The induction and inhibition of post-lesional transcommissural climbing fibre reinnervation in the neonatal and adult rat cerebellum using Brain-derived neurotrophic factor: anatomical and functional implications

Kirsty Jane Dixon B.App.Sci. (Biochemistry & Microbiology) B.App.Sci. Honours I

Thesis Submitted for the Completion of the Degree of Doctor of Philosophy October 2006

School of Veterinary & Biomedical Sciences James Cook University

THESIS / ANTI-THESIS / SYNTHESIS

Georg Wilhelm Friedrich Hegel, a 19th century German philosopher, was considered by his admirers to have found the key to explaining in principle, just about everything. His position was called Dialectical Idealism. "Dialectic" refers to the process of examining an idea (thesis), working out its implications, consequences and applications, and thereby finding difficulties (anti-thesis) that require the discarding of the original idea and the adoption of a modified form of it (synthesis), a new idea. We then examine the new idea (thesis) and repeat the process. The goal of the process is the final thesis, the 'Absolute'.

Georg W F Hegel (1770-1831)

PLASTICITY

The habits of an elementary particle of matter cannot change (on the principles of the atomistic philosophy), because the particle is itself an unchangeable thing; but those of a compound mass of matter can change, because they are in the last instance due to the structure of the compound, and either outward forces or inward tensions can, from one hour to another, turn that structure into something different from what it was. That is, they can do so if the body be plastic enough to maintain its integrity, and be not disrupted when its structure yields. Plasticity, then, in the wide sense of the word, means the possession of a structure weak enough to yield to an influence, but strong enough not to yield all at once. Each relatively stable phase of equilibrium in such a structure is marked by what we may call a new set of habits. Organic matter, especially nervous tissue, seems endowed with a very extraordinary degree of plasticity of this sort; so that we may without hesitation lay down as our first proposition the following, that the phenomena of habit in living beings are due to the plasticity of the organic materials of which their bodies are composed.

William James (1842 – 1910) Exert from 'The Principles of Psychology' (1980) Vol 1: Ch 4

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work.

Signature

SIGNED STATEMENT OF SOURCES

Funding for this PhD came from a variety of sources: James Cook University (project support and a 'Doctoral Research Scheme' grant), the University of Western Australia, the University of Notre Dame and Apex Foundation for research into intellectual disabilities. Kirsty also received a travel scholarship (JCU and the School Veterinary and Biomedical Sciences) and a Woodside Neurotrauma PhD Excellence Award (UWA), which allowed attendance at two international conferences and laptop upgrades to continue thesis writing.

During this PhD Kirsty was supported by an Australian Postgraduate Award (3 years, 3 months) and received a three month extension from the School of Veterinary & Biomedical Sciences (JCU). Kirsty also received a James Cook University Doctoral Completion Scholarship.

BDNF was generously donated by Amgen Inc.

Dr Cheryl Johansen (UWA) donated the chicken serum.

Lotteries West provided the confocal microscope and Dr Paul Rigby (BIAF, UWA) helped with the confocal imaging.

The C and V Ramaciotti Foundation provided the Nikon E800 fluorescence microscope.

Laboratory and desk space was provided by the School of Medicine at James Cook University (2 years, 2 months).

Laboratory and desk space was also provided by the School of Anatomy and Human Biology at the University of Western Australia (2 years).

STATEMENT ON THE CONTRIBUTION OF OTHERS

I hereby declare that this thesis is my own and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. Furthermore, I declare that I performed all of the work in this thesis, unless stated otherwise.

