AN EXAMINATION OF THE IMPACTS OF CLIMATE VARIABILITY AND CLIMATE CHANGE ON THE WILD BARRAMUNDI (*Lates calcarifer*): A TROPICAL ESTUARINE FISHERY OF NORTH-EASTERN QUEENSLAND, AUSTRALIA.

Thesis submitted by
Jacqueline Marie BALSTON BSc QLD
in April 2007

for the degree of Doctor of Philosophy
in the School of Earth and Environmental Sciences
James Cook University
I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

_______________________________ _______________
Signature Date
STATEMENT OF ACCESS

I, the undersigned, the author of this thesis understand that James Cook University will make it available for use within the university library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and beyond this I do not wish to place any restrictions on access to this thesis.

Users of theses are advised that the policy for preparation and acceptance of theses does not guarantee that they are entirely free of inappropriate analysis or conclusions. Users may direct enquiries regarding particular theses to the relevant school head.

___ _______________
Signature Date
STATEMENT OF SOURCES

I declare that this thesis is my own, original work carried out under the supervision of James Cook University School of Earth and Environmental Sciences. No part of this work has been submitted in any form for another degree or diploma at any other university or institution of tertiary education. Any work that is not my own has been acknowledged in the text by appropriate references.

_______________________________ __________________
Signature Date
STATEMENT ON THE CONTRIBUTION BY OTHERS

Fees: Nil
Stipend support: Queensland Department of Primary Industries and Fisheries
Other collaborations: Allyson Williams, co-author of a reviewed paper presented at the 2005 MODSIM conference in Melbourne.
Statistical support: Sarah Lennox, Bob Mayer, David Mayer and Angela Reid.
Editorial assistance: Doug Abrecht, Kate Balston, Rosemary Dunn, Adella Edwards, Brian Hansen, Elaine Harding and Neil White.
Research assistance: Yahya Abawai, Graham Farquhar, Rod Garrett, Ian Halliday, Elaine Harding, Mark Howden, Holger Meinke, Jonathan Nott, Andreas Potgeitger, Julie Robins, Mike Roderick, Jonathan Staunton-Smith, Penny Whetton and Allyson Williams.
Any other assistance: Nil.
Project funding: CRC for Coastal Zone Estuary and Waterways Management ($60,000), Queensland Department of Primary Industries and Fisheries ($20,000).
Use of infrastructure external to JCU: The Queensland Department of Primary Industries and Fisheries offices.
Use of infrastructure external to organisational unit within JCU: Nil.
ACKNOWLEDGEMENTS

No thesis is accomplished alone. I would like to thank my supervisors Drs Steve Turton, Neil Gribble and Roger Stone for their enthusiasm, questioning, advice and support throughout the term of my PhD. Gratitude and thanks also to: Sarah Lennox, Bob Mayer, David Mayer and Angela Reid for their statistical advise and input; Rod Garrett, Dr Julie Robbins, Ian Halliday and Jonathon Staunton-Smith for sharing their knowledge on barramundi and fisheries production systems of which I had none at the beginning of this project; Drs Allyson Williams, Holger Meinke, Yahya Abawi, Andreas Potgeitger, Penny Whetton, Mike Roderick, Graham Farquhar, Jonathan Nott and Mark Howden for their provision of climate data, technical advice and expertise in climatology and climate change; Drs Doug Abrecht, Elaine Harding, Neil White and Rosemary Dunn for their labours in reading numerous drafts. Sincere thanks also to all my dear friends and family who have listened to endless single topic telephone conversations and provided emotional and at times technical support. To Brian for his love and support, and my Mum and Dad for many years of the same and for providing me with all the opportunities in life without which this quodlibet would not have been possible!
PUBLICATIONS PRODUCED AS A RESULT OF THIS STUDY

Peer reviewed journals conference proceedings and reports:

Other:

Journal articles in preparation for submission by 30th June 2007:

Balston, J.M. (in prep) “An examination of the impacts of long-term climate effects on the catch of wild barramundi fishery in north-east Queensland”.

vii
ABSTRACT

Scope
As is the case overseas, the wild fisheries of Australia are under increasing threat from the pressures of over-fishing, habitat destruction and water quality degradation. In addition, inshore fisheries that are dependant on freshwater flows to provide nutrient pulses and nursery habitats are also affected by changes in natural flow regimes as a result of water impoundment and extraction (Robins, Halliday et al. 2005). The barramundi (*Lates calcarifer*) is an important commercial fish species in Australia worth $8.8 million in 2004/05 (ABARE 2006), and supports valuable tourism and recreational fishing industries. Commercial catch displays a high degree of inter-annual variation; a characteristic that many fishers believe is the result of climate variability. However, apart from rainfall and freshwater flow, previous studies of the barramundi have not examined the impacts from climate in any detail, and existing management strategies do not consider natural climate variability or climate change. This study examined the effects from long-term (biannual to decadal) and short-term (inter-annual) climate variability, extreme and threshold climate events, and anthropogenic climate change on the commercial catch of wild barramundi in north-east Queensland. The possibility of incorporating climate parameters into the management of the fishery was also examined.

