analysis menus branching off the main menu. A schematic diagram of

how the menus are accessible in the user interface is shown in Figure 6.2. This menu

structure was chosen due to its simplicity, and easy negotiation between the various

menus. This structure features the analysis menu being directly available from the

main menu, saving operator time during machine routine analysis.

This expert system user interface has been designed to allow operators to enter

laboratory data using a dedicated menu, rather than obtaining a text file with the

information in the correct format. This additional menu has been added as laboratories

have different report structures, and it cannot be assumed that a laboratory will make

results available in the required file format.

6.2.1.1 Machine Information

The machine specific information required by the expert system analysis algorithm

includes the type of components present on the machine, as well as their elemental

composition. The machine information menu has been designed as part of the user
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The third type of input parameters relates to how the analysis algorithm is executed. Due to

the numerical nature of oil analysis reports, the data interpretation typically consists of either

monitoring a change in a parameter with respect to that of new oil, or a change between

consecutive oil samples. Each parameter is therefore compared to either the new oil or

previous sample, and if the difference is above a preset threshold, an alarm is triggered. The

thresholds for each parameter are defined by standards including ISO/TC 108/SC5. In order

for the oil and wear particle analysis data to be interpreted by the expert system, these

threshold values must be defined.

The physical and chemical properties of lubricating oil typically tested by oil analysis

laboratories include viscosity, dielectric constant, concentration of water present, TAN/TBN,

and a particle count and size distribution according to ISO4406-1999. Wear particle

parameters generally included analysis reports includes the general colours of the wear

particles and their relative concentration, as well as the type and concentration of wear

particles present. The wear particles are categorised into Rubbing (small and large), Laminar

(rough and smooth), Cutting (small and large), Fatigue chunk (small and large), Flat Fatigue,

Fatigue Spall, Severe Sliding, and Spherical (small, medium and large relative size). A

comprehensive report will also usually contain the concentrations of various elements detected

in the oil, reported in parts per million (ppm). The common elements identified include iron,

lead, tin, copper, aluminium, chromium, nickel, silicon, sodium, boron, calcium, magnesium,

phosphorous, molybdenum, zinc, sulphur, antimony, manganese, silver and titanium.

The expert system interface was constructed using a central main menu, with all data input and

analysis menus branching off the main menu. A schematic diagram of how the menus are

accessible in the user interface is shown in Figure 5.2. This menu structure was chosen due to

its simplicity, and easy negotiation between the various menus. This structure features the

analysis menu being directly available from the main menu, saving operator time during

machine routine analysis.

Figure 5.2 – Menu Interface.

Main Menu

Machine Specification

Setup Menu

Analysis Setup

Menu

Data Input
Menu

Analysis Menu

Figure 6.2: Expert system menu structure.

interface, to allow this information to be entered, and saved in the relevant file format.

The machine information menu was designed to input the type of machine com-

ponents found on the machine, as well as a register of the elements present in the

component materials. The menu has been adapted from the Vibration Analysis Ex-

pert System discussed in Chapter 5. Apart from the basic menu, an additional frame

has been added to include elemental information of the machine components. The

elemental information has been categorised into four component types, bearing ma-

terials, gear materials, drive shaft materials, and other materials. The appropriate

elements contained in each material category can be selected from a list of commonly

used elements, while the other materials category allows operators to also enter the

appropriate component name. These elements are summarised in Table 6.1, including

common applications.

The benefit of modifying the machine information menu designed for the vibration

analysis expert system is that the machine information file can be used by both expert

systems, eliminating redundant data entry. The file format has been designed so that

the vibration analysis menu items are stored at the beginning of the file, while the

elemental analysis of the oil and wear debris analysis expert system (called OWDES)

are added at the end of the file. The file also contains a unique code, to allow the
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Table 6.1: Common machine elements and uses.

Element Components Typically Featuring Element

Iron Gears, shafts, machine housings

Lead Bearings, seals, solder

Tin Bearings, thrust bearing bushes, solder

Copper Bushes, washers, heat exchangers, gears

Aluminium Spacers, washers, some bearings, heat exchangers

Chromium Bearings, seals, cylinder rings

Nickel Bearings, turbine blades

Magnesium Machine housings

Molybdenum Piston rings

Zinc Seals, galvanised coatings, brass components

Antimony Bearings

Manganese Valves

Silver Bearings, shafts, gears

Titanium Bearings
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expert system to test whether the selected file really is a genuine machine information

file. This helps eliminate situations where an operator accidentally selects the wrong

file, possibly causing a system crash.

6.2.1.2 Analysis Information

The information required by the expert system analysis algorithm to determine whether

a parameter in the oil or wear particle analysis report is considered acceptable has been

categorised as analysis information. This information includes the alarm thresholds,

which define the change in magnitude of a monitored parameter compared to new oil

or the last sample, that will result in an alarm condition to be triggered. While general

guidelines exist [102], this menu of the user interface allows alarm thresholds to be

changed easily if required. As the alarm thresholds define the deterioration of the oil

or machine before a fault is detected, fine tuning of the thresholds for the particular

machine and operating environment allow early detection of critical faults.

The alarm thresholds for parameter increases include laminar particle concentra-

tion, viscosity increase, and chemical index, while decrease thresholds include viscosity

decrease, and TAN/TBN. Absolute alarm thresholds, not comparing to new oil or a

previous sample, include wear particle concentrations, element concentrations, and the

particle count cleanliness code according to ISO 4406-1999 [11].

The information input menu has been adapted from the vibration analysis expert

system, similarly to the machine information menu. The analysis information file pro-

duced by this menu can therefore be used for both expert systems, and has been

designed to simplify both the manual data input, as well as the operation of the com-

prehensive analysis expert system, discussed in Chapter 7.

6.2.2 Interface Development

The user interface was developed in a number of stages including needs analysis, plan-

ning, and implementation. The needs analysis was concerned with determining the re-

quirements of the user interface in order to satisfy the design objectives of the broader

expert system development. It was noted that the usability objectives related to how
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the operator interacts with the analysis algorithms through the user interface. The re-

quirements of the interface were therefore to allow easy use of the analysis algorithms,

data entry via a series of input menus, as well as analysis results output. During the

planning stage, these design ideas were transformed into design specifications, ready to

be executed in the implementation stage.

6.2.2.1 Input

The user interface is an important feature of the expert system, as it relates the analysis

algorithm to the operator and hence determines the usability of the entire system.

While the analysis algorithm performs all the data interpretation, it is the responsibility

of the user interface to make the data input, analysis and data output stages available to

the operator. This requires a menu structure and computer operating system platform

that is appropriate for the application.

The design objective was to develop an expert system that could be used in a

commercial laboratory environment to replace current manual data interpretation, in

order to increase sample throughput and decrease the occurrence of reporting variation

due to subjective operator judgements. As the computer running the expert system

would be based in a laboratory, a locally run exe program type system was chosen

over a web based application programmed in the java language. Due to the high

market share of the Microsoft Windows type operating system, the Microsoft Visual

Basic programming language was selected. The VB6 version of Visual Basic was used,

in order to allow some backward compatibility for operating systems, back to MS

Windows98.

The user interface was designed for maximum operator efficiency, ensuring that the

appropriate menu could be selected quickly and allowing the operator to focus on the

required data input. The data input menus consist of machine information, analysis

information, and laboratory raw data input, all directly accessible from the main menu.

The laboratory raw data input menu was designed to allow information contained in

laboratory reports to be transferred to a text file of the format required by the expert

system. The menu is shown in Figure 6.3. This menu allows all information commonly
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Figure 6.3: Oil and wear debris analysis laboratory data input menu.

contained in oil and wear particle analysis reports to be entered, most of which is

optional. Mandatory fields required for analysis include the colour and concentration

of wear particles, as well as the type and concentration of wear particles present in the

oil. These data fields are contained in the Wear Debris Analysis frame of the data input

menu. The user interface menus for the OWDES are shown in Appendix Section H.3. A

help menu was also developed as part of the user interface, which is shown in Appendix

Section I.2.

6.2.2.2 Output

The output user interface is responsible for portraying the results determined by the

analysis algorithm to the operator in a suitable format. The possible formats include
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on-screen display of the results, text file type storage, or print out. Of these output

formats, the text file storage medium was considered to have the most advantages in

a commercial condition monitoring laboratory environment. As an analyst operator

would rarely act on a set of results immediately, on-screen display is not really re-

quired, and opening of the text file can be achieved quickly. The output results file

has numerous advantages, including the option of using the file directly or in part for

a customer report, the ability to archive files as well as the ability to post the file onto

a web site for customer viewing. The easy archiving ability was a major factor in the

selection of the text file output mode, as a record of maintenance recommendations

can be helpful for customer relations, including fine tuning of fault indicators, and

consultation to improve machine lifetime.

The analysis algorithm has been developed to compile a text file using 45 pre-

programmed messages for inclusion in the output file. The output file has been arranged

to include all faults detected by oil and wear particle analysis at the top of the file,

arranged into faults caused by contamination, lubrication, wear related or corrosion.

The elemental analysis table has been positioned towards the end of the file, thus

allowing operators to scan for detected faults, and then compare this the results of the

elemental analysis. The defined analysis information used to interpret the data has

been included at the end of the file, allowing the analysis to be examined in relation

to the fault sensitivity variables, as defined in the analysis information menu. This is

a useful feature for both fine tuning as well as allowing the analyst to manually trace

the data interpretation.

6.2.3 Analysis Algorithm

The analysis algorithm constitutes the core component of the oil and wear debris anal-

ysis expert system. It is comprised of a knowledge base developed for oil analysis, wear

particle analysis, and elemental analysis using literature sources [27, 102, 108]. The

analysis algorithm operates by comparing the values of the laboratory data to the pre-

defined alarm thresholds for each oil and wear particle parameter. Once a parameter is

found to be out of specification an alarm for the particular parameter is triggered. The

knowledge base was compiled into a number of flow charts that contain the reasoning
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logic of the data analysis. These flow charts are shown in the Appendix Section D. The

knowledge base was then coded into a series of If-Then and If-Then-Else statements,

which make up the analysis algorithm. This algorithm operates by relating the pa-

rameters in alarm state to possible machine faults, by considering the parameters both

individually as well as in a comprehensive manner by correlating the various parameters

in alarm state to a minimum number of faults.

6.2.3.1 Development of Oil and Wear Particle Analysis Algorithm

The analysis algorithm was developed to assess the condition of the lubricating oil in

terms of physical and chemical properties, as well as detect typical machine failure

indicators using wear particle analysis. The oil properties assessed by the oil analysis

algorithm include those that are commonly tested by laboratories and have proven

useful in machine condition monitoring. Wear particle analysis can diagnose the type

of wear modes present in the machine, and is also generally reported in oil analysis

reports. However, detailed interpretations of wear particle results are not generally

performed by the oil analysis laboratories. This presents the need for an automated

dependable approach to interpret oil and wear particle analysis data.

The objective of this algorithm was to interpret and diagnose machine faults using

the data provided by typical oil analysis laboratory reports. It was therefore important

to include a wide range of input data that may be available from the laboratory report.

Three categories of input data were identified oil physical properties, oil chemical

properties, and wear particle information. Although the input information available is

dependent on the type of machine which is analysed, core elements had to be identified

which would make up the minimum information to enable the algorithm to operate.

Wear particle types and concentrations were chosen to represent the minimum in-

formation required for the analysis algorithm to operate, as the output allows the wear

modes to be identified the technique which has the greatest potential for fault diagnosis.

While the physical and chemical properties of the oil provide useful fault indications,

this information is more suited as supporting evidence. Oil properties were therefore

considered as additional information for the analysis algorithm if available. The cat-
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egorisation of input data as mandatory and optional satisfies the design objectives of

utilising a broad range of input information, depending on the available data.

Apart from fault detection and diagnosis capabilities, two additional features were

included in the algorithm. These included fault severity assessment where available,

and a confidence factor of detected faults. While knowledge about the severity of a

fault is useful for maintenance departments, fault severity cannot be diagnosed for all

defects using only oil and wear particle analysis. However, the severity of faults such

as bearing fatigue, scuffing and welding of surfaces can be diagnosed by the presence

of related wear particles or particle colour.

The confidence with which a fault is detected is dependent on the concentration

of wear particles or data value (in the case of oil analysis data) compared to the set

alarm limit. Although the presence of a severe fault could be taken as an indicator that

the particular fault has occurred, this is not the approach used during this project.

Instead, the various severity stages of a particular fault are taken as individual faults,

and the confidence factor derived from the data that was used to detect the fault.

This method is less subject to erroneous results, as the source data is compared rather

than comparing the faults (or severity stages) that have been detected. The principal

used to determine the confidence factor is similar to that used in the vibration analysis

expert system, discussed in Section 5.2.2. The confidence factor is zero if the detected

percentage is below the alarm limit, and 1 if it is greater than the upper alarm limit.

The mid range section is calculated using linear fuzzy logic, reporting the magnitude

by which the set alarm limit is exceeded in a dimensionless variable.

The developed analysis algorithm allows the automated interpretation and fault

diagnosis of oil and wear particle analysis laboratory reports, and thus fulfils the design

objectives. The embedded knowledge base enables the algorithm to diagnose gear

and bearing component faults as well as abnormal operating conditions and lubricant

defects. This development represents a versatile and comprehensive tool for oil and wear

particle analysis, both for maintenance departments or for integration in the combined

analysis expert system as discussed in Chapter 7.
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6.2.3.2 Development of the Elemental Analysis Algorithm

Elemental analysis has proven a useful tool in machine condition monitoring in order to

provide the operator with a list of those machine components undergoing abnormally

high wear, detectable through high concentration in the constituent elements [111]. In

a case where each machine component contains at least one unique element, elemental

analysis can be used to diagnose the actual component operating under a high wear

condition. However, it is common that a single element cannot be used to uniquely

pinpoint one component, or even component type, resulting in elemental analysis not

able to diagnose a faulty component directly. In this case, elemental analysis can still

be used to support the conclusions drawn from other indicators of oil and wear particle

analysis. The operation of the developed elemental analysis algorithm is shown in

Figure 6.4.

The design objectives of the elemental analysis algorithm were to provide an opera-

tor with a list of components that contain an element that was found in a critically high

concentration. Since wear of a component manufactured of a certain alloy would result

in most or all of the constituent elements to be detected in high or critical concen-

trations. For this reason, the results of the elemental analysis are sorted in decreasing

order of the number of critical elements contained in each component. The components

at the top of the list will therefore be those components correctly identified as operating

under a high wear rate, and those components that are operating correctly but contain

the same elements as the faulty component.

Elemental analysis is most effective in diagnosing faulty components when these are

composed of differing materials. This would include a possible scenario of a gearbox

where a steel worm (iron) drives a bronze gear (copper and tin), and the shafts are

supported by roller bearings (apart of iron, also containing elements such as nickel,

chromium, silver and/or titanium). If for example an abnormally high concentration

of copper is found in an oil sample of this particular gearbox, elemental analysis would

conclude that since the bronze gear is the only component containing copper, the gear

is undergoing accelerated wear. In this scenario, a high tin concentration would also
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The developed analysis algorithm allows the automated interpretation and fault diagnosis of

oil and wear particle analysis laboratory reports, and thus fulfils the design objectives. The

imbedded knowledge base enable the algorithm to diagnose gear and bearing component faults

as well as abnormal operating conditions and lubricant defects. This development represents a

versatile and comprehensive tool for oil and wear particle analysis, both for maintenance

departments or for integration in the combined analysis expert system as discussed in chapter

6.

5.2.3.2  Development of Elemental Analysis Algorithm

Elemental analysis has proven a useful tool in machine condition monitoring in order to

provide the operator with a list of those machine components undergoing abnormally high

wear, detectable through high concentration in the constituent elements [Barnes & Doyle

2003]. In a case where each machine component contains at least one unique element,

elemental analysis can be used to diagnose the actual component operating under a high wear

condition. However, it is common that a single element can not be used to uniquely pinpoint

one component, or even component type, resulting in elemental analysis not able to diagnose a

faulty component directly. In this case, elemental analysis can still be used to support the

conclusions drawn from other indicators of oil and wear particle analysis. The operation of the

developed elemental analysis algorithm is shown in Figure 5.4.

The design objectives of the elemental analysis algorithm were to provide an operator with a

list of components that contain an element that was found in a critically high concentration.

Since wear of a component manufactured of a certain alloy would result in most or all of the

constituent elements to be detected in high or critical concentrations. For this reason, the

results of the elemental analysis are sorted in decreasing order of the number of critical

elements contained in each component. The components at the top of the list will therefore be

those components correctly identified as operating under a high wear rate, and those

components that are operating correctly but contain the same elements as the faulty

component.

Figure 5.4 – Operation of Elemental Analysis Algorithm.

Elemental analysis is most effective in diagnosing faulty components when these are

composed of differing materials. This would include a possible scenario of a gearbox where a

steel worm (iron) drives a bronze gear (copper and tin), and the shafts are supported by roller

bearings (apart of iron, also containing elements such as nickel, chromium, silver and/or
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Figure 6.4: Operation of elemental analysis algorithm.

be expected, as this is the second constituent element of bronze. If the shafts were

supported by brass bushes instead of roller bearings, and only a high copper concen-

tration was detected, then bush or bronze gear wear would be predicted. However if

copper and tin were found to be in high concentrations, the analysis algorithm would

rank the bronze gear at first preference, as two of its constituent elements are in crit-

ical concentrations, and the brass bushes as second preference (one of the constituent

elements are found in critical concentrations).

6.3 Expert System Testing

The developed analysis algorithm and user interface menus were strategically tested

using hypothetical as well as industry data. The hypothetical data was used to verify

the correct operation of all the encoded If-Then and If-Then-Else loops that make up

the analysis algorithm. The input variables required to trigger each output variable

were coded into an input file that was run sequentially, and the corresponding output

checked for accuracy. Similarly, the user interface menus were tested to ensure that all

data is correctly saved and retrieved from the corresponding text files.

The ability of the expert system to interpret real data was also verified using lab-

oratory derived oil and wear debris analysis data. The oil samples were collected on
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a single reduction spur gearbox test rig, as described in Section 4.2. The gearbox was

equipped with new bearings and gears, and was operated with a bent drive shaft. This

operating condition resulted in the production of sliding, fatigue and cutting wear par-

ticles. The sliding wear particles resulted from the changing pitch circle diameter of the

gears meshing, while fatigue particles were later identified to originate from the rolling

element bearings due to overload. Post test inspection of the gearbox revealed that

the cutting wear particles were a result of slight shaft misalignment as the drive shaft

was not bent exactly at the centre of the spur gear. The output results of the expert

system indicated that severe sliding wear and a bearing fatigue fault had occurred, and

that gear misalignment may also have occurred. The confidence factors of the detected

faults were 1 for the severe sliding and bearing fatigue faults, and 0.28 for the gear

misalignment. As the confidence factors rely on the operator defining the lower and

upper alarm limits which are used to calculate the confidence factors, these provide a

dimensionless guide for fault comparison between different oil samples.

Once correct operation of the analysis algorithm were verified using laboratory data,

industry data was also used in order to assess the ability of the expert system to cor-

rectly diagnose oil and machine faults. The data was collected from a process stirrer

gearbox operating in a mineral processing plant. Routine oil samples were collected by

the maintenance department, and sent to an external oil analysis laboratory for test-

ing. Due to confidentiality of the plant operator, no photos or additional information

could be included in this document. While the oil analysis laboratory offered crude

conclusions, an expert team of the maintenance department interpreted the raw data

and planned machine repairs accordingly. The raw data analysis results of the gearbox

were transferred into an input data file, and analysed by the expert system.

The data presented by the oil analysis laboratory included oil viscosity, water con-

centration, elemental analysis, particle count according to ISO 4406 [11], and basic wear

particle results. As the wear particles were only reported in the general particle types,

it was not possible to determine whether the fatigue particles originated from a gear or

bearing surface. In order to allow analysis when this information was not available, the

concentration of fatigue particles reported by the laboratory data was entered for each
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of the flat, chunky and spall fatigue particles categories. This work around allows the

expert system to perform an analysis, although all associated fatigue related faults will

be triggered. This type of analysis coincides with the way an expert would analyse the

data. The more information about the machine is provided in the laboratory report,

the more specific conclusions the expert, and also the expert system can make.

The laboratory report included qualitative statements to describe wear particle

concentration, such as fatigue particle concentration reported as low. These qualitative

statements of the laboratory report were converted into quantitative particle percent-

ages, by considering the alarm limits of particle concentrations. In the analysis infor-

mation menu, the low alarm limit for fatigue particles in this gearbox was set at 5 %,

while the high alarm limit was set at 15 %. The low category of the laboratory report

was therefore correlated to a 6 % fatigue particle concentration. The laboratory report

is shown in Appendix Section F.

The expert system results indicated that the oil was contaminated by particles,

possible gear and/or bearing fatigue, possible oil dilution, as well as a concentration

of silicon and sulphur. In the particular operating environment of the gearbox, both

silicon and sulphur are contaminants external to the gearbox, verifying the high particle

count. The contamination fault indicated by the expert system is therefore reasonable,

and coincides with the conclusion by the laboratory. The possible oil dilution fault

was triggered as the used oil viscosity is more than 10 % lower than the new oil,

which could either be caused by solvent dilution or the use of the incorrect oil. As the

concentration of fatigue particles was low, a confidence factor of 0.1 was calculated by

the expert system for both gear and bearing faults. The correct interpretation of the

laboratory report by the analysis algorithm indicates that the expert system operates

according to the design objectives.

6.4 Summary

The design objectives of the expert system were to develop an artificially intelligent

system that was capable of interpreting a comprehensive oil and wear particle analysis
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laboratory report for machine condition monitoring of gearboxes. In response to these

objectives, an analysis algorithm was developed using parameters typically included

on oil analysis laboratory reports, in order to assess both the lubricant and machine

condition, as well as diagnose machine faults. The parameters as indicators for oil and

machine condition include the physical and chemical properties of the lubricant, as well

as the particle size distribution, and wear particle type and concentration.

The expert system was equipped with a graphical user interface, structured to allow

all menus to be accessible from the main menu in order to reduce operator navigation

time and net processing time per machine analysis. The analysis algorithm and menus

were fully tested using hypothetical and industry oil analysis data. The successful

testing procedure demonstrated that the expert system was able to satisfy the design

objectives, by interpreting oil analysis laboratory data without relying on operator

expertise. This development is therefore a useful tool for any maintenance department,

allowing automated processing of machine condition data in a consistent objective

manner.



Chapter 7

Combined Analysis Expert

System

7.1 Introduction

Globalisation has forced many companies to improve their operating efficiency in or-

der to remain profitable, and compete in their market segments. This has resulted in

an adoption of improved maintenance programs featuring machine condition monitor-

ing techniques, especially in machine intensive industries. Profit driven research by

companies and research organisations has resulted in many significant improvements

of vibration and oil analysis, the two most commonly used techniques for condition

monitoring.

Machine condition monitoring programs generally feature either vibration or oil

analysis, due to the very different equipment and expertise required to operate each

technique. Shortcomings of each technique for early fault detection have led to the

adoption of using both analysis techniques for health monitoring of critical machinery.

Case studies of such machinery have allowed maintenance engineers to appreciate the

benefit of using both vibration and oil analysis to complement each other [1, 2, 73, 74].

However, while some case studies reported of the two techniques complementing each

other [1], others commented on how the techniques can also disagree in fault detec-

tion [2]. Due to the difficulties of successfully correlating vibration and oil analysis

192
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techniques, research has instead focused on improving the detection ability of the indi-

vidual techniques.

The improvements of vibration analysis has been both in detection algorithms, as

well as the use of artificial intelligence for faster and objective fault detection [99,112].

Fuzzy logic, neural networks and expert systems have been used in many industries

for data analysis and interpretation for condition monitoring of equipment, including

transformers, gearboxes and longwall mining machinery [99, 105, 106, 113]. Similarly,

oil analysis has been found to benefit from the use of information technology for both

data management and fault diagnosis [114], and artificially intelligent systems for fault

diagnosis [115]. While the use of artificially intelligent computational algorithms for

automated fault detection and tracking is not unique to either vibration or oil analysis,

the development of a procedure using a combined approach of vibration, oil and wear

debris techniques is a totally new approach.

