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Abstract

Background: Schistosoma mansoni tetraspanin 2 (Sm-TSP-2) has been shown to be strongly recognized by IgG1 and IgG3
antibodies from individuals putatively resistant to schistosome infection, but not chronically infected people, and to induce
high levels of protection against challenge infection in the murine model of schistosomiasis. Amplification by PCR of
homologous sequences from male and female S. japonicum worms showed the presence of 7 different clusters or
subclasses of S. japonicum TSP-2. We determined the protective efficacy of one subclass – Sj-TSP-2e.

Methodology/Principal Findings: Following the alignment of 211 cDNAs, we identified 7 clusters encoding S. japonicum
TSP-2 (Sj-TSP-2) based on sequence variation in the large extracellular loop (LEL) region with differing frequency of
transcription in male and female worms. Quantitative PCR analysis revealed elevated expression of Sj-TSP-2 in adult worms
compared with other life cycle stages. We expressed in E. coli the LEL region of one of the clusters which exhibited a high
frequency of transcription in female worms, and showed the purified recombinant protein (Sj-TSP-2e) was recognised by
43.1% of sera obtained from confirmed schistosomiasis japonica patients. Vaccination of mice with the recombinant protein
induced high levels of IgG1 and IgG2 antibodies, but no consistent protective efficacy against challenge infection was
elicited in three independent trials.

Conclusions/Significance: The highly polymorphic nature of the Sj-TSP-2 gene at the transcriptional level may limit the
value of Sj-TSP-2 as a target for future S. japonicum vaccine development.
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Introduction

There is now growing agreement that integrated control, which

could include the use of an effective vaccine combined with

chemotherapy and other measures, is the optimum direction that

the future control of schistosomiasis should follow [1,2]. Vaccine

development against schistosomiasis has been guided by the fact

that irradiated cercariae confer .80% protection in experimental

animal models and natural hosts including mice, rats, rabbits,

sheep and bovines [3].

A number of promising anti-schistosome vaccine candidates

exist but they may prove not to be the most effective and it is,

therefore, important to continue to identify new target antigens

and to explore alternative vaccination strategies to improve

vaccine efficacy [2]. A reporter-based signal sequence capture

technique identified two S. mansoni tetraspanins (Sm-TSP-1 and

TSP-2) [4], both proteins being expressed in the tegument

membrane [5]. The large extracellular loop (LEL) of Sm-TSP-2,

in particular, provided high levels of protection as a recombinant

vaccine in the mouse model of schistosomiasis, and both proteins

were strongly recognized by IgG1 and IgG3 from putatively

resistant individuals but not chronically infected people [5]. A

subsequent study showed that Sm-TSP-2 plays a role in the

formation of the S. mansoni tegument [6], which is critically

important for the parasite’s survival [7].

Following these studies on Sm-TSP-2, genes and gene subclasses

encoding TSP-2 homologues were isolated from S. japonicum (Sj-

TSP-2) [8]. However, mice vaccinated with the same LEL of Sj-

TSP-2 present in Sm-TSP-2 were not protected following a

challenge infection with S. japonicum [8]. The study showed also

that Sj-TSP-2 is highly polymorphic and, as a result, these authors

argued against further development of Sj-TSP-2 as a vaccine

candidate against schistosomiasis japonica [8]. Subsequently,

however, another group used a similar Sj-TSP-2 sequence to
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produce recombinant Sj-TSP-2 and obtained significant (46–58%

efficacy) in mice vaccinated with the protein and then challenged

[9]. In light of these contradictory results, we cloned and

sequenced a slightly different Sj-TSP-2 sequence (Sj-TSP-2e), and

expressed and purified its recombinant product. The Sj-TSP-2e

protein was recognised by sera from some patients positive for S.

japonicum infection, but the molecule did not protect mice using

either a high (35 cercariae) or low (12 cercariae) dose of S. japonicum

challenge infection.

Materials and Methods

Ethics statement
The conducts and procedures involving animal experiments

were approved by the Animal Ethics Committee of the Queens-

land Institute of Medical Research. Ethical approval for using

human sera for this study was granted by the Ethics Committee of

Hunan Institute of Parasitic Diseases, Hunan, China.

Parasites
Oncomelania hupensis infected with S. japonicum were obtained

from an endemic area in Anhui Province, China. Adult worms

were collected from two rabbits (each experimentally infected

with 200 cercariae) 7 weeks post-infection. Cercariae and

schistosomula were collected as previously described [10]. The

worms were stored in RNAlater (Ambion, Foster City, CA) at

270uC until use.

Total RNA extraction and cDNA synthesis
Total RNA was extracted from either a pool of 20 males or 30

female worms using an RNAeasy Mini Kit (Qiagen, Hilden,

Germany) to remove potential DNA contamination. The kit was

also used to extract total RNA from cercariae and schistosomula.

First strand cDNA was synthesized using a Sensiscript RT Kit

(Qiagen).