Stipend support: Supervision:	Australian Postgraduate Award (3 years) <u>Whilst at JCU</u> Supervisor: Dr Sherrard (Feb 02 – Apr 04) Co-supervisor: A/Prof Bower (Feb 02 – Dec 03) Associate Supervisor: Dr Walker (Feb 02 – Mar 03) <u>Whilst at UWA</u> Supervisor: Dr Sherrard (Apr 04 – Nov 06) Supervisor: Dr Hodgetts (Apr 06 – Dec 06) Co-supervisor: A/Prof Fitzpatrick (Apr 04 – Dec 06)
Other collaborations:	nil
Research assistance:	nil
Any other assistance:	Dr Rachel Sherrard performed approximately 75 % of the unilateral inferior cerebellar peduncle transections. For three animals in chapter five, Dr Rachel Sherrard performed the Px30 surgery, cerebellar injections and analysed the retrograde dye transport.
Project costs:	\$15 000
Infrastructure external to JCU:	Laboratory and desk space provided by School of Anatomy & Human Biology (2 years) at the University of Western Australia. Animals housed at the University of Western Australia in the Biological Sciences Animal Unit (BSAU) and the Pre-Clinical Facility (PCF).
Infrastructure external to	• • •
organisational unit within JCU:	Laboratory and desk space provided by School of Medicine (2 years 2 months) at James Cook University.

Signature

DECLARATION ON ETHICS

The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the National Statement on Ethics Conduct in Research Involving Human (1999), the Joint NHMRC/AVCC Statement and Guidelines on Research Practice (1997), the James Cook University and the University of Western Australia Statement and Guidelines on Research Practice (2001). The proposed research methodology received clearance from the James Cook University Experimentation Ethics Review Committee (approval number A749_02) and the University of Western Australia Animal Ethics Committee (approval number 04/100/359).

Signature

CONTRIBUTION OF AUTHORS ON THE CO-AUTHORED PAPER

I hereby declare that the published co-authored paper, which forms the basis of chapter five, was written mostly by Dr Rachel Sherrard. For this thesis I have removed the abstract and modified the introduction, methods and conclusion sections, however the majority of the results and discussion sections remain unchanged. The figures for this paper, which remain almost unchanged for the thesis (except figure 5.5), were created by myself in consultation with Dr Sherrard.

Signature

ACKNOWLEDGEMENTS

This PhD has taken four years and ten months to complete, during which time I worked with some absolutely delightful people who made carrying out this research an enjoyable task.

I would like to thank my supervisor Dr Rachel Sherrard. A special thank you to Dr Stuart Hodgetts (UWA) for supervising my PhD towards the end of my candidature – your contributions were greatly appreciated. Thank you also to my co-supervisors, Assoc Prof Lee Fitzpatrick and Prof Adrian Bower for their support at JCU and to Dr Anne-Marie Babey (JCU) for providing valuable feedback on my literature review at the beginning of my candidature.

In the middle of my PhD, the laboratory in which I worked relocated to the opposite side of Australia – to the School of Anatomy and Human Biology at the University of Western Australia. This school has an extraordinary working environment, which certainly improved the quality of my research and I am extremely grateful to have been accepted as an honorary postgraduate student here (thank you Prof Brendan Waddel). Within the Neuroscience group, I owe thanks to Prof Alan Harvey, Dr Giles Plant, Dr Marc Ruitenberg and Dr Stuart Hodgetts for including me in their research groups and providing support whenever required. Being a part of this research group enabled me to see how large the world of neuroscience really is. Thanks to Margaret Pollett and Natalie Symons for answering all my queries; and to Jacob, Hu, Kevin, Simone, Helen, Liz, Anil, Maria, Amy and Eleanor for their valuable feedback during presentations (and for providing countless hours of entertainment).

For technical support, thanks go to Dr Sherrard for doing many of the pedunculotomies (a skill that proved to be extremely difficult) and for allowing me to include 3 animals in chapter five, on which Rachel performed the surgery (Px30 and intracerebellar injection) and tracer dye analysis. Also, thanks to Dr Paul Rigby (BIAF, UWA) for helping to capture magnificent confocal images and special thanks to Timothy Hancock (JCU) who provided statistical advice over the phone at any time (even 11pm).

A very big thank you to JCU for providing me with a travel scholarship (JCU and the School Veterinary and Biomedical Sciences) and to Woodside Australian Energy and UWA (in particular Prof Sarah Dunlop) for providing me with money to spend on my PhD. These monies allowed me to attend two international conferences, where I learnt many techniques, and also upgraded my laptop to continue writing my thesis.

Sincere thanks to Melina Willson and Simone Mangan who made life at JCU more enjoyable, you have been great friends.