This chapter discusses the development of a novel expert system for the correlation

of vibration and oil analysis techniques, incorporating a quantitative confidence factor

to rate the detection success of the identified faults. This new development approach

deviates from the previous case study approach, by using artificial intelligence and fuzzy

logic for data analysis and reporting. An algorithm for root-cause analysis has also been

developed, to allow operators to gain an insight into the possible failure progression.

Testing of the correlation expert system using both laboratory as well as industry

data verified the successfully detection of the machine faults. The test cases again

demonstrate the benefits of using both vibration and oil analysis techniques in a com-

bined monitoring program, as suggested by Mathew and Stecki [73].

7.2 Expert System Development

The correlation of the vibration, oil and wear debris analysis techniques for gearbox

fault detection has been achieved by analysing the machine using the techniques sep-

arately, and correlating the outcomes to obtain the complete condition report. This

process requires the use of three expert systems, which have been categorised into pri-
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mary and secondary expert systems. Two primary expert systems — one for vibration

analysis (VES as discussed in Chapter 5), one for oil and wear debris analysis (OWDES

as discussed in Chapter 6), are used to process the raw data, while the secondary expert

system correlates the results of the underlying primary expert systems. The secondary

expert system has been called the combined analysis expert system (hereafter referred

to as CES).

7.2.1 Input Data Flow of Expert System

The primary expert systems were developed as stand-alone programs for machine con-

dition monitoring, reporting results to a text file, as well as a numerical text file which

contains the same data but in a numerical format. The text file allows the operator to

read the expert system results, while the numerical file is read (input) by the secondary

expert system (CES).

The development of the secondary expert system focused on the method of com-

bining the results and conclusions of the primary expert systems into one machine

condition report. This was achieved constructing a list of possible final results and cor-

relating the outputs of the primary expert systems into these headings, as well as using

a confidence factor to guide the operator on how likely a certain fault has occurred.

An algorithm for root-cause analysis of faults was also developed to help the operator

diagnose how machine faults may have occurred by examining and relating data from

both vibration, and oil and wear debris analysis. Figure 7.1 illustrates the structure of

the developed system and relationship between the three expert systems.

The software language chosen for implementation of the three expert systems was

Microsoft Visual Basic, as this contains many features that allow a user friendly in-

terface to be created, and thus the fulfilment of the usability design objectives. The

user interface has been set up to allow each primary expert system to be used in a

stand-alone configuration, or in a combined operation by performing the analysis via

the secondary expert system. The menu structures and menu screens of all expert

systems are shown in Appendix Section H, while the text of the help files is shown in

Appendix Section I.
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Figure 7.1: Data flow between the vibration, oil & wear debris, and combined analysis expert

systems.
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The expert systems were developed to process data in a similar fashion, as each

individual expert system performs a similar operation on a different type of input data.

Each expert system designed to utilise three core information components for analysis

machine specific information, analysis information, and the data to be analysed. All

three components are required in order to run the respective analysis algorithm, and are

discussed below. The machine specific information and analysis information are con-

cerned with information for the particular machine to be analysed, and will be operator

programmable via individual menus of the user interface. The entered information of

each menu will be saved to a respective text file, for use by the analysis algorithm. The

advantage of using individual text files for data storage is that firstly, an individual file

can be used for each machine, and secondly, the information can be used any number

of times for regular routine machine condition analysis without the need to re-enter

information.

The machine specific information category contains all the machine specifications,

including the number and type of bearings and their fault frequencies, gear and belt

ratios, material types of all components, as well as how the components are positioned in

the machine, as shown in Figure 7.2. This information is required for the analysis code

to calculate fault frequencies as is the case for the vibration analysis expert system, and

for the oil and wear debris expert system to perform elemental analysis. The bearing

types relate to the factors that influence their fault frequencies, such as bearing design

and rotational speed. Therefore two bearings would need to be classified as two different

types, if they are of different design, or two bearings of the same design but operating

at different speeds.

The analysis information menu was designed to incorporate a set of variables that

determine the fault detection sensitivity of the analysis algorithm. These variables

can therefore be used to fine-tune the expert system to the user requirements, such as

whether the expert system is used for early fault detection, or for fault monitoring, as

is often the case in the mining and minerals processing industries. The required infor-

mation to operate the VES analysis algorithm includes variables for peak, baseline and

haystack detection. Variables for OWDES include detection and alarm level percent-
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Figure 7.2: The Machine Specifications setup menu.



CHAPTER 7. COMBINED ANALYSIS EXPERT SYSTEM 198

Figure 7.3: The Analysis Information menu.

ages of wear particles, new and critical lubricating oil specifications, as well as critical

concentrations of typical wear and contaminant elements. The analysis information

menu developed to allow the operator to enter the required data is shown in Figure 7.3.

The data to be analysed consists of a number of text files for each primary expert

system. The compulsory data required to execute VES analysis is a text file containing

two columns comprised of frequency and amplitude. This type of file can generally be

exported as raw data from vibration analysers, and is therefore easy to obtain. Optional

data that can be analysed include time domain data, and demodulated spectra data.

Oil and wear particle analysis can be performed when wear particle data is available,

which has been considered as the compulsory data required to execute the OWDES

analysis. If additional information is provided including new and used oil viscosity,
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particle count and elemental analysis results, improved fault detection can be achieved.

As every oil analysis laboratory has different reporting standards, a data entry menu

of the user interface was developed to allow the information can be entered into a text

file as well as edited. The compulsory data includes wear particle type and relative

percentages, and wear particle colour with relative percentages.

7.2.2 Analysis Algorithm Development

The development of an analysis algorithm capable of correlating vibration, oil and

wear debris analysis output reports was structured into a three stage sub-project. The

first part was concerned with the research into the faults that can be detected by

each analysis technique, and establish the faults that can be detected using multiple

techniques. The second stage included the implementation of the research findings into

an algorithm that would import the analysis results of each technique, and compile one

comprehensive output report. Stage three was concerned with the development of a

root-cause analysis algorithm, capable of analysing the detected faults and categorising

the faults into primary and secondary type faults.

The first stage of analysis algorithm development focused on the fault detection of

the vibration, oil and wear particle analysis techniques, and the identification of any

detection overlap among the techniques. This research revealed that while vibration

analysis was able to locate and diagnose specific gear and bearing faults, oil and wear

particle analysis was only able to contribute the lubricant condition and wear modes

occurring. A summary of all of the detectable faults is shown in Figure 7.4, with

faults divided into their representative techniques. Correlation of all possible detectable

faults, only gear misalignment could be detected by both vibration and wear particle

analysis. Misalignment is evident through the presence of a high amplitude peak at the

rotational speed frequency and the occurrence of 2 body wear, in vibration and wear

particle analysis respectively. This is discussed further in Section 9.2.1.

The algorithm developed for the combined analysis expert system was designed to

correlate the analysis results of each primary expert system into a single report —

this constituted stage two of the development process. The algorithm was coded to
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detection. This confirms the conclusions of previous case studies of a correlated approach to

condition monitoring [1]. Additional fault categories also incorporated in the correlation

algorithm included journal bearing looseness and lubrication faults, pump cavitation and other

hydraulic faults, coupling misalignment and imbalance, belt and pulley faults as well as drive

shaft wear. Lubricant specific faults that were included by utilising oil analysis information

included oil contamination, additive depletion, and oil oxidation.

Table 1. Reporting structure of faults

Bearing Faults
Looseness

- Loose in housing

- Turning on shaft

- Generally loose (Severe Rotating Looseness - raised noise floor, haystacks)

Fatigue

o Mild - micro cracking

o Medium - macro cracking

o Severe - severe macro cracking

Fault

- Cage fault or cage loading

- Ball/Roller fault

- Race defect

- Possible installation fault

Lubrication Fault

o Inadequate lubrication

o Lubrication fault (contamination, begin of inadequate lubrication, over-lubrication)

Gear Faults
Operating Fault

- Input and/or output gear loose

- Input and/or output gear eccentric

- Input and/or output gear loose (major fault) & eccentric (minor fault)

-  Input and/or output gear eccentric (major fault) & loose (minor fault)

-  Gear or pinion fault

- Preferential wear

o Welding

Misalignment

- Misalignment

o Misalignment

Bent Shaft

- Input shaft bent

- Output shaft bent

Fatigue

o Gear fatigue

Information of what faults exist in a gearbox and how well these are established is

useful for performing root cause analysis, which is concerned with identifying primary faults

that are responsible for causing secondary faults. An individual algorithm was developed that

aimed at identifying primary faults by considering the types of faults detected. This algorithm

was developed by investigating common failure modes and mechanisms of gearbox

Figure 7.4: Machine fault detection using vibration, oil and wear debris analysis. The fault

indicators were coded by using different bullet points, an ‘o’ denoting indicators from oil and

wear particle analysis, while a ‘-’ designates an indicator from vibration analysis.
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utilise the numerical versions of the primary expert systems output files, which allows

the results to be read by the algorithm in binary logic, instead of the text based files

compiled for operators. This stage also included the display of results in an on-screen

menu, which is discussed in Section 7.2.4. This development was presented in [116].

7.2.3 Root-Cause Analysis Algorithm Development

The root-cause algorithm development was a key component of the correlation of the

primary expert system results, by relating the faults detected by vibration analysis, to

the clues detected by oil and wear debris analysis. This type of analysis had previously

only been done by a small number of researchers, using manual methods [1,2,73]. The

root-cause analysis algorithm was developed to show the operator how consecutive fail-

ures of various components may have contributed to the detected faults of the machine.

The development of an algorithm to perform root-cause analysis of the detected faults

comprised stage three of the analysis algorithm development process. The design ob-

jective of the root-cause analysis was to categorise all faults into primary and secondary

faults, depending on whether they are a unique failure, or caused by another fault.

The algorithm development required the prior construction of a knowledge base, and

included examining the possible failure mechanism of all possible machine faults, and

linking these together when numerous faults were detected. The information required

to determine which machine faults may have influenced each other is knowledge of

both the type of fault as well as the location of the faulty component in the machine.

This means that for a secondary fault to occur, the secondary component must be in

some form of physical contact with the component that has the primary fault. For

the analysis perspective, the machine needs to be divided into a number of regions,

where components in each region can cause secondary wear among those components,

but not to components in other regions. Additionally, some components can be part of

two regions, as would be the case when two gears are mounted on the same shaft for

example. The shaft and supporting bearings would be part of the region for each gear

reduction, as failure of the bearings would influence both gears.

Another example is shown in Figure 7.5, where an electric motor is coupled to a 2
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Figure 7.5: Schematic diagram of an electric motor, gearbox and pump arrangement, showing

possible machine region boundaries.

stage spur gearbox directly driving a pump. Region 1 contains the electric motor bear-

ings and shaft, as well as the gearbox input shaft and bearings. These components can

influence each other, if for example the coupling is unbalanced or misaligned. Region 2

contains the input and intermediate shafts, bearings and the gears of reduction stage

1. Region 3 contains the intermediate shaft and output shaft, bearings and gears of

reduction stage 2. The intermediate shaft and bearings is thus present in both Region

1 and 2. Region 4 contains the pump, pump input shaft, and gearbox output shaft,

and bearings on each of the two shafts.

Once the machine has been divided into the appropriate regions, the detected faults

can also be assigned into the particular regions. The faults in each region can then be
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analysed for possible failure mechanisms. The method assigning the detected faults to

those components surrounding the defective component has the benefit of reducing the

number of faults detected in each region, while providing a realistic and logical process

for root-cause analysis.

It was discovered that in cases where many faults are detected, there is a high

probability that some faults will be categorised as both primary and secondary, as

they relate to other faults. For example, a bearing looseness fault (primary) may

be responsible for gear misalignment (secondary), but the misalignment fault may be

primary to a gear fatigue fault that occurred due to the reduced load transmission

surface area. When numerous faults are detected, it is difficult to organise faults into

primary and secondary classifications, and reconstruct the order of failure mechanisms.

The constructed knowledge base was implemented as the root-cause analysis al-

gorithm. The input data of the root-cause analysis algorithm is the complete list of

faults compiled from the primary expert systems. The root-cause algorithm is executed

once the initial analysis algorithm has completed, and summarises the results in an on-

screen menu, discussed in 7.2.4. The operation of the root-cause analysis algorithm is

discussed in Section 7.2.5.

7.2.4 Output Interface Development

The analysis results include a comprehensive list of machine faults, as well as a list of

faults categorised into primary and secondary faults by the root-cause analysis algo-

rithm. A separate menu was developed for each list, designed to provide an operator

with a quick way to scan for the various faults present, and the ability to investigate the

details of each fault if desired. The output menu structure was designed according to

the original expert system development objectives, that would allow easy and efficient

operation. The menu structure and user interface including data input and analysis

results output menu screens are shown in Appendix Section H.1 and H.2.

The general analysis results menu was designed to include the major fault areas,

such as bearing, gears or pump related faults, on screen and a sub-menu to list the

detailed information about each fault. The menu therefore contains 20 fault identifica-
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tions, summarised into 8 types of machine components. This format of summarising the

detected faults was adopted as it allows the data to be displayed in a one page view,

giving an operator a quick overview of the general machine condition. The results

menu lists the component and the general fault that has been detected. Faults that

were detected by VES generally allow the faulty component to be identified, due to the

unique fault frequencies generated by different bearings and gears. This feature allows

the occurrence of a fault to be displayed for bearing and gear faults except fatigue, as

well as belt and pulley faults.

The sub-menu is accessible through a selection button next to each detected fault,

and is used to list all individual detected faults and their confidence factors. The

layout of the general results menu is shown in Figure 7.6. When a fault is detected,

the highest confidence factor of all faults under the general heading is displayed in the

general results menu. For example, if bearings 2, 4 and 7 were detected to be loose, the

highest confidence factor would be displayed. The details sub-menu would then display

the particular fault associated with each of the bearings, including loose in housing,

loose on shaft, or general excessive looseness, as well as their respective confidence

factors.

The development of the general results menu also included the design of an alterna-

tive menu intended for the case when no faults were detected by the analysis algorithm,

as shown in Figure 7.7. The menu consists of an information box notifying the operator

that no faults were detected, including a warning that this may be due to the alarm

limits of fault detection being set too high. The warning message was included for new

learning operators, as well as for new machines where the appropriate alarm detection

limits have not been determined accurately.

The menu for displaying the root-cause analysis results was developed to display all

faults as primary or secondary faults, as well as list additional recommendations useful

for the maintenance department. The simple display menu shown in Figure 7.8 serves

the design objectives, by allowing all necessary data to be displayed on one screen.
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Figure 7.6: The Analysis Results Menu of the Combined Analysis Expert System.
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Figure 7.7: Alternative Analysis Results Menu when no faults are detected.

7.2.5 Analysis Algorithm Operation

The combined analysis expert system (CES) is the secondary expert system that has

been developed to correlate the conclusions of the primary expert systems into one

set of reporting outputs. The aims of the correlation were to determine the condition

of a machine, and perform a comprehensive fault analysis that provides an insight

into how the faults initiated and developed, in an automated software package. This

was achieved by calling each primary expert system independently, and then using

the individual results to establish the condition of the machine and performing fault

root-cause analysis. The use of the primary expert systems for initial data analysis

simplified the system structure, and has the added benefit of allowing each primary

system to be used in stand-alone mode.

The analysis process consists of the execution of four analysis modules. The first

two modules to be executed are the vibration and oil and wear debris analysis expert

systems, which carry out fault detection on the raw data. The third module to be

executed is the combined analysis expert systems analysis algorithm, which categorises

all detected faults into the fault groups presented to the operator. Part of this algorithm

is the calculation of the confidence factor of each fault, which allows the expert system



CHAPTER 7. COMBINED ANALYSIS EXPERT SYSTEM 207

Figure 7.8: The Root-Cause Analysis results window, showing an example where bearing

looseness caused gear misalignment.
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to perform an efficient and objective data analysis. The fourth module to be executed

is the root-cause analysis, which analyses the detected faults relative to the position of

each component within the machine. Finally, the information obtained from the four

analysis stages are displayed on the analysis results screen, as shown in Figure 7.6.

The detection algorithm of each primary expert system includes the calculation of a

confidence factor for that fault occurring. These confidence factors are then evaluated

for the 20 output faults of the CES, to obtain a confidence factor for these faults. The

confidence factor was developed to allow the operator to judge how successfully each

fault was detected by its respective algorithm. The confidence factors are between 0

(fault does not occur) and 1 (the probability that the fault occurs is 100 %), and are

reported in the results window.

The confidence factors reported in the CES analysis results window are the highest

confidence factor of all faults for the particular machine component. The detailed view

of each fault lists all of the detected faults and their confidence factors, arranged in order

of increasing component number. The output faults of each primary expert system were

determined to be the faults which could be detected by that technique with reasonable

confidence, where the confidence factor represents the success of fault detection. The

faults, as well as their detection algorithm were developed by consulting literature as

well as industry representatives who can be considered experts in their field. The

expert systems were individually tested using data obtained from a laboratory test rig

featuring a single reduction spur gearbox.

Once the analysis results of the primary expert systems have been compiled, these

are input to the root-cause analysis algorithm for further processing. The faults are

grouped into the defined machine regions, and the faults in each region analysed for

possible failure mechanism. All faults are identified as either primary, secondary or

unknown chronology faults, depending on how the component faults originated. The

results are then displayed in the root-cause output menu, as shown in Figure 7.8.

The expert system developed to correlate the results from individual vibration anal-

ysis, and oil and wear debris analysis has achieved the design objectives by providing a

comprehensive machine condition report, without relying on operator expertise. This



CHAPTER 7. COMBINED ANALYSIS EXPERT SYSTEM 209

is accomplished by compiling the results of the primary expert systems into one set of

outputs using the developed logic algorithm, and a numerical confidence factor in the

root-cause analysis algorithm.

7.3 Testing and Discussion

The development of the three expert systems included a thorough testing procedure,

which included individual testing of the primary expert systems, followed by complete

case study type analysis. Two of the case studies used for testing are discussed, one

using data from a laboratory gearbox, and the other analysing data from a gearbox

operating as a grain auger gearbox in the agricultural industry.

The first test case analysed with the combined analysis expert system was of a single

reduction laboratory gearbox operating under constant overload of approximately 125

% of the rated gear power. This test was chosen as an overloaded condition is not easily

detected directly, and early fault detection is crucial in avoiding premature failure. The

measured vibration data consisted of tri-axial spectra, time domain and demodulated

spectra, taken at the input side of the input shaft, and the output side of the output

shaft, as described in Section 4.2.2.

Vibration analysis of the spectra detected bearing faults including a medium to

severe output shaft race defect, possible bearing looseness, as well as a bent input

shaft, and gear looseness. The oil and wear debris analysis expert system detected gear

fatigue and the presence of blue coloured tempered particles. The blue particles were

generated by the high gear teeth contact pressures caused by the overloaded operating

condition. High wear particle concentration was also detected towards the end of the

test, caused by a high wear rate. The detected faults were combined by the CES into

the following faults summary:

• 2 Bearing Looseness - possible bearing looseness

• 2 Bearing Faults - output shaft race defect, and cage defects

• Gear Operating Fault - possible loose input and output gears
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• Bent Shaft - bent input shaft

• Gear Fatigue

The root-cause analysis algorithm concluded that the bent shaft and gear fatigue

were primary faults, while the remaining faults could not be categorised into either

primary or secondary faults. The analysis algorithm interprets a bent shaft condition

as a primary fault, as drive shafts are not often bent in service, but more commonly

by incorrect installation and handling. Similarly, gear surface fatigue is also a primary

fault, as it is caused by cyclic loading and not as a result of other machine damage.

Visual inspection of the gearbox verified the presence of the detected faults.

The second case study used to verify the operation of the expert systems was a

two-stage spur gearbox, operating on a grain auger in the agricultural industry. The

gearbox was close coupled to a 0.55 kW four pole constant speed electric motor and a

total reduction of 4.81 to 1. The motor and gearbox arrangement is shown in Figure 7.9.

The total run time was estimated at 3000 hours during the 10 year operating period.

The intermediate and output drive shafts of the gearbox were supported by journal

bearings, while the pinion gear was supported by the motor shaft. The vibration data

taken were the same type as of the first case study. Oil and wear debris data consisted

of wear particle type and concentrations, as well as particle colour. Normal operating

vibration data was obtained from a gearbox of the same type, which had operated

for approximately 300 hours. This data was used to set up the amplitude levels of a

healthy gearbox.

The faults detected by vibration analysis included a loose output gear, gear mis-

alignment and preferential wear of reduction set 1, and possible eccentric gears of

reduction set 2, as shown in the vibration analysis expert system output file in Fig-

ure 7.10. Possible lubrication problems of the journal bearings were also detected. Oil

and wear debris analysis detected possible gear misalignment due to the presence of

cutting wear particles, and the onset of gear fatigue as fatigue chunk particles were

found. A small percentage of particles were found to have striations on the surface,

indicating the presence of occasional scuffing. The oil and wear debris analysis expert
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Figure 7.9: Photo showing grain auger gearbox and close coupled electric motor.

system output file is shown in Figure 7.11. The root-cause analysis identified the gear

fatigue as a primary fault. The misalignment may have been caused by a loose fit be-

tween the journal bearings and drive shaft. However, excessive bearing looseness was

not detected, only a possible bearing lubrication fault. Visual inspection confirmed

that misalignment of reduction set 1 had indeed occurred, and that the gears of reduc-

tion 2 were slightly out of round (eccentric). The journal bearings were found to have

a scratched surface, while the corresponding drive shaft positions were polished. The

loose bearing fault may have been masked as a lubrication problem as the gearbox was

filled with high viscosity oil, of 337 cSt at 40◦C.

The testing process demonstrated that the combined analysis expert system success-

fully executed the individual vibration, and oil and wear debris analysis expert systems,

and correctly compiled their analysis results. The root-cause algorithm was verified to

operate according to the developed knowledge base, by identifying primary machine

faults. As these are the faults that occur first, the machine life can be optimised by

adjusting the operating conditions or maintenance schedule in order to minimise the

factors that cause the primary faults.
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Detected Faults:

=============

* Oil whirl, oil whip or other machine resonance present.

(If change in speed causes change in vibration frequency, then fault is most likely oil whirl).

* The output gear is loose.

(The gear mesh frequency has a sideband at 6 times the output rotational speed, at

lower frequency than the GM frequency).

(The sideband peak is the 34 harmonic of output shaft speed).

(Gear set number 1).

* Possible misaligned gears, and or tooth wear & backlash (gear set 1).

(Radial amplitudes of 2 GM > GM, and or 3 GM > GM)

* Preferential wear occurring at gear set 1

(The input and output gears have a common factor other than 1, assembly

phase frequency (horizontal direction) detected)

* The input gear is eccentric.

(The gear has 5 high (eccentric) regions).

(The gear mesh frequency has a sideband at 5 times the input rotational speed, at

higher frequency than the GM frequency).

(The sideband peak is the 30 harmonic of input shaft speed).

(Gear set number 2).

* The output gear is eccentric.

(The gear has 7 high (eccentric) regions).

(The gear mesh frequency has a sideband at 7 times the output rotational speed, at

higher frequency than the GM frequency).

(The sideband peak is the 43 harmonic of output shaft speed).

(Gear set number 2).

***** End of Vibration Expert System Output File *****

=========================================

Figure 7.10: Vibration Analysis Expert System output file for the grain auger gearbox analysis.

Note: the file header as well as the analysis information printed at the end of each file has been

omitted.
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Detected Faults:

=============

Contamination Faults:

None

Lubrication Faults:

None

Wear Related Faults:

* Possible Misalignment

Confidence Factor is 0.5

* Sliding Wear Occurring

Confidence Factor is 1

* Gear Fatigue

Confidence Factor is 1

Corrosion Faults:

None

List of Possible Gears Which Experience Fatigue (gears with Gear Materials:)

None

Non-Machine Wear Originating Elements found in sample:

——————————————————————————-

None

Table Listing the Number of Critical Elements Found in Each Component:

—————————————————————————————————-

* The list is descending, ordered in material type.

