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ABSTRACT

In massive Porites colonies, living tissue invests only a thin layer on the

outer perimeter of the skeleton, normally around 25-50% of an annual

growth increment in healthy colonies. The depth to which skeleton is

occupied by tissue is referred to as ‘tissue thickness’. Tissue thickness has

been argued to be a sensitive bioindicator that may be potentially used to

monitor changes in coral health prior to collapse and mortality. The primary

goal of this study was to assess the response of tissue thickness in massive

Porites colonies at Lihir Island (3005’S 152038’E) to an anthropogenically

increased turbidity regime associated with mining activities. In order to

achieve this goal it was also necessary to identify possible sources of

natural variability in tissue thickness, both spatial and temporal, and to

quantify their influence. Possible sources of tissue thickness variability

identified through both literature review and observation included: i)

changes in thickness through the lunar month as a function of skeletal

growth patterns; ii)  change in thickness due to differences in local

environmental conditions; iii) change in tissue thickness with differences in

colony size and shape. Where possible, the influence of all of these factors

was examined in both shallow (<11 m) and deep (>14 m) habitats, across

sites around Lihir Island and between years (sampling took place in 2001,

2002, and 2003).

Tissue thickness in massive Porites changes over a lunar month as part of

skeletal growth processes. This study looked for ways in which allowance

could be made and procedures devised for sampling at different times of
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the lunar month. Tissue thickness decreased, on average, by 20% on the

day after the full moon. Tissue thickness increased, on average, by 0.3 µm

per day during the lunar month. These patterns of variation were

consistently observed between study sites, at different depths, and in

different sampling years. The only exception appeared to be when tissue

thickness became critically thin (below 2.2 mm), which was only found at a

site heavily affected by turbidity. Hence, growth processes in massive

Porites were reduced or halted when limited energy reserves were available

under stressful conditions. Monthly tissue uplift in the same colonies was

resumed when an increase in tissue thickness above the minimum

threshold of 2.2 mm was achieved. The consistency of tissue variations

throughout the lunar month in all but these very few extremely stressed

individuals allowed measurements taken from individuals at different times

of the lunar month to be easily adjusted for comparison.

In the second study, changes in tissue thickness in response to increased

turbidity were examined by measuring tissue thickness in massive Porites

colonies along an anthropogenic turbidity gradient in 2001, 2002 and 2003.

Tissue thickness was significantly less where turbidity levels reached 15-

30mg l-1. This was the maximum turbidity encountered near coral reefs in

this study. Tissue thickness was not significantly reduced by lower turbidity

levels, but it was always less in colonies in deeper water than in colonies in

shallow water. Some variability of tissue thickness was also observed

between study sites and years. However, neither spatial nor temporal

variability masked the general pattern of decreasing tissue thickness with

increasing turbidity.



viii

The final study examined differences in tissue thickness with colony size

and shape and looked at environmentally-induced changes in tissue

thickness in colonies with different morphologies. Massive Porites corals on

Lihir Island were found to occur in six distinct growth forms, namely

rounded, round-encrusting, pyramidical, pyramid-encrusting, encrusting

and vertical encrusting. Some of these shapes could be described

quantitatively by height/circumference ratios. However, the angle of

substrata slope was found to be a better indicator for changes in shapes

with study sites and water depth. Allowing for changes in tissue thickness

with depth, colony morphology did not affect tissue thickness. Hence,

colony morphology was not a significant factor in sampling for tissue

thickness. Similar-sized colonies were selected for sampling. The effects of

colony size on tissue thickness were tested and colony size could also be

excluded as a factor which significantly affected tissue thickness.

Patterns of change in tissue thickness in Porites colonies at Lihir Island

indicated that mining activities had affected, and were affecting, corals and

coral communities over a much more restricted area than predicted by the

mine’s environmental impact statement. Tissue thickness patterns

corresponded closely with indices of live coral cover and turbidity

measurements. Tissue thickness was found to be a simple and reliable

bioindicator for turbidity stress on corals on Lihir Island. Changes in tissue

thickness indicate when corals are being adversely affected by

anthropogenic activities. This gives tissue thickness a huge advantage over

other monitoring techniques, because these mostly detect change after it

has occurred - and not while it is occurring.
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