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Abstract

In this thesis, the development of a constitutive model for the finite strain deformation of

semicrystalline polymers is presented. It reports on the formulation and numerical imple-

mentation of the model and the theoretical aspects of the associated experimental testing

and parameter estimation.

Within both academia and industry to date, there exists no single constitutive model

for semicrystalline polymers that is broadly accepted as representing the general case. This

is in spite of the relatively complete scientific understanding of the material’s response and

the increasing use of such materials where structural loading can be significant. Numeri-

cal representation of such materials conventionally involves over-simplification of response,

largely necessitated by the limitations of current experimental testing methods. A complex

constitutive theory is only as powerful as the experimental method from which its parame-

ters are fit. As such, the objective of this research was to develop a complete, generalized

constitutive theory for semicrystalline polymers with a corresponding testing methodology

that enables its practical use within industry.

The constitutive model selected can be characterized by a parallel combination of elas-

tic, viscoelastic and viscoplastic model elements which most closely represents the complete

deformation behavior of semicrystalline polymers in the pre-necking region (ε < 15%). The

accompanying mathematics are formulated for 3D, finite strain and are based on thermody-

namic dissipation in keeping with conventional continuum mechanics methodology. Strain

hardening has been found to be of importance within the viscoplastic element. The parallel

configuration of the three model elements facilitates the decoupled algorithmic treatment

of each response. This has been carried out in principal space, given the assumption of

isotropy, making practical both its numerical implementation and the physical determina-

tion of model parameters. A strategy analogous to classical return mapping is used for

ix



solution of the viscoelastic evolution while a new, principal space, closest point projection

return mapping algorithm has been developed for solution of the viscoplastic evolution,

accounting for isotropic strain hardening. The consistent algorithmic tangential modulus is

formulated to ensure quadratic convergence of the whole implicit finite element procedure.

The computational model has been verified through a series of simple finite element

tests involving combinations of large strain normal and shear loadings, and large rigid body

rotations. Several example problems have been solved as demonstration of the models

versatility.

Using the developed model, a study using numerical simulations of uniaxial and biax-

ial tensile testing methods has been carried out. Through this study it has been possi-

ble to develop an experimental methodology to isolate the component stress contributions

from each of the three deforming modes as well as subset separation of viscous, yield, and

isotropic hardening stresses for viscoplasticity. Via conventional optimisation procedures

and an additionally developed iterative procedure for the viscoelastic response, this testing

methodology makes possible the full specification of the model parameter set. Verification

of the testing methodology was done via comparison between the calculated test curves,

and values output directly from the numerical simulations.

The model proposed in this thesis corresponds to a general account of semicrystalline

polymer constitutive response, possessing capabilities not accounted for previously in the-

ories within the literature. Perhaps the most significant outcome from this work is the

experimental data processing methodology that allows such a complex model to be accu-

rately and practically fit to real materials. Being able to better predict the loaded response

of semicrystalline polymers is critical for their continued and increased use in circumstances

where structural loads are possible.

x
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Chapter 1

Introduction

1.1 Motivation

Semicrystalline polymers are used widely in everyday life. Their ease of moulding and

ability to be recycled makes them a particularly attractive material for use in a multitude

of different applications, including in more recent years, where high or structural loading

is expected during service. When high loads and/or elevated temperatures are involved it

becomes increasingly important to be able to predict the loaded response of a material so

as to allow confidence in service life and informed design choice.

Empirical techniques are commonly used in industry when designing and manufacturing

with semicrystalline polymers. Data from material suppliers such as Young’s modulus

and maximum elongation are used as benchmark values however the complex and time-

dependent nature of the material means that such an overly simplified representation is

commonly accompanied by an ad-hoc over-specification of material to increase confidence

in the design. This is obviously undesirable from both an environmental and a business

perspective.

Numerical modeling is widely used in both industry and academia to address such in-

adequacies with empirical methods. For semicrystalline polymers, however, to date there

exists no single constitutive model that has been broadly accepted as representing the gen-

eral case. Some models used in academia have possessed the correct response characteristics

however have been limited to one-dimensional representation and so prove impractical for

industrial application. Three-dimensional models have been used in industry however due

1



CHAPTER 1. INTRODUCTION 2

to the limitations of current testing methodology, so far it has only been possible to ex-

perimentally fit simplified models that approximate the desired response within a limited

range of loading. An evident parallel can thus be drawn between the limitations of such a

methodology and those of the aforementioned empirical methods.

There is a clear and present need for a constitutive theory that bridges this gap; correctly

representing the material response and being industrially practical with respect to three-

dimensional parameter estimation. The development of such a theory has been the broad

aim of this research.

1.2 Objectives

While the definition of a constitutive theory generally applicable to semicrystalline poly-

mers has so far proven illusive, significant efforts towards such a development have been

documented over many years by many authors. Throughout such research, on both the mi-

croscopic and macroscopic scales, a fairly good understanding of the deformation behavior

of semicrystalline polymers has been developed. In this work we will focus predominantly

on the theoretical development of a suitable constitutive theory sighting the comprehen-

siveness of the previous research on the actual material deformation characteristics and the

inadequacies of the correspondingly proposed models, as justification.

In developing a generalized constitutive theory for application to semicrystalline poly-

mers, this thesis has three primary objectives:

1. To develop a criteria for a suitable constitutive model based on a survey of the liter-

ature and correspondingly propose a suitable new constitutive model for large strain,

three-dimensional representation of semicrystalline polymers.

2. To numerically implement this model for use with a commercial finite element code.

3. To establish a three-dimensional testing procedure and data manipulation method-

ology that enables the generation of the full model parameter set. It is particularly

important that this methodology utilize practical testing procedures that are com-

monly available to industry (i.e. via access to university or commercial polymer

testing laboratories).
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By achieving these objectives a constitutive theory can be developed that is both accu-

rate and practical for industrial purposes.

1.3 Outline

In Chapter 2, through review of the literature and subsequent preliminary testing, a suitable

constitutive model is formulated for representation of the finite strain, three-dimensional

response of semicrystalline polymers. Subsequently in Chapter 3, the model is numerically

implemented and preliminary numerical tests are presented to demonstrate the models

performance and versatility. In Chapter 4, this numerical model is used to develop a com-

prehensive testing and data manipulation procedure to enable the isolation of component

stress contributions from each of the relevant deformation modes, known to be of signif-

icance. In Chapter 5, a subsequent methodology is presented that uses these results to

generate the model parameters through optimization techniques. Finally, conclusions are

presented in Chapter 6.



Chapter 2

Constitutive Model Formulation

As will be reviewed in the sections to follow, many different types of constitutive models

have been proposed for application to semicrystalline polymers with varying degrees of

accuracy over a variety of different loading circumstances. To date, however, there is still

no one model that is generally accepted to perform satisfactorily over a practical range of

loading circumstances. This is mainly due to the complexity of the material’s response to

loading. As will be shown, semicrystalline polymer response comprises certain degrees of

time variant and invariant response and it is the accurate account of these that has been

the aim of the majority of previously proposed constitutive models. It could be argued that

for the general case, this goal is yet to be achieved.

In this chapter, a review of literature associated with the development of a constitu-

tive model for semicrystalline polymers is presented. The primary aim of this review is to

establish the requirements of a generally applicable model for such materials. This review

is then used as justification for the subsequent selection of a continuum mechanics model

that has not previously been suggested for semicrystalline polymers. This model is theoret-

ically compared with experimental testing on semicrystalline polymers from the literature

as means of validation.

2.1 Background

In continuum mechanics there are various forms of constitutive theories that can be used

for representation of the deformation behavior of materials. Perić and Owen (1998) outline

4



CHAPTER 2. CONSTITUTIVE MODEL FORMULATION 5

two major model types as micromechanical models and phenomenological models. Mi-

cromechanical models predict material response by simulating interactions on a molecular

level. Phenomenological theories rely on macroscopic observations of representative volumes

of material. Perić and Owen make note that the most powerful phenomenological theo-

ries should still take into account the “. . . underlying microscopic dissipation mechanisms”

(Perić and Owen (1998): 1507). One of the most common types of phenomenological the-

ories involves using a rheological model as the framework for a constitutive theory. Such

models will be the main focus of this thesis.

Rheological models are an effective tool for understanding and representing the mechan-

ical properties of a material. By combining simple elements such as springs and dashpots,

a complicated material response to loading can be represented by a combination of easily

visualized simple responses. In this form a rheological model constitutes a constitutive the-

ory. In deformation analysis, rheological constitutive theories are widely used for two main

purposes. The first of these is as a conceptual aid to help visualize the way in which a mate-

rial behaves during deformation. An example of this would be to visualize the behavior of a

spring when trying to understand elastic material behavior. The second is as a quantitative

tool for use in predicting the loaded response of a material either manually or numerically

in the form of a finite element simulation. The second of these is more pertinent to our

endeavor.