* The total number of critical elements found in the sample is: 0.

None

***** End of Oil & Wear Debris Expert System Output File *****

=========================================

Figure 7.11: Oil & Wear Debris Analysis Expert System output file for the grain auger gearbox

analysis. Note: the file header as well as the analysis information printed at the end of each

file has been omitted. As elemental analysis data was not available, the results lists are blank

and labeled as ’None’.
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7.4 Summary

The expert system development discussed in this chapter demonstrated the benefits of

a combined use of the vibration, oil and wear debris analysis techniques, by using a

root-cause algorithm to link fault indicators with detected faults. It was found that

root-cause analysis increases the fault detection ability by providing a more complete

report on the machines health status, when compared to the individual use of each

analysis technique. The expert system correctly diagnosed the faults of the testing

data, without relying on operator experience for interpretation, thereby demonstrating

that it had correlated vibration, oil and wear debris analysis successfully.

The combined automated analysis of vibration, oil and wear debris analysis data to

provide a comprehensive machine condition report based on quantitative data analysis

algorithms has been achieved for the first time. The expert system analysis algorithms

utilised quantitative analysis techniques including numerical wear particle identifica-

tion, and detection confidence factors based on fuzzy logic, to perform objective data

analysis and fault diagnosis. The results obtained during the testing phase of the expert

system indicate that machine condition monitoring can be performed by maintenance

technicians using artificial intelligence for data interpretation and fault diagnosis.



Chapter 8

Remaining Lifetime Estimation

8.1 Introduction

Machine health monitoring has become a common component of pro-active mainte-

nance programs by providing early fault detection and an insight into the general op-

erating condition of the machine. Once a machine fault has been detected, the rate of

degradation and the operating time to failure are two factors of interest to the mainte-

nance department. Remaining lifetime estimation is a powerful tool for supplementing

machine condition monitoring data, aiding maintenance departments in scheduling ma-

chine repair as well as deciding for optimum timing of equipment replacements.

The developments outlined in this chapter deal with the estimation of lifetime by

focusing on material wear. This contrasts the common approach of treating machine

lifetime in a statistical manner such as by describing the bathtub shape failure curve

using mathematical parameters [78, 79]. However, in order to predict machine lifetime

using the statistical approaches [80], statistical analysis of the failure data must be car-

ried out. This data may not be available if machine failure is not a common occurrence,

as is the case with well designed and maintained machinery.

An alternative strategy for machine remaining lifetime estimation has been de-

veloped, based on the volume of material that can be worn away from a particular

component before it is rendered unserviceable. This analysis of components is used in

the remanufacturing or overhaul of machinery, where all component critical dimensions

215
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are inspected and compared to wear out limits provided by the manufacturer. It is

therefore possible to judge the components condition with respect to new and wear out

limits of the wearing surfaces. Although the analysis of components is common prac-

tice in the machine servicing industry, it presents an innovative approach for remaining

lifetime estimation.

The aim of this research was to develop a strategy for remaining lifetime estima-

tion, which allows condition monitoring information to be used to update the estimate

throughout the operating life of the machine. The potential benefit of such a tech-

nique is that an estimate can be established assuming normal operating conditions,

and updated if the machine experiences abnormal operating conditions such as lubri-

cant contamination or overload. Another objective of the research was to automate the

strategy by integration with an expert system for condition monitoring, which provides

the required machine condition information to estimate the remaining lifetime.

The developed strategy has been discussed in this chapter together with the re-

quirements of this new technique. The technique has also been applied to the wear

of a spur gearbox, with the real data being presented and discussed. Although the

experimental data confirms the operation of the strategy, the prime objective was to

present the strategy as a case study and not purely for verification of the technique.

8.2 Knowledge Base Development

The knowledge base was developed to incorporate common accepted and tested wear

equations in an automated package for machine remaining lifetime estimation. Wear

processes have been found to be extremely complex with many additional variables

apart from load, speed and component hardness, which may have a significant effect

on the calculated accuracy. Some of these factors include varying machine condition,

differences in lubricants and component metallurgy, type and concentration of contam-

inants, and duty cycle of operation.

In order to develop a strategy for remaining lifetime estimation, a knowledge base

for four common wear modes found in gearbox type machines was compiled. The
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wear modes are comprised of abrasive, adhesive, cutting and sliding wear, which are

discussed in detail in the following sub sections. Although surface fatigue is also com-

monly encountered in gearboxes, this type of wear is dependent on cyclic loading and

general overload, which can be detected easily by measuring the input power. By the

time wear can be detected using oil and wear particle analysis, surface damage has

already resulted. Additionally, surface fatigue propagates undetectable to vibration,

oil and wear particle analysis until significant permanent surface damage has occurred,

thereby preventing the remaining lifetime to be calculated without considering addi-

tional information such as gearbox power input and rated power to estimate the fatigue

life.

8.2.1 Abrasive Wear

Abrasive wear occurs when a hard material abrades a softer material. The softer mate-

rial is referred to the machine component undergoing wear, while the harder material

is composed of either a rough hard surface or a soft surface containing a hard contam-

inant. This definition of abrasive wear therefore covers the two-body abrasive wear

process. The three-body wear process is significantly more complex as it contains an

abrasive particle in between and in contact with two softer surfaces. This results in

increased variables, as the angularity and softer surface hardness may not be uniform,

and as the abrasive particle may slide or roll between the surfaces. In view of reducing

the complexity of the model to allow the remaining lifetime to be estimated, the use of

two body wear approximation is beneficial.

The abrasive wear rate has been found to be directly proportional to load and sliding

distance, and inversely proportional to the abraded material hardness. Although this

relationship remains true for all practical abrasive wear situations encountered, the

impact of hardness and abrasive size on the resulting wear rate can change in certain

scenarios. One example is when the hardness of the abrading material approaches the

hardness of the abrasive, as could be the case when sand (silicon dioxide) of Brinell

hardness approximately 750 kg/mm2 contaminant wears against steel (Brinell hardness

of 200 to 1000 kg/mm2). The effects of the hardness ratio can be included in the wear
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equation by using an appropriate wear coefficient, according to the graph shown in

Figure 8.1. The wear equation that has been developed to successfully calculate wear

volume is [117]:

Wear Volume =
KABR × Load×Distance

Hardness
(8.1)

where

• wear volume is the removed volume of the softer material in mm3

• KABR is the abrasive wear coefficient as shown in Figure 8.1 and Table 8.1,

• Load is the normal load in kg,

• Distance is the sliding distance in mm,

• Hardness is the Brinell hardness in kg/mm2.

The abrasive wear constant is dependent on the physical weighted average of the

cutting angle of the abrasive particles with the abraded surface. The relationship is:

KABR =
Tanθ

θ
(8.2)

where

• KABR is the abrasive wear coefficient,

• Tan(θ) represents the weighted average of the cutting angle of the abrasive par-

ticles with the abraded surface.

The wear equation (8.1) has been found to apply both to three-body as well as

two-body wear modes, although the abrasive wear coefficient used differs. While KABR

is in the vicinity of 6×10−2 to 6×10−3 for two-body wear, typical values for three-body

wear are about half this at 3 × 10−2 to 3 × 10−3. Rabinowicz [117] comments that as

the abrading geometry would be similar for the two-body and three-body cases, the

abrasive grains in three-body wear would spend about 90 % of the time rolling and 10 %

sliding (and abrading). This theory is supported by the experimental values measured

for coefficient of friction, which is significantly lower for three-body wear [117].

The wear equation above assumes that a constant wear rate can occur over the

duration of the sliding distance. However, a different wear equation can also be used



CHAPTER 8. REMAINING LIFETIME ESTIMATION 219

Figure 8.1: Variation of relative wear coefficient vs hardness ratio [117].

which is based on the blunting effect and clogging of an abrasive during sliding. The

wear rate has been found to be abrasive size dependent up to a critical size, after which

the wear rate is independent on the abrasive particle size [83, 118]. The phenomenon

has been explained by the clogging up of the fine abrasive particle by larger wear

debris particles, and results in the wear rate decreasing over the sliding distance. The

equation developed for this phenomenon is shown below, and represented graphically

in Figure 8.2.

V = V∞(1− e−βL) (8.3)

where

• V is the wear volume,

• V∞ is the wear volume at infinite sliding distance,

• L is the sliding distance,

• β is a constant.
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paper, and they have found that their data fits an equation of the form

V : V - ( l - " - B \ , (7.4)

where z- is the total volume of metal removed abrasively if the sliding is
continued indefinitely and 0 is a constant. Their experimental data, as well as
their equation, fitted with two constants V* and B, is also shown (Fig. 7.5).
According to Eq. (7.4), the wear rate (dv/dx) is initially at a constant rate but
then gradually drops to zero.

Mulhearn and Samuels explain this eventual dropping off of the wear rate
as due to blunting of the abrasive particles (Fig. 7 .6a). Another factor that is
probably also present is the clogging ofthe paper by abraded particles derived
from the material being abraded. This wear debris will eventually lift the ma-
terial above the level of the abrasive grains in the paper, at which point abrasive
action will cease (Fig. 7.6b).ln conformity with this explanation, it should be
noted that according to Mulheam and Samuels, abrasive action ceases much
more rapidly with the fine than with the coarse grades of abrasive paper.
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Fig. 7.6 (a) Hypothetical appearance of abrasive surface before and after wear, show-

ing blunting. (b) Hypothetical abrasive surface clogged by wear debris.
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Table 8.1: Abrasive wear coefficients for metals [117].

Lubrication File Abrasive Paper, Loose Abrasive Coarse

New Grains Polishing

Unlubricated 5× 10−2 1× 10−2 1× 10−3 1× 10−4

Lubricated 1× 10−1 2× 10−2 2× 10−3 2× 10−4

The wear equation chosen for inclusion in the knowledge base is equation (8.1),

based on load and hardness. This equation was chosen over equation (8.3) as the

abrasive concentration can change with each machine oil change, and new abrasive

introduced. As V would need to be determined, a new curve as shown in Figure 8.2

would need to be determined for each load and abrasive concentration. However, as

multiple oil changes are typically performed during the life of gearboxes, each oil change

period would operate in the low sliding distance part of Figure 8.2 where the wear

volume is proportional to sliding distance. It was therefore considered more efficient to

approximate wear according to a constant wear rate equation.

In order to use equation (8.1) for real gears and bearings as opposed to wear ma-

chines such as pin-on-disc apparatus, the sliding speed and sliding distance of the

components must be determined. As gears and rolling element bearings are designed

for rolling rather than sliding, the sliding speed component of the total rotational speed

must be determined and used in the wear equation when calculating remaining operat-
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ing time. As this information is dependent on the type and design of the component,

the knowledge base was designed to accept the sliding speed as a percentage of the to-

tal operating speed. This information is therefore assumed to be available from either

component manufacturers, or measured by independent tests.

8.2.2 Adhesive Wear

Adhesive wear is the process when two materials either of different or similar hardness

slide against one another. In the case of two materials of differing hardness, more

fragments and also of larger size are generally observed of the softer material. However,

the harder material usually also undergos wear although wear particles are fewer and

smaller. One possible explanation to the harder material wearing is the existence of

low strength regions within the harder material.

The wear equation developed to calculate the wear associated with adhesive wear is

similar to that used for abrasive wear, although with different wear coefficient. This is

due to adhesive wear also being found to be proportional to load and sliding distance,

while inversely proportional to the hardness of the worn material. Although numerous

equations have been developed over time such as based on statistical wear particle size

distribution, the equation that is similar to the abrasive wear equation has been based

on the energy concerned with removal of particles from the rubbing surfaces [117]. The

wear equation is shown below:

Wear Volume =
KADHESIVE × Load×Distance

Hardness
(8.4)

where

• wear volume is the removed volume of the softer material in mm3

• KADHESIVE is the adhesive wear coefficient as shown in Table 8.2,

• Load is the normal load in kg,

• Distance is the sliding distance in mm,

• Hardness is the Brinell hardness in kg/mm2 or the wearing (softer) material.
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Table 8.2: Adhesive wear coefficients for metals [117].

Metal on Metal Metal on Metal Partially Compatible/

Lubrication Identical Compatible Partially Incompatible Incompatible

Unlubricated 1500× 10−6 500× 10−6 100× 10−6 15× 10−6

Poor 300× 10−6 100× 10−6 20× 10−6 3× 10−6

Good 30× 10−6 10× 10−6 2× 10−6 0.3× 10−6

Excellent 1× 10−6 0.3× 10−6 0.1× 10−6 0.03× 10−6

The accurate calculation of the wear volume is dependent on the accuracy of the re-

quired entities, including the adhesive wear coefficient. While typical coefficient values

for many different material combinations have been reported in literature, differences

in lubrication conditions between the approximated and actual case can result in sig-

nificant differences in wear coefficient [117]. This is evident in Table 8.2, showing the

documented adhesive wear coefficients for metals. As the differences in wear coefficients

are large for the different lubrication conditions, deviations from the four documented

categories can greatly influence the accuracy of the calculated wear volume.

Lubricant additives can also affect the value of the adhesive wear coefficient, as the

coefficient is dependent on the rate of oxide film formation of the wearing material,

classified as the severity of wear [117]. If a metal oxide film can form as fast as it is

worn away, the wear is classified as mild, while situations when the oxide film cannot

reform rapidly is classified as severe wear. Additives such as extreme pressure additives

can therefore result in the wear regime to shift from severe to mild, as the oxide film

can reform rapidly thereby influencing the adhesive wear coefficient.

High accuracy wear estimation using tabulated wear coefficients as shown in Ta-

ble 8.2 is generally considered not achievable due to typical high statistical scatter of

wear, and experimental error. However, a possible strategy to improve the calculated

wear volume is to determine the value of the actual wear coefficient by experimentation.

While this can be done for critical machinery, it is not feasible for general condition
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monitoring of machinery unless this information is made available from manufacturers

for the recommended lubricant. As the lubrication regime is also dependent on the load,

the wear coefficient values from manufacturers would also need to include load limits

to ensure that the machine operates in the desired lubrication regime. The knowledge

base has been designed to accept a wear coefficient value from the operator which is

then used for calculations. It is therefore the responsibility of the operator to supply a

suitable value, either from the manufacturer, experimentally derived or tabulated.

8.2.3 Cutting Wear

The cutting wear process is different to the other three types of wear, as it is a machining

process rather than related to surface scratches or adhesion between one surface and

another. Although machining processes have received significant research attention

which has resulted in numerous equations to be established [89, 117], cutting wear of

gears is somewhat more complex than the commonly referred to cutting tool lathe

model. The cutting tool model allows parameters such as absorbed power, chip size

and metal removal rate to be determined easily once cutting angle, feed rate, material

diameter and rotation rate are known. However, this simple model cannot be applied

to gears easily as the gears themselves are the cutting tool, and the tool does not have

a feed rate or particular cutting angle.

Although the simple lathe tool model cannot be applied easily, a number of simpli-

fying assumptions can be made in order to create a new model to estimate the cutting

wear from one of the most common cutting wear mechanisms — gear misalignment.

Firstly, the total possible volume of wear can be calculated once the angle of misalign-

ment is known, as well as the gear widths, shaft lengths and dimensions of where the

gears are mounted. The total wear volume (V) is therefore the amount of material

worn due to the particular misalignment angle, which is assumed to be constant for

the calculation. For small angles of misalignment, the gear contact surface will gener-

ally become approximately equal to the contact area prior to the misalignment, which

would not alter the surface fatigue life significantly.

Another complexity of gear wear compared to the lathe tool model is that gear
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Figure 8.3: Meshing of Gear Teeth within Addendum and Deddendum Radii of Each Gear.

teeth are quite complex three-dimensional objects which are worn diagonally. The

assumption made in order to simplify the shape complexity is to treat the gear teeth

as rectangular. This means that the developed algorithm calculates a greater material

removal at the teeth tips than actually was worn, as the teeth are really narrower at the

top than at the base. A conservative estimate is therefore obtained, especially when

the misalignment angles and shaft lengths are small.

The next step in the knowledge base development was to approximate the wear

when diagonally slicing the tip of the gear teeth. In order for this to be performed,

the assumption was made that the meshing area is made up of solid gear teeth, half

of which belong to gear A and the other half of which belong to gear B, as shown in

Figure 8.3. This allows the wear volume to be calculated by using a 2D model of the

gear and assuming that it is machined into the shape of a cone, as shown in Figure 8.4.

The calculations are summarised in Appendix Section G.

When considering gear geometry design it is necessary that the tip of gear teeth

are shorter than the inter gear spacing in order to avoid interference between the gear

teeth tips. This causes a situation where the space covered by overlapping gear teeth

(between addendum and deddendum radii) includes an air space at the tip of each
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Figure 8.4: Calculation of gear volume wear using conical machining model.
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tooth. This air space has been incorporated into the wear volume removal equation by

accepting a percentage of the total space that is covered by gear teeth. For example, if

in the space mapped out by the addendum and deddendum radii of each gear, 95 % of

the space is covered by gear teeth, then the Gear Interference Factor (GIF) is equal to

0.95. This means that 5 % of the space is actually air gaps arising from the shortened

gear teeth as well as the space required for each tooth to move while meshing.

8.2.4 Sliding Wear

In the condition monitoring field, sliding wear is typically characterised by wear par-

ticles featuring surface scratches, coinciding with high sliding speeds. Sliding wear

particles are not generally found in spur and helical gearbox applications, allowing the

term sliding wear to be used for abnormal operating conditions such as bent shaft op-

eration where the teeth scratch over one another either apart from or in combination

with the normal rolling motion. However, in the field of fundamental wear research, the

use of sliding wear as defining a unique wear mode is not universally accepted. Since

sliding is required for all wear modes except cutting and fatigue, it is argued that sliding

wear is part of adhesive or abrasive wear [117]. Some researchers argue that since one

material receives scratches it is an abrasive wear mode, while others argue that sliding

wear is part of the adhesive wear mode as the wear particles are formed by adhesion,

by the transfer of particles from one surface to the other. This theory is based on the

condition that abrasive wear requires one surface to be harder and rougher than the

other [117].

As the wear equations for both abrasive and adhesive wear are similar except for the

appropriate wear constant, it would be expected that either wear mode calculation can

be used to approximate the wear volume provided that the appropriate wear constant

is used. The general adhesive wear equation has been adopted into the knowledge base

for the purpose of remaining lifetime estimation.
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8.3 Remaining Lifetime Estimation Strategy

The developed strategy was designed to estimate the remaining lifetime of a machine,

with the ability for this estimate to be updated during the life of the machine by using

condition monitoring data. In order to predict the remaining lifetime in hours, the

volume of material that can be worn away from the components must be determined,

which together with the wear rate allows the time to be calculated. The wear rate is

dependent on the operating conditions, such as contamination and overload, which can

be obtained from the machine condition data collected during routine health monitor-

ing of the machinery. As each machine component wears, the approximate material

removed can be calculated from the wear rate over each oil change period. Hence, the

remaining material to be worn away is calculated which allows the remaining life to be

determined. This is the summary of the lifetime estimation strategy, which is discussed

in detail below.

The information and calculations required in order to estimate the remaining life-

time of a machine is displayed graphically in Figure 8.5. From this figure, it is evident

that 4 items of information are required, consisting of the design life of each compo-

nent, the new and wear out limits, condition monitoring information and the current

component dimension. The design life of the component as well as the new dimensions

and wear out limits of each component can be obtained from the manufacturer, where

in the case of gears, the design life is generally concerned with surface fatigue. Most

manufacturers publish wear limits for components that govern whether a part can be

re-used in a rebuild or whether it should be replaced. Condition monitoring infor-

mation is required to give an insight into the conditions experienced by the machine,

including concentration and types of contaminants, load, and the operating hours since

the last oil change. The current dimension of each component is a data field that will

be updated for each estimate during the life of the machine.

The remaining lifetime estimation strategy involves 4 calculations to be performed

before the lifetime can be determined using a fifth calculation. These have been labelled

from 1 to 5 in Figure 8.5, to aid with their description. Calculation 1 is concerned with
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Figure 8.5: Calculations required to determine machine remaining lifetime.

determining the average wear rate when the machine is run at normal operation. It

is therefore the material loss in grams given by the new and wear out limits of the

component, divided by the design lifetime of the component in hours.

The common wear equations of calculation 2 (and discussed in Section 8.2) are

used for estimating the volume material loss over the monitoring period, given the core

governing factors including load, sliding speed and material hardness, for adhesive and

abrasive wear situations.

The third calculation is concerned with determining the amount of material that

can still be worn away, given the current component dimension and the wear out limit.

Calculation 4 then involves updating the current dimension of the component by sub-

tracting the amount of material worn away during the last oil change period. This

method is used to track the approximate mass of material of the component that re-

mains to be worn away before the component exceeds the corresponding wear out

limit. The material worn away during each oil change period can therefore be added

together using the principal of cumulative damage, to allow the approximate mass of
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each component to be tracked.

The final step in determining the remaining lifetime of the machine is summarised in

calculation 5, which involves dividing the mass of material to be worn away calculated

in 4 by the average wear rate expected for the machine, the result of calculation 1. If a

certain abnormal wear condition is assumed for the machine, such as a high contaminant

concentration which is typical for the operating environment of the machine, then the

wear rate of calculation 1 can be substituted with the wear rate of calculation 2. In this

case, the second option results in a more accurate life estimation, and if the abnormal

operating condition is absent, the estimate is conservative.

8.4 Application of Estimation Strategy

The performance of the strategy for estimating the remaining lifetime of machinery was

evaluated by obtaining gear condition data from a laboratory spur gearbox operating

under abrasive wear conditions. This test was performed to facilitate preliminary ver-

ification of the strategy, in this case, for abrasive wear. The test scenario was chosen

due to the common occurrence of contamination in industrial gearboxes, resulting in

premature failure from abrasive wear.

The conditions of the test were such that the gearbox was operated at 80 % rated

load for the duration of the test. The gearbox was operated initially for 100 hours to

allow for the transition from wear-in to normal operation to occur. The lubricating

oil was changed at approximately 45 hour intervals, allowing the gears to be weighed

and fresh oil and contaminant added, for a test duration of 141 hours as shown in

Table 8.3. The contaminant used for this test was silicon dioxide at approximately

5000 ppm (w/v) concentration, with a random particle size range of 8 to 50 microns.

Silicon dioxide is a common contaminant of dust, and is a hard abrasive compared

to the gear materials of 147 and 154 Brinell Hardness for the small and large gears

respectively. A high concentration of contaminant allowed the gears to wear at a high

rate compared to that of normal operation, while also preventing the sheer-mixed layer

from forming which would result in an additional variable in the wear equation. The
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Table 8.3: Abrasive wear test results.

Test Operating Gear Pinion Contaminant Change in Change in

Interval Time Mass (g) Mass (g) Concentration Gear Mass Pinion Mass

(hrs) (ppm, w/v) (g) (g)

Start 0 113.3467 48.7918

1 49.5 113.0156 48.4967 2988 0.3313 0.2951

2 93.2 112.5161 48.0330 5058 0.4995 0.4637

3 141.2 112.0204 47.5673 4683 0.4957 0.4657

hardness of the wearing gear teeth surfaces can therefore be assumed to be similar to

that of the bulk gear material.

The remaining lifetime estimation strategy as outlined in Section 2.5.2 utilises the

well established wear equations in order to calculate the material removal volume for

abrasive and adhesive wear. According to these equations, the wear volume is directly

proportional to sliding distance and therefore operating time. Also, due to the low

concentrations of contaminant, the wear volume is linearly dependent on the concen-

tration [119], as the contact area between the two wearing surfaces is not saturated

with contaminant particles.

The raw experimental gear mass loss data of Table 8.3 can therefore be used to

calculate the specific gear and pinion mass loss (SGML and SPML respectively) in

grams, referenced per hour of operation and per ppm of contaminant concentration.

This information is shown in Table 8.4. The average specific mass loss of each gear

was calculated to be 2.24 × 10−6 and 2.06 × 10−6 g/hr×ppm for the gear and pinion

respectively.