Methods
A life cycle model of the barramundi was developed to link climate parameters with the complex developmental stages of the species from spawning in the estuary through maturation in freshwater rivers. Fisheries and climate data were extracted from a variety of sources and compiled for analysis. A gamma distributed logarithm link function model was constructed to calculate total freshwater flow for those years when records were incomplete. Correlation analysis identified significant relationships between climate parameters and catch, and forward stepwise ridge regression was used to develop a model of barramundi catch using climate parameters as predictors. The impact of threshold events was determined by non-linear analysis and the effects of extreme events on barramundi habitat were qualified against MODIS satellite imagery.
A selection of climate change scenarios from a range of global climate models (GCMs) were run through the predictive model developed to determine the likely impacts of future anthropogenic climate change on the fishery.

Results

In the near-pristine Princess Charlotte Bay area, warm sea surface temperatures, high rainfall, increased freshwater flow and low evaporation (all measures of an extensive and productive nursery habitat) were significantly correlated with barramundi catch two years later as recorded by the CFISH logbook system. These results suggest that early barramundi survival is enhanced in these conditions. Catchability was significantly increased after high freshwater flow and rainfall events in the year of catch, a result that reinforced previous observations that mature fish in freshwater habitats are flushed into the commercial estuarine fishery. October – December rainfall and April – June flow showed non-linear asymptotic relationships, and annual evaporation a quadratic relationship, with commercial catch two years later. Curves peaked at approximately 325 mm, 245 000 Ml and 2 000 mm respectively, a result that demonstrated that once these hydro-meteorological threshold events occurred, the response from the fishery was reversed and subsequent commercial barramundi catch reduced. A comparative analysis of data from the Fitzroy River area, a catchment and near shore area that has been highly modified by human intervention, showed only increased freshwater flow prior to the wet season enhanced subsequent barramundi catch. This result indicated that the anthropogenic changes to habitat either affected or masked the relationship between other climate variables and barramundi catch in the area.

Total long-term barramundi landings as recorded by the Queensland Fish Board for six regions along the north-east coast of Queensland showed a near decadal cycle. Correlation analyses returned significant relationships between catch and the January – March average L-index (a measure of the latitude of the subtropical ridge) two, three and four years prior to catch, and the Quasi-biennial Oscillation (QBO) three and four years prior to catch. These results suggest that each of these cycles affects climate in the north-east Queensland region and subsequent survival of barramundi in the early life cycle stages, and provides an opportunity to estimate catch a number of years in advance.
A forward stepwise ridge regression model was built to predict commercial barramundi catch in Princess Charlotte Bay. The model contained July – September rainfall and annual evaporation two years prior to catch and explained 62% of the variance in catch and had a cross validated predictive R^2 of 59%. A second model also contained April – June flow in the year of catch (a measure of catchability). This second model explained 69% of the variance in catch and had a cross validated R^2 of 61%, however, the improvement was not statistically significant.

Using the nine global climate models in the OZCLIM program set for three initiating TAR SRES markers (A1B, A2 and B1), a suite of twelve climate change scenarios was generated for the years 2030 and 2070 for Princess Charlotte Bay. These scenarios were then run through the predictive barramundi model developed. Results indicated that due to a likely increase in annual evaporation, barramundi catch in the area will decrease for all future climate scenarios including those that show an increase in July – September rainfall. An analysis to calculate future sea surface temperatures using REEFCLIM indicated that, depending on the availability of suitable habitats, it is possible that the range of the species will extend further south by up to 800 km by the year 2070 as temperatures increase.