When used in the form of a quantitative constitutive theory, rheological models provide

the framework to which controlling constitutive mathematics are applied. Such mathemat-

ics can be either derived from the linear component expressions, such as Hooke’s laws in

the case of a spring, or from analogous but more complicated nonlinear theories. Such

nonlinear theories can take direction from micromechanical dissipation (Perić and Owen

(1998)). Where the linear constitutive expressions allow simplicity of formulation and im-

plementation, the nonlinear theories allow for, in many cases, a more realistic representation

of loaded responses where complicated load and rate dependencies are involved. The con-

stitutive mathematics dictate the relationships between stress and strain as well as other

parameters including strain-rate, time, temperature and material variables for each rheo-

logical component.

The configuration of a rheological model governs the interrelationships between each

element. Different positioning of springs, dashpots, etc. in a rheological model can result in
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very different model responses to deformation. The presence and timing of required forms of

deformation can be controlled by the suitable selection of model configuration. It is equally

important to have both a well constructed rheological framework and plausible constitutive

mathematics. Choosing the correct rheological configuration accompanied by constitutive

mathematics that adequately account for any required dependencies can result in a very

powerful constitutive theory as will become evident.

2.2 Review of literature

The volume of published research on the constitutive behavior of semicrystalline polymers

is extensive. Consequently, the review that follows reports on a representative cross-section

of the constitutive models proposed in such works, on which to base conclusions about the

requirements of a generally applicable model for semicrystalline polymers. This literature

survey allows informed specification of the most appropriate model for such materials.

2.2.1 Direction from micromechanics

The molecular deformation mechanisms treated by micromechanical constitutive theories

are generally measured explicitly during observation on molecular interactions using tech-

niques like X-ray scattering (G’Sell et al. (1997)). Such testing is significantly more definitive

in regards to recognition of the actual modes of deformation present (elasticity, viscoelas-

ticity, etc) than the global stress-deformation measurement techniques used in macroscopic

research. Correspondingly, while not the primary focus of this investigation, a brief review

of micromechanics would seem beneficial.

Some of the most comprehensive work on semicrystalline polymer micromechanical mod-

eling can be attributed to Drozdov and co workers (see for example Drozdov and Chris-

tiansen (2003) for polypropylene and Drozdov and Yuan (2003) for low density polyethy-

lene). Like some of Drozdov’s similar work with amorphous polymers (Drozdov (2001);

Drozdov and Kalamkarov (1996)), this work reports on an elasto-viscoelastic-viscoplastic

constitutive model that functions by mimicking molecular chain interactions to predict small

strain deformation. In the small strain region, fair agreement between model prediction and

experimental observation is reported.

A significant component of the research necessary to develop these types of models
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is associated with the determination of the actual micromechanical mechanisms occurring

during deformation. It is pertinent here to discuss some of the conclusions drawn about

such mechanisms.

It is firstly important to note that semicrystalline polymers are characterized by a mor-

phology of crystalline regions of ordered lamellae, surrounded by amorphous regions of

unordered molecular chains. The amorphous regions in close proximity to, or between crys-

talline lamellae are noted to have greatly reduced mobility and are often regarded as a

third region (Brusselle-Dupend et al. (2001); Drozdov et al. (2004); Drozdov and Chris-

tiansen (2003)). It is the interactions and behavior of these structures that account for the

complex deformation behavior of semicrystalline polymers.

It is widely accepted that on the molecular level, deformation of the semicrystalline

structure results from a combination of elastic, viscoelastic and viscoplastic modes (see for

example Drozdov and Christiansen (2003, 2004); Drozdov and Yuan (2003)). Elasticity is

associated with the stretching of molecular chains within the amorphous phase (Brusselle-

Dupend et al. (2001); G’Sell et al. (1997)). A mechanism that can be compared to the

behavior of purely hyperelastic materials such as rubbers and elastomers (Ogden (1984)).

Drozdov and co workers (Drozdov et al. (2004); Drozdov and Christiansen (2003, 2004);

Drozdov and Kalamkarov (1996)) conclude that viscoelastic response is the result of molec-

ular chain rearrangement within the amorphous phase; primarily, the separation of chains

from lamellae junctions and connection of free chains with new junctions. Thermal acti-

vation is thought responsible for these rearrangements where an increase in a molecular

chain’s energy enables its jump to a higher state (Drozdov et al. (2004)). The concept of

viscoelastic recovery is then viewed as the progressive return of the molecular chains to their

original state upon the removal of energy from the system (i.e. unloading). Viscoplastic de-

formation has been observed by Schrauwen et al. (2004) and also Drozdov and Christiansen

(2004) to initiate in the amorphous region via inter-chain slippage1. At higher strains, this

transitions into the crystalline phase where fine, and then coarse, lamellae sliding occurs

with eventual fragmentation of the crystallites.

An explicit yield threshold is commonly observed at small strain levels far before necking

(for example ε = 2% see Drozdov and Christiansen (2003)). Schrauwen et al. (2004) have
1Providing temperature is below the glass transition temperature such that the amorphous phase is in

glassy state.
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also observed additional yielding phenomena for strains in excess of necking (up to 200%

strain). The actual mechanisms of yield are noted by Drozdov and Christiansen (2003) to

be the source of some conjecture. In a general sense, the yield threshold can be related to

the thermodynamic energy level necessary to induce slippage of chain-chain bonds which are

most localized in the crystalline phase (see Schrauwen et al. (2004)). Strain hardening is also

commonly observed. G’Sell et al. (1997) explains such phenomena to be primarily the result

of lamellae fragmentation that corresponds to an increase in the restricted amorphous phase.

This phase reinforces the remaining lamellae fragments and so limits further viscoplasticity.

The chain density in the amorphous phase, before and after deformation, plays a key role

in this phenomena (Schrauwen et al. (2004)).

For the case at hand, an unfortunate downfall of micromechanical constitutive theories

arises because semicrystalline polymers have anisotropic microstructures (Drozdov et al.

(2004)), while generally exhibiting isotropic deformation response on the macroscopic scale

(given ideal moulding conditions). Correspondingly, extension of such theories to macro-

scopic applications becomes problematic and, in such cases, micromechanical models are

commonly observed to perform poorly (Drozdov and Christiansen (2003); Drozdov and

Yuan (2003)). This type of scaling discontinuity and the numerical cost due to the com-

plexities associated with implementation on a practical scale, mean micromechanical models

are inappropriate for the purposes of this work. The limitations of micromechanical mod-

els, however, in no way detract from the significance of actual molecular level deformation

measurement. A fully general macroscopic model should account for all the deformation

mechanisms observed within the microstructure, as summarized in this section.

2.2.2 Macroscopic constitutive theories

The review that follows is concerned mainly with large strain constitutive models for

semicrystalline polymers. Based on the conclusions from the preceding section, our at-

tention will be limited to models that account for some amount of elastic, viscous and

plastic deformation.

Findley et al. (1976), while largely concerned with nonlinear viscoelastic integral theo-

ries, presents a simple elasto-viscoelastic-viscoplastic rheological model termed the Burgers

model (Figure 2.1 (a)). While the linear Burgers model can reproduce the trends of some

polymer experimental curves, it has been discounted mainly due to the fact that polymer
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viscous and plastic responses are known to be nonlinear for almost all cases other than

very small strain. The work of Findley et al. (1976) recognized the need to improve on the

accuracy of such linear rheological models. As will be seen in what follows, more recent

developments in solid mechanics have allowed the use of nonlinear constitutive relationships

within rheological model frameworks, however, an additional limitation of the Burgers model

is its lack of expression for an actual yield threshold such that irrecoverable deformation is

present at all stages of loading.

(a) (b) (c) (d)

Figure 2.1: One-dimensional elasto-viscoelastic-viscoplastic rheological models used for
semicrystalline polymers by (a) Findley et al. (1976), (b) Schapery (1997), (c) Brusselle-
Dupend et al. (2001, 2003) and (d) Kletschkowski et al. (2004).

G’Sell and Jonas (1981), Kitagawa and co-workers (Kitagawa and Matsutani (1988);

Kitagawa et al. (1989); Kitagawa and Takagi (1990)) and Schang et al. (1996) all made con-

tributions toward validating an elasto-viscoelastic-plastic model for application to a wide

range of semicrystalline polymers including polyethylene, polypropylene and polyamide 12.

The model used was derived from the governing constitutive equation for a three element
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viscoelastic rheological model, adding components to the expression to incorporate nonlin-

earity and plasticity. The addition of nonlinearity and plasticity was done mathematically

and so the end model was no longer analogous to any rheological configuration. Whilst the

authors of the above papers note their theory to be elasto-viscoelastic-plastic, the overall

response is represented via a single governing constitutive equation. The fit of this theory

to experimental data would thus account for the required components of elastic, viscous

and plastic deformation automatically without explicit definition of each actual mode of

deformation. This can prove to be a weakness with single expression theories derived di-

rectly from curve fitting because extrapolation outside the ranges of testing can diverge

very rapidly from a reasonable prediction. This can be attributed to the nature of polyno-

mial type fitting. In spite of this weakness, the model was tested over a variety of different

loading cases and was shown to reproduce the experimental results well for all tested cases

of positive strain, well into the necking region. The model was shown in all cases, however,

to be inaccurate during unloading.