Cloning and sequence alignment of S. japonicum-TSP-2
Homology searches using BLAST showed that S. japonicum has a

range of sequences homologous to S. mansoni TSP-2. The cDNA

sequences are highly conserved at both termini. Accordingly, we

designed two primers: upstream; 59-ATGGCTCTCGGGTGTG-

GATACAAG-39 and downstream; 59-CTATTCATCATCGC-

CTCGTTTTATAGCC-39 to amplify the ORF of cDNA using

the first strand cDNA from males and females, respectively, as

templates. The PCR products were separated by running an

agarose gel and a DNA band matching the designated size was cut

and extracted using a Qiaquick Gel Extraction kit (Qiagen). The

DNA was then ligated into a cloning pGEMT vector (Promega,

Madison, WI). We sequenced 100 clones from each of the male

and female cDNA preparations to determine the distribution of

homologous sequences between male and female S. japonicum

worms. We used ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/

index.html) and Bioedit (http://www.mbio.ncsu.edu/bioedit/bioedit.

html) for sequence alignment.

Phylogenetic analysis
Inferred amino acid sequences of the LEL portions of the

sequenced clones were aligned with homologues (TSP-2) identified

by BLAST searches in GenBank and with sequences reported by

Cai et al [8]. The sole relevant sequence from S. mansoni was used

as the outgroup. The alignment of the LEL region consisted of 77

sites of which 37 were variable. Phylogenetic analysis was done

using MrBayes [11]. The Jones model for amino-acid substitu-

tion+G (gamma distribution of rates with four rate categories)+I

(proportion of invariant sites) was used. Values for I and for the

shape parameter (alpha) for the gamma distribution were

estimated from the data during the runs. Two million generations

(2 runs each of 4 chains) were specified and the chain was sampled

every 1000 generations. The first 10% of sampled trees were

discarded as burnin. The standard deviation of split frequencies

was well below 0.01 by the end of the analysis.

Stage expression of S. japonicum-TSP-2 by quantitative
PCR

We used quantitative PCR to determine the expression level of Sj-

TSP-2 in four life cycle stages (adult male, adult female, cercaria and

schistosomulum) of S. japonicum using the up-stream primer: 59-

ACAATGTTGTGGTGCCGAATCGCC-39 and down-stream

primer: 59- CTATTCATCATCGCCTCGTTTTATAGCC-39.

After first strand cDNA synthesis, all the cDNA samples were

diluted to a concentration of 10 ng/ml. Subsequently, 5 ml aliquots

were combined with 10 ml of SYBR Green, 3 ml of water and 2 ml

(5 pmol) of the forward and reverse primers. Each experiment was

performed in triplicate. Expression profiles of Sj-TSP-2 in the

different stages were obtained by real time PCR using a Rotor Gene

(6000) real time PCR machine (Qiagen) and data were analysed by

Rotor Gene 6 Software. S. japonicum NADH-ubiquinone reductase

was employed as a house keeping gene [10] in the quantitative

analysis using the primers: 59-CGAGGACCTAACAGCAGAGG -

39 and 59- TCCGAACGAACTTTGAATCC-39.

Recombinant protein expression
To express the large extracellular loop (LEL) sequence (Glu107

to His180) of Sj-TSP-2e, we designed a pair of primers (59-

GAAAAGCCGAAGGTGAAAAGACA-39 and 59-GCGGTGC-

TTTTTAGTCAGATCGGTGA-39) to amplify the target frag-

ment and subcloned the sequence into the pBAD/Thio-TOPO

plasmid (Invitrogen). The fragment was fused in-frame with the N-

terminal thioredoxin (Thi) and the C-terminal V5 epitope (V5)

Author Summary

Schistosoma mansoni tetraspanin 2 (Sm-TSP-2) is consid-
ered a lead target for vaccine development against
schistosomiasis mansoni because: (1) It is located in the
schistosome tegument and is involved in tegument
formation; (2) It is strongly recognized by IgG1 and IgG3
antibodies from individuals putatively resistant to schisto-
some infection, but not chronically infected people, and (3)
It induces high levels of protection against challenge
infection in the mouse model. We amplified 211 homol-
ogous TSP-2 sequences from male and female S. japoni-
cum worms, which revealed 7 different cDNA subclasses.
We expressed in E. coli a region of one of the clusters
which exhibited a high frequency of transcription in
female worms, and showed the purified recombinant
protein (Sj-TSP-2e) was recognised by 43.1% of sera
obtained from confirmed schistosomiasis japonica pa-
tients. Vaccination of mice with the recombinant protein
induced high levels of IgG1 and IgG2 antibodies, but no
consistent protective efficacy against challenge infection
was elicited in three independent trials. The highly
polymorphic nature of the Sj-TSP-2 gene at the transcrip-
tional level may limit the value of Sj-TSP-2 as a target for
future S. japonicum vaccine development. Further analysis
of the distribution of the different subclasses/alleles of the
Sj-TSP-2 gene in S. japonicum populations from different
endemic areas would be informative.

Inconsistent Vaccine Efficacy of S.japonicum TSP-2
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and 6His tags. The plasmid was transformed into E. coli.

Subsequent protein expression under native conditions was

conducted as recommended by the manufacturer. The recombi-

nant fusion protein (Sj-TSP-2e-Thi) from E. coli lysates was

purified under non-denaturing conditions using 6His affinity

chromatography (BD Biosciences). The identities of the purified

proteins were confirmed by Western blotting with antibodies to

thioredoxin and 6His epitopes. S. mansoni TSP-2 was kindly

provided by Professor Alex Loukas and was expressed as described

[5]. We designed a pair of primers: 59-GGGAATTCAAAATG-

TCTGAAAAGCCGAAGGTGAAAAGACA -39 and 59-GCCT-

CGAGGTGCTTTTTAGTCAGATCGGTGAC-39 to subclone

the LEL fragment into the pPICZ-c vector (Invitrogen) and

transformed into Pichia yeast (Invitrogen) according to the

manufacturer’s instructions. The generated protein was fused

with a His tag at the C terminal for affinity purification.

