Fluid inclusion and stable isotope constraints on the origin of Wernecke Breccia and associated iron oxide – copper – gold mineralization, Yukon

Hunt, Julie A., Baker, Tim, Cleverley, James, Davidson, Garry J., Fallick, Anthony E., and Thorkelson, Derek J. (2011) Fluid inclusion and stable isotope constraints on the origin of Wernecke Breccia and associated iron oxide – copper – gold mineralization, Yukon. Canadian Journal of Earth Sciences, 48 (10). pp. 1425-1445.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1139/E11-044
 
15
2


Abstract

Iron oxide – Cu ± Au ± U ± Co (IOCG) mineralization is associated with numerous Proterozoic breccia bodies, collectively known as Wernecke Breccia, in Yukon Territory, Canada. Multiphase breccia zones occur in areas underlain by Paleoproterozoic Wernecke Supergroup metasedimentary rocks and are associated with widespread sodic, potassic, and carbonate alteration assemblages. Fluid inclusion data indicate syn-breccia fluids were hot (185–350 °C) saline (24–42 wt.% NaCl equivalent) NaCl–CaCl2–H2O brines. Estimates of fluid pressure vary from 0.4 to 2.4 kbar (1 kbar = 100 MPa). Carbon and oxygen isotopic compositions of breccia-related carbonates range from ~–11‰ to +1.5‰ (Pee Dee belemnite (PDB)) and –2‰ to 20‰ (Vienna standard mean ocean water (V-SMOW); δ18Owater ~–8‰ to +15‰), respectively. δ13C and δ18O values for host Wernecke Supergroup limestone/dolostone vary from ~–2‰ to 1.6‰ and 12‰ to 25‰, respectively. Sulfur isotopic compositions of hydrothermal sulfides and sulfate vary from ~–12‰ to +13‰ and +8‰ to +17‰ (Cañon Diablo Troilite (CDT)), respectively. Syn-breccia biotite, muscovite, and actinolite have δD and δ18O values of ~–141‰ to –18‰ and +7‰ to +12‰ (V-SMOW; δ18Owater ~7‰ to 11‰), respectively. The Wernecke Breccias and the associated IOCG mineralization appear to have formed from largely nonmagmatic fluids — based on isotopic, fluid inclusion, and geological data. The emerging hypothesis is that periodic overpressuring of dominantly formational/metamorphic water led to repeated brecciation and mineral precipitation. The weight of overlying sedimentary rocks led to elevated fluid temperatures and pressures; fluid flow may have been driven by tectonics and (or) gravity with metals scavenged from host strata.

Item ID: 20815
Item Type: Article (Research - C1)
ISSN: 1480-3313
Date Deposited: 12 Mar 2012 07:05
FoR Codes: 04 EARTH SCIENCES > 0402 Geochemistry > 040201 Exploration Geochemistry @ 100%
SEO Codes: 84 MINERAL RESOURCES (excl. Energy Resources) > 8401 Mineral Exploration > 840104 Iron Ore Exploration @ 33%
84 MINERAL RESOURCES (excl. Energy Resources) > 8401 Mineral Exploration > 840102 Copper Ore Exploration @ 33%
84 MINERAL RESOURCES (excl. Energy Resources) > 8401 Mineral Exploration > 840105 Precious (Noble) Metal Ore Exploration @ 34%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page