Lai and Bakker (1995) propose an elasto-viscoelastic-plastic integral form constitutive

theory for high density polyethylene. Total strain is additively decomposed into viscoelas-

tic and plastic components and the constitutive theory is fulfilled using data from creep

and recovery tests. The theory is shown to be accurate for simulation of various creep,

recovery and constant stress rate loading and unloading. Again the models performance is

largely based on curve fitting while having little to do with actual molecular behavior of

the material.

Schapery (1997, 1999) proposes a nonlinear elasto-viscoelastic-viscoplastic constitutive

model derived from thermodynamics. While these papers are largely theoretical the first is

written with the aim of representing fibre reinforced and un-reinforced plastics while the sec-

ond is more generally noted to apply to several materials including semicrystalline polymers.

Schapery’s model is based on the theoretical rheological framework shown in Figure 2.1 (b).

This model is similar to the Burgers model shown in Figure 2.1 (a) however it makes pro-

vision for any number of viscoelastic components as may be required and accounts for all

constitutive relationships in a nonlinear fashion. These component constitutive relations

are based on thermodynamics rather than linear rheology. Schapery discusses theories to

incorporate various additional nonlinearities, as well as other possible viscoplastic theories

that may also incorporate yield.
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Zhang and Moore (1997a,b) report on the elasto-viscoelastic-viscoplastic behavior of

high density polyethylene pipes across constant strain rate, transient strain rate, single and

cyclic loading-unloading, creep, relaxation and combination tests. They then propose a non-

linear elasto-viscoelastic model derived from nonlinear rheology and an elasto-viscoplastic

model derived from works by Bodner and Partom (1972, 1975) on steel, to represent obser-

vations. Both are uniaxial theories and the elasto-viscoplastic model assumes viscoplastic

deformation to occur at all times and thus no yield expression is required. The two theories

were compared against experimental results. It was observed that the elasto-viscoplastic

theory was the superior of the two, closely predicting the majority of results seen experimen-

tally. The nonlinear viscoelastic model was shown to be weak in predicting rapid changes

in applied strain or strain rate while the only weakness with the elasto-viscoplastic model

was its inability to predict strain reversal. While it would seem each of the tested mod-

els have certain advantages, it could be concluded that a more generally applicable model

would incorporate both components of viscoelasticity and viscoplasticity. Other limitations

with the models include the uniaxial restriction and the lack of expression for actual yield

threshold or hardening in the elasto-viscoplastic model.

One of the more comprehensive testing procedures and constitutive models for semicrys-

talline polymers to date, was published in two parts by Brusselle-Dupend et al. (2001, 2003).

They propose a uniaxial testing regime for polypropylene in the pre-necking region, designed

to isolate the elastic, viscoelastic and viscoplastic components of deformation. Preliminary

tests showed this pre-necking region to be within 11% strain for polypropylene. The au-

thors proceed to use the test data to validate an elasto-viscoelastic-viscoplastic constitutive

model based on the rheological framework shown in Figure 2.1 (c). The proposed model

contains a viscoelastic component in series with a viscoplastic component. During testing

the authors observe both kinematic and isotropic hardening and account for this in the rhe-

ological framework of the viscoplastic element. During tests at low strain, Brusselle-Dupend

et al. also report a transitional zone between purely elasto-viscoelastic response and elasto-

viscoelastic-viscoplastic response to occur at approximately 1.5 ± 0.3 % strain. Thus the

material was seen to have a definite viscoplastic yield point which was also accounted for

in the model.

The viscosity of semicrystalline polymers (dash pot coefficients, Figure 2.1 (c)) have been

shown by Eyring (1936) and later Halsey et al. (1945) to evolve with varying inelastic strain
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rate (the Eyring model). Brusselle-Dupend et al. (2001, 2003) found in experimentation

that Eyring’s expression of viscosity inadequately accounted for the viscosity of both the

viscoelastic and viscoplastic responses of polypropylene. As such, new expressions were

formulated with added dependencies on total strain rate. The new viscosity expressions

were shown by comparison to be highly superior to the polymer viscosity models used

previously.

Constitutive model validation for the Brusselle-Dupend model was carried out by com-

parison with experimental data and it was shown that the simulations closely reproduced

the expected results for multiple cases of loading including combinations of loading, unload-

ing, relaxation and recovery for several cases of strain rate. The work of Brusselle-Dupend

and co-workers makes one of the most comprehensive attempts at accounting for the many

mechanisms of semicrystalline polymers during deformation. While their model proved ac-

curate across all cases published, there are still some important limitations. The rheological

configuration is relatively complex especially the representation of strain hardening. The

formulation of the model is largely phenomenological and, while accurate in application,

it takes no direction from actual thermodynamics of the material continuum. Finally one

of the more major limitations is that the theory is formulated for uniaxial application and

would require significant work to extend the theory to account for three-dimensions.

Recently Kletschkowski et al. (2004) presented a simple rheological constitutive model to

represent the response of semicrystalline polytetrafluorethylene, (Figure 2.1 (d)). From the

configuration of the rheological model, it can be seen to sequentially account for viscoelas-

ticity, then viscoplasticity within the same viscous element, the transition being governed

by the state of yield. Throughout validation with experimental testing, Kletschkowski

demonstrates a reasonable correlation between model predictions and the results for poly-

tetrafluorethylene. While demonstrating some correct predictions, it could be concluded

that for many cases this type of model is oversimplified. It has been indicated in many of

the works reviewed above that viscoelastic and viscoplastic deformation is know to occur

simultaneously, however Kletschkowski’s model accounts for these modes sequentially and

so can be deemed to be questionable for the general case.

Perić and Dettmer (2003) presented a finite strain constitutive theory generally appli-

cable to most types of materials. Their model encompasses any combination of elastic,
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Figure 2.2: Generalized one-dimensional rheological representation of the elasto-viscoelastic-
plastic-viscoplastic Perić and Dettmer (2003) model.

viscoelastic, elasto-plastic or viscoplastic response. Simultaneous account of these deforma-

tion modes is made possible by the parallel rheological framework on which the model is

based. The generalized one-dimensional rheological representation is shown in Figure 2.2.

The accompanying constitutive mathematics are derived from thermodynamics, allowing

for both plastic and viscoplastic yield. Isotropic hardening is briefly discussed and it would

be possible to extend the theory to account for kinematic hardening, following related work

such as that of Simo and Hughes (2000). The technique of using continuum mechanics the-

ories implemented over a rheological framework has found wide prior application in specific

forms for large strain deformation of inelastic materials (mainly rubbers and steels) as in

works by Simo (1987, 1992), Simo and Hughes (1987, 2000), Perić and Owen (1992, 1998),

Reese and Govindjee (1998a) and Rosati and Valoroso (2004). Perić and Dettmer show that

in a very general sense a model of this type can be widely generalized via the parallel com-

bination of all the different types of possible elements (elastic, viscoelastic, viscoplastic and

elasto-plastic). Perić and Dettmer demonstrate the model’s versatility by presenting nu-

merical simulations completed using elasto-viscoelastic and elasto-viscoelastic-plastic forms

of the model, each sited as representing the response of various types of rubber2.

The works of Nedjar (2002a,b) deal with the formulation and numerical implementa-

tion of two large strain continuum mechanics type theories for application to filled rubbers,
2Note, constant viscosity coefficients are used in these studies.
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polymers and polymeric foams. The two different formulations are presented together and

compared. The first model is based on a parallel combination of viscoelastic and viscoplastic

rheological elements identical to a reduced form of the Perić and Dettmer model, Figure 2.2.

The second model is based on a series rheological addition of viscoelastic and viscoplastic

components, similar to that used by Brusselle-Dupend et al. (2001, 2003), shown in Fig-

ure 2.1 (c). Like the work of Perić and Dettmer, both Nedjar’s models are formulated

for three-dimensional large strain with constitutive mathematics developed from thermody-

namics. Again, only linear viscosities are used. The second series model treated, involves

no account of strain hardening and it would seem from the work presented that such a

configuration is inappropriate for the purposes of this thesis, from both a response and

implementation standpoint. The first parallel model, however, does incorporate isotropic

hardening (and as before, kinematic hardening could be included with some development)

and would seem an attractive model for semicrystalline polymers. A downfall of the spe-

cific model of Nedjar is, however, the lack of a wholly elastic component of response as was

included in the Perić and Dettmer form. It will become evident in Section 2.3, that such

an element is important for the response profiles observed during unloading and recovery,

as observed by Brusselle-Dupend et al. (2001, 2003), and so a reduced form of the model of

Perić and Dettmer would seem the more appropriate choice as will be further discussed in

the next section.