Immunolocalization
Murine anti-Sj-TSP-2e serum was produced as previously

described [12]. The serum was absorbed with laboratory made

‘‘beads’’ binding a bacterial lysate having the Thi protein tag to

remove antibodies against the Thi and His tag proteins and

bacterial proteins as described [12]. We then used Western

blotting to confirm that the anti-Sj-TSP-2e serum did not

recognize either the Thi tag or proteins in the bacterial lysate.

For immunolocalization, we collected fresh adult S. japonicum

worms from rabbits. The worms were fixed in 100% methanol,

embedded in Tissue-Tek Optimal Cutting Temperature (OCT)

compound (ProSciTech), and cryostatically sectioned into 7.0-mm

sections. The sections were blocked with 5% (w/v) skimmed milk

powder in PBS containing 0.1% (v/v) Tween 20 (PBST) as a

blocking solution (SMPT), incubated firstly with mouse anti–Sj-

TSP-2 serum diluted 1:25 with SMPT, and then by rabbit

antibody to mouse IgG conjugated to Cy2 (Jackson ImmunoR-

esearch; diluted 1:150 in SMPT). Sections were counterstained

with DAPI (Sigma; 0.1 mg/ml in PBS), which stains nuclei. We

mounted the slides with DAKO mounting medium and examined

them using a confocal microscope (Leica TCS SP2). Normal

mouse serum and murine serum raised against thioredoxin tagged

with 6 His were used as controls.

SDS-PAGE and Western blot analysis
A soluble adult worm antigen preparation (SWAP) of S.

japonicum was prepared from worms collected from rabbits after

5 washes with PBS. The worms were resuspended in PBS

containing protease inhibitor cocktail (Sigma, St. Louis, MO),

disrupted on ice using a homogenizer, and sonicated five times

using 10-second bursts. The suspension was centrifuged at

60,000 g at 4uC for 1 h, and the supernatant was stored at

280uC until use. The pellet was washed twice with PBS and

dissolved in 1% SDS (w/v) in PBS and heated at 56uC for 30 min.

The supernatant was used as a source of insoluble parasite proteins

after centrifugation at 60,000 g and at room temperature for 1 h.

For Western blotting, the protein preparations, including

SWAP, insoluble parasite proteins and recombinant proteins

were run on SDS-PAGE. The separated proteins were then

transferred onto a nitrocellulose membrane. After blocking in

SMPT, the membrane was incubated at 37uC for 1 h with the

murine anti-Sj-TSP-2 serum, diluted 1 in 1000, then incubated

with HRP labelled rabbit antibodies against mouse IgG for 1 h

after 3 washes with PBST. 4-chloro-1-naphthol was used as

substrate to develop the colour reaction using protocols previously

described [13,14].

Screening human and mouse sera by ELISA
Nunc Maxisorp Surface 96-well plates were coated with 100 ml

of 10 mg/ml of whole parasite protein preparation (5 mg/ml of

SWAP and 5 mg/ml of insoluble proteins for screening human

sera), 2 mg/ml of Sj-TSP-2 or Thi tag (for screening human and

mouse sera) in 0.06 M NaCO3, pH 9.6 overnight at 4uC. The

plates were then blocked with SMPT at 37uC for 1 h after two

washes with PBS.

Human sera from confirmed schistosomiasis japonica cases

(n = 72) by microscopy with fecal egg identification and serology

against adult worm antigens before treatment [15] were collected

from Han Chinese patients from endemic areas of Hunan

province, People’s Republic of China (PRC) and 24 normal sera

were collected from healthy Han Chinese from Xinjiang, PRC,

where schistosomiasis is not endemic. The human sera were

diluted 1 in 100 with SMPT. The remaining ELISA processing

steps were essentially as previously described [13,14].

Mouse serum isotypes were measured by ELISA based on

methods previously described with mini modification [16,17]. In

brief, mouse sera were diluted to 1 in 500 with in PBST for

detecting IgA, IgG and IgM antibodies, and 1:50 for IgE. 100 ml

of each diluted serum was added to each well, and plates were

incubated at 37uC for 1 h for IgA, IgG and IgM detection or

overnight at 4uC for IgE. This was followed by 4 washes with

PBST. Then anti-mouse IgG or IgG subclass was added at 1:3000

dilution, IgE at 1:2500 dilution and IgM at 1:10000 dilution

(Invitrogen) and the plates incubated for 1 h at 37uC, except for

IgE detection when the plates were incubated overnight at 4uC.

The plates were then washed five times with PBST. The assays

were developed in 2,2-azino-di-(ethyl-benzithiozolin sulphonate)

(ABTS) (Sigma) substrate solution for 30 min. The optical density

(OD) of the colour that developed in the plates was read at 405 nm

using an ELISA reader (VersaMax, East Falmouth, MA).

Mouse vaccination trials
Each vaccine trial undertaken comprised three groups of mice,

including two experimental groups each vaccinated separately

Table 1. Subclass distribution of S. japonicum tetraspanin 2
(Sj-TSP-2) in male and female worms.