The hardness of the gears was measured using a ball indenter, and were found to

have a Brinell hardness of 147 and 154 for the pinion and gear respectively. The gears

were also measured using a vernier calliper, to allow the non-wearing weight of each

gear to be determined. The solid non-wearing mass (the mass of the gear excluding the
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Table 8.4: Experimental specific gear mass loss results.

Test Specific Gear Specific Pinion Difference of SGML Difference of SPML

Interval Mass Loss Mass Loss to Average SGML to Average SPML

(g/hr×ppm) (g/hr×ppm) (%) (%)

1 2.2402× 10−6 1.9954× 10−6 0.20 -2.93

2 2.2617× 10−6 2.0996× 10−6 1.16 2.14

3 2.2053× 10−6 2.0718× 10−6 -1.36 0.79

teeth) of the pinion and gear was found to be 42.83 g and 105.38 g, respectively, using

a density of 7850 kg/m3. The lubricant used throughout the test including during the

wear-in phase was Shell Tivela S320, which is a non-extreme pressure ISO VG 320 oil (at

40◦C). Although the bearings are generally splash lubricated from a shared oil reservoir

with the gears, the seals of the bearings was not removed for this contamination test,

resulting in the bearings being grease lubricated.

The gears experienced significant wear during this abrasive wear test as is evident in

the teeth profiles shown in Figure 8.6. As the gear teeth were offset by approximately

0.5 mm, the original gear profile is visible on one side (b). The unsymmetrical tooth

profile due to wear is clearly visible in photo (a). The wearing surface of both gears

was worn to a dull smooth appearance, as was expected from the test conditions.

The test demonstrated that the abrasive wear equation can be used successfully to

determine the material loss due to abrasive wear with good accuracy. However, when

applying this strategy to machines to estimate the remaining lifetime, the accuracy

will depend on the uncertainty contained in the wear coefficient and sliding speed.

These entities were not analysed in this test, as the material loss was known while the

unknown was made up of the wear coefficient and sliding speed. Further testing has

been planned to investigate the accuracy that can be expected when determining the

remaining lifetime using the presented strategy.
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Figure 8.6: Gear tooth profiles — post test (a) end view, (b) original profile visible due to

offset in gear mesh.

8.5 Software Implementation

The knowledge base was implemented in the completed expert system code, and po-

sitioned in the main menu of the combined analysis expert system. The remaining

lifetime menu has been designed as a single input-output screen as shown in Figure 8.7.

The remaining lifetime estimation algorithm has been included in the expert system

package to utilise the potential benefits of this feature, as well as for research purposes

to further improve the current algorithm. As the code is still considered in the de-

velopment phase, it has not been fully integrated into the expert system in terms of

data porting from the expert system results to the remaining lifetime algorithm. It

is therefore necessary to manually enter the required information for each component

or sub-component analysis. The required information is composed of the amount of

material than can be worn away, as well as the entities of the relevant wear equation.

This information could be stored in a text file and analysis performed automatically,

as the analysis of vibration, oil and wear particle data. The current code also has no

provision for tracking the remaining lifetime data for each component, as shown in

Table 8.3 for example. The output of the code could however be written to a text file

in a spread sheet compatible format to allow more efficient data management. It is

anticipated that these improvements would be performed when compiling the code into

a prototype for commercialisation.
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Figure 8.7: Remaining Lifetime Estimation menu.
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8.6 Summary

The strategy for estimating the remaining lifetime of a machine presented in this chapter

allows the condition of each component to be tracked, as well as updated according

to the actual operating conditions experienced. This is an alternative approach to

statistical methods that rely on past failure data to predict the possible failure lifetime

of the machine. The benefits of the presented strategy include the ability to assess

the condition of each component within the machine using the principal of cumulative

damage, to determine those components that require replacing and those that can

be re-used before an overhaul. This aids maintenance departments in optimising and

management of spare part inventories.

The wear test performed using a spur gear laboratory test rig demonstrated that

the strategy can be used successfully to predict the remaining lifetime of a gearbox.

The test results confirmed that the assumptions of constant wear rate assumed by

the wear equation was valid over the oil change period, as well as a constant sliding

speed, abrasive wear coefficient and a linear relationship of wear rate and contaminant

concentration.

This strategy represents an innovative approach for remaining lifetime estimation,

that complements machine condition monitoring by using oil analysis to assess the op-

erating condition of the machine. Compared to statistical lifetime estimation methods,

this strategy allows easy implementation, as most of the required input information

should already be available. This development therefore represents a great potential

for industry, by providing a systematic approach to remaining lifetime estimation using

information that in most cases is readily available.



Chapter 9

Discussion

9.1 Project Organisation

The primary objective of the research project was to correlate the fault detection and

diagnosis ability of the vibration, oil and wear debris analysis techniques. The pos-

sibility of correlation has been reported in literature, where case studies of certain

machine failures were analysed using vibration, oil and wear particle analysis. While

correlation in the test cases was demonstrated, other findings noted contradicting con-

clusions resulting from the condition monitoring techniques. Due to the complexity and

conflicting nature of existing research, the information cannot be applied to condition

monitoring in industry and therefore has limited usefulness in practical application.

An investigation into the complementing ability of the three techniques was therefore

crucial to verify that the techniques can indeed be correlated. Once the proposition of

correlation was verified, an extensive study was conducted to investigate the fault de-

tection and overlap of the techniques for the specific failure modes of equipment found

in the mining, mineral processing and manufacturing industries.

It was decided that the objective of correlating the three condition monitoring tech-

niques should result in a comprehensive list of machine faults, as well as an analysis

that utilised additional unused pieces of information from each technique to provide

useful hints regarding machine health. This comprehensive analysis possible by collat-

ing results from different techniques has been found in numerous case studies [1,2,71],

235
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where authors have commented on the complementing fashion of vibration, oil and

wear particle analysis. Detailed study of the fault detection ability of each technique

lead to the conclusion that each technique could diagnose some faults in detail, while

the detection of others was vague or uncertain. Examples of these uncertain detected

faults are excessive looseness detected by vibration analysis, wear modes detected using

wear particle analysis, and particle counts of oil analysis. These abnormal operating

conditions can be diagnosed, but do not lead directly to a faulty component. However,

when the detected abnormal operating conditions detected by each technique are com-

bined, these conditions may be able to be linked to other faults detected with greater

certainty. It is therefore possible to assign the cause of all abnormal operating condi-

tions to detected or possible faults, thereby generating a comprehensive machine health

report.

Once the primary expert systems (VES and OWDES) were completed, the respec-

tive output reports could be correlated into one set of machine faults. This was per-

formed using the developed correlation of results algorithm. The development of this

algorithm included an investigation of the possible results conflicts that could occur.

The root-cause analysis algorithm was developed to allow faults to be categorised as

primary or secondary faults, where a primary fault is a cause of one or more secondary

faults. This categorisation of faults is useful to maintenance technicians, as the preven-

tion of primary faults will also negate the initiation of the inherent secondary faults.

The early detection of primary faults and timely replacement of affected components

is therefore critical in reducing the costs associated with the secondary faults occur-

ring. The root-cause analysis algorithm was developed by studying the possible failure

scenarios and interactions between bearings, gears, belts, couplings and centrifugal

pumps. This information was structured into flow charts (shown in Appendix Sec-

tion E) that were implemented as the analysis algorithm. This algorithm development

procedure was selected over neural network type AI development as the primary and

secondary causes of failure can be identified through machine failure knowledge. While

neural networks are useful in identifying the relationship between inputs and outputs,

this relationship is already known. The algorithm development therefore consisted of
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identifying all possible failure mechanisms and including these in the knowledge base.

The developed analysis algorithms were each implemented in an expert system by

coding into If-Then-Else loops and the inclusion of a user interface to allow stand-alone

operation on any PC using the Microsoft Windows type operating systems. Due to the

project objectives stating that the finished system should be capable of being used in a

commercial environment, the Visual Basic (VB) programming language was selected,

as it allows easy development of interface menus and screens, as well as the inclusion

of help menus throughout. Additionally, the VB menus coincide with the general MS

Windows operation and look, which aids in usability.

Upon completion of each analysis algorithm, laboratory and industry data was used

to verify the correct operation of the developed expert system. The fault diagnosis

analysis algorithms testing procedure is discussed in Sections 5.3 and 6.3, while the

testing of the correlation of results and root-cause analysis algorithms are discussed

in Section 7.3. The project organization outlined here allowed the realisation of the

project objectives, and for the first time the correlation of vibration, oil and wear

particle analysis techniques using an AI system capable of being used in a maintenance

laboratory.

9.2 Project Challenges and Solutions

The progression of the research project faced numerous significant challenges which

were critical in order to meeting the project objectives. The first challenge originated

from the varying success of correlation reported in literature, which questioned the

validity of the project objective of correlating the vibration, oil and wear particle anal-

ysis techniques. The initial investigation into the correlation was therefore begun by

analysing case study type failures of experimental gearbox test rigs to verify that the

techniques indeed complement each other for fault diagnosis. Although this investi-

gation verified that the techniques can complement each other in fault detection, a

strategy for dealing with conflicting analysis results as reported in literature [2] had to

be developed. In order to develop an AI system for integration of the MCM techniques
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in an objective manner, it was decided to study the fault detection and diagnosis ability

of each individual technique in an extensive machine failure analysis.

The data used to carry out the in depth correlation analysis was derived from

case studies sourced from literature, as well as real life condition monitoring data.

However, the acquisition and processing of data from industrial machinery presented

another difficulty. As condition monitoring and maintenance information can reveal

machinery inventory, operating strategies and management practices, this information

is generally classified as confidential. Due to fears of this information being used by

external financial reviewers or competition, large public companies are very hesitant

to provide this data to external institutions. Furthermore, the participating industrial

partner not only had to be willing to share information with JCU, but also operate

vibration, oil and wear particle analysis programs for their equipment. While numerous

large mining and mineral processing companies were identified to operate a suitable

condition monitoring program, only one was willing to participate in this research

project. The acquired data was however sufficient to test the developed expert systems,

while expertise in the machine health diagnosis were also made available.

The difficulty of obtaining data from industrial machinery was also evident in ob-

taining data of sufficient quality in terms of the abnormal operating condition causing

failure (primary fault), and operating conditions. Variability in machine duty cycle

were found to originate from differing load cycles due to operator shift change and

seasonal throughput. The data quality was also affected by inherent communication

difficulties between plant maintenance departments and MCM laboratories, resulting

in laboratories not being properly informed of machinery repairs or exchanges. While

these issues were resolved by careful data trend analysis and additional operator infor-

mation, it was concluded that data obtained from experimental test rigs would be more

reliable for correlation investigation, as failure modes can be initiated independently.

9.2.1 Correlation of Machine Condition Monitoring Techniques

The correlation investigation was performed in order to verify the complementing fea-

tures of fault detection by the monitoring techniques as reported by studies in literature.
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This investigation was conducted as discussed in Section 3.2, and was followed by an

extensive investigation of the fault detection abilities of vibration, oil and wear parti-

cle analysis. This proved to be a key component of the research project, forming the

foundation for the correlation of results knowledge base.

The extensive investigation into the correlation of the three analysis techniques was

conducted by analysing the fault detection abilities of each individual technique. The

investigation included the compilation of a list of all possible fault indicators provided

by each analysis technique, using case studies from literature, as well as laboratory and

industry machine condition monitoring data. The generated faults table is shown in

Figure 7.4. It was revealed that fault indicators can be organised into two categories:

firstly direct fault detection, and secondly, general indicators for a particular fault type.

The first classification includes detection typical for vibration analysis, where unique

frequencies can be diagnosed to a failure of a certain component. General indicators

however, consist of the detection of a fault condition, but which cannot be linked to

any particular component without additional information. This kind of fault detection

includes haystacks and raised baseline of vibration spectra, and typically all of the

detected faults of oil and wear particle analysis. Although elemental analysis can help

in predicting which component is undergoing failure, this requires knowledge about the

machine construction and will be accurate only when machine components have unique

constituent elements.

As shown in Figure 7.4, the direct fault detection ability overlap between each

technique is very limited. The only fault that can be directly detected by vibration

and oil and wear particle analysis is gear misalignment, and a gear operating fault

(when wear particle analysis detected welding). The predominant fault indicators of

oil and wear particle analysis are wear modes, contamination and lubricant related

faults including viscosity and dielectric specifications. It was also concluded that oil

and wear particle analysis are unable to detect installation faults such as misalignment

and bearing damage caused by improper handling, until abnormal wear is produced as

a result. However, lubricant faults such as foreign particle contamination or incorrect

viscosity can be detected by oil analysis, but not with vibration analysis until the
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condition results in component damage. It was therefore evident that successful and

reliable early fault detection could only be performed when vibration, oil and wear

particle analysis results are correlated into one concise machine health report.

The automated analysis of machine condition data using an integrated approach

requires the prior development of a knowledge base containing the appropriate analysis

and reasoning logic. The difficulty in the development of this knowledge base was

concerned with the possible conflicts in analysis results between the vibration analysis

and oil and wear particle analysis knowledge base outputs. Literature research and

consultation with experts of the machine condition monitoring field revealed that these

conflicts do not occur frequently, and are generally concerned with deciding whether a

fault is present or not present in a machine, whether a fault is severe or in initiation, and

identifying the primary/major fault if more than one fault has been detected. Further

research and consultation with industry representatives concluded that these conflicts

could be resolved as follows:

• If a fault is detected by only one technique, then the detected fault is passed to

the correlated faults output list.

• When the severity of a fault is conflicting, the more severe result is passed to the

correlated faults output list.

• When more than one fault is detected, a root-cause analysis can be used to

separate primary and secondary faults.

Due to the differing fault detection ability of vibration and wear particle analysis, it

is possible that one technique can detect the developing fault while the other technique

does not. This scenario has been reported by Maxwell and Johnson [1], and it has

therefore been concluded that if a fault is detected by one technique, it will be passed

into the correlated list of machine faults. A similar approach was taken when the sever-

ity information of a fault is conflicting. Here a decision is made according to increased

safety, and the result passed to the correlated fault list is the more severe one. This

was chosen because a severe result from the expert system allows operators to perform
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additional tests to confirm the fault severity status. Furthermore, as unexpected failure

is generally more expensive than premature component exchange, a cautious approach

to fault severity is justified. The identification of primary and secondary faults, when

numerous faults are detected in an analysis, can only be performed using a dedicated

root-cause analysis knowledge base and algorithm, containing possible machine failure

mechanisms.

The completion of the correlation investigation was followed by an analysis of ma-

chine failure mechanisms in an attempt to develop a root-cause analysis knowledge

base. It was found that in order to perform root-cause analysis, structural informa-

tion about the machine must be known, including the positions of all of the machine

components. This information is used to relate primary failures of one component to

secondary failures of another, due to close proximity. The primary failure of a bearing

supporting a gear drive shaft can result in gear misalignment of that gear, as the two

components are in close proximity, for example. In this case, the gear can be considered

to be dependent on the correct operation of the bearing, such that a primary failure in

it will result in a secondary failure of the gear.

The study of possible failure mechanisms of gearboxes lead to the development of

a root-cause analysis knowledge base, that can be used in conjunction with the cor-

relation knowledge base. The results from the study revealed that machine structural

information can be used effectively to combine the general fault indicators with the

directly detected faults. When the general fault indicators can be used for fault detec-

tion in this way, the effective overlap between the VES and OWDES is greater than

when considering only the directly detected faults. For example, although it is not

possible to infer which component is wearing out if severe sliding wear was detected,

knowledge about the machine design reduces the possible choices. This is the type of

overlap between vibration and oil analysis techniques that has been confirmed by case

studies such as [1, 73]. In each case, the analyst had knowledge about the machine

construction and visual inspection of the worn components before discussing the fault

detection indicators that each technique had provided.

The extensive investigation into correlation and root-cause analysis allowed the
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integration of vibration, oil and wear particle analysis using a systematic approach for

the first time, by the development of the knowledge bases and corresponding analysis

algorithms. The methodology for dealing with possible conflicting conclusions from the

three condition monitoring techniques discussed above, provides an effective strategy

for repeatable and reliable automated fault detection. Including information about

machine construction proved to be the crucial element necessary for relating the general

fault indicators to directly detected faults, which was found to increase fault detection

and diagnostic ability considerably.

9.2.2 Artificial Intelligence System Development

The AI system has been included in the project to allow automated processing and

interpretation of the large volume of data required in a combined vibration, oil and wear

particle analysis condition monitoring program. In order for the system to perform this

task, it requires the integration of knowledge bases into the chosen AI type system, an

expert system structure as discussed in Section 3.3.1.

The development of an AI system for complete correlated machine condition analysis

was commenced with individual expert systems for vibration analysis, and oil and wear

particle analysis. This allows all faults, directly detected and general fault indicators,

to be identified and stored in an organised manner. While expert systems for these

operations have been developed, the available systems have significant limitations which

hinders the conclusions to be correlated. The existing systems do not use sufficient

condition monitoring data to allow faults to be detected with sufficient accuracy, and

machine faults are generally reported using only directly detectable faults while general

fault indicators are not mentioned. The interface also limits the available systems,

as the analysis is typically carried out using an on-line questionnaire process, with

results finally only displayed on-screen. These limitations prompted the need for expert

systems to be specially developed that feature good fault detection for a broad range of

machinery, the reporting of all faults and fault indicators, and an interface that allows

results to be stored in a text format.

The developed expert systems for individual technique analysis were then integrated
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into one system by the development of a correlating expert system, incorporating the

knowledge base for correlation and root-cause analysis. The integration of results by

the individual expert systems was made possible by a three step process. Firstly, all

faults detected by all techniques were recorded in the comprehensive machine health

report, which included directly detected faults. Secondly, all faults only detected by

one technique were also added to the health report, using the reasoning discussed in

Section 9.2.1. The third step is the linking up of general fault indicators and per-

forming the root-cause analysis, where the general fault indicators can be assigned

to the detected faults. This execution process was developed during the correlation

and root-cause analysis knowledge base development, then implemented into an expert

system.

The development of the integration expert system revealed that while faulty compo-

nents could easily be identified by the algorithm, conflicting conclusions of the analysis

techniques could still occur regarding the type of defect of the faulty component. This

difficulty was solved by calculating a confidence factor for each detected fault and de-

fect type, and using the conclusion with the highest confidence factor to determine the

likely fault. This strategy was tested and found to efficiently resolve possible conflicts in

analysis conclusions, while also providing the operator with a gauge for the confidence

with which the fault was diagnosed.

9.2.3 Development Capabilities and Application

The developed AI system is able to meet the research project objectives in both anal-

ysis ability as well as software usability. The outcomes of the research project include

an analytical model for the correlation between vibration, oil and wear particle anal-

ysis, which unlike previous discrete case-study type attempts for a particular machine

component, is capable of diagnosing typical faults in a wide range of machinery in an

automated manner. The analysis algorithms provide fault detection and diagnosis for

the majority of machines found in the mining, mineral processing and manufacturing

industries, including spur gear reductions, journal and roller bearings, pumps, timing

and V belts, as well as couplings.
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The system testing with laboratory and industry data demonstrated that the inte-

grated analysis approach allows machine condition to be determined more accurately

than by using the analysis techniques independently. This coincides with conclusions

made by the available literature, and presents new opportunities for industrial oper-

ations to improve the efficiency of their maintenance programs by implementing the

developed AI system. As the system was designed for use in a commercial environ-

ment, it represents a capable prototype that could be developed further into a mar-

ketable product. While the analysis algorithms and user interface are fully functional,

improvements could be made in terms of more efficient software code, as well as refined

graphical layout of the menus.

The developed AI system can be used to monitor most equipment used in industry,

although the analysis algorithms are not suitable for monitoring turbines, reciprocat-

ing engines and compressors, and electric motors. The same analysis techniques can be

used to monitor this equipment however. While these machines are also commonly used

in industry, they were not included in the analysis algorithms as the research project

focused on the fault detection of gearboxes and the external equipment that could im-

pose a gearbox failure, such as belts and couplings. As misalignment, imbalance and

bearing faults can be detected by the AI system, turbines, and electric motors can

be partially monitored, although electrical faults of motors will not be detected. Re-

ciprocating engines and compressors have several factors making condition monitoring

difficult, including complex vibration signals, and possible high soot levels in lubricating

oils (especially diesel engines). These complications make condition monitoring using

the integrated system difficult, as quality data is required for both vibration, oil and

wear particle analysis. Furthermore, the current system can still diagnose many faults

in these machines, and demonstrates the benefits of an integrated machine condition

monitoring system.

9.2.4 Remaining Lifetime Estimation

The ability to determine the remaining lifetime of a machine is a critical component of

an efficient machine condition monitoring program. The strategy outlined in Chapter 8
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has been developed with a view to monitor the life of gearboxes, as demonstrated by the

experimental data in Section 8.4. However, the strategy could also be applied to other

machine components, provided that the input information is available as discussed in

Section 8.3.

While the developed remaining lifetime estimation strategy can be used for most

machine components, two assumptions govern the ability of this approach to predict

the machine remaining lifetime. The first assumption is that every component has only

one critical surface which experiences material removal or wear. The second assumption

is that the dimension of the component does not depend on external factors such as

interference fits, but only on wear. The strategy can therefore be applied to components

such as gears, but not for roller or journal bearings where the internal dimensions of

roller to race clearances depend on the interference fits of the housing and shaft, unless

these are known.

The common wear equations have been used to allow the material removal to be

estimated, although these may give varying accuracy depending on whether the wear

coefficients can be obtained for the specific gearbox. The wear equations have been

found to contain high statistical scatter, highlighting the need to determine the cor-

responding wear coefficients with sufficient accuracy. The wear coefficients may be

available from the machine manufacturer. However, they could also be derived by

in-house experiments on the particular gearbox by measuring the material loss of the

components to be monitored over several oil change periods. If none of this is feasible,

wear coefficients could either be adopted from case studies using similar equipment,

or from laboratory tests using the same materials and equivalent load in wear test

apparatus.

The design life is the life determined by the manufacturer taking into account the

typical operating conditions such as operating speed and load, as well as a suitable

maintenance strategy. Fundamental gearbox design theory would base the design life on

the surface fatigue life of the gear surfaces, and assuming the absence of contamination,

or other component faults. The design life typically does not focus on the material

removal at the wear-in, normal and wear-out stages. As the wear-in stage is a normal
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process that occurs with any new gear system, the machine life is not reduced more

rapidly during wear-in than normal wear, even though the material removal may be

greater during wear-in.

The wear-out limits for machine components are generally available from the man-

ufacturers, which are typically used to grade a component as to the suitability for

continued use in a machine overhaul or rebuild operation. These dimensions can be

used in this strategy to classify the end of the operating life of the component. However,

as it would be expected that the machine should still be operating when the component

reached the wear out limit, the determined remaining lifetime will be a conservative

estimate in most cases.

The remaining lifetime experiment as discussed in Section 8.4 relied on the assump-

tion that the hardness of the wearing surface was consistent with that of the bulk gear.

Although this was a valid assumption for the particular test as the gears were not hard-

ened, it would not apply to surface hardened gears. For this case, the strategy would

need to account for the change in hardness encountered when the material thickness

of the hardened layer was removed. This modification would have to be accounted for

in calculation 2 (of Figure 8.5), where the lower hardness value would need to be used

once the layer was worn off. Similarly, work hardening of the wearing surfaces could

cause the actual hardness to vary from the bulk hardness. However for abrasive wear,

work hardening is generally not observed due to the rapid material removal.

The spur gear test performed as outlined in Section 8.4 was used to demonstrate

that the remaining lifetime strategy can be applied to real machines. This test was

concerned with measuring the material loss over three oil change intervals, with the

contaminant concentration, operating time being known, and constant load. Using the

abrasive wear equation, the resulting entity determined was composed of load, sliding

speed and abrasive wear constant. The wear equation used to calculate material loss

due to abrasive wear assumes that the wear rate is constant over each oil change period,

accounting for contaminant concentration, load and operating time. The results shown

in Table 8.4 demonstrate that when the test results were corrected for concentration

and operating time, with load being constant, the specific material loss was effectively
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constant with a variability of less than 3 %. This result indicates that the load, sliding

speed and abrasive wear coefficient were indeed constant over the test duration. The

practical application of this development is that while load is generally not constant

for industrial machines, once the sliding speed and abrasive wear constant have been

determined for the gearbox, the strategy can be implemented and the remaining lifetime

determined with good accuracy.