2.2.3 Model selection

It has only been in the last few decades that the technology has been available to allow

microscopic deformation analysis. The great majority of macroscopic constitutive theories

(dating back to the 1960s) were formulated based solely on experimental observation and

phenomenology, thus limiting the ability to independently distinguish actual deformation

modes. This perhaps explains the length of time it has taken for this type of research to

come to the conclusions that were confirmed so comparatively quickly by micromechanics.

Referring to the most recent works by Zhang and Moore (1997a,b) and Brusselle-Dupend

et al. (2001, 2003), the micromechanical observations that semicrystalline polymers be-

have elasto-viscoelasto-viscoplastically with viscoplastic yield and strain hardening, have all

been confirmed at macroscopic scale. In addition, macroscopic strain hardening has been

observed to occur via both isotropic and kinematic mechanisms (Brusselle-Dupend et al.
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Figure 2.3: One-dimensional elasto-viscoelastic-viscoplastic rheological model.

(2001, 2003); G’Sell et al. (1997, 1999); Haward (1993); Schrauwen et al. (2004)) while a sig-

nificant strain rate dependence of both the viscoelastic and viscoplastic viscosities has been

observed (Brusselle-Dupend et al. (2001, 2003); Eyring (1936); Halsey et al. (1945)). No one

existing model accounts for all these required behaviors and so an appropriate combination

of components from existing theories will be used.

Based on the required deforming characteristics, it is proposed that a modified elasto-

viscoelastic-viscoplastic form of the Perić and Dettmer model (shown in Figure 2.3) be

used, incorporating both isotropic and kinematic hardening as well as nonlinear viscosity

expressions comparable to those presented by Eyring (1936) and Brusselle-Dupend et al.

(2001, 2003).

A major advantage of this type of model is associated with the origins of the consti-

tutive mathematics. While not explicitly modeling the micromechanics of deformation,

continuum mechanics theories such as this are based on thermodynamic laws that represent

the global effect of molecular interactions. Thus, direct analogy between such theories and

the mechanisms discussed in Section 2.2.1 is possible.

Firstly, hyperelastic theory is used for the elastic element where the energy of deforma-

tion is related to the thermodynamic system free energy in a similar way to that used in the

micromechanical theories (Drozdov and Christiansen (2003)). For viscoelasticity, viscous
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evolution is related to thermodynamic dissipation3 and is initiated and driven via interac-

tion with a hyperelastic element, as would be the case on the molecular level. Likewise, a

hyperelastic component initiates and drives viscoplasticity whose evolution is also related to

thermodynamic dissipation. Isotropic and kinematic hardening are included which represent

the fragmentation and subsequent fibril reinforcing of crystalline lamellae. For deformation

levels up to necking, a single yield point (well below the onset of necking) represents where

microscopic yielding mechanisms become macroscopically evident.

The intimate relationship between macroscopic representation and the actual micro-

scopic deformation mechanisms, is indicative of the value of a model such as this.

2.3 Suitability of the selected rheological form to polymers

While the Perić and Dettmer parallel model configuration (Figure 2.3) is desirable from a

numerical standpoint, its explicit applicability to semicrystalline polymer response requires

confirmation. A preliminary assessment of the performance of the parallel rheological con-

figuration has been achieved using one-dimensional, linear constitutive mathematics from

rheology4. Hooke’s law (Findley et al. (1976)) was used for the elastic element constitutive

relationship, i.e.

σe = Eeε (2.1)

The spring and dashpot component mathematics used for the viscoelastic element were

Hooke’s law and a simple newtonian evolution expression (Findley et al. (1976)) respectively

σve = Eve

(
ε− εi

ve

)
, ε̇i

ve =
1

ηve
σve (2.2)

A one-dimensional form of the Perzyna model was used for the viscoplastic element (refer

to Appendix B for further details)

σvp = Evp

(
ε− εi

vp

)
, ε̇i

vp =
〈f〉
ηvp

∂f

∂σvp

f = |σvp| − σy (2.3)

Model parameters were chosen arbitrarily and are presented for completeness in Table 2.1.
3Satisfying the Clausius-Duhem form of the second law of thermodynamics (Reese and Govindjee (1998a))
4The actual nonlinear, three-dimensional constitutive mathematics are treated at length in Section 2.4.
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Table 2.1: Arbitrarily
chosen 1D linear model
parameters

Ee [MPa] 250
Eve [MPa] 1000
Evp [MPa] 1000
ηve [MPa s] 1000
ηvp [MPa s] 1000
σy [MPa] 1

The viscoelastic and viscoplastic evolution equations were solved using a Newton itera-

tion scheme, analogous to that of Reese and Govindjee (1998a). A simple strain controlled

computational implementation was used to generate the data presented in what follows. By

showing that the parallel configuration is capable of reproducing deformation characteristics

observed in the literature, the configuration is proven valid for these purposes.

2.3.1 Static loading

Some of the earliest tests on the time dependent nature of polymers were static creep-

recovery tests (Onaran and Findley (1965), Lifshitz and Kolsky (1967) and others as sum-

marized by Findley et al. (1976)). These tests involved maintaining a constant stress on a

test sample and observing the deformation response. Load removal then results in elastic

and some degree of time dependent strain recovery. This observed deformation response

can be effectively reproduced by the 3 element, elasto-viscoelastic-viscoplastic model (Fig-

ure 2.3). During loading the applied stress is distributed through the three elastic springs

with the viscoelastic and viscoplastic component springs driving time dependent deforma-

tion in the corresponding dashpots (providing spring stress exceeds that of yield in the

case of the viscoplastic element). When an applied stress is held constant the evolution

of the viscoelastic and viscoplastic dashpots proceeds while their element stresses decrease

to zero and below yield respectively. The elastic element stress increases to compensate

and maintain a constant total load. The increasing elastic element stress necessitates an

increase in total deformation and this time dependent strain increase is referred to as creep.

If viscoplastic yield is not reached during initial load application, the element will act as

an additional elastic element with an analogous increase in stress. In this way, viscoplastic

yield can either be achieved by an initially large applied stress, or as a result of increasing
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creep strain, inducing increased stress in the viscoplastic spring until yield is reached. This

property effectively reproduces the phenomenon of plastic residual strain being present in

polymer samples following long term creep testing at stresses far below the expected yield

(Findley et al. (1976)).

Release of the load results in a total model stress of zero, however due to dashpot strains

the most likely stress distribution in the springs is one of tension in the elastic element and a

counteracting compression in the other two. This residual element stress is what drives the

creep mechanism in reverse, referred to as recovery. While the viscoelastic element stress will

proceed to zero, that in the viscoplastic element will stop when the element stress decreases

below compressive yield stress. As such a residual strain remains in the model. These

results are all comparable to those observed by Onaran and Findley (1965), Lifshitz and

Kolsky (1967) and Findley et al. (1976) for actual experiments on semicrystalline polymers.

Strain control tests are a powerful type of test for formulating and testing a material

with simultaneous modes of deformation as is the case for semicrystalline polymers. Such

testing simplifies the isolation of the parallel modes of deformation and has been used almost

exclusively in more recent polymer testing. Relaxation testing is one of the earliest forms of

this type of test. A relaxation test involves maintaining a constant strain on a test sample

and observing the stress response (Findley et al. (1976)).

The response of the proposed model (Figure 2.3) during such stress relaxation can also be

audited. The initial strain application will result in a distribution of the total stress across

the three element springs driving inelastic evolution in the viscoelastic and viscoplastic

elements. Subsequently holding constant some nonzero value of strain, the elastic element

stress will remain constant while that in the viscoelastic and viscoplastic elements will

decrease as a result of the continuing evolution of the dashpots. This progressive decrease

in stress is referred to as stress relaxation. Again the viscoelastic stress will approach zero

while the stress in the viscoplastic element will become constant when the spring stress

becomes less than that of yield. This type of response is exactly as would be expected for

a semicrystalline polymer as reported by Findley et al. (1976).

2.3.2 Constant strain rate loading

Constant strain rate loading is one of the most common testing methods used for the

evaluation of polymer constitutive theories. A constant strain rate test involves a linear
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ramp in strain over time. Figure 2.4 (a) shows a constant strain rate test simulation over

time for the proposed rheological model configuration. Four graphs are shown; the top is

the magnitude of strain rate over time followed by component strain vs. time response for

the elastic, viscoelastic and viscoplastic elements respectively. The strain vs. time graphs

show the total element strain (all three elements have equal total strain), the component of

strain in the element spring and the component of strain in the dashpot is as per the key

shown. Spring and dashpot strain components are a decomposition of the total strain for

each element. For the viscoplastic element response, a faint horizontal line shows the spring

strain corresponding to the element yield stress.

Figure 2.4 (a), (b) and (c) are representative of three different strain rates applied to

the same model. It can be observed that an increase in strain rate corresponds directly

to an increase in each component’s level of spring strain and so total stress (through the

linear relationships of equation (2.1) to (2.3)). Total model stress has been calculated and

is plot against total strain in Figure 2.5 (a) for these three strain rates. Authors such as

G’Sell and Jonas (1979, 1981), Kitagawa and colleagues (Kitagawa and Matsutani (1988);

Kitagawa et al. (1989); Kitagawa and Takagi (1990)), Popelar et al. (1990), Duffo et al.