Sj-TSP-2
Variable
region* Clones in

Males (%) Females (%)

Sj-TSP-2a TGKK 16 (14.8) 0 (0)

Sj-TSP-2b TGEK 0 (0) 0 (0)

Sj-TSP-2c SKGR 27 (25) 9 (8.7)

Sj-TSP-2d SRGP 32 (29.6) 36 (34.9)

Sj-TSP-2e SSER 4 (3.7) 24 (23.3)

Sj-TSP-2f TVRT 13 (12) 11 (10.7)

Sj-TSP-2g TVRT{ 0 (0) 0 (0)

Sj-TSP-2h{ SKER 12 (11.1) 8 (7.8)

Sj-TSP-2i{ FERR 4 (3.7) 15 (14.6)

Total - 108 - 103 -

*, The variable region of the Sj-TSP-2 protein sequence from amino acid 155 to
158 of the full-length sequences.
{, Two previously undescribed sequences;
{, same as Sj-TSP-2f in the variable region, which Cai et al. [8] suggested was a
different subclass as it contains substitutions in other regions.

doi:10.1371/journal.pntd.0001166.t001
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with Sj-TSP-2e and Sm-TSP-2 and one control group vaccinated

with thioredoxin (Thi) tag protein. Each group comprised 10

female CBA/J mice (18–22 g in weight and 6–8 weeks old).

Recombinant Sj-TSP-2e and Sm-TSP2 (25 mg per dose in 25 ml)

were formulated with an equal volume of either Freunds complete

(primary) or Freunds incomplete (two boosts at two weekly

intervals) adjuvants and the preparations were subcutaneously

injected into the mice. All mice were anaesthetised with a mixture

of ketamine (100 mg/kg body weight) and xylazine (20 mg/kg

body weight) 2 weeks after the final vaccine injection and

challenged percutaneously with S. japonicum cercariae by the cover

slip method. The mice were challenged with 35 (high dose) or 12

(low dose) cercariae.

The mice were sacrificed using CO2 at 7 weeks post-challenge

and necropsied to determine worm and liver egg burdens. Mice

were perfused with PBS to remove worms from the mesenteric

veins as described [18] and the numbers of male and female adult

parasites present counted. The mouse livers were weighed and

digested with 10 ml 5% (w/v) potassium hydroxide overnight at

37uC on a rocking platform. Liver eggs were then counted in

aliquots by light microscopy. Fecal egg counts were determined by

collecting fecal samples from each of the mice over a 48-h period

of 4 collections (0.3–0.5 g/mouse) before perfusion. The fecal

samples from each of the mice were pooled, weighed and mixed by

vortexing in PBS and then rotating overnight at 4uC. Fecal pellets

were obtained by centrifugation at 500 g for 10 min, resuspended

Figure 1. Protein sequence alignment of Schistosoma japonicum tetraspanin 2 (Sj-TSP-2) isolated from adult worms. The variable
region is boxed. The large extracellular loop region is indicated by a solid line. Sj-TSP-2a (M8-1 and M6-1, GenBank accession numbers JF264973 and
JF264974), Sj-TSP-2c (M2-11, JF264975), Sj-TSP-2d (M9-1, JF264977), Sj-TSP-2e (F2-2, JF264978), Sj-TSP-2f (F12-1, JF264982; F11-4, JF264983), Sj-TSP-2h
(F11-7, JF264979; F11-9, JF264980; F3-1, JF264981) and Sj-TSP-2i (M2-1, JF264976) were from individual male (M) and female (F) worms. For instance,
M8-1 represents number 8 male worm and number 1 clone.
doi:10.1371/journal.pntd.0001166.g001

Inconsistent Vaccine Efficacy of S.japonicum TSP-2
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in 50 ml PBS and filtered through 600-mm and then 250-mm mesh

sieves. The filtered material was pelleted by centrifugation at 500 g

for 10 min and resuspended in 10 ml PBS. A 100-ml aliquot was

pipetted onto a microscope slide and the number of eggs in each

aliquot counted. For each sample, 10 aliquots (1000-ml of egg

suspension) were counted to obtain the total number of eggs in

10 ml and then the number of eggs-per-gram (e.p.g.) for each of

the mice determined.

The level of protection was expressed as a percentage based on

the reduction in worm burden and liver and faecal eggs in the

groups vaccinated with the Sj-TSP-2e and Sm-TSP-2 proteins

compared with the control groups.

Statistical analysis
A nonparametric Mann-Whitney U-test was used for analysis of

the vaccine trial data because of the relatively small sample size in

each experiment. Spearman’s rank correlation was used to analyze

the correlation between worm burden/egg numbers and serum

optical-density values in ELISA. We compared the median values

of each vaccine test group with the control groups to calculate

reductions in worm burden, and fecal and liver eggs. P,0.05 was

taken to indicate statistically significant differences.