9.3 Uniqueness of Developments

The analysis algorithms developed for this project were designed to allow the project

to be implemented according to the objectives stated in Chapter 3. The correlation

of vibration, oil and wear particle analysis has not previously been performed in an

organised process, but only in individual case-study type failure investigations. While,

discrete expert systems for vibration, and oil and wear particle analysis have been

developed for commercial use, these systems are unable to combine information in a

correlated analysis.

The investigation into the possibility of correlating the vibration, oil and wear parti-

cle analysis techniques was undertaken by performing a series of systematic laboratory

tests aimed at comparing the techniques for particular gearbox failure modes. While

literature reported the existence of correlation for rolling element bearing failures using

a case-study approach, the potential difficulties of integrating these analysis techniques

are also reported. The tests conducted as part of this project allowed a knowledge base

to be compiled for the fault detection and fault monitoring ability of each technique

for both gears and bearings.

The expert systems developed during this project allowed the analysis of the testing

data using true correlation of vibration, oil and wear particle analysis techniques by an

artificially intelligent system for the first time. This achievement would not have been

possible without the initial development of expert systems for individual vibration,

and oil and wear particle analysis data, with a common output reporting format that

could later be processed by a correlation of results algorithm. Although the concept
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of utilising expert systems to interpret individual vibration, and oil and wear particle

data is not new, the analysis algorithms of these two developed expert systems contain

features that enhance fault detection ability compared to those that have already been

developed. The VES algorithm has been developed to interpret tri-axial frequency

domain, demodulated frequency domain and time domain data, where previous devel-

opments relied only on frequency domain data [99]. Similarly, the OWDES algorithm

was designed to utilise comprehensive wear particle information provided using either

conventionally by consulting a wear particle atlas, or by state of the art laser scanning

confocal microscopic images and particle identification expert system [27]. The individ-

ual fault diagnosis algorithms are therefore new developments, due to their additional

features and improved fault detection capabilities.

The correlation of results and root-cause algorithms are entirely unique develop-

ments, as this type of analysis has not previously been performed using AI techniques.

Although the concept of correlating vibration analysis with oil and wear particle anal-

ysis has been proposed by studies including Troyer and Williamson [2] and Maxwell

and Johnson [1], a detailed analysis of exactly how these techniques could be correlated

has not been undertaken. The machine condition conclusions that can be obtained

using the AI system algorithms therefore extend the capabilities currently available for

fault detection and diagnosis, allowing a machine health report to be compiled with

unprecedented comprehensiveness.

The success of the AI system in detection and diagnosis of a wide range of equip-

ment was aided by the use of multiple advanced techniques into one system, including

quantitative image analysis, fuzzy logic and the use of AI. Qualitative image analysis

for wear particle identification and shape description allow acquisition and interpre-

tation of a 3D particle image. This provides improved accuracy over conventional 2D

images, as particle features such as surface roughness can be evaluated. Fuzzy logic was

incorporated in the confidence factor calculations, to enable the value to be based on

the magnitude of several fault indicators. The expert system type AI system was used

as a basis for implementing the developed knowledge bases and user interface. The

completed AI system has resulted in a novel approach for integrated condition mon-
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itoring using vibration, oil and wear particle analysis, featuring numerous innovative

developments and data processing techniques.

Research and development on estimating the remaining lifetime of a machine has re-

ceived limited attention due to the complexity of wear occurring in industrial machines,

as well as the difficulty of modelling wear. Although the knowledge base was compiled

from commonly accepted wear equations, these were derived from wear machines gen-

erally operating in pure sliding wear. These equations were adapted for real machines

such as spur or helical gears and rolling element bearings, which predominately operate

by rolling.

Due to the typical high statistical scatter in wear situations, remaining lifetime

is often predicted using statistical models, which may not be useful for individual

machine life prediction. However, these do not provide the ability for updating as

condition monitoring data becomes available. The use of wear equations in combination

with a correlated condition monitoring approach is a new development, which has the

potential for improved prediction accuracy due to the wear taking into account the

actual operating conditions of the machine. The predicted lifetime is therefore less

dependent on previous machine failure data, which may change due to variation in

plant throughput and modifications.

9.4 Benefits of Developments for Industry

The development outcomes of this project contain numerous potential benefits for the

maintenance and condition monitoring industry, which will therefore also be an asset

to the mining, mineral processing and manufacturing industries. The core objective of

the project was to improve the efficiency of conventional machine condition monitoring

(MCM) practices by correlating the outcomes of vibration, oil and wear particle anal-

ysis. The successful implementation of this project objective allows pro-active mainte-

nance programs to be operated at a new level of effectiveness, while also providing a

new basis for further research in the MCM field.

The correlation of analysis results using vibration, oil and wear particle analysis
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allows improved detection and diagnosis of faults compared to when each technique is

used on its own. This finding, as discussed in Section 9.2.3, also corresponds to conclu-

sions of case studies such as conducted by Maxwell and Johnson [1]. The implications of

this result extend beyond the improved MCM program to provide secondary benefits to

the mining, mineral processing and manufacturing industries. These benefits include

improved machine reliability, reduced maintenance costs associated with unexpected

failures and secondary damage caused by primary faults, as well as more efficient use of

spare parts depots and maintenance personnel. The adoption of AI technology allows

the machine to be analysed with only minimal operator input. This reduction in oper-

ator time per machine health analysis significantly decreases the effective analysis cost,

thereby making MCM available to a broader range of equipment that could not cost

effectively be included in the program using conventional methods. Due to the large

overall costs associated with plant maintenance in these industries, substantial savings

could be realised by implementation of the developed expert systems.

The estimation of remaining lifetime can be of significant benefit to industry as it

aids maintenance departments in deciding the number and type of spare parts to keep

in stock, equipment service schedules, and repair/replacement strategies. As condition

monitoring and proactive maintenance principles are adopted by equipment operators,

decisions concerning the efficient operation of machinery are often based on historical

failure experience than on the actual machine condition and life expectancy. The

integration of a remaining lifetime algorithm in an automated condition monitoring

package would therefore be of certain benefit to industry by allowing operators to

estimate machine lifetime without extensive knowledge of the subject.

The project developments present advancement on the conventional techniques cur-

rently used for MCM in industry, while also providing research with an investigation

and correlation strategy for integrating vibration, oil and wear particle analysis into one

AI system. The project developments possess the potential to improve the operating

efficiency of machinery plant, thereby contributing to increased export earnings for the

Australian economy.
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9.5 Summary

The project was conducted in a way that the fault detection and diagnosis ability of

each technique could be investigated, and later correlated using a specially designed

algorithm. This investigation led to the discoveries that the overlap in fault detection

between the two techniques is very minimal, and that additional information about

the machine condition can be obtained compared to when the techniques are applied

individually. The additional information is distilled from the hints of faults that each

technique detects, but is unable to assign the abnormal operating condition to any

particular component. This analysis was implemented in a root-cause analysis algo-

rithm to allow the complete data analysis and interpretation to be performed by an

artificially intelligent system featuring a discrete user-interface, as planned for in the

project objectives.

The development of the expert systems for vibration, oil and wear particle analysis

represented a critical first step in the quest to correlate these three machine condition

monitoring (MCM) techniques. Although expert systems for this purpose have been

prepared, the expert systems developed as part of this project are able to process a

broader range of input data while presenting the output data in a format that can be

processed by the correlation of results algorithm. The development of the correlation

of results and root-cause analysis algorithms allows correlated MCM to be performed

by an AI system in a repeatable manner for the first time, with numerous benefits to

both industry and research.

The developments of this project enable maintenance programs for fixed plant to

be operated with a new level of efficiency, allowing the benefits of pro-active mainte-

nance to be better realised. These benefits include increased plant reliability, lower

maintenance costs and thus improved financial viability of mining, mineral processing

and manufacturing plants. The advances this project presents to the research commu-

nity are the comprehensive investigation and implementation of correlation knowledge

base developed for vibration, oil and wear particle analysis techniques. The findings of
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this research project present numerous advantages to industry and the economy if im-

plemented instead of the conventional MCM programs commonly used for fixed plant

health monitoring.



Chapter 10

Conclusion and Future Work

10.1 Conclusion

This PhD research project focused on improving the accuracy of machine health anal-

yses as well as making this technology available to a broader user base who are not

experts in the condition monitoring field. The project aims designated to advance in

this area were:

• to develop an artificially intelligent system that analyses and interprets machine

condition data

• to develop an algorithm that is capable of assessing machine health using vibra-

tion, oil and wear particle analysis techniques in an integrated manner

• to develop an interface for the AI system that:

1. allows machine condition monitoring to be performed by non-expert staff,

and

2. serves as a usable prototype for possible commercialisation of the developed

algorithms

• research the feasibility of and develop an algorithm for determining the remaining

lifetime of a gearbox system

253
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These aims were implemented by structuring the project in sub-projects, each tar-

geting part of the objectives above. The completed AI system was tested using a labo-

ratory test-rig and industry sourced data to demonstrate that all of the aims were satis-

fied. The AI system was developed using the expert system type of machine reasoning,

incorporating a number of knowledge bases developed in order to allow machine condi-

tion monitoring data to be analysed and interpreted. Knowledge bases were developed

for vibration analysis, oil and wear particle analysis, correlated condition monitoring

analysis, root-cause failure analysis, and remaining lifetime estimation. The knowledge

bases were embedded in an expert system type AI structure as analysis algorithms,

while a custom designed user interface ensures that the completed software package

can be used by people who are not experts at machine condition monitoring. The

user interface also allows the algorithms to be trailed in industry for commercialisation

purposes.

The investigation into the feasibility of correlating machine health conclusions ob-

tained from vibration, oil and wear particle analysis revealed that an integrated analysis

of the data using the three techniques can indeed be of benefit. Two new benefits were

revealed, based on the differing fault detection abilities of each technique. Firstly, an

integrated analysis is capable of early fault detection for all possible detectable machine

faults, and secondly, faults can be categorised as primary or secondary faults depend-

ing on their chronological occurrence. This allows root-cause analysis to be performed,

and reveals such useful maintenance information as dominant failure mechanisms and

dominant failure causes. This information can be used to order the relevant spare parts

in advance, as well as improve the machine operating conditions responsible for causing

the majority of failures in order to improve machine operating life.

The research undertaken during this project has resulted in a number of new de-

velopments which extend the current knowledge in the machine condition monitoring

field, as well as being of benefit to the mining, mineral processing and manufacturing

industries. The major developments achieved during this project include:
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• The fault detectors for gearbox related faults were analysed for the vibration,

oil and wear particle analysis techniques. This study allowed the effectiveness of

each technique to be evaluated for the detection and diagnosis of faults possible

in geared power transmissions.

• The development of an artificially intelligent software program for analysis and in-

terpretation of machine condition monitoring using either individual or correlated

vibration, oil and wear particle analysis techniques.

• The development of an algorithm for root-cause analysis, to allow classification

of faults into primary and secondary faults.

• Research into the possible techniques for determining the remaining lifetime of a

gearbox, and the development of an algorithm for automated analysis.

The outcomes from this research project have both contributed to knowledge in the

condition monitoring field as well as benefiting industry. The study performed into the

fault indicators for the three analysis techniques and development of root-cause anal-

ysis algorithm is of benefit for the research community by increasing the knowledge

of condition monitoring techniques. The completed expert system is a novel develop-

ment that can provide significant benefits to industry by improving fault detection and

diagnosis accuracy.

10.2 Future Work

Although the software package developed during the course of this project is of pro-

totype standard, several modifications and improvements could be performed prior to

commercialisation. These include minor improvements to the user interface, and the

integration of remaining lifetime into the complete package. The interface modifica-

tion recommended before commercialisation is concerned with the results layout of the

root-cause analysis algorithm. The current table format could be coded into a more

graphical flow chart or fault tree layout to improve the user friendliness and general

appearance of the menu screen.
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The developed combined analysis expert system algorithm is capable of health moni-

toring of machines commonly used in the mining, mineral processing and manufacturing

industries including gearboxes, bearings, fans, pumps, belt drives and couplings. How-

ever, the list of supported machines could be increased to cater for the power generation

industries, as well as the prime movers of the mentioned industries. This expansion

would require turbines, compressors, diesel engines, alternators and electric motors to

be added to the analysis algorithm.

The integration of the remaining lifetime section into the remainder of the expert

system could be further improved by allowing the remaining lifetime to share the ma-

chine specification information available to the fault detection expert system algorithms.

This modification would result in less operator interaction required for each analysis,

which is of importance if the program is to be used commercially. Similarly, the output

of the results could be presented in a text file, or automated spreadsheet file to allow

automated tracking of machine component lifetimes, which currently needs to be done

manually using the outputs of the program.

The remaining lifetime algorithm would also benefit from further research and test-

ing to both verify the ability of the algorithm in a range of scenarios, as well as provide

guidance for operators for choosing an appropriate wear coefficient. As the accuracy

of the lifetime estimate depends on the wear coefficient, research into the development

of techniques to determine the correct wear coefficient without tedious tests or ma-

chine dismantling would be of great benefit to industry and operators of the remaining

lifetime feature.
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Appendix A

Bearing & Gear Fault

Frequencies

A.1 Rolling Element Bearing Fault Frequency Equations

The fault frequencies generated by rolling element bearings are:

Ball Spin Frequency = S[ P
2B ][1− (B

P )2(cosφ)2]

Ball Pass Frequency Outer = S[N
2 ][1− B

P cosφ]

Ball Pass Frequency Inner = S[N
2 ][1 + B

P cosφ]

Fundamental Train Frequency = S[12 ][1− B
P cosφ]

where

• S is the shaft rotation speed in Hz,

• N is the number of rolling elements,

• B is the rolling element diameter,

• P is the pitch diameter,

• φ is the load angle of the bearing.

These formulae are theoretical, and deviations can occur if slippage or significant

thrust loads are encountered [51].
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A.2 Spur Gear Fault Frequency Equations

The frequencies emitted by spur gears consist of the gear mesh frequency (GMF) and

the hunting tooth frequency (HTF). Harmonics of the GMF may also be observed

depending on the condition of the meshing gears. The gear mesh frequency is due to

the number of teeth passing each other per second, which is described by the following

formula:

GMF = T × S

where

• GMF is the gear mesh frequency in Hz,

• T is the number of teeth,

• S is the rotational speed of the gear.

This equation also holds for worm gears, where T equals the number of flights on

the worm gear, and S the speed of rotation of the worm gear [47].

The GMF can be generated if the number of teeth on each meshing gear has a

common factor other than 1, and one gear is eccentric. Every Nth tooth on the good

gear can be worn by the eccentric gear, where N is the common factor [47]. This

repeated wearing of gear teeth causes the Nth cycle of gear mesh frequency to be

higher in amplitude than the other cycles. This phenomenon is called preferential

wear. A Fourier analysis of the vibration spectrum will yield the inverse fractional gear

mesh frequency, being equal to 1/N. If the gears have a common factor not equal to a

prime number, the fractional gear mesh frequency could occur at the reciprocal of the

common factor or prime factors of the common factor.

The hunting tooth frequency occurs when the same teeth of two gears come into

mesh. The HTF is generally not observed on spectral analysis as the frequency is very

low. The formula for the HTF is:
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HTF= S
U

where

• HTF is the hunting tooth frequency in Hz,

• S is the rotational speed of the gear,

• U is the uncommon factor of the gear mesh.



Appendix B

Laboratory Test-Rig — Test

Conditions Summary

B.1 Spur Gearbox Tests

Table B.1: Normal Operation Test.

Test Condition Quantity

Duration of Test (hrs) 120

Number of Oil Samples 11

Number of Vibration Data Samples 11

Lubricant Shell Tivela S 320

% Rated Load 80

Operating Oil Temperature (◦C) 48-55

Gearbox Components Replaced Prior to Test Gears, bearings (63001), shafts
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Table B.2: Constant Overload Test.

Test Condition Quantity

Duration of Wear-in period (hrs) 133

Duration of Test (hrs) 109

Number of Oil Samples 6

Number of Vibration Data Samples 6

Lubricant Shell Tivela S 320

% Rated Load During Wear-in 80

% Rated Load During Test 125

Operating Oil Temperature (◦C) 47-50

Gearbox Components Replaced Prior to Test Gears, bearings (63001)

Table B.3: Cyclic Overload Test.

Test Condition Quantity

Duration of Test (hrs) 80

Number of Oil Samples 8

Number of Vibration Data Samples 8

Lubricant Shell Tivela S 320

Operating Oil Temperature (◦C) 52-67

% Rated Load 120-160

Gearbox Components Replaced Prior to Test Gears, bearings (63001)
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Table B.4: Contamination Test.

Test Condition Quantity

Duration of Test (hrs) 162

Number of Oil Samples 10

Number of Vibration Data Samples 10

Lubricant Shell Tivela S 320

% Rated Load 80

Operating Oil Temperature (◦C) 34-41

Gearbox Components Replaced Prior to Test Gears, bearings (63001),

shaft seals

Table B.5: Bent Shaft Test.

Test Condition Quantity

Duration of Test (hrs) 293

Number of Oil Samples 17

Number of Vibration Data Samples 17

Lubricant Shell Tivela S 320

% Rated Load 80

Operating Oil Temperature (◦C) 40-46

Gearbox Components Replaced Prior to Test Input shaft (bent), gears,

shaft seals
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B.2 Worm Gearbox Tests

Table B.6: Normal Operation Test.

Test Condition Quantity

Duration of Test (hrs) 664

Number of Oil Samples 4

Number of Vibration Data Samples 4

Lubricant Shell Tivela S 320

% Rated Load 80

Table B.7: Normal Operation Test.

Test Condition Quantity

Duration of Test (hrs) 166

Number of Oil Samples 4

Number of Vibration Data Samples 4

Lubricant Shell Tivela S 320

% Rated Load 80

Contaminant Concentration (ppm) 15,000



Table B.8: Normal Operation Test.

Test Condition Quantity

Duration of Test (hrs) 470

Number of Oil Samples 4

Number of Vibration Data Samples 4

Lubricant Shell Tecoma 68

% Rated Load 80

MH300.29 Iron Particle Concentration (ppm) 15,000
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Vibration Analysis Algorithm

Flow Charts

Imbalance

Data

If 1X = Strong

Yes

Time 

Waveform 

Sinusoidal?

Yes

If 2X = Strong

Yes

No

Time 

Waveform 

Sinusoidal?

Yes

Cancel

Possible 

Imbalance

Possible 

Imbalance

Possible 

Imbalance

Figure C.1: General Shaft Imbalance.
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Data

If 1X = 

Present

Misalignment

If 3X = 

Present

If 2X = 

Present

Amplitudes 

3X > 1X

Possible 

misalignment

Yes

Yes

Yes
Yes

If 1X Axial = 

Present

Note: Amplitudes assume present or strong, 
direction is radial unless stated.

Possible 

angular 

misalignment

No

No
Amplitudes 

2X > 1X

Yes

Possible 

misalignment

Figure C.2: General Shaft Misalignment.
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Data

If 2 x FTF = 

Present or 

Strong

Rolling Element Bearing Present

Yes

Cage Fault or Loading

If FTF = 

Present or 

Strong

Cage fault 

or loading

Yes

No

No

If 2 x FTF = 

Present or 

Strong

Yes

Cage fault 

or loading
Cage fault 

or loading

Figure C.3: Rolling Element Bearing — Cage Fault or Loading.

Data

Rolling Element Bearing Present
Ball or Roller Defect

If 2 BSF is present 

or strong

If BSF is Present or 

Strong

Ball or Roller 

Defect

If Peak Difference 

Frequency = 2 BSF 

present

No

Yes YesYes

Ball or Roller 

Defect

Ball or Roller 

Defect

Figure C.4: Rolling Element Bearing — Ball or Roller Defect.
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Data

If BPFO is 

present

Rolling Element Bearing Present
Race Defect

If 2 BPFO is 

Present or 

Strong

Race Defect

Low-Medium 

Severity

If Amplitude of 

BPFO > 2 BPFO 

Race 

Defect

If BPFI is 

present

If 2 BPFI is 

Present or 

Strong

If Amplitude of 

BPFI > 2 BPFI 

If sidebands 

present

If sidebands 

present

Race 

Defect

Race Defect

Medium-High 

Severity

With Historical Machine Data Case:

Compare amplitudes of time waveform

for BPFI and BPFO frequencies, to

assess severity.

Possible faults include:

Brinelling,

False Brinelling,

Fatigue Flaking,

Static Arc Damage,

Fretting Corrosion.

No

Yes Yes

Yes

Yes

Yes

Yes

No No

Yes Yes

NoNo

No No

If harmonics as well as sidebands

present then fault more severe than

if only harmonics or sidebands present.

Figure C.5: Rolling Element Bearing — Race Defect.
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Data

If Peak Difference 

Frequency = BPFI and/

or BPFO present (not 

multiples)

Rolling Element Bearing Present
Inadequate Lubrication or Lubrication Fault

Contamination, 

Overlub'n or 

Beginning of 

Inadequate Lub'n.

Scan from 1kHz up

Haystack 

Present

Spikes 

Present in 

Haystack

If BPFI or BPFO 

Present in Demod 

Spectra

Inadequate 

Lubrication

Bearing Fault also 

present

Yes

Yes

Yes
Yes

No

Figure C.6: Rolling Element Bearing — Inadequate Lubrication.
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Data

If BPFO = 

Strong

Rolling Element Bearing Present
Installation Fault

If 2 BPFO = 

Present

If 3 BPFO = 

Present

Possible Bearing 

Installation Problem

If Amplitude of 

BPFO > 2 BPFO 

Yes

Yes

Yes

Yes

If Amplitude of

2 BPFO > 3 BPFO 

Yes

Figure C.7: Rolling Element Bearing — Installation Fault.
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Data

If 4 X < Max 

Scan Range

If 4 X strong

Yes

If 3 X present or 

strong

If Amplitude of 

4X > 3X

If Pump present 

has 4 vanes

4X may be vane 

pass frequency - 

confirm bearing 

looseness using 

other symptoms

No

Yes

Yes

Yes

Yes

If Raised noise 

floor around 1 to 

10X

Bearing 

loose in 

housing

Yes

Rolling Element Bearing Present
Bearing Loose in Housing

Bearing 

loose in 

housing

Figure C.8: Rolling Element Bearing — Loose in Housing.
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Data

If 1 X present 

or strong

Bearing Turning on Shaft

If peak close to 

1X is present

Yes

If second peak is on 

lower frequency 

side

Bearing is turning 

on the shaft

Yes

Yes

Figure C.9: Rolling Element Bearing — Turning on Shaft.
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Data

If 1 X present 

or strong

Yes

If 2 X present 

or strong

If 3 X present 

or strong

If 0.5 X 

present or 

strong

If 1.5 X 

present or 

strong

If peak close 

to 1X present

If 1 X < Max 

Scan Range

Severe 

rotating 

looseness

Possible 

excessive 

looseness - 

bearing 

turning on 

shaft

Possible 

pedestal 

bearing loose 

(1,2 & 3X 

present)

Yes

Yes

Yes

No

Yes

YesYes

Rolling Element Bearing Present
Rotating Looseness

Figure C.10: Rolling Element Bearing — Rotating Looseness.
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Data

If 0.5 X is 

present or 

strong

If 1.5 X is 

present or strong

Severe 

bearing 

looseness or 

clearance

If .33 X is 

present or 

strong

If .67 X is 

present or strong

Yes

Severe 

bearing 

looseness or 

clearance

If .67X < Max 

Scan Range

If peaks 

between 0.38

-0.48 X 

present

Oil whirl, or

Oil whip, or

Other machine 

resonance

Yes Yes

YesOil whip, or

Other machine 

resonance

If peak present 0 to 

0.38X, not fraction 

multiple of 1X

Yes

If 1 X is present 

or strong

Yes

Yes

Yes

This case more severe than

others, as these symptoms

generally occur at last stages

of bearing failure.