(1995), Zhang and Moore (1997a,b) and Kontou and Farasoglou (1998) have reported on

constant strain rate tensile tests of this type. Qualitative comparison between Figure 2.5

(a) and that published by Kitagawa and Takagi (1990)5, shown in Figure 2.6 (a), indicates

the proposed model’s correct account of curve shape and stress response to different applied

strain rates.

Tests that are often carried out in polymer research involve mid test transient jumps

between constant controlled strain rates. A theoretical simulation of such a test has been

carried out for the proposed rheological model. Figure 2.4 (d) shows the theoretical test

strain rate, elastic, viscoelastic and viscoplastic strain components against time. It can be

observed that for each element, jumps in strain rate effects each component of strain as if

the difference in strain rate had been added to, or subtracted from, the previous response. It

is also observed that the spring strains for the viscoelastic and viscoplastic elements always

approach the same equilibrium value for the same applied strain rate, irrespective of strain

history. Again, the total model stress response is shown against total strain in Figure 2.5

(b). The monotonic paths corresponding to each strain rate are also shown. The observed

5Indicative of all previously mentioned published experimental results of this type.
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(a) (b) (c)

(d) (e)

Figure 2.5: Theoretical total stress vs. total strain curves for the proposed elasto-
viscoelastic-viscoplastic rheological model for (a) three constant strain rate tests, (b) chang-
ing strain rate test, (c) loading-unloading test, (d) cyclic loading-unloading test and (e)
cyclic loading-relaxation test. Figures are not drawn to any scale.

path of the stress strain curve due to transient changes in strain rate, and the apparent lack

of history dependence on strain rate, has been observed in experimental testing on semicrys-

talline polymers by G’Sell and Jonas (1981), Kitagawa and Matsutani (1988), Kitagawa

et al. (1989), Kitagawa and Takagi (1990) and Zhang and Moore (1997a,b). Experimental

results from Zhang and Moore (1997a) are shown in Figure 2.6 (b) for comparison.

Various other types of tests using changing states of constant strain rate have been used

in the evaluation of polymer constitutive models. Kitagawa and Matsutani (1988), Popelar

et al. (1990), Zhang and Moore (1997a,b), Pegoretti et al. (2000), and Brusselle-Dupend

et al. (2001, 2003) have all conducted loading-unloading tests where both the loading and

unloading are conducted at a constant strain rate of the same magnitude but opposite sign.

Figure 2.4 (e) shows the theoretical strain component results for the proposed model . The

total theoretical stress in the model has been calculated, as before, and is shown against

total strain in Figure 2.5 (c). It is pertinent to note that the unloading curve has ended at

a point of zero stress but nonzero strain. This property and the shape of the loading and

unloading stress vs. strain curves are analogous to the observations from experiments of the
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(a) (b) (c)

(d) (e)

Figure 2.6: Experimental total stress vs. total strain curves taken from the literature for
(a) constant strain rate tests, Kitagawa and Takagi (1990): Figure 4, p 1947, (b) changing
strain rate test, Zhang and Moore (1997a): Figure 3, p 407,(c) loading-unloading test,
Brusselle-Dupend et al. (2003): Figure 13, p 512, (d) cyclic loading-unloading test, Zhang
and Moore (1997a): Figure 5, p 407 and (e) cyclic loading-relaxation test, G’Sell and Jonas
(1981): Figure 7, p 1962.

aforementioned authors; Figure 2.6 (c) is indicative of such results for polypropylene (taken

from Brusselle-Dupend et al. (2003)). Often an additional recovery period may follow such

a test (Brusselle-Dupend et al. (2001, 2003)). Note that such a recovery would be driven by

the residual compressive strains left in the viscoelastic and viscoplastic elements as discussed

above (see Figure 2.4 (e)).

A variation of the loading-unloading test that has been used by G’Sell and Jonas

(1981), Kitagawa and Matsutani (1988) and Zhang and Moore (1997a,b) involves cycling

the loading-unloading procedure. The theoretical strain results for such a test are shown in

Figure 2.4 (f). As was the case for the transiently changing positive strain rates in Figure 2.4

(d) and Figure 2.5 (b), the viscoelastic and viscoplastic spring strains always approach the

same levels during the same strain rate. Again the total model stress has been calculated
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and is shown against total strain in Figure 2.5 (d). It can be observed that upon reap-

plication of the loading, the stress vs. strain curve quickly approaches the path it would

have traveled were no unloading to have taken place. The shape of the reloading curve

does not match that of the initial loading; rather, it is steeper. Both of these properties

have been observed by the authors referenced above, an example of which is provided from

Zhang and Moore (1997a) in Figure 2.6 (d) for polyethylene. Another point of comparison

is that the return point of stress reached by consecutive unloading periods increases with

each unloading instance, observed in both Figure 2.5 (d) and Figure 2.6 (d).

Another form of cyclic test that is used during testing on semicrystalline polymers is

cyclic loading-relaxation. This test loads the sample at a constant strain rate and then for

a designated period of time, maintains constant strain, observing the relaxation in stress.

This portion of stress relaxation is exactly the same as has been discussed above in Section

2.3.1 except that the level of strain was reached by a ramp in strain rather than a simple

transient step. Component strains for a theoretical simulation with this type of loading

are shown in Figure 2.4 (g). The relaxation periods are simply periods of zero strain rates

as shown. The total model stress has been calculated and is shown against total strain

in Figure 2.5 (e). Again, upon reapplication of the loading, the stress-strain curve quickly

approaches the path it would have traveled were there no unloading. Comparison of the

initial loading-relaxation curve component, can be made to that reported for polypropylene

by Brusselle-Dupend et al. (2001, 2003). The results for cyclic loading-relaxation simulations

are also comparable to those found during testing by G’Sell and Jonas (1981), Kitagawa

and Matsutani (1988) and Kitagawa et al. (1989). A figure for comparison with actual

experimental result on high density polyethylene (HDPE) is given in Figure 2.6 (e) from

G’Sell and Jonas (1981).

2.3.3 Other phenomena

Another property that polymers are known to exhibit is full recovery of plastic deforma-

tion upon heat treatment. This full recovery is reported to be possible after tests of up

to 20% strain in semicrystalline polymers (Pegoretti et al. (2000)) and up to 50% strain

in amorphous polymers (Oleynik (1990) and Quinson et al. (1996)). Most importantly

Pegoretti et al. (2000) notes that the plastic deformation in semicrystalline poly(ethylene-

terephthalate) or PET resulting from tests carried up to 20% strain at room temperature,
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can be fully recovered during a 6 min heat treatment at 160˚C. This temperature is ap-

proximately 45˚C higher than the material’s glass transition temperature. The necking

point of a polymer has long been known to be influenced by temperature (Brostow and

Corneliussen (1986) and Budinski and Budinski (2002)) so it would be intuitive to pre-

dict that the actual viscoplastic yield would also be influenced in such a manner. With

this added dependency, the proposed model would be capable of reproducing the plastic

recovery observed by Pegoretti et al. (2000).

With correct expression of the temperature dependency of the viscoplastic yield stress

in both tension and compression, the proposed model would be capable of total thermal

plastic recovery. Referring to the earlier explanation, recovery is driven by non-zero residual

element spring stresses. Following load removal, the compression in the viscoelastic com-

ponent drives a full recovery of deformation. The viscoplastic element does not however

recover because in most room temperature cases, the compressive yield of the material will

be far greater than the residual compressive stress left in the viscoplastic component. Al-

lowing a high enough recovery temperature to reduce the compressive yield stress toward

zero, would allow free compressive evolution in the viscoplastic dashpot, comparable to that

observed in the viscoelastic component. Given enough time at the elevated temperature

with compressive yield stress equal to zero, the model would fully recover as is observed by

Pegoretti et al. (2000) in real materials.

It is finally pertinent to note that the absence of strain hardening in the linear model

presented here is an important discrepancy between the calculated curve responses and

those observed in reality. Hardening is, however, taken into account in the more advanced

nonlinear constitutive mathematics outlined in what follows.

2.4 Formulation of constitutive mathematics

A complete set of constitutive equations will be presented to act as a comprehensive colla-

tion of continuum mechanics constitutive theory for application to semicrystalline polymers.

Perić and Dettmer (2003) provide a brief outline of constitutive equations and their founda-

tions; these will be treated in more detail here including explicit definition of isotropic and

kinematic hardening suitable for the semicrystalline polymer case. The numerical implica-

tions of incorporating strain rate dependent viscosity expressions for a three-dimensional,
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large strain model will also be presented.

2.4.1 Kinematics and thermodynamics

Let us first establish some of the kinematic and thermodynamic foundations that the theory

will depend on.