Results

A region in the large extracellular loop region of Sj-TSP-2
is variable

BLAST analysis showed that a number of S. japonicum sequences

deposited in the GenBank and other databases were homologous

to Sm-TSP-2. The Sj-TSP-2 sequences at both the N and C

terminal ends are nearly identical, which allowed us to design

primers to amplify the full-length ORF of the cDNAs. We

sequenced 108 clones from male and 103 from female adult

worms (Table 1). The ORFs of the sequences were identical in

size, encoding a precursor protein of 215 amino acids. Protein

sequence analysis showed that all the proteins have a similar

structure containing four transmembrane domains and two loops

(Figures S1 and S2). Whereas the N and C termini are highly

conserved, the large loop region, which was used in the Sm-TSP-2

vaccine studies by Tran et al [5], is highly variable. The variation

results in 7 clusters and Fig. 1 and Table 1 show representatives of

each of the clusters. We compared the sequences with a previous

study [8] and showed that 5 of the clusters were identical to those

earlier reported as subclasses Sj-TSP-2a, c, d, e and f (Table 1). We

identified two additional clusters, Sj-TSP-2h and Sj-TSP-2i

(Table 1), but were unable to amplify any of the Sj-TSP-2b or

Sj-TSP-2g sequences described previously [8].

The gene clusters were differentially transcribed in male and

female S. japonicum; Table 1 shows their frequency of transcription

in male and female worms. Sj-TSP-2a was specifically expressed in

males whereas Sj-TSP-2e was more prominent in female worms

(Table 1).

A phylogenetic tree of the Sj-TSP-2 sequences found using

MrBayes is shown in Figure 2. Twelve different sequences for the

LEL were found in S. japonicum. These differed from each other by

between 1 and 22 sites. Pair-wise differences between any

sequence from S. japonicum and the homologue from S. mansoni

ranged from 28 to 33.

We used real time PCR to quantify the expression levels of Sj-

TSP-2 in different stages of S. japonicum with a pair of primers

designed from the identical regions of the clusters. The analysis

showed that Sj-TSP-2 was differentially transcribed in different

stages of the parasite, with the gene being expressed 6 and 30 times

higher in schistosomula and adult worms, respectively, than in

cercariae. In addition, expression of Sj-TSP-2 was 47-fold higher in

adult males and 8.7 times higher in adult females compared with

the cercariae (Fig. 3).

Expression and purification of Sj-TSP-2e
As the LEL region of Sm-TSP-2 was used successfully as a

vaccine for S. mansoni [5], we expressed the homologous region of

Sj-TSP-2e using the pBAD/Thio-TOPO plasmid expression

system; this expresses the target protein fused with thioredoxin.

Figure 2. Phylogenetic analysis of Sj-TSP-2 clusters with
homologues. Protein sequences corresponding to the LEL region of
Sj-TSP-2 encoded by 9 clusters of Sj-TSP-2 cDNAs were aligned with
additional homologues found by BLAST searches in GenBank and
others reported by Cai et al [8]. Analysis was done as stated in the text.
Clade credibility (posterior probability) values are shown at nodes.
Protein sequence data reported in this paper are available in the
GenBank, EMBL and DDBJ databases under the accession numbers
ABR27733, AAX26611 and CAX70617.
doi:10.1371/journal.pntd.0001166.g002

Figure 3. Expression levels of Sj-TSP-2e by real-time PCR.
cDNAs were amplified with mRNA isolated from different stages of S.
japonicum using specific primers designed from the conserved regions
of Sj-TSP-2e. Ce, cercariae; So, schistosomula; Pw, paired adult worms;
Ma, males; Fe, females. The bars (and *, X axis) show the fold changes
compared with the cercarial stage. We used NADH-ubiquinone
reductase as a house-keeping gene to calculate the number of copies
of the gene expressed in each of the stages, and then converted these
to fold changes by comparison with the number of copies in cercariae.
doi:10.1371/journal.pntd.0001166.g003

Inconsistent Vaccine Efficacy of S.japonicum TSP-2
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As described earlier, we cloned several clusters of Sj-TSP-2 but we

expressed the Sj-TSP-2e subclass due to its high frequency of

transcription in females (Table 1), indicating its role in female

development, which is a target for vaccine development [2]. The

purity of Sj-TSP-2e and Sm-TSP-2 are shown in Fig. 4. In an

effort to increase antigenicity, we also employed a yeast expression

system to express the LEL region of Sj-TSP-2e (Fig. 4).

Antibody recognition of Sj-TSP-2e
We used three methods to characterize Sj-TSP-2e expression in

S. japonicum. Firstly, we extracted the whole repertoire of parasite

proteins including soluble and insoluble proteins. We then used

Western blotting to probe the native protein with hyper immune

mouse serum prepared against recombinant Sj-TSP-2e (Fig. 4). A

band of 38 kDa was recognized in the native protein preparations

(from worms collected from rabbits) by the immune serum; a

strong band was evident in the insoluble protein preparation and a

weaker band in the soluble fraction (Fig. 4).

Secondly, recombinant Sj-TSP-2e LEL was recognized by a

serum pool, from 15 randomly selected patients, with confirmed S.

japonicum infection, but the pool did not bind the Thi tag protein

(Fig. 5I). We coated the recombinant protein and native proteins

onto ELISA plates for screening 72 individual sera collected from

positive schistosomiasis japonica patients. All the sera recognised

the native proteins with different OD values (Fig. 5II). We reacted

the sera with Sj-TSP-2e-Thi protein; 43.1% (31/72) of the sera

had OD values 2.5-fold higher than the average OD values of

negative sera (Fig. 5II) and only one of the 72 sera reacted

positively with the Thi tag protein alone.