Conclusions

Results from this study indicate that a significant proportion of the variability seen in commercial barramundi catch in north-east Queensland is driven by variability in climate. Climate signals are significant at both short and long-term time frames and for some variables the impact is non-linear beyond a defined threshold. Anthropogenic changes to the fishery habitat alter or mask the relationship between climate and barramundi catch, and possibly affect the reproductive success of the species. The likely impact of future anthropogenic climate change will be a reduction in barramundi catch in areas where an increase in evaporation results in a subsequent decrease in shallow wetland habitats essential for early life cycle survival. This thesis provides supporting evidence for policy makers to improve significantly both the prediction of future barramundi catch and the sustainable management of the species by considering the impacts of climate variability and climate change on the species, and by incorporating climate variables into catch models.
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACW</td>
<td>Antarctic Circumpolar Wave</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology (Australia)</td>
</tr>
<tr>
<td>CPUE</td>
<td>Catch per Unit Effort</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific Industrial Research Organisation</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>IPO</td>
<td>Interdecadal Pacific Oscillation</td>
</tr>
<tr>
<td>ITCZ</td>
<td>Intertropical Convergence Zone</td>
</tr>
<tr>
<td>JCU</td>
<td>James Cook University</td>
</tr>
<tr>
<td>LSTR</td>
<td>Latitude of the Sub-tropical ridge</td>
</tr>
<tr>
<td>MJO</td>
<td>Madden Julian Oscillation</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation</td>
</tr>
<tr>
<td>QBO</td>
<td>Quasibiennial Oscillation</td>
</tr>
<tr>
<td>QDNRW</td>
<td>Queensland Department of Natural Resources and Water</td>
</tr>
<tr>
<td>QLDPI&F</td>
<td>Queensland Department of Primary Industries & Fisheries</td>
</tr>
<tr>
<td>QFMA</td>
<td>Queensland Fisheries Management Authority</td>
</tr>
<tr>
<td>QLD</td>
<td>Queensland</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SAM</td>
<td>Southern Annular Mode</td>
</tr>
<tr>
<td>SO</td>
<td>Southern Oscillation</td>
</tr>
<tr>
<td>SOI</td>
<td>Southern Oscillation Index</td>
</tr>
<tr>
<td>SPCZ</td>
<td>South Pacific Convergence Zone</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Temperature</td>
</tr>
<tr>
<td>SSTs</td>
<td>Sea Surface Temperatures</td>
</tr>
<tr>
<td>TAS</td>
<td>Tasmania</td>
</tr>
<tr>
<td>TRAP</td>
<td>Tropical Resource Assessment Program</td>
</tr>
<tr>
<td>VIC</td>
<td>Victoria</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>ZWW</td>
<td>Zonal Westerly Winds</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Carnivore</td>
<td>Animals that feed on other animals</td>
</tr>
<tr>
<td>Catadromous</td>
<td>Fish that migrate from fresh to salt water for spawning</td>
</tr>
<tr>
<td>Convection</td>
<td>Transfer of heat through fluids, such as air or water, brought about by the movement of the fluid in question</td>
</tr>
<tr>
<td>Diadromy</td>
<td>Fish that normally, as a routine phase of their life cycle, and for the vast majority of the population, migrate between marine and fresh waters</td>
</tr>
<tr>
<td>Fecundity</td>
<td>The capacity of an individual or species to multiply rapidly; in a stricter sense, the number of eggs produced by an individual</td>
</tr>
<tr>
<td>Hermaphrodite</td>
<td>An organism with both male and female reproductive organs</td>
</tr>
<tr>
<td>Larvae</td>
<td>Independently living, post-embryonic stage of an animal that is markedly different in form from the adult and that undergoes metamorphosis into the adult form</td>
</tr>
<tr>
<td>Meridional</td>
<td>Running from pole to pole of a structure, as along a meridian</td>
</tr>
<tr>
<td>Omnivore</td>
<td>Animal that eats both plant and animal food</td>
</tr>
<tr>
<td>Pelagic</td>
<td>Living in the sea or ocean at middle or surface levels</td>
</tr>
<tr>
<td>Protandry</td>
<td>Condition of hermaphrodite plants and animals where male gametes mature and are shed before female gametes mature adj. protandrous</td>
</tr>
<tr>
<td>Telosyst</td>
<td>Group of fish including most modern bony fishes with thin bony scales covered by an epidermis, a homocercal tail, a hydrostatic air bladder, no spiracle and no spiral valve in the gut</td>
</tr>
<tr>
<td>Zonal</td>
<td>Moving perpendicular to the axis of a sphere; parallel to the equator</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