Of particular importance to the measurement of finite deformation is the second order

deformation gradient tensor, F (Bonet and Wood (1997)). A key characteristic of finite

deformation is the presence of rigid body motion. A consequence of this is that some

arbitrary vector within the continuum of a deforming body can be described either in terms

of its position in space or relative to its initial material position. These are referred to as

Eulerian and Lagrangian descriptions respectively. The deformation gradient describes the

final spatial configuration of such a vector with respect to its initial material configuration.

The deformation gradient is evidently related to strain in both Lagrangian and Eulerian

space, hence its importance to continuum mechanics.

Restriction of strain measurement into specific Lagrangian or Eulerian description results

in the common measures of tensorial strain; C = F T F , the Lagrangian right Cauchy-

Green strain tensor and b = FF T , the Eulerian left Cauchy-Green strain tensor. Spectral

decomposition of these quantities enables the recovery of principal strain measures used

widely in engineering. This decomposition is treated at length by authors such as Bonet

and Wood (1997), Simo and Taylor (1991) and Itskov (2000, 2001, 2002), i.e.

C =
3∑

A=1

ΛANA ⊗NA b =
3∑

A=1

ΛAnA ⊗ nA (2.4)

where ΛA, A = 1, 2, 3 are the common eigenvalues of C and b while NA and nA are

the Lagrangian and Eulerian eigenvector triads respectively (Bonet and Wood (1997)).

Correspondingly, λA =
√

ΛA are the principal stretches and εA = ln (λA) are the logarithmic

principal strains each commonly used in the experimental literature (Brusselle-Dupend et al.

(2001, 2003), G’Sell and Jonas (1979), Twizell and Ogden (1983), for example).

The constitutive model treated here accounts for the parallel addition of elastic, vis-

coelastic and viscoplastic components (Figure 2.3). The constitutive behavior of the elastic

element is associated with total deformation, however for the viscoelastic and viscoplastic

elements it is necessary to separate total deformation into elastic and inelastic components.
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Figure 2.7: The multiplicative split of the deformation gradient into elastic and inelastic
components.

In tensor space, this is facilitated via the multiplicative split of the deformation gradient,

first introduced in the works of Kröner (1960) and Lee and Liu (1967) and now used widely

in solid mechanics (Bonet and Wood (1997)), i.e.

F = F eF i (2.5)

This is diagrammatically represented in Figure 2.7. From the figure, where the total de-

formation gradient maps the initial configuration, A to its deformed configuration C, it is

conceptually equivalent to allow the elastic component F e to map A to some intermediate

configuration B and correspondingly for the inelastic component F i, to map B to the fi-

nal configuration C. From rearrangement of (2.5), it is convenient to establish the elastic

components of right and left Cauchy-Green strain as

Ce = F e T F e be = F eF e T (2.6)

Within continuum mechanics, a large part of the accurate expression of a material’s

constitutive behavior is associated with expression of the material’s thermodynamic free

energy, ψ (Bonet and Wood (1997); Simo and Taylor (1991)). Referring to Reese and
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Govindjee (1998a), the expression of free energy can be given

ψ = ψ̂ (C, ξ1, ξ2, ..., ξn) (2.7)

where for some isothermal process, the free energy is a function of strain, C, and some set

of internal variables, ξi, i = 1, 2, ..., n. Note that because the free energy is a continuum

quantity, it must be defined in terms of Lagrangian strain6.

The strain dependence of the free energy is commonly associated with elastic mecha-

nisms (Ogden (1984)) while the internal variables are generally associated with the inelastic

response (Perić and Dettmer (2003); Simo and Hughes (2000)) which gives rise to the de-

coupled expression treated by Perić (1993)

ψ̂ (Ce, ξ1, ξ2, ..., ξn) = Ŵ (Ce) + Ĥ (ξ1, ξ2, ..., ξn) (2.8)

where Ŵ is the elastic thermodynamic potential, examples of which include the St. Venant-

Kirchhoff (elastic), and Ogden (hyperelastic) models (Bonet and Wood (1997)), while the

definition of Ĥ clearly depends on the nature of the internal variables. Given that ψ̂

is associated with material deformation that can be separated into elastic and inelastic

components via (2.5), then Ŵ is only functional on the elastic component as shown (Nedjar

(2002a); Reese and Govindjee (1998a)). It follows that for a purely elastic material, Ce = C

such that

ψ̂ (C) = Ŵ (C) (2.9)

where no internal variables are necessary.

Focusing on the particular case of an elasto-viscoelastic-viscoplastic constitutive theory,

because of the parallel configuration (Figure 2.3), it is a common convention to define the

total free energy expression via the sum of the components (Holzapfel (1996); Holzapfel and

Simo (1996); Nedjar (2002a); Reese and Govindjee (1998a)) as

ψ = ψ̂e (C) + ψ̂ve (Ce
ve, ηve) + ψ̂vp

(
Ce

vp, ηvp, α,α
)

(2.10)

where α and α are viscoplastic internal variables associated with isotropic and kinematic
6When a material is isotropic, the free energy can also be expressed as a function of Eulerian strain (b

for example, see Reese and Govindjee (1998a)) however this is an unnecessary modification for the present
development.
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hardening respectively, and also, contrary to the traditional form of ψ̂ve and ψ̂vp (for example

Reese and Govindjee (1998a); Perić and Dettmer (2003) for viscoelasticity and Perić (1993);

Perić and Dettmer (2003); Simo (1992); Simo and Hughes (2000) for viscoplasticity), the

viscosity terms ηve and ηvp have been included as additional internal variables. This is due to

the requirement that the viscosity terms used in any constitutive model for semicrystalline

polymers, have some functionality on strain (Section 2.2.3). We will elaborate further on

this point in subsequent sections.

2.4.2 Stress

To allow definition of the constitutive stress expression, it is necessary to observe that, fol-

lowing authors such as Holzapfel (1996), Nedjar (2002a) and Reese and Govindjee (1998a),

all constitutive equations must satisfy the 2nd law of thermodynamics. In Lagrangian de-

scription, this can take the form of the Clausius-Plank inequality7

S : 1
2Ċ − ψ̇ ≥ 0 (2.11)

where S is the second Piola-Kirchhoff stress tensor. By the standard development (Nedjar

(2002a); Perić and Dettmer (2003); Reese and Govindjee (1998a); Simo (1992)), implemen-

tation of (2.10) into (2.11) enables the explicit definition of the stress expression. This

development is included in Appendix A.

From Appendix A, the total second Piola-Kirchhoff stress is given

S = 2
∂ψ̂e

∂C
+ 2F i−1

ve

∂ψ̂ve

∂Ce
ve

F i−T
ve + 2F i−1

vp

∂ψ̂vp

∂Ce
vp

F i−T
vp

= Se + Sve + Svp (2.12)

In solid mechanics, while the account of the constitutive behavior of a material is in-

herently Lagrangian (Bonet and Wood (1997)), a commonly used implication scheme is the

Updated Lagrangian scheme (Chen and Mizuno (1990)) which requires the stress tensor (and

subsequent tangential modulus tensor, see Chapter 3) to be treated in Eulerian form. Thus

it is convenient to also define the Eulerian counterpart to S; the Kirchhoff stress tensor τ .

Lagrangian and Eulerian quantities are related through the concepts of push forward and
7also commonly referred to as the Clausius-Duhem inequality.
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pull back (Bonet and Wood (1997); Simo and Taylor (1991)) where the Kirchhoff stress can

be attained from the second order push forward of S via

τ = FSF T (2.13)

Implementing (2.13) in (2.12), then

τ = 2F
∂ψ̂e

∂C
F T + 2F e

ve

∂ψ̂ve

∂Ce
ve

F e T
ve + 2F e

vp

∂ψ̂vp

∂Ce
vp

F e T
vp

= τ e + τ ve + τ vp (2.14)

Because of the functionality of τ ve and τ vp on the elastic component of strain, it remains

to define the evolution of inelastic strain8.

2.4.3 Viscoelastic evolution equations

Limiting our attention to the evolution of the viscoelastic response, following from Appendix

A, this must satisfy the inequality

τ ve :
(−1

2 (Lvb
e
ve) be−1

ve

)− ∂ψ̂ve

∂ηve
· η̇ve ≥ 0 (2.15)

The righthand −∂ψ̂ve

∂ηve
· η̇ve term is associated with the evolution of the viscosity internal

variable and will be treated later. The remaining term is associated with strain evolution

and is of primary interest.

Reese and Govindjee (1998a) introduce the expression

−1
2

(Lvb
e
ve) be−1

ve := V−1 : τ ve (2.16)

such that the left hand side of (2.15) becomes

τ : V−1 : τ ≥ 0 (2.17)

which is satisfied for all cases of τ providing V−1 is positive definite.
8Note, tensorial elastic and inelastic deformation can be related through Ce = F i−T CF i−1, thus deter-

mining the inelastic evolution also enables resolution of Ce.
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The left hand term of (2.16) is related to the rate of inelastic material strain through

operator split theory (Ortiz et al. (1983)). For the current investigation it is sufficient to

draw the analogy between (2.16) and the dashpot expression, (2.2)2, of the infinitesimal 1D

theory where, in fourth order tensor space, V−1 represents the inverse viscosity term.