Thirdly, we used the hyper-immune mouse serum prepared

against recombinant Sj-TSP-2e to localize Sj-TSP-2e in female S.

japonicum. The results showed that specific antibodies against Sj-

TSP-2e bound to the tegument and gut of adult female worms

(Fig. 6). Sections of male worms showed minimal staining (data not

shown).

Vaccination of mice with Sj-TSP-2e
In order to determine whether Sj-TSP-2e had any protective

efficacy, three trials were undertaken; these comprised two

experiments where mice were challenged with a high dose of 35

cercariae, and one experiment where mice were challenged with a

low dose of 12 cercariae. Murine serum samples collected

throughout the course of the vaccine trials with Sj-TSP-2e did

not react in ELISA with thioredoxin fused with 6His alone (data

not shown), indicating the very poor antigenicity of this tag

protein. In contrast, the vaccinated mice generated high levels of

IgG against SjT-SP-2e after the second injection and these peaked

after the third injection; the serum titres dropped slightly just prior

to perfusion of the mice (Fig. 7). Of the IgG subclasses, IgG1

antibodies were dominant and IgG2a antibodies were also

increased significantly (Fig. 7). IgA, IgE and IgM were at

background levels throughout the three trials (Fig. 7). IgG

antibodies, including IgG1 and IgG2, in the sera collected from

mice vaccinated with Sm-TSP-2 recognized Sj-TSP-2e (Fig. 7),

indicating that the two antigens may share similar epitopes.

Table 2 shows the vaccination results of the three independent

trials. In the first trial, Sj-TSP-2e induced a low but significant

reduction in worm burden (36.4%, P,0.001) and liver eggs (26.5%,

P,0.05). Accordingly, we repeated the experiment but could not

corroborate the results in the second trial. We considered that the

challenge with 35 cercariae was so high that damage to the

established immune system in the mice could have occurred, and

thus we used a low dose challenge with 12 cercariae. Compared

with the control, however, no significant protection (Table 2) was

induced by Sj-TSP-2e in the vaccinated mice; there were 54.4%

and 68.9% reductions in liver and fecal eggs, respectively, in the

vaccinated mice but the reductions were not significant when

compared with the control groups. Sm-TSP-2 induced 70.9%

reduction in liver egg numbers but this was also not significant

(P.0.05) compared to the control group. In addition, antibody

levels (before challenge and perfusion) showed no correlation with

Figure 4. Purification and recognition of recombinant Sj-TSP-2e. Left panel, SDS-PAGE of soluble and insoluble proteins extracted from adult
S. japonicum and recombinant proteins. Right panel: Recognition of recombinant Sj-TSP-2e and native proteins by antibodies in hyper immune
mouse serum raised against recombinant Sj-TSP-2e. Lane M, protein markers; Lanes 1 and 2, soluble and insoluble proteins of S. japonicum; lane 3,
Thi; lane 4, Sj-TSP-2e-Thi; lane 5, Sj-TSP-2e expressed in Pichia yeast; lane 6, Sm-TSP-2e-Thi; lane 7, Sj-23-GST-His as a control protein.
doi:10.1371/journal.pntd.0001166.g004
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worm burdens or egg counts (data not shown). Overall, the trials

showed that Sj-TSP-2e did not induce any consistent protection in

mice against a S. japonicum challenge infection.

Discussion

We report that vaccinating mice with the large extracellular loop

(LEL) of Sj-TSP-2e (expressed in E. coli) from S. japonicum did not

induce consistent protective efficacy. Yuan et al. [9] cloned and

expressed Sj-TSP-2d and showed that the molecule induced

significant levels of protection, although Sj-TSP-2c [8] and, as

shown here also, Sj-TSP-2e did not induce any significant

protection, suggesting that different subclasses of Sj-TSP-2 may

stimulate different levels of protective efficacy. The serum IgG titres

in the mice we vaccinated with Sj-TSP-2e were elevated after the

second vaccination (Fig. 7) and ranged from 1:320,000 to 1:640,000

(data not shown) before challenge, which were lower than those in

mice vaccinated with Sm-TSP-2 in the study by Tran et al. [5]. We

used the same quantity of Sm-TSP-2 and the same vaccination

procedure and schedule, and the serum titre in the group reached

1:320,000 against Sm-TSP-2 (data not shown). We also expressed

Sj-TSP-2e in yeast (Fig. 4, lane 5) and the resulting 6His tagged

protein a stimulated a very IgG high titre (.1:3,000,000; data not

shown) of murine antibodies. However, the mice were not protected

against a challenge infection with S. japonicum (data not shown),

indicating the serum titres (ranging between 1:320,000 to

1:3,000,000) showed no correlation with protective efficacy.

We showed that Sj-TSP-2e specifically stimulated mice to

produce IgG1 and IgG2 antibodies, which was similar to that

reported with Sm-TSP-2 in vaccinated mice [5]. The levels of the

Figure 5. Recognition of recombinant Sj-TSP-2e by human sera. I: ELISA IgG screen of 72 sera collected from positive schistosomiasis
japonica patients and 24 normal human sera (negative controls) probed by protein preparation from S. japonicum adult worms (SWAP), recombinant
tag protein thioredoxin (Thio) and Sj-TSP-2e. II. Panel a: SDS-PAGE of soluble and insoluble protein extracted from adult S. japonicum and
recombinant Sj-TSP-2e. Panels b and c: Western blot analysis with pooled sera randomly selected from confirmed schistosomiasis japonica patients
(n = 15) and pooled sera from negative control subjects (n = 15) from northern China. Lane M, protein markers; lanes 1 and lane 2, soluble and
insoluble proteins from adult S. japonicum; lane 3, Sj-TSP-2e (arrowed); lane 4, thioredoxin tag (Thi) (arrowed); lane 5, Sj-TSP-2e expressed in Pichia
yeast (arrowed).
doi:10.1371/journal.pntd.0001166.g005
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two subclasses of IgG are recognised as markers of Th1 (IgG1) and

Th2 (IgG2) responses [19,20], which normally inhibit each other.