No

Journal Bearing Present
Rotating Looseness & Lubricating Fault

Figure C.11: Journal Bearing — Rotating Looseness and Lubricating Fault.
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Data

Spur Gears Present
Eccentric and/or Loose Gears

Scan for 10X on each side 

of GMF, and record highest 

sideband on each side of 

GMF.

If furtherest peak 

from GMF is on left 

of GMF

Gear is loose

NOTE: this flow chart is run

once for the input gear, and once 

for the output gear of each gear set.

If furtherest peak 

from GMF is on right 

of GMF

Gear is 

eccentric

Gear is both 

loose and 

eccentric

No

No

If Amplitude of Right 

sideband > Left

If Amplitude of Left 

sideband > Right

Gear is 

eccentric (main 

fault) and loose

Gear is loose 

(main fault) and 

eccentric

No

Ratio of Amplitudes 

Sidebands : GMF

Possible

Eccentricity 

or Looseness

Probable

Eccentricity 

or Looseness

1:5

Yes

Yes

Yes

YesNo

3:4

Figure C.12: Spur Gears — Eccentricity & Looseness.
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Data

If Amplitudes

2 GMF > GMF

Spur Gears Present
Misaligned Gears

If Amplitudes

3 GMF > GMF

Yes

Possible Misaligned 

Gears, and/or tooth 

wear & backlash

Yes

Also run: 

Misalignment code

(shaft/coupling misalignment) 

if no coupling present.

If Amplitudes

3 GMF > GMF

No

Yes

No

Figure C.13: Spur Gears — Misalignment.
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Data

If 1 X is 

present or 

strong

Spur Gears Present
Bent Shaft

Yes

Bent shaft

If GMF is strong

The GMF is 

strong, indicating 

that a meshing 

fault may have 

occurred

Yes

If 2 X is 

present or 

strong

Yes

NOTE: this flow chart is run

once for the input gear, and once 

for the output gear of each gear set.

Figure C.14: Spur Gears — Bent Shaft.
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Data

Spur Gears Present
Broken, Cracked or Chipped Teeth

Broken, 

chipped or 

cracked gear 

teeth

If peaks 1X 

apart detected

NOTE: The data refers to time domain data.

This flow chart is run

once for the input gear, and once 

for the output gear of each gear set.

Number of occurrences 

=  Number of cracked 

or chipped teeth

Figure C.15: Spur Gears — Broken, Cracked or Chipped Teeth.
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Data

Spur Gears Present
Gear or Pinion Fault (due to mishandling or manufacture)

Gear or pinion 

fault (due to 

mishandling or 

manufacture)

If HTF is 

strong

Yes

May not get all manufacturer faults, like Ghost frequencies

(not typical gear fault freq or multiples, but peak with sidebands

and multiple of 1X)

Can also use time waveform to find gear

or pinion faults (impacts, in case of cracked tooth)

Figure C.16: Spur Gears — Gear or Pinion Fault.
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Data

Spur Gears Present
Preferential Wear

Preferential 

wear occurring

If Assembly 

phase = 

Strong

Yes

Note:

Assembly Phase Freq = GMF / (Highest prime multiple)

Figure C.17: Spur Gears — Preferential Wear.
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Data

Belts Present
Worn, Loose, Mismatched or Misaligned

Belt worn, 

loose or 

mismatched

If Belt is of cog 

design (eg timing 

belt)

Yes

If Belt Frequency 

is present or 

strong

If 2 X Belt 

Frequency is 

present or strong

If 3 X Belt 

Frequency is 

present or strong

No If Timing Belt 

Frequency is 

Strong

Note:

Belt Frequency = (3.142 x Pulley RPM x Pitch Diameter) / Belt Length

Timing Belt Frequency = Belt Frequency x Number of Teeth

Belt worn or  

misaligned

Yes

Yes

Yes

Yes

Figure C.18: Belts — Worn, Loose, Mismatched or Misaligned.
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Data

Belts Present
Misalignment

Possible 

misaligned 

pulleys

If 1X (drive 

pulley) is present 

of strong

Yes

No

Note:

Belt Frequency = (3.142 x Pulley RPM x Pitch Diameter) / Belt Length

Timing Belt Frequency = Belt Frequency x Number of Teeth

Yes

If 1X (driven 

pulley) is present 

of strong

Possible 

misaligned 

pulleys

Figure C.19: Belts — Misalignment.
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Data

Belts Present
Eccentric Pulley(s)

If 1X (drive 

pulley) is strong

Yes

No

Note:

Belt Frequency = (3.142 x Pulley RPM x Pitch Diameter) / Belt Length

Timing Belt Frequency = Belt Frequency x Number of Teeth

Yes

Possible 

eccentric 

pulley(s)

If 1X (driven 

pulley) is strong

Possible 

eccentric 

pulley

Possible 

eccentric 

pulley
No

If 1X (driven 

pulley) is strong

Yes

Figure C.20: Belts — Eccentric Pulley(s).

Data

Belts Present
Resonance

Possible belt 

resonance

If 1X (drive 

pulley) is 

surrounded by 

haystack

Yes

Note:

Belt Frequency = (3.142 x Pulley RPM x Pitch Diameter) / Belt Length

Timing Belt Frequency = Belt Frequency x Number of Teeth

Figure C.21: Belts — Resonance.
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Centrifugal Pump Present

Possible flow 

induced 
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cavitation defect

If Vane Pass 

Frequency 

surrounded by 
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Probable Pumping 

problem:

- Starvation

- Closed discharge

- Impeller positioning 

problem relative to stator

Yes

If 1 X Radial = 

Strong

If Amplitudes of 

Vane Pass > 1X 

Radial

Yes

Figure C.22: Centrifugal Pump Faults.



Appendix D

Oil & Wear Debris Analysis

Algorithm Flow Charts

If Cutting (small 

& large) NOT 

Present

Normal Wear

Normal Wear

If Faituge Chunk 

(small & large) 

NOT Present

If Flat Faituge 

NOT Present

If Faituge Spall 

NOT Present

If Severe Sliding 

NOT Present

If Spherical 

(small, medium & 

large) NOT 

Present

If Laminar 

Change (Smooth 

& Rough) = 

False

Figure D.1: Normal Wear.
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If Cutting (small 

& large) NOT 

Present

Severe Rubbing Wear

Severe 

Rubbing 

Wear

If Faituge Chunk 

(small & large) 

NOT Present

If Flat Faituge 

NOT Present

If Faituge Spall 

NOT Present

If Severe Sliding 

NOT Present

If Laminar 

Change (smooth) 

= True

Figure D.2: Severe Rubbing Wear.

If Cutting (small) 

Present

Contamination

3 Body Wear

If Water Present If ISO code high

Contamination

Figure D.3: Contamination (3 body wear).
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If Cutting (small) 

Strong

Severe Contamination

Severe 3 Body 

Wear

(Severe 

Contamination)

Figure D.4: Severe Contamination.

If Cutting (large) 

Present or 

Strong

Possible Misalignment

2 Body Wear

(Possible 

Misalignment)

Figure D.5: Possible Misalignment (2 body wear).
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If Spherical 

(large) Present 

or Strong

Welding

Welding

If Severe Sliding 

NOT Present

Figure D.6: Welding.

If Severe Sliding 

Present

Sliding Wear

Sliding Wear 

Occurring

Figure D.7: Sliding Wear.
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If Severe Sliding 

Strong

Severe Sliding

Severe 

Sliding Wear 

Occurring

Figure D.8: Severe Sliding Wear.

If Laminar 

Change (rough) 

= True

Adhesive Wear

Adhesive 

Wear

Figure D.9: Adhesive Wear.
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If Laminar 

Change (rough) 

= True

Sliding and Adhesive Wear

Sliding & 

Adhesive 

Wear

If Severe Sliding 

is Present

Figure D.10: Sliding and Adhesive Wear.

If Fatigue Chunk 

(small) Present 

or Strong

Gear Fatigue

Gear Fatigue

If Fatigue Chunk 

(large) Present 

or Strong

Figure D.11: Gear Fatigue.
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If Flat Fatigue 

Present or 

Strong

Bearing Fatigue

Bearing Fatigue 

- Severe Macro 

Cracking

If Laminar 

Change (rough) 

= True

If Fatigue Spall 

Present or 

Strong

Yes

No

If Spherical 

(small) Present 

or Strong

Bearing Fatigue 

- Micro 

Cracking

No

Yes

If Spherical 

(medium) 

Present or 

Strong

Bearing Fatigue 

- Macro 

Cracking

Yes

No

Bearing Fatigue 

Yes

Yes

Figure D.12: Bearing Fatigue.

If Particle 

Information is 

Available

Tempered Particles

Tempered 

Particles 

Present

If Brown on Blue 

Particles Present

Yes

Yes

Figure D.13: Tempered Particles.
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If Particle 

Information is 

Available

Corrosion

Corrosion 

Particles 

Present

If Red Particles 

Present

Yes

Yes

Figure D.14: Corroded Particles.

If Particle 

Information is 

Available

Copper/Brass/Bronze Particles

Copper/

Brass/Bronze 

Particles 

Present

If Yellow 

Particles Present

If Copper 

Concentration in 

Sample > 0 

(ppm)

Yes Yes

Yes

Figure D.15: Copper/Brass/Bronze Particles.
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If Viscosity is 

Available

Viscosity Analysis

Viscosity 

Decrease

If Viscosity 

Change > 0 

(increase)

If Viscosity 

Change > = 

Critical

Viscosity 

Increase

Yes

No

If Viscosity 

Change > = 

Critical

If TBN is Critical

Wrong Oil 

Added (High 

Viscosity)

No

Yes

Yes

Yes

Figure D.16: Viscosity Analysis.

Possible causes for detected viscosity faults:

• Viscosity Increase: contamination, water in oil, oil oxidation and addition of

wrong viscosity oil

• Viscosity Decrease: solvent/fuel dilution, addition of low viscosity oil



If Chemical Index 

is Available

Chemical Index Analysis

Wrong Oil 

(different 

chemical index)

If Chemical Index 

< New Oil

Possible Oil 

Oxidation

Possible 

Additive 

Depletion

If Chemical Index 

Change >= 

Critical

Yes

No Yes

Figure D.17: Chemical Index Analysis.



If TBN is 

Available

TBN Analysis

If TBN is Critical

Additive 

Depletion

& Oil 

Oxidation

If Dark Particles 

Present

Yes

If ISO 5micron is 

Critical

Additive 

Depletion

& Possible 

Oxidation

Yes

No

Yes

No

Additive 

Depletion

Figure D.18: Total Base Number Analysis.
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Root-Cause Analysis Algorithm

Flow Charts

If Bearing 

Looseness is 

Present

Rolling Element Bearing Faults

Primary Fault: 

Bearing 

Looseness

If Bearing 

Fatigue is 

Present

If Bearing 

Fatigue is 

Present

Yes

Yes

No No

Primary Fault: 

Bearing Fatigue

Primary Fault: 

Bearing Fault

If Bearing Fault 

is Present

Yes

Looseness, Fatigue, General Fault

Yes

Figure E.1: Rolling Element Bearing — Looseness, Fatigue and General Faults.
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If Bearing 

Lubrication Fault 

is Present

Rolling Element Bearing Faults

Primary Fault: 

Bearing 

Lubrication Fault

Yes

Lubrication Fault

Figure E.2: Rolling Element Bearing — Lubrication Fault.
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Rolling Element Bearing Faults

Primary: Pulley Fault

Secondary: Bearing Fault

Belt, Pulley & Coupling Related Faults

AND

Belt Fault
Coupling 

Imbalance

Coupling 

Misalignment
Pulley Fault

Bearing 

Fault

AND AND

Primary: Coupling Imbalance

Secondary: Bearing Fault

Primary: Coupling Misalginment

Secondary: Bearing Fault

Primary: Belt Fault

Secondary: Bearing Fault

AND

Figure E.3: Rolling Element Bearing — Belt, Pulley or Coupling Related Fault.

Note: When multiple faults are detected in combination with ’bearing fault’, the

secondary fault is the bearing fault, while all other faults are indistinguishable primary

or secondary faults.
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If Journal 

Bearing 

Looseness 

Present

Journal Bearing Faults

Primary Fault: Journal bearing 

Looseness

Secondary Fault: Pulley Fault

Yes

Pulley, Oil Whip & Oil Whirl Faults

If Pulley Fault 

Present

Yes

Oil Whip, Whirl or 

Other Resonance 

Present

Primary Fault: Journal bearing 

Looseness

Secondary Fault: Oil Whip, 

Whirl or Other Resonance

Yes

Figure E.4: Journal Bearing — Pulley or Lubrication Fault.
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If Gear Fatigue 

is Present

Yes

Primary Fault: 

Gear Fatigue

No

Gear Faults
Gear Fatigue & Operating Fault

If Gear 

Operating Fault 

is Present

Yes

Primary Fault: Gear 

Operating Fault

Figure E.5: Spur Gears — Fatigue & Operating Fault.
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If Gear 

Misalignment is 

Present

Primary Fault: Journal 

Bearing Looseness

Secondary Fault: Gear 

Misalignment

Yes

If Journal 

Bearing 

Looseness is 

Present

Yes If Rolling 

Element Bearing 

Looseness is 

Present

Secondary Fault: 

Gear Misalignment

Yes

No

Primary Fault: 

Gear Misalignment

No

No

If Bent Shaft is 

Present

Primary Fault: 

Bent Shaft
No

Yes

If Gear Fatigue is 

Present

Primary Fault: Gear 

Operating Fault

If Gear Operating 

Fault is Present

No

Yes

Gear Faults
Gear Misalignment, Fatigue, Operating Fault & Bent Shaft

Figure E.6: Spur Gears — Fatigue, Misalignment & Operating Fault.

Note: Rolling element bearing looseness can be a primary fault for gear misalign-

ment, but may not be a primary fault itself. It could be caused by a bearing fault or

fatigue.
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Shaft Wear

Primary: Rolling Element 

Bearing Looseness

Secondary: Shaft Wear

Rolling Element Bearing, Journal Bearing & Gear Looseness

AND

Rolling Element 

Bearing 

Looseness

Gear 

Looseness

Journal 

Bearing 

Looseness

Shaft Wear

AND AND

Primary: Journal Bearing 

Looseness

Secondary: Shaft Wear

Primary: Gear Looseness

Secondary: Shaft Wear

Figure E.7: Possible Causes for Shaft Wear.

Note:

• Rolling element bearing looseness and gear looseness include the ’loose on shaft’

scenario.

• When multiple faults are detected in combination with ’shaft wear’, the secondary

fault is the shaft wear, while all other faults are indistinguishable primary or

secondary faults.



If Viscosity out of 

Specifications

Yes

Recommend: 

Change Oil

General Recommendations

If Contamination 

Present

Yes

Recommend: 

Change Oil, 

Inspect Seals

If Oil Oxidation 

Detected

Yes

Recommend: 

Change Oil, 

Review Oil 

Change Interval

Figure E.8: General Recommendations.



Appendix F

OWDES Testing Data

Laboratory Report

Table F.1: Laboratory Report of Oil Analysis Data from an Industrial Gearbox Used to Test

Oil & Wear Debris Analysis Expert System — Part 1.

Test Condition Quantity

Sample Date 16-10-2002

Oil Brand Castrol

New Oil Viscosity (cSt@40◦C) 100

Used Oil Viscosity (cSt@40◦C) 88

Particle Count: <10 µm 97 %

Particle Count: 10-20 µm 2 %

Particle Count: >20 µm 1 %
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Table F.2: Laboratory Report of Oil Analysis Data from an Industrial Gearbox Used to Test

Oil & Wear Debris Analysis Expert System — Part 2.

Test Condition Quantity

Rubbing Particles Low to 50 µm

Cutting Particles Low to 15 µm

Fatigue Particles Low to 20 µm

Dark Oxides Low

Copper Particles Low to 25 µm

Particle Contamination Medium

Iron < 1 ppm

Lead 5 ppm

Tin 35 ppm

Copper 3 ppm

Aluminium 1 ppm

Chromium < 1 ppm

Silicon 2 ppm

Sodium 2 ppm

Boron 6 ppm

Calcium 2 ppm

Magnesium < 1 ppm

Phosphorous 3 ppm

Molybdenum < 1 ppm

Zinc 3 ppm

Sulphur 533 ppm

Water < 0.1 ppm



Appendix G

Remaining Lifetime — Cutting

Wear Calculations

Quantities that must be known in order to calculate volume removed from cutting wear:

• Gear width, in mm

• Gear addendum radius (R1), in mm

• Gear deddendum radius, in mm

• Shaft length, in mm

• Position of centre of gear from end of shaft, in mm

• Total clearance at end of shaft (total clearance of both shaft bearings and gear

looseness if present), in mm

• Gear interference factor, between 0 and 1

• Volume Removed At Wear Out-Limit, in mm3

Equations required to calculate volume removed from cutting wear:

The angle of tilt on the gear due to looseness at the shaft support bearings or gear

mounting can be determined by:
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H 1

H 2

R 1

R 2

ø

Teeth

Solid

Stock

Teeth Edge Worn Away

Shaft

Hole

2D Surface Area of

‘Cone’

Figure G.1: Calculation of gear volume wear using conical machining model.

φ = Tan−1(
Total Clearance
Shaft Length

) (G.1)

The cutting depth of the gear edge is found by:

Cutting Depth = Tan(φ)× Shaft Length−Gear Width
2

(G.2)

The height of the triangle of Figure G.1 is dependent on the misalignment angle as

follows:

H2 =
R1

Tan(φ)
(G.3)

The height of the inner triangle, whose base is R2 is:

H1 = H2 −Gear Width (G.4)

Volume 1 is the area of the triangle, whose base is R2, and whose height is H1.

Vol1 =
1
3
πR2

2H1 (G.5)

Volume 2 is the area of the triangle, whose base is R1, and whose height is H2.
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Vol2 =
1
3
πR2

1H2 (G.6)

The volume of the gear solid stock and shaft hole can be determined by:

Gear Stock Volume = Gear Width× π ×Gear Deddendum Radius2 (G.7)

The new teeth volume, which is the volume of the worn teeth, can be calculated by:

New Teeth Volume =
1
2
×Gear Interference Factor× ((Gear Width× π × R2

1)

− (Gear Width× π ×Gear Deddendum Radius2)) (G.8)

The total volume worn off the gear teeth can finally be calculated by:

Total Worn Volume = Gear Stock Volume + New Teeth Volume−Gear Stock Volume

+ (((Volume2 −Volume1)−Gear Stock Volume)

× Gear Interference Factor
2

) (G.9)

The percentage worn off the gear teeth can be determined by:

Percent Worn =
Total Worn Volume

Volume Removed At Wear Out-Limit
× 100 (G.10)

Note: The gear interference factor is the amount of the gears occupying the air

space between the tip of a gear tooth and the deddendum of the meshing gear, which

is required to allow the gears to come into and out of mesh without the gear tips

scratching the flanks of the other gear teeth.



Appendix H

Expert Systems — Menu

Structure & Screens

H.1 Main Menu Structure & Screens
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Main Menu

Exit About CES

(Analysis)

Remaining

Lifetime

Estimation

Analysis Setup

OWDES VESHelp

Machine

Specification

Information

Bearing Fault

Frequencies
Input

Spur Gear

Input

Belt

Information
Input

Interference

Frequencies

Additional

Fault

Frequencies

Analysis

Results

Machine

OK

Root-Cause

Analysis

OR

Details

Figure H.1: Schematic diagram of the Main menu. OWDES and VES have individual

schematic diagrams shown in Sections H.3 and H.4.
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Figure H.2: The combined analysis expert system main menu. This is the main menu, which

is displayed when the software is started. All functions of the combined analysis expert system

are available from this main menu including: analysis (the ‘CES’ button opens the CES analysis

screen), machine specifications information, and analysis information.
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Figure H.3: The Remaining Lifetime Estimation menu.
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Figure H.4: The Machine Specifications Setup menu. The sub-menus for entering bearing

fault frequencies, spur gear specifications, belt drive specifications, and interference frequencies,

as well as the menu for additional fault frequencies are identical to those of the VES With

Machine Historical Data case (Figures in Section H.4.2), except for differences in logo and

application icon.
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Figure H.5: The Analysis Information menu.
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Figure H.6: The CES Help menu.

Figure H.7: The CES About menu.
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Figure H.8: The Exit menu. This menu is displayed when the ‘Exit’ button is pressed.

Figure H.9: The CES Analysis menu.



APPENDIX H. EXPERT SYSTEMS — MENU STRUCTURE & SCREENS 330

H.2 CES Results Menu Screens

Figure H.10: Alternative Analysis Results menu when no faults are detected.
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Figure H.11: The Analysis Results menu of the Combined Analysis Expert System.
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Figure H.12: The Analysis Results — Details menu of the Combined Analysis Expert System.
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Figure H.13: The Root-Cause Analysis results window, showing an example where bearing

looseness caused gear misalignment.
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H.3 OWDES Menu Structure & Screens

OWDES

Main Menu

ExitAbout Analyse Data InputHelp

Figure H.14: Schematic diagram of the OWDES menu structure.

Figure H.15: The OWDES Main menu.
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Figure H.16: The OWDES Analyse menu.
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Figure H.17: The OWDES Data Input menu. This menu is used to input oil analysis data

(from a laboratory report) into a text file compatible with the Oil & Wear Debris Analysis Expert

system.
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Figure H.18: The OWDES Help menu.

Figure H.19: The OWDES About menu.
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H.4 VES Menu Structure & Screens
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Figure H.20: Schematic diagram of the VES menu structure.
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Figure H.21: The VES Main menu.
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Figure H.22: The VES Analysis Setup menu.
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Figure H.23: The VES Analyse menu. The menu shown here looks identical for both analysis

methods (With or Without Machine Historical Data), however the software code varies in the

peak detection algorithm.
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Figure H.24: The VES About menu.

Figure H.25: The VES Help menu.
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H.4.1 Analysis Without Machine Historical Data

The menus in this part of the VES main menu are used to enter machine specifications

information and perform the analysis for the scenario when alarm amplitudes are not

established for the machine. The fault frequencies are detected using the amplitude

ratio peak detection algorithm as discussed in Section 5.2.2.1.

Figure H.26: The VES Machine Specification Setup menu (using amplitude ratio peak detec-

tion).
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H.4.1.1 Sub Menus of the Machine Specifications Menu

Figure H.27: The VES Bearing Fault Frequency Input menu (for amplitude ratio peak detec-

tion).
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Figure H.28: The VES Spur Gear Data Input menu (for amplitude ratio peak detection).

Figure H.29: The VES Belt Specifications Input menu (for amplitude ratio peak detection).
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H.4.2 Analysis With Machine Historical Data

Figure H.30: The VES Machine Specification menu (using amplitude threshold peak detec-

tion).
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Figure H.31: The VES Healthy Spectra Analysis menu. This menu allows (a) Amplitude

detection of a particular frequency (selected in figure), (b) Baseline analysis.
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H.4.2.1 Sub Menus of the Machine Specifications Menu

Figure H.32: The VES Bearing Fault Frequency Input menu (for amplitude threshold peak

detection).
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Figure H.33: The VES Spur Gear Data Input menu (for amplitude threshold peak detection).
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Figure H.34: The VES Belt Specifications Input menu (for amplitude threshold peak detec-

tion).