STATEMENT OF ACCESS .. II
STATEMENT OF SOURCES .. III
STATEMENT ON THE CONTRIBUTION BY OTHERS .. IV
ACKNOWLEDGEMENTS .. V
PUBLICATIONS PRODUCED AS A RESULT OF THIS STUDY .. VI
PEER REVIEWED JOURNALS CONFERENCE PROCEEDINGS AND REPORTS: VI
OTHER: ... VII
JOURNAL ARTICLES IN PREPARATION FOR SUBMISSION BY 30TH JUNE 2007: VII

ABSTRACT .. VIII

SCOPES ... VIII
METHODS ... IX
RESULTS ... IX
CONCLUSIONS .. X

ACRONYMS ... XI

GLOSSARY ... XII

TABLE OF CONTENTS .. XIII

LIST OF TABLES ... XIX

LIST OF FIGURES .. XXII

LIST OF PLATES .. XXVI

CHAPTER 1: INTRODUCTION .. 1

1.1 PREAMBLE ... 1
1.2 RATIONALE FOR THIS RESEARCH ... 2
1.3 RESEARCH AIMS ... 3
1.4 THESIS STRUCTURE AND OUTLINE .. 4

CHAPTER 2: A REVIEW OF THE EFFECTS OF CLIMATE VARIABILITY ON WILD FISHERIES ... 6

2.1 INTRODUCTION ... 6
2.2 OVERSEAS RESEARCH .. 9
SSTs and long-term climate variability and ENSO ... 9
Rainfall and freshwater flows ... 11
Other climate variables .. 12

2.3 AUSTRALIAN RESEARCH .. 13
SSTs and ENSO ... 13
Rainfall and freshwater flows ... 16
Wind ... 16
Other climate variables

2.4 THE BARRAMUNDI AND IMPACTS FROM CLIMATE

The barramundi
Species distribution
Habitat
Biology and life cycle
Feeding habits
Impacts of climate on the barramundi
Rainfall and freshwater flow
Water temperature

2.5 SUMMARY

CHAPTER 3: METHODOLOGY

3.1 INTRODUCTION
3.2 METHODOLOGY
Development of a barramundi life cycle model
Development of a hypothesis
Selection of suitable study area and barramundi fishery
Collation of fisheries catch and climate data
Analyses

3.3 SUMMARY

CHAPTER 4: SHORT-TERM CLIMATE EFFECTS: PRINCESS CHARLOTTE BAY

4.1 INTRODUCTION
4.2 STUDY AREA
Topography
River systems
Land use
Climate
Estuaries and coastal zone
Barramundi habitat

4.3 DATA
Commercial fisheries logbook (CFISH) data
Climate data
Rainfall
Freshwater flow
Terrestrial air temperature and evaporation
Sea surface temperatures (SSTs)
Indices of the Southern Oscillation (SOI)
Indices of the Madden Julian Oscillation (MJO)
CHAPTER 5: COMPARATIVE ANALYSIS: FITZROY RIVER AREA........ 72