An inverse viscosity term suitable for polymers has been proposed by Reese and Govin-

djee (1998a) as

V−1 =
1

2ηD

(
I ′4 − 1

3I ⊗ I
)

+
1

9ηV
I ⊗ I (2.18)

where ηD and ηV are deviatoric and volumetric components of viscosity respectively. The

authors indicate that the viscosity terms ηD and ηV could be strain dependent but offer no

further development. The terms (I ′4 − 1
3I ⊗ I) and I ⊗ I operate through the double con-

traction with τ ve to isolate the deviatoric and volumetric components of stress respectively

(Simo (1992)). Here I ′4 ijkl = 1
2(δikδjl + δilδjk) is the supersymmetric 4th order identity

tensor and Iij = δij is the 2nd order identity tensor (Bonet and Wood (1997)). Holzapfel

(1996) notes that based on experimental results, the inelastic evolution of most polymeric

materials is wholly deviatoric and consequently, the volumetric term from (2.18) can be

ignored (i.e. ηV −→ ∞). Such a reduced form of (2.18) has been accurately implemented

in the works of Perić and Dettmer (2003) and Reese and Govindjee (1998a), supporting

such a restriction.

It is left to establish the actual form of viscosity expression that would allow adequate

account of the strain rate dependence observed for semicrystalline polymers.

In the context of one-dimensional, finite deformation, Brusselle-Dupend et al. (2001,

2003) have proposed a viscosity expression for the viscoelastic response of semicrystalline

polypropylene as

ηve =
h0 − h1 exp

{
h2

|ε̇e|+3×10−5

|ε̇i|
}
− h3 exp

{
h4

|ε̇e|+3×10−5

|ε̇i|
}

(|ε̇e|+ 3× 10−5)ne (2.19)

where h0,1,...,4 and the exponent ne are material constants. This equation was developed due

to the reported inadequacies with the conventionally used Eyring equation (Eyring (1936);

Halsey et al. (1945)) when applied to semicrystalline polymer response.

For three-dimensionality, the viscosity of a material remains a scalar quantity (as per

equation (2.18)) however the multidimensional dependencies of this value have not been
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treated with any generality in the literature, particularly for the case at hand. It is ad-

ditionally relevant to note, however, that Brusselle-Dupend et al. (2001, 2003) assumed

material elasticity to be linear such that, within the current context, (2.19) may also prove

overly nonlinear. It would appear that a significant amount of experimental work is needed

to allow development of a three-dimensional analog9 to (2.19).

Developing on this concept briefly, because of its strain dependence, the viscosity is

considered to be an internal variable in a similar way to the strain hardening terms from

plasticity. Following from Perić and Owen (1998), Reese and Govindjee (1998a) and Simo

and Hughes (2000) it would be most desirable to define the constitutive behavior of internal

variables via their evolution, i.e.

η̇ve = η̂ve

(
Ci

ve, ηve

)
= η̂ve

(
F T be−1

ve F , ηve

)
(2.20)

By specifying the constitutive behavior of the viscosity in this way, a numerical solution

scheme such as closest point projection, conventionally used in plasticity (Perić (1993); Simo

and Hughes (2000)), could be used for the simultaneous solution of strain, (2.16), and vis-

cosity, (2.20). When viscosity is constant, the viscoelastic constitutive theory can be imple-

mented via a local Newton iteration scheme (Reese and Govindjee (1998a)). Closest point

projection can be interpreted as being an extension to such implementation, performing the

Newton iteration for two or more mutually dependent variables.

An additional requirement of the constitutive behavior of the viscosity is that the evolu-

tion expression, (2.20), and the free energy component Ĥve (ηve), must suitably satisfy the

right hand side of the dissipation requirement, (2.15).

2.4.4 Viscoplastic evolution equations

The derivation of the constitutive equations for one-dimensional viscoplasticity with isotropic

and kinematic hardening is presented for reference in Appendix B.

For three-dimensional large strain, as for viscoelasticity above, the viscoplastic consti-

tutive equations must satisfy the thermodynamic dissipation requirement (Appendix A)

τ vp :
(−1

2

(Lvb
e
vp

)
be−1

vp

)− ∂ψ̂vp

∂ηvp
· η̇vp − ∂ψ̂vp

∂α
· α̇− ∂ψ̂vp

∂α
: α̇ ≥ 0 (2.21)

9Note, it would be possible to substitute principal vector quantities (from (2.4)) for the scalar strain rates
in (2.19) however this would only be a means of preliminary conceptual implementation.
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where again viscosity is implemented as a strain dependent internal variable and the scalar

α, and tensorial α, internal variables are associated with isotropic and kinematic hardening

mechanisms respectively (akin to αiso and αkin from the one-dimensional theory).

As was the case for the one-dimensional derivation in Appendix B, it is again pertinent

to introduce the stress space conjugates to the isotropic and kinematic hardening internal

variables, namely q and q. By a similar argument to that which motivated the formulation

of (2.8), referring to Perić (1993), Simo (1992) and Simo and Hughes (2000), the viscoplastic

free energy can be expressed

ψ̂(Ce
vp, ηvp, α,α) = Ŵ(Ce

vp) + Ĥη
vp(ηvp) + Ĥα

vp(α) + Ĥα
vp(α) (2.22)

Implementing a combined, linear isotropic/kinematic hardening law following Hughes (1984)

and Simo and Hughes (2000), it can be shown that

Ĥα
vp = 1

2θH̄ α2 Ĥα
vp = 1

2 (1− θ) H̄ α : α (2.23)

∂Ĥα
vp

∂α
= θH̄ α = −q

∂Ĥα
vp

∂α
= (1− θ) H̄ α = −q (2.24)

where H̄ is a constant parameter representing the combined hardening modulus and θ defines

the proportions of isotropic and kinematic hardening; θ ∈ [0, 1]. It follows directly from

(2.24) that the actual hardening moduli are given

−∂2Ĥα
vp

∂α2
= −θH̄ =

∂q

∂α
− ∂2Ĥα

vp

∂α2
= − (1− θ) H̄I ⊗ I =

∂q

∂α
(2.25)

These constant terms are inferred to be suitable for the current purpose however for more

complex hardening characteristics, alternate specification of Ĥα
vp and Ĥα

vp can be used.

Given the stress space hardening internal variables, it is possible to carry out a three-

dimensional study of the effects of strain hardening on the yield surface as was done for

the one-dimensional case (Appendix B). Following Simo (1992), Simo and Hughes (2000)

and Zienkiewicz and Taylor (2003), selection of the von-Mises yield surface gives the yield

function

f (τ vp + q, q) = ‖τ vp + q‖ −
√

2
3 (σY − q) (2.26)

Physically
√

2
3(σY −q) quantifies the radius of the yield surface, while −q defines its center.
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As for the viscoelastic case, inelasticity is assumed to have only deviatoric components, i.e.

f (τ̄ vp + q, q) = ‖τ̄ vp + q‖ −
√

2
3 (σY − q) (2.27)

where τ̄ vp = dev[τ vp] and now the internal variable q is wholly deviatoric so that tr[q] = 0.

Following a similar development as for the one-dimensional case in Appendix B, Perzyna

(1971) and subsequent authors such as Simo (1992), Simo and Hughes (2000), Perić and

Owen (1992), Perić and Dettmer (2003) and Rosati and Valoroso (2004) define the evolution

expression

−1
2

(Lvb
e
vp

)
be−1

vp =
〈f (τ̄ vp + q, q)〉

2ηvp

∂f (τ̄ vp + q, q)
∂τ̄ vp

(2.28)

Once again, an analogy is evident between this inelastic evolution and that reported for the

one-dimensional case in Appendix B.

Referring to the explicit formulations of Simo (1992), Simo and Hughes (2000) and

Zienkiewicz and Taylor (2003), the evolution of the strain space hardening internal variables

in tensor space can subsequently be defined

α̇ =
〈f (τ̄ vp + q, q)〉

2ηvp

∂f (τ̄ vp + q, q)
∂q

(2.29)

α̇ =
〈f (τ̄ vp + q, q)〉

2ηvp

∂f (τ̄ vp + q, q)
∂q

(2.30)

Returning our attention to the dissipation requirement, (2.21), neglecting the viscosity

term10, substitution of equations (2.24), (2.27), (2.28), (2.29) and (2.30) yields with some

manipulation

(τ vp + q) :
〈f〉
2ηvp

(I ′4 − 1
3I ⊗ I)

‖τ vp + q‖ : (τ vp + q) + q ·
√

2
3

〈f〉
2ηvp

≥ 0 (2.31)

which is unconditionally satisfied given that from definition of the ramp function, (B.8),

〈·〉 ≥ 0 and also from the known behavior of isotropic hardening q ≥ 0.

The considerations regarding strain rate dependence of the viscosity for the viscoplastic

case are identical in form to those presented in Section 2.4.3 for the viscoelastic case.