Figure H.35: The VES Interference Frequencies menu. The interference frequencies menu

is the same menu as available through the Machine Specifications menu without historical data

case.
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Figure H.36: The VES Additional Fault Frequency Alarm Amplitude menu. This menu is

displayed when the Save button is pressed.
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Expert Systems — Help Files

I.1 Main Menu - Help File

1. Button Explanations

• Combined Analysis: Utilise both the vibration (VES) as well as oil and

wear debris analysis (OWDES) expert systems to determine the condition of

a machine. This combined expert system uses knowledge about the correla-

tion of the two machine condition monitoring techniques (vibration analysis,

and oil and wear debris analysis). To run the analysis, the following data

files need to be selected:

– Machine Specifications file

– Analysis Setup file

– Vibration Spectra file (for vibration analysis)

– Vibration Time-Domain file (optional, for vibration analysis)

– Vibration Demodulated Spectra file (optional, for vibration analysis)

– Wear Debris Analysis Data file

Once all of the relevant files have been selected, click ‘Analyse’. If the wear

debris analysis data file contains a number of oil samples, you will be asked

to select the sample number to analyse during the analysis process. The data

components contained in the wear debris analysis data file are displayed in
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the lower right hand section of the analysis menu. Note that if the displayed

available components are those that are available in all samples stored in the

file. If for example the TAN is not recorded for one sample in the file, then

the TAN will not be available for analysis for all samples in that data file.

The results are displayed on-screen, which provides a one-screen overview

of the detected faults, with more detail accessible when the ‘Details’ button

next to each fault is pressed. A separate menu for root-cause analysis results

can be selected from the results menu. If no faults were detected, a separate

menu is displayed indicating that no faults were detected.

• OWDES Analysis Only: This button opens the Oil and Wear Debris

analysis Expert System (OWDES) main menu. Use this expert system if

you wish to analyse the machine condition using only oil and wear debris

analysis techniques.

• VES Analysis Only: This button opens the Vibration analysis Expert

System (VES) main menu. Use this expert system if you with to analyse

the machine condition using only the vibration analysis technique.

• Remaining Lifetime Estimation: This button opens the Remaining Life-

time Estimation menu.

• Machine Specifications Setup: The machine specifications setup menu is

used to enter the components contained on the machine that is monitored.

The information entered varies from broad component selection, such as

whether bearings or gears are present on the machine, to specific information

including the types of chemical elements found in the various components of

the machine.

• Analysis Setup: The analysis setup menu is used to adjust the analysis

sensitivity, and to fine tune the analysis operation for the particular machine.

• Exit: Clicking on the exit button will result in the program being closed.

• About: This menu displays development and copyright information about

the CES analysis algorithms and interface.
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2. General Information About CES

The CES (Combined Analysis Expert System) operates the VES and OWDES

analysis algorithms for data analysis, then employs its own algorithms for corre-

lation and root-cause analysis. CES therefore requires the full machine specifica-

tions and analysis setup data for both expert systems.

3. Remaining Lifetime Estimation - Operation

This menu is used to estimate the remaining lifetime of a machine, by considering

the wear rate, and the amount of material that can be worn off the component

before it is deemed as ‘failed’. The amount of material that can be worn off a com-

ponent is the difference between the dimensions of the current component, minus

the dimensions of the wear-out limit as published by many manufacturers (the

wear-out limit is typically used for judging component condition during machine

rebuilds). The remaining lifetime estimation requires 4 steps to be completed.

Step 1 — Dominant Wear Mode. This information is available from the results

of the combined analysis expert system (or from oil analysis report directly).

Either select Abrasive, Adhesive, Sliding or Cutting wear.

Step 2 - Select whether the component you are estimating the remaining oper-

ating life for is a gear, or a bearing or shaft. Note that only plain bearings

can be used for analysis as their internal clearances can be approximated.

The internal clearances of rolling element bearings generally depends on the

fit between the bearing, shaft and housing, and can therefore be different for

each installation.

Step 3 - Press the ‘Calculate’ button. At this stage, the required information

about the machine needs to be entered. This is facilitated through pop-up

type boxes. The required information is dependent on the dominant wear

mode selected in step 1. Information required for every analysis includes:
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Abrasive Wear:

• Wear Volume (in mm3)

• Load (in kg)

• Speed — the sliding speed of the wearing surfaces (m/s)

• Brinell Hardness of the Abrasive

• Brinell Hardness of the Component

• Abrasive Concentration (ppm)

• Abrasive Wear Constant

Adhesive & Sliding Wear:

• Wear Volume (in mm3)

• Load (in kg)

• Speed — the sliding speed of the wearing surfaces (m/s)

• Brinell Hardness of Component 1

• Brinell Hardness of Component 2

• Adhesive Wear Constant

Cutting Wear:

• Wear Volume (in mm3)

• Load (in kg)

• Speed — the sliding speed of the wearing surfaces (m/s)

• Brinell Hardness of Component 1

• Brinell Hardness of Component 2

• Total Clearance (including at bearings and looseness of gear if present)

• Shaft Length (mm)

• Gear width (mm)

• Position of centre of gear from end of shaft (mm)
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• Gear Adendum Radius (mm)

• Gear Dedendum Radius (mm)

• Gear Interference Factor — the volume of gear meshing zone not occu-

pied by gear teeth. This is the volume of air between the top of a tooth

(adendum radius of gear 1) and the bottom of the corresponding gear

teeth (dedendum radius of gear 2). Expressed as a decimal, eg 95% vol.

is occupied by gear teeth and 5% vol is air. In this example, factor =

0.95.

Step 4 - The results are displayed.

4. Machine Specifications Setup Variables

This menu contains all of the information about the machine to be monitored,

to allow the expert system to perform fault detection and diagnosis on the input

data. The data fields and a short description follow. The menu has been divided

into 2 sections: the left half is for vibration analysis, and the right half is for oil

and wear particle analysis, and root-cause analysis.

To edit an existing file, click the ‘Edit Existing File’ button at the bottom left

hand corner of the menu, browse and select the desired file in the pop-up menu.

To start a new file, just enter the components and specifications by clicking the

tick box next to the component type you wish to enter.

Vibration Analysis Part:

• Bearings: select the number and type of bearings. For rolling element bear-

ings (ball bearings and roller bearings), the fault frequencies and their nor-

mal and alarm amplitudes must be entered. This is done via the sepa-

rate menu which is displayed when the ‘Enter Fault Frequencies’ button is

pressed. If more than 1 bearing was entered, click ‘Next’ to enter the speci-

fications of the other bearings called ‘2’ etc. You can view what was already

entered by clicking ‘Previous’. When the last bearing information was en-
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tered, the ‘Finish’ button will become active. Click ‘Finish’ to return to the

Machine Specifications Setup menu to continue with the other components,

and save the entered data to a file. Up to 50 rolling element bearings can

be entered. Please note that every bearing with different fault frequencies

must be defined as a separate bearing. Differences in fault frequencies could

be due to the use of a different bearing size/design, or two identical bearings

operating at different rotational speeds.

• Pump: Enter the number of vanes on the pump impeller, as well as the

normal and alarm amplitudes of the vane pass frequency.

• Coupling: Tick this box if the machine has a coupling. The analysis algo-

rithm will then test for coupling misalignment.

• Spur Gear: Enter the number of reductions that the gearbox has, and press

the ‘Enter Specifications’ button to enter the specifications of each spur gear

reduction. You will need to enter the number of teeth and rotational speed

(RPM) of each gear. The normal and alarm amplitudes will also be required

for the typical frequencies produced by gears (gear mesh frequency - GMF, 2

GMF, 3 GMF, and hunting tooth frequency - HTF). If more than 1 reduction

was selected, click ‘Next’ to enter the specifications of the reduction called

‘2’ etc. You can view what was already entered by clicking ‘Previous’. When

the last reduction was entered, the ‘Finish’ button will become active. Click

‘Finish’ to return to the Machine Specifications Setup menu to continue with

the other components, and save the entered data to a file. Up to 50 spur

gear reductions can be entered.

• Belt Drives: Enter the number of belt drive reductions present on the

machine to be monitored. Belt specifications also need to be entered via

the pop-up menu displayed when the ‘Enter Belt Specifications’ button is

pressed. The information required is: Drive pulley pitch diameter and ro-

tational speed (RPM), Driven pulley pitch diameter and RPM, belt length

(in mm), and whether the belt is a cog type belt, such as a timing belt. The
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normal and alarm amplitudes of common belt frequencies are also required

(fundamental drive pulley frequency, fundamental driven pulley frequency,

belt frequency, and timing belt frequency if the ‘timing belt’ tick box was

selected). If more than 1 reduction was selected, click ‘Next’ to enter the

specifications of the reduction called ‘2’ etc. You can view what was already

entered by clicking ‘Previous’. When the last reduction was entered, the

‘Finish’ button will become active. Click ‘Finish’ to return to the Machine

Specifications Setup menu to continue with the other components, and save

the entered data to a file. Up to 50 belt reductions can be entered.

• Interference Frequencies of Neighbouring Machines: This feature allows you

to enter strong frequencies of machines near by that can be induced into

the machine to be monitored via the mounting structure. Enter the number

of frequencies you wish to register, and click the ‘Enter Frequencies’ button

to enter the frequencies (in Hz) and their expected amplitude, using the

displayed menu. Use the ‘Next’ and ‘Previous’ buttons to toggle between

the entered frequencies (if more than 1 was entered) and click ‘Finish’ when

complete. Up to 50 interference frequencies can be entered.

• Saving File: Save the file by entering the path and file name in the text box.

The path is the drive which you wish to save to as well as the folder. Eg: to

save to the Conveyor folder on E-drive, using Gearbox5 as a file name, enter

‘E:\Conveyor\Gearbox5’ in the textbox. The file will be given the extension

‘.msf’. Make sure that the file name is unique, otherwise the existing file

will be over-written!

Oil & Wear Particle Analysis Part:

• Machine Materials: This menu allows you to enter the elemental compo-

sitions of component materials, such as bearings, gears, shafts, and other

components. Enter the number of different material compositions you wish

to enter for these 4 material categories, and click the ‘Enter Elemental Com-
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position’ button. You may now enter the elements present in each component

by selecting the elements from the selection, and using the ‘Previous’ and

‘Next’ buttons to toggle between components. The bearing, gear and shaft

materials are numbered automatically. If you selected to enter the composi-

tion of ‘other materials’, you are also prompted for a unique name for each

one, as well as the elemental composition. Once all of the information has

been entered, click ‘Finish’.

• Machine Regions Analysis: This information is required for the expert sys-

tem to perform root-cause analysis. The machine components that influence

each other must be grouped into a ‘Region’. Components that should be

grouped together are those where the failure of one component can lead to

the failure of another component - the failure of a bearing leading to abnor-

mal gear wear for example. Each component can be part of two ‘Regions’,

which allows ‘Regions’ to overlap. Eg: A single reduction gearbox driving a

conveyor. The gears, shafts and bearings would be grouped into ‘Region 1’,

while the output shaft and bearings, and conveyor drive roller and bearings

would be grouped into ‘Region 2’. To enter the regions information, click on

the ‘Enter Regions Information’ button, and enter the component number

positioned in each ‘Region’. Before entering the regions information, the

components present on the machine need to be entered by clicking on the

tick boxes of the relevant components on the left side of this menu. Each

component can be part of up to 2 Regions. The component numbers are

those of the previously entered components. For example, the menus allow

up to 50 rolling element bearings to be entered in the ‘Bearings’ section in

the top left side of this menu. The bearings are therefore numbered from 1 to

50. Hence, if 50 rolling element bearings have been entered, then all 50 need

to be assigned into ‘Regions’. The expert system allows up to 10 machine

‘Regions’ to be assigned. To progress to the next set of 10 components, click

the ‘Next’ button. You can review entered information by clicking on the
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‘Previous’ button, or once complete, clicking ‘Finish’.

• To save the information to file, click the ‘Save Settings’ button. Then ‘Close’

to exit the menu.

Notes:

• To de-select a component, just click on the tick box before the type of

component you wish to de-select. Then click ‘Yes’ to the question.

• To delete the entries for a component so that the information can be re-

entered, de-select the component and click ‘Yes’ to the question. Then click

on the tick box again to re-enter the information.

• If the alarm amplitude data is not available, combined analysis using vibra-

tion, oil and wear particle analysis cannot be performed. You can however

analyse the vibration data using only the VES, and setting up the machine

in the ‘Without Machine Historical Data’ section.

• The units of the alarm amplitudes must be the same as those used in the

vibration analysis data files. If you have acceleration vibration data, then

you must use acceleration units (m/s2).

5. Analysis Setup Menu

The Analysis Setup menu allows the information required by the expert systems

to perform the analysis, to be entered and saved to a text file. The menu has

been divided into 2 sides: the left side for vibration analysis information, and the

right side for oil and wear particle analysis.

In order to run an analysis using the OWDES, an Analysis Setup File (ASF)

needs to be selected. There are two options to establish an ASF file: by selecting

the ‘Analysis Setup Menu’ from the Main menu, or from the VES Main menu

(clicking the ‘VES Analysis Only’ button on the Main menu displays the VES

Main menu). The saved files, although having the same extension (.asf) are not

identical however.
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• ASF files saved under the VES ‘Analysis Setup Menu’ button can only be

used by the VES, not the CES or OWDES.

• ASF files saved under the ‘Analysis Setup Menu’ button from the Main

menu can be used for the analysis by all expert systems (ie CES, VES and

OWDES). It is therefore recommended that when a machine is set up, the

‘Analysis Setup Menu’ button on the Main menu is selected.

To edit an existing file, click the ‘Open an Existing Analysis Setup File’ option

button at the lower left hand side of the menu, browse and select the desired file

in the pop-up menu. To start a new file, just click the ‘Create a New Analysis

Setup File’ option button. For a new file, you will need to enter the path and

file name (including extension). Eg: to save to the Conveyor folder on E-drive,

using Gearbox5 as a file name, enter ‘E:\Conveyor\Gearbox5.asf’ in the textbox.

Make sure that this file is unique, otherwise the existing file will be over-written!

Vibration Analysis Part:

The VES analysis algorithm utilises nine user changeable variables to determine

the peak detection sensibility, which the operator can edit using the Analysis

Setup menu. These variables have been categorised into three groups, depending

on whether the variables are required for analysis with machine historical data,

without, or both. The variables and their functions are as follows:

• Variables used for Without Machine Historical Data type analysis:

– Min Peak Height — the minimum height of a peak, relative to the

highest peak in the spectra, to be classified as a ‘Present’ peak

– Min Peak Height to be identified as Strong — the minimum height of

a peak, relative to the highest peak in the spectra, to be classified as a

‘Strong’ (or distinctive) peak

• Variables used for With Machine Historical Data type analysis:

– Percentage in amplitude above ‘alarm amplitude’ (entered for each fault

frequency) for peak to be called strong
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– Average Baseline Amplitude (this can be calculated using the Analyse

Healthy Spectra menu accessible from the VES main menu)

– Percentage of peaks with an amplitude below or equal to the average

baseline amplitude (this can be calculated using the Analyse Healthy

Spectra menu)

• Variables required for both analysis types:

– Percentage Deviation — the percentage deviation in frequency of a peak

– Frequency Limit — a frequency limit (in hertz) on the percentage devi-

ation

– Min Haystack Width — the minimum width of haystack, in hertz

– Haystack Search %Run Speed — The width of searching for a haystack

around a specific frequency, in percent of running speed

The Min Peak Height variable sets the minimum height of a peak so that the

algorithm accepts that a peak exists at the specific frequency. This variable is

therefore used to adjust the peak detection sensitivity. The ‘Min Peak Height to

be identified as Strong’ variable is similar to the Min Peak Height variable, in

that it sets the detection sensitivity for distinctive peaks.

The variables used for analysis when machine historical data is available are

concerned with identifying distinctive peaks relative to the entered alarm limit,

and detect a raised baseline. The Average Baseline Amplitude and Percentage

variables are used in detecting a raised baseline, as is often the case for severe

looseness type faults.

The Percentage Deviation and Frequency Limit variables were incorporated to

allow the VES to search the vibration data file for specific frequencies, and allow

for measurement inaccuracies, where the particular peaks can be several hertz

off their theoretical frequency. The combination of a percentage and a frequency

deviation has been used as a fixed ‘error’ frequency may be too large for low fre-

quency detection, and a percentage ‘error’ too large for high frequency detection
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(while a 5 % error may be ok for frequencies under 1000 Hz, it is probably too

large for spectra ranging to 6000 Hz). The software therefore evaluates the ‘error’

using both the Percentage Deviation and Frequency Limit, and uses the smaller

of the two.

The haystack detection algorithm searches for regions of consecutive Present or

Strong peaks. The minimum width of such a region before it is classified as a

haystack can be adjusted using the Min Haystack Width variable.

The Haystack Search % Run Speed variable can be used to adjust how far on

each side of a specific frequency the algorithm searches for a haystack. In order

to reduce the likelihood of a one times running speed harmonic being mistakenly

detected as a haystack, this variable allows the width of spectra which is searched

to be limited to a percentage of the running speed.

Oil & Wear Debris Analysis Part:

• Wear Particle Concentrations: enter the % limits of each wear particle to

detect that type of particle as ‘Present’ or ‘Strong’. These are both alarm

limits, where the ‘Present’ concentration will generally be used to detect a

fault, while the ‘Strong’ concentration will return a severe fault condition.

Laminar particles require the normal concentrations to be entered, as well

as the change in concentration which triggers a fault.

• Oil Analysis Parameters: parameters including viscosity, ISO4406 cleanli-

ness codes and TAN can be entered using limits discussed in draft ISO

standard ISO/TC 108/SC 5/WG 4 (titled ‘Condition monitoring and di-

agnostics of machines — Tribology - based monitoring and diagnostics of

machines. — General guidelines’, 2000). Some recommendations on critical

changes for viscosity are:

– Critical Viscosity Increase: +20%

– Critical Viscosity Decrease: -10%
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• Elemental Analysis: enter the critical concentrations of each element, in

parts per million (ppm). If any concentration is exceeded, the expert system

will perform elemental analysis.

6. System Requirements

• Pentium type PC running Microsoft Windows based operating system.

• Recommendations:

– Windows 98 or later

– Screen resolution of at least 1024 by 768 pixels

– At least 15 MB of free hard disk space

– Mouse or equivalent pointing device is recommended, although most

buttons can be accessed using ‘Alt’ and corresponding letter shortcut

keys and using ‘Tab’ to move between text boxes.

7. Installation Requirements

The expert system .exe file can be positioned anywhere on the hard drives acces-

sible to the PC. However, the expert expects several files and folders positioned

on c-drive for correct operation. To install the expert system on the PC, follow

these steps:

(a) Copy the .exe file to the desired folder

(b) Create the folder C:\Temp. This folder is used by the CES to store the result

files accessible when pressing on the ‘Details’ button beside the detected

faults, from the CES Analysis Results menu.

(c) Copy the ‘CES Help.txt’, ‘VES Help.txt’ and ‘OWDES Help.txt’ files to the

C-drive (C:\) root-folder.

(d) Copy the Visual Basic file to the Windows System folder.

The output files will be written to the C-drive root-folder (C:\).
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8. Program Development Information and Disclaimer

This program is made up of three expert systems, in a hierarchical structure

where one expert system utilises the analysis of the other two. The high level

expert system is the combined analysis expert system (CES), which utilises the

analysis performed by the two lower level expert system, and additional corre-

lation knowledge in order to determine the condition of the machine. The two

lower level expert systems were developed to utilise the vibration analysis (VES),

and the oil and wear debris analysis (OWDES) machine condition monitoring

techniques. The two lower level expert systems can either be used independently,

or in combination, by running the high level expert system.

The development of these expert systems was for research purposes, in order to

investigate the correlation between the vibration and oil and wear debris analysis

techniques, and to develop an interface which could be used as a basis for a

commercial system. While the three expert systems were thouroughly tested

using either data obtained from laboratory tests, industry, or hypothetical results,

or a combination of these, the developers are not responsible for any losses, direct

or indirect, which may arise as a result of using this program.

I.2 OWDES - Help File

1. OWDES Main menu - Button Explanations

• Analyse: click on this button to perform oil and wear debris data analysis.

The information that is required are: oil and wear debris data file, machine

specifications setup file, and an analysis setup file. The oil and wear debris

data file can be created using the ‘Data Input Menu’ button and associated

menu from the OWDES Main menu. See note 4 of this help file for the

machine specifications setup and analysis setup files.

• Data Input: click on this button to enter the data from an oil analysis

laboratory report into a file that can be read by the OWDES and CES expert
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systems. The mandatory information is particle colour & concentration, and

wear particle type & concentration.

• Exit: click on this button to return to the Main Menu.

• About: this menu displays development and copyright information about

the OWDES analysis algorithms and interface.

2. Analyse Menu

The analyse menu is used to analyse oil and wear debris data. To run the analysis,

the following data files need to be selected:

• Machine Specifications file

• Analysis Setup file

• Wear Debris Analysis Data file

Once all of the relevant files have been selected, click ‘Analyse’. If the wear debris

analysis data file contains a number of oil samples, you will be asked to select

the sample number to analyse during the analysis process. The data components

contained in the wear debris analysis data file are displayed in the lower right hand

section of the analysis menu. Note that if the displayed available components are

those that are available in all samples stored in the file. If for example the TAN

is not recorded for one sample in the file, then the TAN will not be available for

analysis for all samples in that data file.

When the analysis is complete, a pop-up box is displayed advising that the output

files will be created. If you wish to save the result files from a previous analysis,

rename the files otherwise they will be overwritten. Once the files have been

created successfully, another pop-up box is displayed advising that the analysis

is complete. Press ‘OK’, then the ‘Close’ button to return to the OWDES Main

menu. The results are listed in a text file saved to the C-drive. The file is called

‘OWDESAnalysisOutput.txt’.



APPENDIX I. EXPERT SYSTEMS — HELP FILES 367

3. Data Input Menu

When the Data Input menu has loaded, you have 3 options:

• Edit an existing file (but do not enter any new samples)

• Create a new data file

• Amend an existing data file, and add another sample.

The samples refer to the data from a laboratory report that you have received

from the analysis of an oil sample. Every machine that is monitored via oil and

wear debris analysis should therefore have an individual ‘Wear Debris’ file. Every

time an oil sample analysis report is received from the oil analysis laboratory

for the particular machine, the data is input to the Wear Debris file as another

‘sample’. It is therefore necessary in the ‘Analyse’ menu to specify the sample

number that you wish to analyse. The data in the ‘Wear Debris Analysis’ frame

is mandatory, while all other data is optional.

To edit an existing file, in order to include additional data for an existing sam-

ple, or to make corrections to an existing sample, click the ‘Edit’ button. If you

have already entered some data before pressing ‘Edit’, a warning message is dis-

played. Browse and select the relevant file to edit. Use the ‘Next’, ‘Previous’

buttons to navigate between samples, and click ‘Finish’ when completed. Save

the modifications, and ‘Close’ to return to the OWDES Main menu.

To create a new data file, just enter all of the information including the de-

sired file name and path, and click on the ‘Save to New File’ button. Eg: to

save to the Conveyor folder on E-drive, using Gearbox5 as a file name, enter

‘E:\Conveyor\Gearbox5’ in the textbox. The file will be given the extension

‘.txt’. Make sure that the file name is unique, otherwise the existing file will be

over-written!

To amend an existing file and add another oil sample, enter all of the information

and then click on the ‘Save to Existing File’ button. Browse and select the relevant

file which you wish to amend. The data will be saved to a new sample, which
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will automatically be given the number immediately above the highest numbered

sample existing in the file.

If you wish to cancel the data input at any stage, click on the ‘Close’ button, and

‘Yes’ to the pop-up box warning that all entered data will be lost.

4. Machine Specifications & Analysis Setup Information

In order to perform data analysis using the OWDES ‘Analyse’ button, machine

specifications and analysis setup information must be available. To enter this in-

formation and produce ‘.msf’ and ‘.asf’ files respectively, use the ‘Machine Speci-

fications Setup’ and ‘Analysis Setup’ buttons from the Main menu. For help with

the Machine Specifications Setup menu or Analysis Setup menu, see sections 4 or

5 in the help menu of the Main menu respectively.

5. Other Information

For additional information, and how the OWDES links together with the CES,

see the help file located in the ‘Main Menu’.

I.3 VES - Help file

1. General Description

The vibration analysis expert system (VES) was developed to analyse vibration

analysis machine condition monitoring data for fault detection and diagnosis. The

analysis algorithm can analyse frequency domain vibration spectra, demodulated

spectra, and time domain data files.