5.1 INTRODUCTION... 72

5.2 STUDY AREA .. 72

Topography .. 72

River systems .. 72

Land use .. 73

Estuaries and coastal zone .. 74

Climate .. 74

Barramundi habitat... 75

5.3 DATA ... 75

Commercial fisheries logbook (CFISH) data 75

Climate Data .. 77

Rainfall .. 77

Freshwater flow .. 77

Terrestrial air temperature and evaporation 77

Sea surface temperature (SST) .. 77

Indices of the Southern Oscillation (SOI) 78

Indices of the Madden Julian Oscillation (MJO)............... 78

5.4 METHODS ... 78

Hypotheses ... 78

5.5 RESULTS ... 81

Exploratory analysis .. 81

Correlation matrix .. 82

Lag analysis ... 84

5.6 DISCUSSION ... 85

5.7 CONCLUSION .. 90

CHAPTER 6: EXTREME AND THRESHOLD CLIMATE EVENTS 92

6.1 INTRODUCTION... 92

6.2 BACKGROUND .. 92

6.3 DATA .. 94

6.4 METHODOLOGY ... 95

Hypotheses ... 97
6.5 RESULTS

Quantitative analysis .. 97

Qualitative analysis ... 100

6.6 DISCUSSION

6.7 CONCLUSION

CHAPTER 7: LONG-TERM CLIMATE EFFECTS: NORTH-EAST QUEENSLAND

- **7.1 INTRODUCTION** ... 111
- **7.2 STUDY AREA** .. 112
 - *Topography* .. 113
 - *River systems* .. 113
 - *Land use* .. 114
 - *Climate* .. 114
- **7.3 DATA** .. 116
 - *Fisheries data* .. 116
 - *Climate data* ... 119
 - The Interdecadal Pacific Oscillation (IPO) ... 119
 - The Quasi-Biennial Oscillation (QBO) ... 119
 - The Southern Hemisphere Annular Mode (SAM) .. 120
 - Latitude of the Sub-tropical Ridge (LSTR) ... 121
- **7.4 METHODS** .. 122
 - *Hypotheses* .. 124
- **7.5 RESULTS** .. 125
 - *Exploratory analysis* .. 125
 - *Correlation matrix* .. 127
 - *Lag Analysis* .. 128
 - *Time series graphs* .. 128
- **4.6 DISCUSSION** .. 128
- **7.7 CONCLUSION** .. 133

CHAPTER 8: PREDICTIVE MODEL DEVELOPMENT

- **8.1 INTRODUCTION** .. 134
- **8.2 EXISTING BARRAMUNDI FISHERIES MODELS** ... 134
- **8.3 DATA** .. 137
- **8.4 METHODS** .. 137
 - *Systems dynamic model* .. 137
 - *Statistical models* .. 138
- **8.5 RESULTS** .. 140
- **8.6 DISCUSSION** .. 145
- **8.7 CONCLUSION** .. 147

CHAPTER 9: EFFECTS OF CLIMATE CHANGE: PRINCESS CHARLOTTE BAY

.. 148
9.1 INTRODUCTION... 148
9.2 BACKGROUND ... 148
 Climate Change – Existing Trends .. 149
 Temperature .. 149
 Rainfall ... 149
 Evaporation ... 151
 Sea levels .. 152
 Tropical cyclones ... 152
 Climate Change – Future Trends ... 152
 Temperature .. 153
 Rainfall ... 153
 Evaporation ... 156
 Sea levels .. 156
 Tropical cyclones ... 157
9.3 CLIMATE CHANGE AND PRINCESS CHARLOTTE BAY 157
 Temperature .. 157
 Rainfall ... 158
 Evaporation ... 159
 Wind ... 160
 Tropical cyclones ... 161
9.4 IMPACT OF CLIMATE CHANGE ON FISHERIES .. 161
9.5 DATA ... 163
9.6 METHODOLOGY .. 163
 Hypotheses ... 166
9.7 RESULTS .. 166
9.8 DISCUSSION .. 173
9.9 CONCLUSION .. 179

CHAPTER 10: SYNTHESIS, RECOMMENDATIONS AND CONCLUSIONS180
10.1 INTRODUCTION ... 180
10.2 KEY RESULTS FROM THIS RESEARCH .. 180
 The climate of north-east Queensland .. 180
 Short-term climate effects: Princess Charlotte Bay .. 182
 Comparative analysis: Fitzroy River area .. 182
 Extreme and threshold climate events .. 183
 Long term climate effects: North-east Queensland .. 184
 Predictive model development ... 185
 Effects of climate change: Princess Charlotte Bay .. 186
 Key findings ... 186
10.3 PAST AND PRESENT MANAGEMENT OF THE BARRAMUNDI FISHERY 187
10.4 IMPLICATIONS OF THIS RESEARCH FOR FUTURE MANAGEMENT OF THE BARRAMUNDI FISHERY ... 189

