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ABSTRACT 
 

 
Any man-made structure immersed in the marine environment rapidly becomes fouled, 

with significant economic consequences. Solutions to fouling have generally used toxic 

paints or coatings which have damaging effects on marine life. The subsequent phasing 

out of these antifoulants has sparked a search for non-toxic antifouling alternatives, 

including the development of technologies based on natural biofouling defence models 

(biomimicry). The biomimetic approach to antifouling is the focus of this thesis, with 

an emphasis on physical fouling defence mechanisms in molluscs. Surface 

microtextures have been identified as potential fouling deterrent mechanisms in 

molluscs and have been recorded on the blue mussels Mytilus galloprovincialis and M. 

edulis. The aim of this thesis is to develop biomimetic fouling control using marine 

molluscs as a natural model.  

 

To determine physical defences the surface texture of a range of marine bivalves and 

gastropods from the Great Barrier Reef was characterised and many unique micro-

topographical patterns discovered. Laser scanning confocal microscopy was used to 

quantify the surface roughness parameters for 36 selected species. This is the first 

example of the characterisation of natural marine surfaces in terms of mean roughness 

and waviness profiles, skewness, anisotropy and fractal dimension. The wettability of 

the selected species was also determined. Subsequently, the 36 species were assessed 

for fouling resistance over three months and fouling resistance and removal was 

correlated with the surface roughness parameters generated. Key roughness parameters, 

in particular skewness, fractal dimension and hydrophobicity, were identified for 

species specific fouling resistance and also fouling removal. Total fouling cover was 

positively correlated to fractal dimension and negatively correlated to skewness. Algal 

cover was negatively correlated to hydrophobicity, Spirorbid tubeworm cover was 

positively correlated to fractal dimension, and percent fouling removal was positively 

correlated with mean waviness. 

 

To establish the role of surface microtexture in fouling deterrence, biomimics were 

created for three bivalves, Mytilus galloprovincialis and Tellina plicata, which have 

differing microtopographical patterns, and Amusium balloti, which has a smooth 
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surface. Smooth biomimics were significantly more fouled than microtextured 

biomimics. The fouling resistance of microtextured biomimics diminished after 6-8 

weeks, in contrast to natural shells which maintained their fouling resistant properties 

for 3 months. The extended fouling resistance of natural shells supports a multiple 

defence strategy of the surface-bound periostracum, with the proteinaceous nature of 

the coating providing a defence against microfouling. A theory is proposed that 

microtextured biomimics only deters macrofouling larvae and that microfoulers that are 

smaller than the size of the microtexture fill the textures and negate its effects.  

 

This theory is termed ‘attachment point theory’, whereby larval attachment is 

influenced by the number of attachment points with settling larvae preferring the 

maximum number of attachment points to enhance successful adhesion and 

recruitment. To test attachment point theory, microtextured films of varying texture 

widths (2-512 µm) were developed and attachment to the microtextures by a range of 

micro- and macro-fouling organisms was determined. Diatoms attached in significantly 

higher numbers on textures smaller than the width of the diatom cell. In contrast 

attachment was reduced on textures slightly smaller than the cell width, clearly 

supporting attachment point theory. Attachment by macrofouling larvae and algal 

spores to microtextures also supported the theory. Larvae and spores generally settled 

in higher number on the texture larger than the spore/larval size. Attachment points for 

settling larvae are identified as important mechanisms in fouling deterrence, or 

attachment, with the critical factor being the ratio of the width of settling organism to 

that of the microtexture.  

 

The findings of fouling resistance on micro-rough surfaces were explored further to 

incorporate nano-scale surface roughness. This novel antifouling mechanism combines 

micro- and nano-scale roughness to a hydrophobic surface to create 

superhydrophobicity. A range of surfaces incorporating micro- with nano-scale 

roughness, and nano-scale roughness alone, were tested against a range of micro- and 

macro- fouling organisms. Nano-rough surfaces alone significantly deterred all tested 

organisms. In contrast micro-scale with nano-scale roughness either attracted or 

repelled larvae. From the mixed preferences recorded on the choice bioassays, factors 

other than hydrophobicity play a significant role in the selection of a surface on. All 

coatings were superhydrophobic (> 155º) but differed in roughness and produced very 
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different settlement responses. The consistently high level of deterrence by the nano-

scale surface supports a theory of nano-bubbles at the surface of these coatings as an 

antifouling mechanism. The confirmation of this theory requires further collaborative 

investigation between physicists, chemists and biologists, but is a significant outcome.  

 

Overall, the research presented has elucidated a number of novel approaches to 

biomimetic fouling control and developed novel theories for the mechanisms of action 

of natural surface-mediated fouling defences. These results also contribute to the 

development of promising alternatives to toxic antifouling technologies and provide 

unique approaches to significant new developments in micro- and nano-surface 

technologies in the field. 
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