Fault frequencies are typically detected when the amplitude of a peak at or near

the theoretical fault frequency exceeds a threshold level. As the alarm threshold

levels are generally set up by considering healthy and historical failure data of the

machine, this type of analysis has been called ‘With Machine Historical Data’.

The corresponding peak detection algorithm is by the amplitude of a peak ex-

ceeding the pre-defined threshold level, so the analysis algorithm has been called
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amplitude threshold peak detection. The alarm thresholds are defined in the

‘Machine Specifications Menu’, and are defined for all fault frequencies.

Alternatively, faults can also be detected by the amplitude of the fault frequency

dominating the frequency spectrum graph. In this case, the relative amplitude

of the fault frequency with respect to the other peaks in the spectra is used to

grade the intensity of the fault. As this type of analysis requires all frequencies

to be normalised by the highest amplitude peak, the peak detection algorithm

has been called amplitude ratio peak detection. No historical data is needed to

perform the analysis using amplitude ratio peak detection, so this type of analysis

has been called ‘Without Machine Historical Data’ type analysis.

2. Button Explanations

• Without Machine Historical Data frame

– Analyse: click on this button if you wish to analyse vibration data

from a machine where alarm amplitudes for component fault frequencies

are not defined or unknown. The data will be analysed by amplitude

ratio peak detection — see the Analysis Setup Menu help section for

further information. This form of analysis was included to broaden the

application of the expert system. It is however not recommended for

general fault detection such as in routine machine condition monitoring.

– Machine Specifications Setup: click on this button to set up a ma-

chine for analysis using amplitude ratio peak detection. Choose this

option if you do not have any amplitude alarm thresholds for the fault

frequencies emitted by the machine.

• With Machine Historical Data frame

– Analyse: click on this button if you wish to analyse vibration data from

a machine where alarm amplitudes for component fault frequencies are

defined. As traditionally, historical condition monitoring data is used in

setting up alarm amplitude levels, this type of analysis has been called
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‘Analysis With Historical Data’. See the Analysis Setup Menu help

section for further information. This analysis mode is recommended

for routine machine condition monitoring, and is the only analysis type

performed by the CES.

– Machine Specifications Setup: click on this button to set up a ma-

chine for analysis, by including both fault frequencies as well as their

normal (healthy) and alarm amplitudes. This style of analysis is recom-

mended for general routine machine condition monitoring.

– Analyse Healthy Spectra: click on this button to analyse a vibration

spectra (frequency) file for either analysing the baseline characteristics,

or finding the amplitude of a frequeny.

• Analysis Setup: The analysis setup menu is used to adjust the analysis

sensitivity, and to fine tune the analysis operation for the particular machine.

Click on this button to set up the parameters to analyse the vibration data

of a machine.

• About: this menu displays development and copyright information about

the VES analysis algorithms and interface.

• Exit: click on this button to return to the Main Menu.

3. Minimum Data Required to Run Analysis

In order to run the analysis algorithm of the VES, at least three files are required.

These are:

• Machine Specifications File (containing information about the design of the

machine including fault frequencies)

• Analysis Setup File (containing information on how the peaks are to be

detected in the vibration spectra)

• The vibration spectra file (containing the raw vibration data of the machine)
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The vibration spectra file must have the following format:

• The first line of the file must list the rotational speed of the machine (or

input shaft), in RPM.

• The successive lines of the file must be the frequency (in Hz) and the am-

plitude of the vibration data, separated by a space or tab. There must be

three axes of data, in the order of Horizontal, Vertical and Axial. Horizontal

and vertical can be alternated, as it is assumed that the direction with the

highest vibration reading is listed first. The number of lines of each vibra-

tion data set must be the same, and is required to be listed in the ‘Scanning

Resolution’ text field of the Analysis menu. The frequencies listed in the file

must also be increasing in equal increments.

• The maximum number of lines per axis is 4096.

• The recommended file extension is ‘.adf’ which allows easy identification

from other data file. To convert from ‘.txt’ to ‘.adf’ simply change the file

extension (eg by using Windows Explorer).

When the analysis is complete, a pop-up box is displayed advising that the output

files will be created. If you wish to save the result files from a previous analysis,

rename the files otherwise they will be overwritten. Once the files have been

created successfully, another pop-up box is displayed advising that the analysis

is complete. Press ‘OK’, then the ‘Close’ button to return to the VES Main

menu. The results are listed in a text file saved to the C-drive. The file is called

‘VESAnalysisOutput.txt’.

4. Optional Data for Advanced Analysis

For a broader fault detection, time domain and demodulated spectra files can also

be selected and analysed by the VES analysis algorithm. Time domain data can

be useful in detecting cracked or chipped gear teeth, while demodulated spectra

data can aid in the early detection of bearing faults. The required file formats

are as follows:
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• Time Domain Date File: The time domain data file can be up to 8192 lines

long, where each line is made up of the sample time (in milli seconds) and

amplitude, separated by a space or tab.

• Demodulated Spectra Data File: this file can be up to 4096 lines long, and

should have an identical file format as the Vibration Spectra File, except for

omitting the first line (rotational speed).

5. Machine Specifications Setup Menu

This menu contains all of the information about the machine to be monitored,

to allow the expert system to perform fault detection and diagnosis on the input

data. The data fields and a short description follow. Please note that if you

set up a machine using the Machine Specifications Setup menu selected from the

VES Main menu, this file can only be read by VES, not by CES or OWDES.

To edit an existing file, click the ‘Edit Existing File’ button at the bottom of the

menu, browse and select the desired file in the pop-up menu. To start a new file,

just enter the components and specifications by clicking the tick box next to the

component type you wish to enter.

• Bearings: select the number and type of bearings. For rolling element bear-

ings (ball bearings and roller bearings), the fault frequencies and their nor-

mal and alarm amplitudes must be entered (only fault frequencies need to

be entered if Without Machine Historical Data was selected). This is done

via the separate menu which is displayed when the ‘Enter Fault Frequencies’

button is pressed. If more than 1 bearing was entered, click ‘Next’ to enter

the specifications of the other bearings called ‘2’ etc. You can view what

was already entered by clicking ‘Previous’. When the last bearing informa-

tion was entered, the ‘Finish’ button will become active. Click ‘Finish’ to

return to the Machine Specifications Setup menu to continue with the other

components, and save the entered data to a file. Up to 50 rolling element

bearings can be entered. Please note that every bearing with different fault
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frequencies must be defined as a separate bearing. Differences in fault fre-

quencies could be due to the use of a different bearing size/design, or two

identical bearings operating at different rotational speeds.

• Pump: Enter the number of vanes on the pump impeller. The normal and

alarm amplitudes of the vane pass frequency must also be entered if the

menu was launched from the With Machine Historical Data frame.

• Coupling: Tick this box if the machine has a coupling. The analysis algo-

rithm will then test for coupling misalignment.

• Spur Gear: Enter the number of reductions that the gearbox has, and press

the ‘Enter Specifications’ button to enter the specifications of each spur gear

reduction. You will need to enter the number of teeth and rotational speed

(RPM) of each gear. For the case With Machine Historical Data, the normal

and alarm amplitudes will also be required for the typical frequencies pro-

duced by gears (gear mesh frequency - GMF, 2 GMF, 3 GMF, and hunting

tooth frequency - HTF). If more than 1 reduction was selected, click ‘Next’

to enter the specifications of the reduction called ‘2’ etc. You can view what

was already entered by clicking ‘Previous’. When the last reduction was en-

tered, the ‘Finish’ button will become active. Click ‘Finish’ to return to the

Machine Specifications Setup menu to continue with the other components,

and save the entered data to a file. Up to 50 spur gear reductions can be

entered.

• Belt Drives: Enter the number of belt drive reductions present on the

machine to be monitored. Belt specifications also need to be entered via

the pop-up menu displayed when the ‘Enter Belt Specifications’ button is

pressed. The information required is: Drive pulley pitch diameter and ro-

tational speed (RPM), Driven pulley pitch diameter and RPM, belt length

(in mm), and whether the belt is a cog type belt, such as a timing belt. The

normal and alarm amplitudes of common belt frequencies are also required

(fundamental drive pulley frequency, fundamental driven pulley frequency,
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belt frequency, and timing belt frequency if the ‘timing belt’ tick box was

selected), for the With Machine Historical Data case. If more than 1 re-

duction was selected, click ‘Next’ to enter the specifications of the reduction

called ‘2’ etc. You can view what was already entered by clicking ‘Previ-

ous’. When the last reduction was entered, the ‘Finish’ button will become

active. Click ‘Finish’ to return to the Machine Specifications Setup menu to

continue with the other components, and save the entered data to a file. Up

to 50 belt reductions can be entered.

• Interference Frequencies of Neighbouring Machines: This feature allows you

to enter strong frequencies of machines near by that can be induced into

the machine to be monitored via the mounting structure. Enter the number

of frequencies you wish to register, and click the ‘Enter Frequencies’ button

to enter the frequencies (in Hz) and their expected amplitude, using the

displayed menu. Use the ‘Next’ and ‘Previous’ buttons to toggle between

the entered frequencies (if more than 1 was entered) and click ‘Finish’ when

complete. Up to 50 interference frequencies can be entered. This feature can

be entered in both With and Without Machine Historical Data modes, but

interference frequencies are only taken into account when vibration data is

analysed using the With Machine Historical Data analysis.

Saving File: Save the file by entering the path and file name in the text box.

The path is the drive which you wish to save to as well as the folder. Eg: to

save to the Conveyor folder on E-drive, using Gearbox5 as a file name, enter

‘E:\Conveyor\Gearbox5’ in the textbox. The file will be given the extension

‘.msf’. Make sure that the file name is unique, otherwise the existing file will

be over-written! For the case With Machine Historical Data, you will also be

prompted to enter the alarm amplitudes of the 1X, 2X, 3X and 4X running speed

frequencies. Enter the amplitudes and press ‘Continue Save...’. You will then

be warned to make sure that the file name is unique, and that the file will be

overwritten if it already exists. Click ‘Yes’ to acknowledge the warning, then
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‘Close’ to return to the VES Main menu.

6. Analysis Setup

The Analysis Setup menu allows the information required by the expert system

to perform the analysis, to be entered and saved to a text file. Please note that

if you set up a machine using the Analysis Setup menu selected from the VES

Main menu, this file can only be read by VES, not by CES or OWDES.

To edit an existing file, click the ‘Open an Existing Analysis Setup File’ option

button, browse and select the desired file in the pop-up menu. To start a new

file, just click the ‘Create a New Analysis Setup File’ option button. For a new

file, you will need to enter the path and file name (including extension). Eg:

to save to the Conveyor folder on E-drive, using Gearbox5 as a file name, enter

‘E:\Conveyor\Gearbox5.asf’ in the textbox. Make sure that this file is unique,

otherwise the existing file will be over-written!

The VES analysis algorithm utilises nine user changeable variables to determine

the peak detection sensibility, which the operator can edit using the Analysis

Setup menu. These variables have been categorised into three groups, depending

on whether the variables are required for analysis with machine historical data,

without, or both. The variables and their functions are as follows:

• Variables used for Without Machine Historical Data type analysis:

– Min Peak Height — the minimum height of a peak, relative to the

highest peak in the spectra, to be classified as a ‘Present’ peak

– Min Peak Height to be identified as Strong — the minimum height of

a peak, relative to the highest peak in the spectra, to be classified as a

‘Strong’ (or distinctive) peak

• Variables used for With Machine Historical Data type analysis:

– Percentage in amplitude above ‘alarm amplitude’ (entered for each fault

frequency) for peak to be called strong
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– Average Baseline Amplitude (this can be calculated using the Analyse

Healthy Spectra menu accessible from the VES main menu)

– Percentage of peaks with an amplitude below or equal to the average

baseline amplitude (this can be calculated using the Analyse Healthy

Spectra menu)

• Variables required for both analysis types:

– Percentage Deviation — the percentage deviation in frequency of a peak

– Frequency Limit — a frequency limit (in hertz) on the percentage devi-

ation

– Min Haystack Width — the minimum width of haystack, in hertz

– Haystack Search %Run Speed — The width of searching for a haystack

around a specific frequency, in percent of running speed

The Min Peak Height variable sets the minimum height of a peak so that the

algorithm accepts that a peak exists at the specific frequency. This variable is

therefore used to adjust the peak detection sensitivity. The ‘Min Peak Height to

be identified as Strong’ variable is similar to the Min Peak Height variable, in

that it sets the detection sensitivity for distinctive peaks.

The variables used for analysis when machine historical data is available are

concerned with identifying distinctive peaks relative to the entered alarm limit,

and detect a raised baseline. The Average Baseline Amplitude and Percentage

variables are used in detecting a raised baseline, as is often the case for severe

looseness type faults.

The Percentage Deviation and Frequency Limit variables were incorporated to

allow the VES to search the vibration data file for specific frequencies, and allow

for measurement inaccuracies, where the particular peaks can be several hertz

off their theoretical frequency. The combination of a percentage and a frequency

deviation has been used as a fixed ‘error’ frequency may be too large for low fre-

quency detection, and a percentage ‘error’ too large for high frequency detection
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(while a 5 % error may be ok for frequencies under 1000 Hz, it is probably too

large for spectra ranging to 6000 Hz). The software therefore evaluates the ‘error’

using both the Percentage Deviation and Frequency Limit, and uses the smaller

of the two.

The haystack detection algorithm searches for regions of consecutive Present or

Strong peaks. The minimum width of such a region before it is classified as a

haystack can be adjusted using the Min Haystack Width variable.

The Haystack Search % Run Speed variable can be used to adjust how far on

each side of a specific frequency the algorithm searches for a haystack. In order

to reduce the likelihood of a one times running speed harmonic being mistakenly

detected as a haystack, this variable allows the width of spectra which is searched

to be limited to a percentage of the running speed.

7. Analyse Healthy Spectra Menu

The Analyse Healthy Spectra menu has 2 functions, for Baseline Detection, and

Amplitude of a Particular Frequency. The desired function can be selected by

clicking on the appropriate option button.

Regardless of which function is selected, the desired file must be selected (vi-

bration frequency spectra file), and the frequency range covered by the spectra

(maximum Hz) as well as the number of lines in the file must be entered. The

analysis setup file also needs to be selected.

The baseline Detection function was included in the software to allow the ‘Av-

erage Baseline Amplitude’ and ‘% of peaks equal to or below Average Baseline

Amplitude’ in the Analysis Setup Menu to be evaluated. These two variables

are required to allow the detection of a raised baseline, which is an indicator of

excessive looseness.

The ‘Amplitude of a Particular Frequency’ feature allows the amplitude of the

selected frequency to be determined, as detected in the selected vibration data file.

This feature is useful in determining the amplitude of a fault frequency present



APPENDIX I. EXPERT SYSTEMS — HELP FILES 378

in the vibration spectra of a healthy machine. As the amplitude of the detected

peak is the maximum in the frequency window, the frequency of the maximum

peak in the frequency window (around the desired frequency) is displayed. For

analysis Without Machine Historical Data, the maximum amplitude in the spectra

is displayed, and the amplitude of the peak as a percentage of the maximum peak

amplitude in the spectra is also shown in the results part of the bottom of the

menu.

Once the two required data files and the desired option is selected, click ‘Scan’

to perform the analysis. To run another analysis, click ‘Reset’. When finished,

press ‘Close’ to exit to the VES Main menu.

8. FAQ’s:

Q: How long does the analysis take?

A: This depends on numerous factors including:

• Number of components (ie: roller bearings, spur gears, belt reductions,

and interference frequencies)

• Whether time domain and demodulated spectra files are also analysed

• The sensitivity of analysis (as set in the Analysis Setup Menu)

• The complexity of the data (how many peaks are present in the spectra

files)

Q: Why do I get an error message when pressing ‘Analyse’ or ‘Scan’?

A: The data file does not have the right format. Analysis Data File (ADF)

must have the rotational speed as the first line, then three sets of vibration

data of equal number of lines and frequency (eg: all 3200 lines, and 0 to

1000 Hz). For Machine Setup and Analysis Setup files, see below

Q: Why do I get an error message saying ‘Not Machine Specifications Setup

file’, or ‘Not Analysis Setup file’?

A: The file you entered as the MSF or ASF is not of the correct type. If the file

was created using the functions from the VES Main menu, then these files
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cannot be used by the CES or OWDES.

Q: What is the file format for the Vibration Spectra File (Analysis Data File)?

A:

• 1st Line: RPM of input shaft

• 2 columns of Hz and Amplitude of vibration spectra - Horizontal (or

primary vibration) direction

• 2 columns of Hz and Amplitude of vibration spectra - Vertical (or lower

vibration amplitude) direction

• 2 columns of Hz and Amplitude of vibration spectra - Axial direction

Q: What is the file format for the Time Domain Data File?

A: 2 columns of Time (ms) and Amplitude

Q: What is the file format for the Demodulated Vibration Spectra File?

A:

• 2 columns of Hz and Amplitude of demodulated vibration spectra -

Horizontal direction

• 2 columns of Hz and Amplitude of demodulated vibration spectra -

Vertical direction

• 2 columns of Hz and Amplitude of demodulated vibration spectra - Axial

direction



Appendix J

Time Capsule

The computer used throughout this PhD project was an Apple iBook G4, running the

Mac OS X operating system. Some specifications are shown below:

• Mac OS X version 10.3.9

• 1 GHz PowerPC G4 processor

• 640 MB DDR SDRAM

• 55.89 GB Hitachi hard disk

• AirPort Extreme

• 14 inch LCD monitor, 1024 x 768 resolution @ 60Hz

Software used during this project includes:

• Microsoft Word (for Mac)

• Microsoft Excel (for Mac)

• Microsoft Powerpoint (for Mac)

• OmniGraffle

• Gimp

• BibDesk

380
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• TexShop

• LaTex

• iTunes (for motivation and procrastination!)

• Microsoft Visual Basic 6 (used on a PC)

• Matlab (used on a PC)

• Optimas (used on a PC)

The iBook has proven to be quite a reliable machine, being very portable thanks to

good battery charge providing 3 to 4 hours of use. During the project I have worked

on it in some awkward places including in a car, airport, hospital, caravan, and in the

open under a shady tree (I found a change of scenery inspiring and thought provoking)!

During the project duration repairs consisted of a motherboard and cd drive re-

placement at just short of 3 years, and a complete re-install after the second and third

years of the project. Some disadvantages were the keyboard becoming quite warm in

summer due to the heat emitted by the motherboard so I used an external Microsoft

USB keyboard. The base also became quite warm which is a drawback when resting

on your lap! Apart from these few complaints, it has been a joy to use.

Figure J.1: Photo of Apple iBook used throughout the PhD project.


	Title page, Statements and Acknowledgements
	Statement of Access
	Statement of Sources
	Acknowledgments

	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Project Purpose
	1.2 Scholarly Context of Research
	1.3 Explanation of the Project Structure
	1.3.1 Rationale for the Research
	1.3.2 Scope of the Research


	2 Literature Review
	2.1 Introduction
	2.2 Oil Analysis
	2.2.1 Sampling
	2.2.2 Sample Preparation
	2.2.3 Wear Debris Analysis

	2.3 Vibration Analysis
	2.3.1 Causes of Bearing Damage and Fault Identification Signals
	2.3.2 Causes of Gear Damage and Fault Identification Signals
	2.3.3 Measurement of Vibration
	2.3.4 Analysis of Vibration Signals

	2.4 Integration of Oil and Vibration Analysis
	2.4.1 Effect of Oil and Vibration Analysis Integration on Fault Detection
	2.4.2 Benefits of an Integrated Condition Monitoring Program
	2.4.3 Current Status and Research Trends

	2.5 Remaining Lifetime Estimation
	2.5.1 Method 1 --- Statistical Lifetime Prediction
	2.5.2 Method 2 --- Modelling of Individual Failure Modes
	2.5.3 Summary

	2.6 Artificially Intelligent Systems
	2.6.1 Neural Networks
	2.6.2 Fuzzy Logic
	2.6.3 Expert Systems
	2.6.4 Artificial Intelligence for Machine Condition Monitoring

	2.7 Summary

	3 Methodology
	3.1 Introduction
	3.2 Experimentation and Correlation Analysis
	3.2.1 Experimental Verification of Correlation
	3.2.2 Data Collection and Preparation
	3.2.3 Data Processing and Fault Diagnosis
	3.2.4 Comparison of Diagnostic Results

	3.3 Development of AI Systems for Fault Diagnosis
	3.3.1 Selection of Artificial Intelligence Systems
	3.3.2 Development of Integrated Expert Systems
	3.3.3 Interface Development
	3.3.4 Testing Criteria of AI System Developments

	3.4 Summary

	4 Experimentation and Results
	4.1 Introduction
	4.2 Spur Gear Tests
	4.2.1 Normal Operation
	4.2.2 Constant Overload
	4.2.3 Cyclic Overload
	4.2.4 Contamination
	4.2.5 Bent Shaft

	4.3 Worm Gear Tests
	4.3.1 Normal Operation
	4.3.2 Contamination Test
	4.3.3 Inadequate Lubrication

	4.4 Summary

	5 Vibration Analysis Expert System
	5.1 Introduction
	5.2 Expert System Development
	5.2.1 Machine Information
	5.2.2 Knowledge Base Development
	5.2.3 Interface Development --- Input
	5.2.4 Interface Development --- Output
	5.2.5 Other Functionality of Developed Expert System

	5.3 Expert System Testing
	5.4 Summary

	6 Oil and Wear Debris Analysis Expert System
	6.1 Introduction
	6.2 Expert System Development
	6.2.1 Information required for condition monitoring
	6.2.2 Interface Development 
	6.2.3 Analysis Algorithm

	6.3 Expert System Testing
	6.4 Summary

	7 Combined Analysis Expert System
	7.1 Introduction
	7.2 Expert System Development
	7.2.1 Input Data Flow of Expert System
	7.2.2 Analysis Algorithm Development
	7.2.3 Root-Cause Analysis Algorithm Development
	7.2.4 Output Interface Development
	7.2.5 Analysis Algorithm Operation

	7.3 Testing and Discussion
	7.4 Summary

	8 Remaining Lifetime Estimation
	8.1 Introduction
	8.2 Knowledge Base Development
	8.2.1 Abrasive Wear
	8.2.2 Adhesive Wear
	8.2.3 Cutting Wear
	8.2.4 Sliding Wear

	8.3 Remaining Lifetime Estimation Strategy
	8.4 Application of Estimation Strategy
	8.5 Software Implementation
	8.6 Summary

	9 Discussion
	9.1 Project Organisation
	9.2 Project Challenges and Solutions
	9.2.1 Correlation of Machine Condition Monitoring Techniques
	9.2.2 Artificial Intelligence System Development
	9.2.3 Development Capabilities and Application
	9.2.4 Remaining Lifetime Estimation

	9.3 Uniqueness of Developments
	9.4 Benefits of Developments for Industry
	9.5 Summary

	10 Conclusion and Future Work
	10.1 Conclusion
	10.2 Future Work

	References
	Appendices
	A Bearing & Gear Fault Frequencies
	A.1 Rolling Element Bearing Fault Frequency Equations
	A.2 Spur Gear Fault Frequency Equations

	B Laboratory Test-Rig --- Test Conditions Summary
	B.1 Spur Gearbox Tests
	B.2 Worm Gearbox Tests

	C Vibration Analysis Algorithm Flow Charts
	D Oil & Wear Debris Analysis Algorithm Flow Charts
	E Root-Cause Analysis Algorithm Flow Charts
	F OWDES Testing Data Laboratory Report
	G Remaining Lifetime --- Cutting Wear Calculations
	H Expert Systems --- Menu Structure & Screens
	H.1 Main Menu Structure & Screens
	H.2 CES Results Menu Screens
	H.3 OWDES Menu Structure & Screens
	H.4 VES Menu Structure & Screens
	H.4.1 Analysis Without Machine Historical Data
	H.4.2 Analysis With Machine Historical Data


	I Expert Systems --- Help Files
	I.1 Main Menu - Help File
	I.2 OWDES - Help File
	I.3 VES - Help file

	J Time Capsule