Preservation of wetlands ... 189

Preservation of environmental flows ... 189

Regulation of fishing pressure ... 190

Consideration of climate change ... 190

10.5 RECOMMENDATIONS FOR FUTURE RESEARCH 191

REFERENCES.. 193

APPENDICES (ON ATTACHED CD).. 229

APPENDIX 1: SUMMARY OF REVIEWED STUDIES OVERSEAS 229
APPENDIX 2: SUMMARY OF REVIEWED STUDIES AUSTRALIA 229
APPENDIX 3: SCATTER PLOTS OF BARRAMUNDI CATCH ADJUSTED FOR EFFORT VERSUS SHORT-TERM CLIMATE VARIABLES – PRINCESS CHARLOTTE BAY AREA 229
APPENDIX 4: SCATTER PLOTS OF BARRAMUNDI CATCH ADJUSTED FOR EFFORT VERSUS SHORT-TERM CLIMATE VARIABLES – FITZROY RIVER AREA ... 229
APPENDIX 5: SCATTER PLOTS OF BARRAMUNDI CATCH ADJUSTED FOR EFFORT VERSUS LONG-TERM CLIMATE VARIABLES – NORTH EAST QUEENSLAND 229
APPENDIX 6: PRINCESS CHARLOTTE BAY AREA ANALYSES – DATA, ANALYSES AND RESULTS 229
APPENDIX 7: FITZROY RIVER AREA ANALYSES – DATA, ANALYSES AND RESULTS .. 229
APPENDIX 8: THRESHOLDS AND EXTREME EVENTS ANALYSES – DATA, ANALYSES AND RESULTS 229
APPENDIX 9: LONG-TERM ANALYSES – DATA, ANALYSES AND RESULTS 229
APPENDIX 10: PREDICTIVE MODEL ANALYSES – DATA, ANALYSES AND RESULTS . 229
APPENDIX 11: CLIMATE CHANGE ANALYSES – DATA, ANALYSES AND RESULTS.... 229
LIST OF TABLES

Table 2.1 River classification and barramundi habitat ..22
Table 2.2 A summary of previous research linking climate variables with barramundi
catch and recruitment in Australia ..30
Table 3.1 Example general hypothesis linking climate variability and commercial
barramundi catch for north-east Queensland ..35
Table 4.1 Selected stream gauges in the Princess Charlotte Bay study area48
Table 4.2 Gamma correlations (r) between Princess Charlotte Bay river flows and
total basin flow into the Bay (1971 – 1987). ..50
Table 4.3 Gamma distributed logarithm link function model coefficients for each
river used in the calculation of total basin flow into Princess Charlotte Bay51
Table 4.4 Data used in the analyses of short-term climate effects on the barramundi
fishery of Princess Charlotte Bay ...56
Table 4.5 Hypothesis linking climate variability and commercial barramundi catch
for north-east Queensland ..59
Table 4.6 Pearson coefficients of correlation (r) of climate parameters used in the
Princess Charlotte Bay analyses ..61
Table 4.7 Pearson coefficient of correlation (r) between Princess Charlotte Bay
barramundi CFISH catch adjusted for effort (1989/90 – 2001/02) and climate variables
(zero – five year lag) ..62
Table 4.8 Pearson coefficient of correlation (r) between Princess Charlotte Bay
barramundi CFISH catch adjusted for effort (1989/90 – 2001/02) and short-term climate
indices (zero – five year lag) ..63
Table 4.9 Summary of findings from the correlation analyses between Princess
Charlotte Bay barramundi catch and short-term climate parameters70
Table 5.1 A comparison of the Princess Charlotte Bay and Fitzroy River areas75
Table 5.2 Data used in the analyses of short-term climate effects on the Fitzroy River
area barramundi fishery ...80
Table 5.3 Hypothesis linking climate variability and commercial barramundi catch
for the Fitzroy River area ...81
Table 5.4 Pearson coefficient of correlation (r) matrix of climate variables and indices for the Fitzroy River area.. 83

Table 5.5 Pearson coefficient of correlation (r) between Fitzroy River area barramundi CFISH catch adjusted for effort (1989/90 – 2002/03) and climate variables (zero – five year lag). .. 84

Table 5.6 Pearson coefficient of correlation (r) between Fitzroy River area barramundi CFISH catch adjusted for effort (1989/90 – 2002/03) and climate indices (zero – five year lag). .. 85

Table 5.7 Summary of findings from the correlation analyses between short-term climate parameters and Fitzroy River area barramundi catch ... 90

Table 6.1 Hypothesis linking extreme and threshold climate events and commercial barramundi catch for north-east Queensland. ... 98

Table 6.2 Droughts affecting the Princess Charlotte Bay area (1970 – 2006) for 120 years of rainfall data at Lakefield. .. 103

Table 6.3 Tropical cyclones affecting the Princess Charlotte Bay area (1970 – 2006). .. 107

Table 7.1 Fish Board data for north-east Queensland (Queensland Fish Board 1937 – 1981). .. 117

Table 7.2 Fisheries and climate data used in the identification of effects from long-term climate cycles on the commercial barramundi fishery of north-east Australia. ... 123

Table 7.3 Hypothesis linking long-term climate cycles and commercial barramundi catch as recorded by north-east Queensland Fish Board depots.. 125

Table 7.4 Pearson correlation coefficient (r) matrix of Fish Board regional barramundi landings across north-east Queensland ... 127

Table 7.5 Pearson correlation coefficient (r) between long-term climate indices and Fish Board barramundi landings for north-east Queensland (zero – five year lag)...... 128