It would be valuable to determine whether Sj-TSP-2e can actually

stimulate the two types of T cell. Generally, a Th1 response is

positively associated with protective immunity, whereas a Th2

response likely benefits parasite survival in the mammalian host

[21,22]. Based on previously published data and those presented

here, we believe it is premature to speculate whether Sj-TSP-2 is

suitable for vaccine development against schistosomiasis japonica.

Given the protein is located in the schistosome tegument and

appears to be highly polymorphic, it likely plays a role in

avoidance of the host immune response. It is not known whether

the protein is important for parasite growth and what its

relationship is with other tetraspanins in schistosomes. A recent

study using RNA interference to silence expression of Sm-TSP-2

mRNAs in S. mansoni adults and schistosomula resulted in

Figure 6. Immunolocalization of S. japonicum Sj-TSP-2e in adult female worms. Parasite sections were reacted with specific antibodies
produced in mice against recombinant Sj-TSP-2e. The antibodies that specifically bound to the sections were probed with an anti-mouse IgG labelled
with Cy3 conjugate (a, c). Red fluorescence in panel c indicates Sj-TSP-2e is located in the parasite tegument (teg); anti-thioredoxin (fusion protein
tagged with 6His) antibodies in panel a did not react. DAPI to label nuclei (nuc in blue) (b, d) was used as a quality control marker for the sections.
Tegument, teg.
doi:10.1371/journal.pntd.0001166.g006
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impaired turnover of the tegument apical membrane complex,

suggesting Sm-TSP-2 plays an important structural role impacting

on the development, maturation or stability of the schistosome

tegument [6].

As most sequences of the Sj-TSP-2 subclasses are identical, it

was difficult to design specific primers to distinguish each of the

subclasses by real time PCR. Instead, we designed a pair of

universal primers which amplify all the subclasses of Sj-TSP-2 to

show the overall expression of the genes. The expression levels of

the gene(s) were normalized against cercariae which showed that

the gene expression in males was 5 times higher than in females

(Fig. 3). However, EST sequencing of individual males and

females showed that each of the subclasses was different in terms of

their frequency (Table 2), indicating these subclasses of Sj-TSP-2

are differentially expressed in male and female S. japonicum. The

results showed that Sj-TSP-2e was predominantly expressed in

females, suggesting the gene is likely associated with female

development. This can also help to explain the minimal amount of

stain evident in sections of males, compared with female worms, in

the immunohistological analysis undertaken with specific anti-Sj-

TSP2e antibodies.

The polymorphism of Sj-TSP-2 is a major concern for

developing this molecule as an anti-S. japonicum vaccine. We

aligned 211 clones from S. japonicum and showed that there are at

least 7 different clusters of Sj-TSP-2 cDNA sequences. It is not

clear whether the variation is caused by transcription from

different genes or alleles. BLAST analysis of S. japonicum genomic

sequences with a full-length Sj-TSP-2 cDNA including the 39UTR

(EF634060) found only one copy of the gene with 5 exons in the

genome (data not shown), suggesting that the variation is likely due

to the presence of different alleles. If so, it will be informative to

determine how many alleles of Sj-TSP-2 exist. Combining our

findings with those of Cai et al [8], there are a total of 9 different

clusters/subclasses, suggesting at least 9 alleles based on the

variable region of Sj-TSP-2. In addition, we identified one single

worm that had three different cDNA clusters (data not shown),

which is similar to previous findings [8] which showed that two Sj-

TSP-2 genomic fragments could be amplified from a single worm,

indicating S. japonicum has 2 copies of the Sj-TSP-2 gene at different

loci in its genome, with one copy having two alleles and another

having the same allele.

Considering all the sequences have the same number of

nucleotides in the ORF encoding homologous protein sequences,

these variable sequences have likely arisen from different alleles of

Sj-TSP-2. To determine whether they belong to different genes, we

searched their identical sequences in the Genbank databases and

aligned their 39 UTRs. We found a variable region with different

numbers of nucleotides in the 39 UTR, with the variation

paralleling that in the large loop (Fig.S1); the gaps in some

sequences indicate the possibility of the presence of different genes

(Fig. S1). Two sequences - FN319825 and FN319885 - share the

same ORF encoding Sj-TSP-2f, but have different 39 UTR

nucleotides, indicating the same protein is transcribed from

different genes in the S. japonicum genome.