During 2005 the 'Anatomy Research Students Entourage' (affectionately known as ARSE) was born. This group provided peer support, peer review and peer pressure (long live the safety shots!). Special thanks go to Lloydie, Amy, Maria, Wade, Susan, Anil, Holly and Warren.

A very special thank you to Kurt who supported me throughout this PhD - you have been incredibly patient and there is nothing more I could have asked for.

Lastly, I am indebted to Amgen Inc. for generously donating the BDNF; to Google TM for helping to find almost anything in the world; and to some incredibly good reds from the Margaret River, Barossa and M^cClaren Vale regions for keeping me sane.

Bunker Bay, WA

PUBLICATIONS

Dixon K.J. and Sherrard R.M. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibres on mature Purkinje cells (2006) *Experimental Neurology* 202:44-56.

ABSTRACTS

Refereed

Dixon K.J. and Sherrard R.M. Brain-derived neurotrophic factor induces olivocerebellar plasticity in the mature cerebellum (2006) *Federation of European Neurosciences* Dixon K.J. and Sherrard R.M. Brain-derived neurotrophic factor induces olivocerebellar plasticity in the mature cerebellum (2006) *Australian Neuroscience Society* Dixon K.J. and Sherrard R.M. Brain-derived neurotrophic factor and exercise induce post-lesion transcommissural olivocerebellar reinnervation of mature Purkinje cells (2005) *Australian Neuroscience Society*

Non-refereed

Dixon K.J. and Sherrard R.M. BDNF delays inferior olivary cell death following axotomy (2005) *Student Expo, School of Anatomy & Human Biology, UWA* Dixon K.J. and Sherrard R.M. BDNF induces olivocerebellar plasticity in mature rats (2004) *Student Expo, School of Anatomy & Human Biology, UWA*

INVITED SEMINAR PRESENTATION

Dixon K.J. Brain-derived neurotrophic factor induces functional olivocerebellar plasticity in the mature cerebellum (2005) *Symposium of Western Australian Neuroscience*

MEDIA RELEASE

Researcher's brainwave (15 July 2006) Townville Bulletin, bi-line Johnston J, p35

ABSTRACT

In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development however, post-lesion plasticity generates alternate paths providing models to investigate factors that promote reinnervation to appropriate targets. Following unilateral transection of the neonatal rat olivocerebellar pathway, axons from the remaining inferior olive reinnervate the denervated hemicerebellum and develop topographically organised normal climbing fibre arbors on Purkinje cells. However, the capacity to recreate this accurate target reinnervation in a mature system remains unknown. This thesis will identify whether one factor, Brain-derived neurotrophic factor (BDNF) is involved in reinnervation during the neonatal period and whether it induces similar reinnervation in the mature system. If BDNF does induce reinnervation in the mature system, this thesis will identify any return of lost function.

In rats lesioned on postnatal days 3 (P3), P15, P20 or P30 and treated with an intracerebellar injection of brain-derived neurotrophic factor (BDNF) or a BDNF blockade 24 hours following surgery, the morphology and organisation of transcommissural olivocerebellar reinnervation was examined using neuronal tracers and immunohistochemistry. The behavioural sequela of these rats was also investigated using vestibulo-spinal reflexes, simple locomotion, complex locomotion and gait synchronisation tests. Additionally, in neonatal rats (P3) with a unilateral lesion and treated with an intraolivary injection of BDNF, the survival of the axotomised inferior olivary complex and associated ipsilateral olivocerebellar pathway was examined using histochemical dyes and neuronal tracers.

In neonatal animals (P3), intracerebellar application of a BDNF blockade prevents olivocerebellar reinnervation of target Purkinje cells in the treatment area, while addition of BDNF in the mature system induces transcommissural olivocerebellar axonal growth into the denervated hemicerebellum. The distribution of BDNF-induced reinnervating climbing fibres was not confined to the injection sites, but extended throughout the denervated hemivermis and, less densely, up to 3.5 mm into the hemisphere. Transcommissural reinnervating axons were organised into parasagittal