Table 7.6 A summary of the correlation analysis compared to the hypothesis linking long-term climate cycles and commercial barramundi catch as recorded by north-east Queensland Fish Board depots. ... 133

Table 8.1 Variables included in the statistical modelling of Princess Charlotte Bay barramundi catch.. 138

Table 8.2 Predictive Model I developed to provide an estimate of future Princess Charlotte Bay barramundi catch adjusted for effort (CAE) from climate variables two years prior to catch (nursery habitats).. 142
Table 8.3 Predictive Model II developed to provide an estimate of future Princess Charlotte Bay barramundi catch adjusted for effort (CAE) from climate variables up to two years prior to catch (nursery habitat through to returning males).. 144

Table 9.1 Rainfall scenarios generated to determine impacts of climate change on the barramundi fishery of Princess Charlotte Bay.. 169

Table 9.2 Evaporation scenarios generated to determine impacts of climate change on the barramundi fishery of Princess Charlotte Bay... 169

Table 9.3 Each of the synthetic climate change scenarios entered into the Princess Charlotte Bay barramundi Predictive Model I.. 170

Table 9.4 A comparative table of results from the pairwise LSD ANOVA analysis (with year as a blocking effect) and the non-parametric Friedman test, each for the projected barramundi catch adjusted for effort (CAE) for the suite of synthetic climate change scenarios. ... 172
LIST OF FIGURES

Figure 1.1 Flow chart outlining the structure of the thesis and chapter content 5
Figure 2.1 The two extremes of ENSO. ... 9
Figure 2.2 Location of studies linking climate and fisheries in Australia............ 144
Figure 2.3 Map of Queensland, Australia showing the distribution of barramundi genetic stock. ... 20
Figure 2.4 Diagram of the barramundi life cycle showing the significant stages and key habitats ... 22
Figure 3.1 Conceptual process model developed for determination of the impacts of climate on the barramundi fishery of north-east Queensland............................... 32
Figure 3.2 Life cycle model of the barramundi including known influences from climate at each stage in the development of the fish. .. 33
Figure 3.3 Conceptual model of the impact of sea surface temperatures (SST) and evaporation (E) on early barramundi life cycle stages. ... 34
Figure 3.4 Map of Queensland, Australia showing major towns, the Great Barrier Reef and the two areas selected for focused studies of climate impacts on commercial barramundi catch: Princess Charlotte Bay north-west of Cooktown and the Fitzroy River region near Rockhampton. .. 36
Figure 3.5 Sources of catch and effort data for the Queensland east coast barramundi fishery. ... 38
Figure 4.1 The Princess Charlotte Bay study area ... 42
Figure 4.2 CFISH grid squares for the Princess Charlotte Bay study area. 46
Figure 4.3 Annual financial year (1 July – 30 June) CFISH barramundi catch (bars) and effort (line) for Princess Charlotte Bay (1989/90 – 2001/02). 47
Figure 4.4 Princess Charlotte Bay river flow from January 1971 to February 1987... 49
Figure 4.5 Observed vs modelled monthly basin flow for Princess Charlotte Bay (1971 – 1987). .. 52
Figure 4.6 Annual average rainfall for the Musgrave and Laura recording stations in the Princess Charlotte Bay study area (Australian Rainman).............................. 60
Figure 5.1 Fitzroy River study area .. 73
Figure 5.2 CFISH grid squares for the Fitzroy River study area 76
Figure 5.3 Annual financial year CFISH barramundi catch (bars) and effort (line) for the Fitzroy River area (1989/90 – 2002/03) .. 76
Figure 5.4 Annual rainfall at Yaamba in the Fitzroy River area (1900 – 2004) 82
Figure 6.1 Proposed methodology for identifying non-linear climate driven responses in a fishery ... 96
Figure 6.2 Scatter plots of (a) pre-wet season (October – December) rainfall and (b) early dry season (April – June) flow versus Princess Charlotte Bay barramundi catch adjusted for effort (CAE) two years later. ... 99
Figure 6.3 Scatter plot of annual evaporation versus barramundi catch adjusted for effort (CAE) two years later ... 100
Figure 6.4 Observed (1971 – 1987) and modelled (1988 – 2004) total monthly basin flow for Princess Charlotte Bay ... 101
Figure 6.5 Observed and modelled seasonal Princess Charlotte Bay basin flow 1971 – 2006 (bars) and Lakefield seasonal rainfall 1971 – 2006 (line) .. 102
Figure 7.1 North-east Queensland study area. .. 112
Figure 7.2 Average annual rainfall for north-east Queensland 1961 – 1990 115
Figure 7.3 Average (a) maximum and (b) minimum air temperature for north-east Queensland 1961 – 1990 ... 115
Figure 7.4 Annual financial year (1 July – 30 June) Fish Board barramundi landings for the Cairns region (Port Douglas, Cairns, Innisfail and Ingham Fish Boards) for the years 1948/49 – 1980/81 ... 118
Figure 7.5 Total annual financial year (1 July – 30 June) Fish Board barramundi landings for north-east Queensland (1945/46 – 1980/81). .. 118
Figure 7.6 Annual financial year (1 July – 30 June) rainfall at Cairns in the north of the study area and Bundaberg in the south (1900/01 – 2003/04). ... 126
Figure 7.7 Annual financial year (1 July – 30 June) Fish Board barramundi landings for each depot in north-east Queensland (1945/46 – 1980/81) .. 127
Figure 7.8 Fish Board barramundi landings for north-east Queensland (1953/54 – 1980/81) versus the L-index (three years previous). ... 129
Figure 8.1 A conceptual systems dynamic model of climate influences on the Princess Charlotte Bay barramundi fishery .. 139
Figure 8.2 Predicted values of Princess Charlotte Bay barramundi catch adjusted for effort (CAE) from Predictive Model I versus observed. .. 142
Figure 8.3 Time series plot of predicted and observed Princess Charlotte Bay barramundi catch adjusted for effort (CAE) from Predictive Model I (1989/90 – 2001/02). ... 143