In contrast to Sj-TSP-2, there is evidence that Sm-TSP-2

exhibits very limited variation in its cDNA sequence suggesting

that the gene in S. mansoni is conserved (Cupit PM et al. (2010) An

investigation of polymorphism in the tetraspanin-2 gene of

Schistosoma mansoni field isolates. Am J Trop Med Hyg Abstract

Book, 59th Annual Meeting p123; Charles Cunningham, personal

communication). This may reflect the fact that S. mansoni infects

only humans and a limited number of other definitive host species,

Figure 7. Antibody isotype levels in mice challenged with 35 S. japonicum cercariae. Mouse serum anti-Sj-TSP-2e (fused with thioredoxin,
Thi) antibodies were determined by ELISA after primary vaccination with S. japonicum-TSP-2e (Sj-TSP-2e) or S. mansoni-TSP-2 (Sm-TSP-2). Thioredoxin
was used as control protein in the vaccine trials. The thin arrows indicate vaccination time points and the bold arrows indicate the time point of
cercarial challenge.
doi:10.1371/journal.pntd.0001166.g007

Table 2. Vaccination results of mice vaccinated with SjTSP-2e against challenge infection with Schistosoma japonicum cercariae.

Trial Worm burden Eggs in whole liver Eggs in one gram of faeces

Protein

Range
(worm
pairs) Mean ± SD Med

Redu
(%) P value Mean ± SD Med

Redu
(%) P value Mean ± SD Med

Redu
(%)

P
value

Trial 1 (HDC)

Thi 18–29(7.8) 23.263.1 22 - - 53488616407 59508 - - ND - -

Sj-TSP2 3–14(3.9) 15.463.2 14 36.4 0.0004 37868616286 43764 26.5 0.019 ND - -

Sm-TSP2 4–18(4.9) 19.164.4 19.5 11.4 0.032 40041632551 28743 51.7 0.075 ND - -

Trial II (HDC)

Thi 10–32(10.1) 20.066.3 21 - - 97407636537 112216 - - 479162969 5714 - -

Sj-TSP2 2–23(6.8) 14.366.0 16.5 21.4 0.065 95833631066 99339 11.5 0.842 450962870 4067 28.8 0.806

Sm-TSP2 2–24(6.8) 15.767.6 16.5 21.4 0.306 90671649179 107768 4.0 0.968 453765752 3341 41.5 0.326

Trial III (LDC)

Thi 2–11(2.7) 8.3362.8 9 - - 21176616629 23966 - - 6376643 560 - -

Sj-TSP2 6–12(1.6) 8.3062.1 7.5 16.7 0.679 20513623301 10921 54.4 0.326 4506561 179.3 68.9 0.251

Sm-TSP2 3–10(1.5) 7.3062.6 7.0 22.2 0.266 11726613051 6962 70.9 0.067 3786356 340 41.0 0.235

Note: Thi, thioredoxin, as tag protein expressed in E. coli was used as a control protein. Sj-TSP2, Sj-TSP-2e; Sm-TSP2, Sm-TSP-2. Med, median; Redu, reduction = (1-
number of median worms or eggs in experimental group/number of median worms or eggs in control group)6100%; ND, no data. HDC, high dose challenge with 35
cercariae; LDC, low dose challenge with 12 cercariae.
doi:10.1371/journal.pntd.0001166.t002
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whereas S. japonicum utilizes a wide range of final hosts including

humans and other mammals including cats, dogs, goats, horses,

pigs, rats and water buffaloes. In China, S. japonicum can mature in

over 40 species of domestic and wild mammalian hosts [23]. It is

likely that the selection pressure provided by the various

mammalian host species that S. japonicum infects promotes the

development of mutated gene sequences as is evident in Sj-TSP-2,

a feature that may be associated with its adaptation to the various

host assemblages, a trait characteristic of a number of other

parasitic helminths [24,25,26].

Signal prediction analysis showed the first 33 residues of the Sj-

TSP-2 sequence represent a signal peptide which is encoded by the

first exon of the genomic sequence. This region is highly conserved

in both the Sj-TSP-2 and Sm-TSP-2 sequences (data not shown).

The variable region is located in the middle of the TSP sequences

and is encoded by three exons. The phylogenetic analysis of the

large extracellular loop region we undertook showed that the 12

unique sequences occurring in S. japonicum fell into two poorly

supported clusters, within which some subclustering occurred.

Two clusters had clade credibility values over 95%: (Sj-TSP-2c, Sj-

TSP-2h, Sj-TSP-2i) and (Sj-TSP-2g, Sj-TSP-2f, CAX70617_Sj),

Fig. 2.

It is noteworthy that a number of different tetraspanins (at least

23 different genes deposited in the GenBank databases), including

Sj23 and Sj25, have been described in S. japonicum [4,5,8,9,27,28];

a recent report showed that Sj23 was able to induce very

encouraging levels of protection in Chinese water buffaloes

experimentally challenged with S. japonicum [27]. It is important

to determine how many types of Sj-TSP-2 gene are present in S.

japonicum and the distribution of these different subclasses/alleles in

S. japonicum populations from different endemic areas. This is

fundamental for further consideration of Sj-TSP-2 as a vaccine

target, and such analysis will increase knowledge of the possible

role of this polymorphic protein in modulating immunity and the

mechanisms whereby schistosomes are able to evade the host

immune response.

Supporting Information

Figure S1 Parallel alignment of variable and 39 UTR sequences

of 7 clusters of Sj-TSP-2. The comparison shows some gaps in

some sequences indicating the possibility of the presence of

different genes. GenBank accession numbers for the sequences are

listed on the left hand of panel A.

(TIF)

Figure S2 Transmembrane domains of Sj-TSP-2e generated by

MacVector 8.0.

(TIF)
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