microzones that were almost symmetrical to those in the right hemicerebellum. Reinnervating climbing fibre arbors were predominantly normal, but in the P30-lesioned group 10 % branched within the molecular layer forming a smaller secondary arbor, and in the P15-lesion group, the reinnervating arbors extended their terminals almost to the pial surface and were larger than control arbors (p<0.02). Behavioural testing revealed that BDNF and extensive exercise induce olivocerebellar reinnervation and that this reinnervation provides functional recovery, although this is delayed in the vehicletreatment group. Additionally, the behavioural testing revealed that functional recovery is dependent on the age of the animal, whereby animals lesioned prior to acquiring task specific skills were developmentally disadvantaged. Lastly, during the neonatal period intraolivary BDNF transiently prevented degeneration of the axotomised inferior olivary complex, however it was unsuccessful in inducing transcommissural axonal growth of the ipsilateral olivocerebellar pathway into the denervated hemisphere.

For the first time, data from this PhD suggests that BDNF is involved in transcommissural reinnervation of denervated areas during the neonatal period and show that BDNF promotes topographically organised morphologically correct reinnervation in the mature rat cerebellum. Additionally, this reinnervation in the mature system provides functional recovery similar to sham-operated control animals. BDNF administered intraolivary however does not maintain the persistence of axotomised olivary neurons or induce transcommissural axonal growth of the ipsilateral olivocerebellar pathway. Data from this study can one day be used to contribute to a repair mechanism for traumatic brain injury, minimising long-term disabilities and ongoing costs to society.

LIST OF ABBREVIATIONS USED

15B	Pedunculotomy at postnatal day 15 and BDNF intracerebellar injection
15V	Pedunculotomy at postnatal day 15 and vehicle intracerebellar injection
20B	Pedunculotomy at postnatal day 20 and BDNF intracerebellar injection
20V	Pedunculotomy at postnatal day 20 and vehicle intracerebellar injection
30B	Pedunculotomy at postnatal day 30 and BDNF intracerebellar injection
30V	Pedunculotomy at postnatal day 30 and vehicle intracerebellar injection
⁰ C	Degrees Celsius
>	Greater than
<	Less than
μg	
μ1	
μm	
%	Percent
BDNF	Brain-derived neurotrophic factor
BSA	Bovine serum albumin
Ca ²⁺	Calcium
Cbr	Cerebellar
climbing fibre	
cm	
CNS	
DAO	
DCN	Deep cerebellar nuclei
DePeX	
Е	
EGL	External germinal layer
GAP-43	
GL	Granular Layer
GTP	
IGL	Internal granular layer
IOC	Inferior olivary complex

IU	
Kg	
М	Molar
MAO	
mg	
mm	
MBS	
ml	
ML	
mRNA	
NGF	Nerve growth factor
nM	nanoMolar
NMDA	
NT-3	
NT-4/5	
NT-6	
NT-7	
Р	
p75	Pan neurotrophin receptor 75
PBS	Phosphate buffered saline
PC	
рН	
PI-3 kinase	Phosphatidylinositol-3-kinase
РО	Principal olive
P15	Postnatal day 15
P20	Postnatal day 20
P30	
Px15	Pedunculotomy at postnatal day 15
Px15B	Pedunculotomy at postnatal day 15 and BDNF intracerebellar injection
Px15V	Pedunculotomy at postnatal day 15 and vehicle intracerebellar injection
Px20	
Px20B	Pedunculotomy at postnatal day 20 and BDNF intracerebellar injection

Px20V	.Pedunculotomy at postnatal day 20 and vehicle intracerebellar injection
Px30	
Px30B	Pedunculotomy at postnatal day 30 and BDNF intracerebellar injection
Px30V	.Pedunculotomy at postnatal day 30 and vehicle intracerebellar injection
Rpm	
s	seconds
trkA	Tropomyosin kinase receptor A
trkB	Tropomyosin kinase receptor B
trkC	Tropomyosin kinase receptor C
T-PBS	TritonX-PBS
T-PBS-G	
UTL	Upper time limit
VGLUT1	Vesicular glutamate transporter 1
VGLUT2	