Figure 8.4 Predicted values of Princess Charlotte Bay barramundi catch adjusted for effort (CAE) from Predictive Model II versus observed. ... 144

Figure 8.5 Time series plot of predicted and observed Princess Charlotte Bay barramundi catch adjusted for effort (CAE) from Predictive Model II (1989/90 – 2001/02). ... 145

Figure 9.1 Changes in Queensland maximum and minimum temperature and diurnal temperature range. .. 150

Figure 9.2 Annual rainfall for Cairns (1901 – 2001). .. 151

Figure 9.3 Predicted changes in temperature for Queensland per degree of warming as modelled by the CSIRO DARLAM-60 regional climate model .. 154

Figure 9.4 Projected percentage change of rainfall per degree of warming for Queensland. .. 155

Figure 9.5 Expected return periods for extreme rainfall events for north Queensland as modelled by the CSIRO DARLAM-60 regional climate model .. 156

Figure 9.6 Monthly actual recordings of maximum and minimum temperature for a) Coen Airport (1970 – 2006) and b) Cooktown Mission Strip (1988 – current). 158

Figure 9.7 Annual rainfall at Musgrave and Laura stations in the Princess Charlotte Bay study area for (a) 1897 – 2005 and (b) 1970 – 2004 .. 159

Figure 9.8 Monthly recorded Class A pan evaporation for the Princess Charlotte Bay area at a) Coen Airport (1975 – 2006) and b) Cooktown Mission Strip (1988 – 2006). 160

Figure 9.9 Monthly V-wind and U-wind vectors for Princess Charlotte Bay (1980 – 2005) .. 161

Figure 9.10 Plot of global climate model predicted changes to dry season rainfall. 167

Figure 9.11 Plot of global climate model predicted changes to annual evaporation. 168

Figure 9.12 Time series plot of predicted Princess Charlotte Bay barramundi catch adjusted for effort (CAE) for the suite of climate change scenarios generated 171

Figure 9.13 Box plot showing the distribution of predicted Princess Charlotte Bay barramundi catch adjusted for effort (CAE) for the suite of climate change scenarios generated. ... 171

Figure 9.14 Map of Australian sea surface temperatures (SST) generated by the CSIRO REEFCLIM program for the baseline year of 1995.. .. 173
Figure 10.1 Climate mechanisms that affect north-east Queensland....................... 181

Figure 10.2 Life cycle model of the barramundi showing climate variables identified in the analyses of short-term and threshold climate events as significantly correlated with catch adjusted for effort in the Princess Charlotte Bay area................................. 184

Figure 10.3 Pictorial of each of the climate mechanisms shown from the current research to have a significant effect on commercial barramundi catch in Princess Charlotte Bay. .. 185
LIST OF PLATES

Plate 2.1 Adult barramundi. .. 19
Plate 6.1 MODIS satellite 750 images of Princess Charlotte Bay. 105