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 Traumatic brain injury: the research problem	1
	1.2 The central nervous system	3
	1.3 The neurotrophin family	4
	1.3.1 Neurotrophin structure, biochemistry and receptor interaction	4
	1.3.1.1 Low affinity receptor	5
	1.3.1.2 High affinity receptors	6
	1.3.2 Intracellular biological effects of neurotrophins	7
	1.3.3 Role of neurotrophins in CNS development	8
	1.3.4 Role of neurotrophins in CNS plasticity	11
	1.3.5 Neurotrophins in CNS summary	14
	1.4 The cerebellum	15
	1.4.1 Cerebellar organisation	15
	1.4.1.1 Cerebellar circuitry and function	17
	1.4.1.2 Purkinje cells	18
	1.4.1.3 Mossy fibre-granule cell-parallel fibre system	18
	1.4.1.4 Climbing fibres	19
	1.4.1.5 Cerebellar organisation summary	22
	1.4.2 Cerebellar development: anatomical structure	22
	1.4.2.1 Granule cell development	22
	1.4.2.2 Purkinje cell development	24
	1.4.2.3 Climbing fibre development	25
	1.4.2.4 Cerebellar development summary	30
	1.4.3 Cerebellar development: motor control	30
	1.4.4 Cerebellar development: role of neurotrophins	31
	1.4.4.1 Granule cell development	31
	1.4.4.2 Purkinje cell development	36
	1.4.4.3 Climbing fibre development	37
	1.4.4.4 Neurotrophins in cerebellar development summary	40
	1.5 Cerebellar plasticity	40
	1.5.1 Cerebellar plasticity following afferent removal	40
	1.6 Role of neurotrophins in olivocerebellar plasticity	47
•	1.7 Thesis aims	48
2	EXPERIMENTAL METHODS	51
	2.1 Animals	51
	2.2 Anaesthetic	51
	2.3 Iransection of olivocerebellar axons	52
	2.4 Cerebellar injections.	52
	2.5 Interior office injections	55
	2.0 Benavioural tests	50
	2.7 I ranscardiac perfusions and histological preparation	5/
	2.8 Histological analysis	38
	2.9 Photomicrographs	60

2.10	Statistics	61
3 BRA	AIN-DERIVED NEUROTROPHIC FACTOR APPLIED TO OLIVARY	
NEURO	NS DOES NOT PREVENT THE NATURAL REGRESSION OF THE	
IPSILAT	TERAL OLIVOCEREBELLAR PATHWAY FOLLOWING NEONATA	L
AXOTO	MY	62
3.1	Introduction	62
3.2	Methods	63
33	Results	65
331	BDNF delays the death of olivary neurons	65
3.3.1	BDNF applied to the olivery neurons does not selvege the insilateral	05
J.J.Z	borrabellar nothway	70
2 2 2	Higher concentration, multiple injections or immediate exposure of	/0
5.5.5 alive	night concentration, intrupie injections of ininetiate exposure of	71
	ary neurons to BDNF does not improve onvary survival	/1
3.4	Discussion	/4
3.4.1	BDNF applied to olivary neurons promotes transient olivary survival	/4
3.4.2	BDNF applied to olivary neurons does not prevent the natural regression	n
of th	e ipsilateral olivocerebellar pathway	76
3.5	Conclusion	77
4 BRA	AIN-DERIVED NEUROTROPHIC FACTOR REMOVAL INHIBITS	
POST-LI	ESION OLIVOCEREBELLAR REINNERVATION IN THE	
NEONA	FAL RAT CEREBELLUM	78
4.1	Introduction	78
4.2	Methods	79
4.3	Results	81
431	BDNF neutralisation in the cerebellum induces abnormal cerebellar	-
morr	phology	82
432	Protein kinase inhibitor in the cerebellum but not inferior olive induce	s-
abno	rmal cerebellar morphology	85
133	BDNE neutralisation inhibits transcommissural climbing fibre	05
reinr	bervation	٥n
1 4	Disquestion	00
4.4	Mathadalagical agreed anoticing	90
4.3	DDNE is as a size of for some instance of the source of th	93
4.5.1	BDNF is required for survival and development of cerebellar neurons.	93
4.5.2	2. Olivocerebellar pathway delivery of BDNF to the cerebellum	94
4.5.3	Cerebellar BDNF promotes neonatal post-lesion transcommissural	~ -
olivo	beerebellar reinnervation	95
4.6	Conclusion	96
5 BRA	AIN-DERIVED NEUROTROPHIC FACTOR INDUCES POST-LESION	N
TRANSC	COMMISSURAL GROWTH OF OLIVARY AXONS THAT DEVELOP	,
NORMA	L CLIMBING FIBRES ON MATURE PURKINJE CELLS	98
5.1	Introduction	98
5.2	Methods	99
5.3	Results	01
531	BDNF induces transcommissural olivocerebellar reinnervation 1	01
532	2 Distribution of transcommissural climbing fibre reinnervation 1	03
533	Parasagittal distribution of transcommissural olivocerebellar axons 1	05
53.5	Reinnervating climbing fibre arbor morphology	00
5 /	Discussion 1	13
J. T		10

5.4.1	BDNF induces transcommissural olivocerebellar reinnervation	113
5.4.2	Transcommissural axons are distributed in parasagittal bands	115
5.4.3	Reinnervating climbing fibres develop normal terminal arbors on m	ature
Purkin	ije cells	116
5.5 C	Conclusion	117
6 POST	-LESION TRANSCOMMISSURAL OLIVOCEREBELLAR	
REINNER	VATION IMPROVES MOTOR FUNCTION IN THE MATURE	
CEREBEI	LUM OF WISTAR RATS	119
6.1 II	ntroduction	119
6.2 N	1ethods	119
6.2.1	Induction of reinnervation	119
6.2.2	Behavioural testing	120
6.2.	2.1 Tests of motor coordination	120
6.2.	2.2 Motor synchronisation task	122
6.2.3	Anatomical analysis	123
6.2.4	Behavioural data analysis	124
6.3 R	Lesults	125
6.3.1	Dynamic postural adjustments are not dependent on climbing fibre	
reinne	rvation	125
6.3.2	Early climbing fibre reinnervation aids normal gait	128
6.3.3	BDNF-treated animals under-perform vehicle-treated counterparts in	n
limb c	oordination tasks	132
6.3.4	Vehicle-treated animals walk for longer on the rotarod than BDNF-	
treated	l animals	135
6.3.5	BDNF induces transcommissural climbing fibre reinnervation	142
6.3.6	Distribution of BDNF- and exercise-induced transcommissural clim	bing
fibre r	einnervation	145
6.3.7	Parasagittal distribution and arbor morphology of reinnervating	
olivoc	erebellar axons	151
6.4 D	Discussion	154
6.4.1	BDNF-induced reinnervation is distributed in parasagittal bands and	1
develo	ops normal terminal arbors on mature Purkinie cells	154
6.4.2	Extensive exercise induces transcommissural climbing fibre	
reinnervation		156
6.4.3	Extensive exercise maintains the ipsilateral climbing fibre pathway	and
induce	es transcommissural reinnervation into the denervated hemisphere	157
6.4.4	Unilateral olivocerebellar pathway transection does not affect vestib	oulo-
spinal	reflexes	158
6.4.5	Reinnervation in the mature cerebellum improves functional recover	rv160
6.4.6	Exercise-induced reinnervation in the mature-lesioned, but not	5
adoles	cent-lesioned cerebellum, has delayed functional improvement	162
6.4.7	Exercise-induced reinnervation outperforms BDNF-induced	
reinne	rvation in the adolescent cerebellum	163
6.4.8	Earlier reinnervation in the adolescent cerebellum improves gait	164
6.5 C	Conclusion	165
7 GENI	ERAL DISCUSSION	167
7.1 T	raumatic brain injury: where do we currently stand?	167
7.2 T	raumatic brain injury: where to from here?	171

	7.3	Concluding remarks	173
8	RE	FERENCE LIST	174
9	API	PENDIX I	201

LIST OF FIGURES

Figure	1.1	Intracellular signalling cascades activated by neurotrophins	9
Figure	1.2	Cerebellar morphology and structure	16
Figure	1.3	Olivocerebellar pathway topography	21
Figure	1.4	Cerebellar development	23
Figure	1.5	Time line of factors involved in climbing fibre development	28
Figure	1.6	Ionotropic and metabotropic intracellular signalling pathways	29
Figure	1.7	Factors involved in climbing fibre development (including neurotrophins)
			41
Figure	1.8	Intracellular signalling pathways of metabotropic, ionotropic and trk	
re	cepto	rs	42
Figure	1.9	Contralateral and transcommissural olivocerebellar pathways	45
Figure	2.1	Cerebellar injection site	54
Figure	3.1	Effect of low dose BDNF and vehicle on inferior olivary cell survival	67
Figure	3.2	Photomicrographs of the inferior olivary complex in BDNF-treated (low	
do	se) a	nimals	69
Figure	3.3	Cerebellar cortex of BDNF-treated animals	72
Figure	3.4	Photomicrographs of the inferior olivary complex in BDNF-treated anima	als
(h	igh d	ose)	73
Figure	4.1	Cerebellar morphology following intracerebellar anti-BDNF IgY or K252	2a
ad	minis	stration	83
Figure	4.2	Immune cells in the cerebellar cortex of anti-BDNF IgY-treated animals.	84
Figure	4.3	Reduction in cerebellar lobule size	86
Figure	4.4	Molecular layer depth	88
Figure	4.5	Cerebellum and inferior olivary complex following intraolivary K252a	
ad	minis	stration	89
Figure	4.6	VGLUT2-labelled reinnervating climbing fibre terminals	91
Figure	4.7	Area of VGLUT2-labelled climbing fibre reinnervating terminals	92
Figure	5.1	Fast Blue-labelled neurons in left inferior olivary complex 1	.02
Figure	5.2	Fluororuby- and VGLUT2-labelled reinnervating axons and terminals 1	04
Figure	5.3	Area of VGLUT2-labelled reinnervating terminals (unfolded cerebellum))
			06
Figure	5.4	Area of VGLUT2-labelled reinnervating terminals (coronal sections) 1	.07
Figure	5.5	Parasagittal distribution of Fluororuby-labelled terminals 1	.08
Figure	5.6	Morphology of transcommissural reinnervating terminal arbors 1	10
Figure	5.7	Reinnervating and control VGLUT-2-labelled climbing fibre terminals. 1	11
Figure	6.1	Behavioural tests 1	21
Figure	6.2	Righting reflex	26
Figure	6.3	Vestibular drop 1	27
Figure	6.4	Bridge test	.29
Figure	6.5	Footprint test 1	30
Figure	6.6	Cliff avoidance test	31
Figure	6.7	Ladder test 1	33
Figure	6.8	Wire test	34
Figure	6.9	Forward walking time of animals on the rotarod 1	36
Figure	6.10	Effect of training on the rotarod of the Px15 groups 1	38

Figure 6.11 Effect of training on the rotarod of the Px20 groups 139 Figure 6.12 Effect of training on the rotarod of the Px30 groups 141 Figure 6.13 Fast Blue-labelled cells in the left and right inferior olivary complex after extensive exercise. 146 Figure 6.14 VGLUT2-labelled reinnervating climbing fibre terminals after extensive exercise. 147 Figure 6.15 Area of VGLUT2-labelled reinnervating climbing fibre terminals after extensive exercise (unfolded cerebellum) 148 Figure 6.16 Parasagittal banding of reinnervating terminals after extensive exercise152 148 Figure 6.17 Morphology of VGLUT2-labelled reinnervating terminal arbors after extensive exercise 153 Figure 6.18 Olivocerebellar projection pathways in lesioned cerebellum after 153

LIST OF TABLES

mRNA and protein expression of neurotrophins and receptors during	
yogenesis	32
mRNA and protein expression of neurotrophins and receptors during	
lopment	33
mRNA and protein expression of neurotrophins and receptors in adulthood	134
Effect of BDNF (high and low dose) on inferior olivary cell survival	68
Molecular layer depth following anti-BDNF IgY treatment	87
Motor test summary 1	143
Rotarod test summary 1	144
Area of VGLUT2-labelled reinnervating climbing fibre terminals after	
sive exercise 1	150
	mRNA and protein expression of neurotrophins and receptors during yogenesis