Consequently, no further discussion is necessary within the current investigation.
10Satisfaction of the dissipation requirement must be considered during formulation of an expression for

viscoplastic viscosity, as was the case for viscoelasticity discussed in Section 2.4.3.
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Exact specification of the elastic thermodynamic potential terms, Ŵe(C), Ŵve(Ce
ve) and

Ŵve(Ce
vp), to be used within a constitutive theory for semicrystalline polymers is largely

case specific. Generally any elastic or hyperelastic form of thermodynamic potential could

be chosen (see Bonet and Wood (1997)). A suggestion would be to use hyperelastic Ogden

potentials for the elastic (Simo and Taylor (1991)) and viscoelastic (Reese and Govindjee

(1998a)) elements and an elastic type St. Venant-Kirchhoff potential for the viscoplastic

element (Simo (1992)). The choice of free energy expression must be governed by experi-

mental observation because it must represent the thermodynamic potential of the material.

As such final selection of the exact free energy form requires response curves from physical

tests. For a more detailed discussion of hyperelastic free energy expressions for numerical

use see Simo and Taylor (1991), Simo (1992), Perić and Owen (1992), Reese and Govindjee

(1998a), Simo and Hughes (2000) and Perić and Dettmer (2003).

2.5 Summary

The aim of this chapter has been to determine the most appropriate constitutive theory for

semicrystalline polymers based on a review of the literature. The agreement between both

microscopic and macroscopic research on the required characteristics of such a model, give

strength to the model which has been selected. A preliminary study has shown the chosen

parallel rheological model configuration to be suitable across a wide range of complex defor-

mation behaviors based on comparison with experimental observations from the literature.

The model’s constitutive mathematics have been presented in their most general form with

the objective of being broadly applicable to all semicrystalline polymers.



Chapter 3

Numerical Implementation and

Verification

The numerical implementation of the constitutive theory developed in Chapter 2 is pre-

sented here. Of particular importance is the assumption of isotropy which enables the

reduction of the previously defined constitutive relations into principal space. This reduc-

tion is motivated most significantly by the impracticality of fitting full tensor space model

parameters to experimental data, particularly for a complex response such as this. The

transition between principal constitutive representation and the tensor space stress and

tangential modulus terms, critical to implicit numerical implementation, is a nontrivial

aspect of such a reduction.

The numerical treatment of principal space hyperelasticity (elasticity being a subgroup)

has been presented with some generality by Simo and Taylor (1991) and also Itskov (2001).

Throughout the respective principal space algorithmic developments, the dependence of

the explicit stress and tangential modulus tensor expressions on the conditioning of the

principal stretches is fully developed. This is a key characteristic of the numerical treatment

of principal stretch theories.

A suitable implementation of a finite strain viscoelastic theory in principal stretches

is reported by Reese and Govindjee (1998a). The solution strategy used is akin to the

operator split methodology used in plasticity (Ortiz et al. (1983)), while integration of the

evolution equation is done using Newton’s method. The authors report on the development

of the consistent closed-form tangential modulus with some detail on the transition between

35
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spectral and tensor quantities.

There is significant development in the literature on the numerical treatment of vis-

coplasticity. Simo and Hughes (2000) make note of three general classes of return mapping

algorithms commonly used in plasticity. The first of these is radial return mapping. Simo

(1992) most comprehensively treats such an algorithm for viscoplasticity including account

of both isotropic and kinematic hardening. Simo’s development was based on principal plane

constitutive expressions, including a brief account of the reconstruction into tensor space.

Radial return mapping has been applied widely within plasticity however the methodol-

ogy necessitates specialized formulation for each different constitutive account of elasticity,

yield, flow and hardening. An integration algorithm for the general case is the closest point

projection method (Simo and Hughes (1987, 2000)). This methodology is mathematically

more rigorous however the actual formulation is carried out independent of the specific con-

stitutive relationships, thus enabling general application. Simo and Hughes (2000) present a

closest point projection method for viscoplasticity, while most significantly, Perić and Owen

(1992) and Perić (1993) report on the use of closest point projection for viscoplasticity

with the addition of isotropic hardening. All three developments are presented for tensor

space constitutive expressions including formulation of the consistent tangential modulus.

The third class of integration algorithms is the cutting plane algorithm (Simo and Hughes

(1987, 2000)). Such an algorithm, whilst possessing certain advantages, has been deemed to

be inappropriate for the current purposes, see Simo and Hughes (1987) and the references

therein for further reading on cutting plane algorithms.

The parallel addition of model elements within the chosen model (Figure 2.3) facili-

tates the decoupled algorithmic treatment of each response. Correspondingly, these will be

treated separately in the sections that follow.

3.1 Generalized elasticity

The constitutive model outlined in Chapter 2 utilizes elastic, viscoelastic and viscoplastic

deforming responses combined in parallel. Within this section, after treating preliminary

kinematic and thermodynamic principals, the generalized finite strain numerical implemen-

tation of the elastic (or more correctly hyperelastic) element will be discussed. Of primary

significance is the derivation of the generalized closed-form tangential modulus, expressed in
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terms of principal stretches. Such an expression has been treated by Simo and Taylor (1991)

and also Itskov (2001) however there still remains room for generalization, particularly in

regards to the mathematical foundations of the theory.

3.1.1 Volumetric-deviatoric strain separation

The vast majority of constitutive theories used for numerical application (hyperelastic or

otherwise) treat deformation as being separable into volumetric and deviatoric components.

This separation has a firm basis in experimental observation (see for example Simo and

Taylor (1991), Reese and Govindjee (1998a) and Holzapfel (1996)) and is a largely accepted

convention in all but the most specialized of cases. The theories treated herein will adhere

to this convention.

Separation of response into volumetric and deviatoric components is carried out via the

multiplicative split of the deformation gradient, F as

F = F volF̄ (3.1)

where, given the scalar jacobian of F , J = det [F ], the volumetric and deviatoric compo-

nents of the deformation are respectively

F vol = J 1/3I (3.2)

F̄ = J −1/3F (3.3)

Recalling the right and left Cauchy-Green strain tensors introduced in Section 2.4.1 and

observing this alternate split of the deformation gradient, then from equations (3.1) to (3.3)

C = CvolC̄ b = bvolb̄ (3.4)

where

Cvol = J 2/3I bvol = J 2/3I (3.5)

C̄ = J −2/3C b̄ = J −2/3b (3.6)

Because, for the current development, deformation is wholly elastic, the elastic-inelastic
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multiplicative split of the deformation gradient as in (2.5) is at this stage unnecessary.

3.1.2 Thermodynamics in tensor space

As discussed in Section 2.4.1, the constitutive behavior of a purely hyperelastic material

is typically represented by expression of the material’s thermodynamic free energy (as in

(2.9)). In view of the separability of strain into volumetric and deviatoric components, a

corresponding separation of this free energy term commonly takes the form

ψ = ψ̂ (C) = Û (J) + Ŵ (
C̄

)
(3.7)

where the functions Û and Ŵ describe volumetric and deviatoric components of thermo-

dynamic potential respectively. The St. Venant-Kirchhoff (elastic), Neo-Hookean, Moony-

Rivlin and Ogden models are examples of hyperelastic theories of this sort (Bonet and Wood

(1997)).

Following the development of Appendix A and Section 2.4.2, the second Piola-Kirchhoff

stress tensor expression for a purely hyperelastic material is given

S = 2
∂ψ̂ (C)

∂C
(3.8)

Implementing the chain rule in view of the separated form of (3.7) this becomes

S = 2
∂Û
∂J

∂J

∂C
+ 2

∂Ŵ
∂C̄

∂C̄

∂C
(3.9)

Given the push forward operation of (2.13), the separated Eulerian Kirchhoff stress term

can be trivially found from manipulation of (3.9). An alternate form of Eulerian stress

commonly used in solid mechanics is the Cauchy or true stress σ, which is correspondingly

defined

σ =
1
J

τ =
1
J

FSF T =
2
J

F
∂ψ̂ (C)

∂C
F T (3.10)

Cauchy stress is generally the form of most interest for implicit, updated Lagrangian, stress

update solution schemes.

Referring to for example Bonet and Wood (1997), following from (3.8), the Lagrangian
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form of the fourth order tangential modulus tensor is defined

C = 2
∂S

∂C
= 4

∂2ψ̂ (C)
∂C2 (3.11)

Again observing the separated volumetric and deviatoric components of free energy, by the

chain rule

C = 4
∂2Û
∂J2

∂J

∂C
⊗ ∂J

∂C
+ 4

∂Û
∂J

∂2J

∂C2︸ ︷︷ ︸
vol

+4
∂2Ŵ
∂C̄

2

∂C̄

∂C
⊗ ∂C̄

∂C
+ 4

∂Ŵ
∂C̄

∂2C̄

∂C2

︸ ︷︷ ︸
dev

(3.12)

The Eulerian tangential modulus counterpart1 can be found via the fourth order push

forward of the Lagrangian term such that

c =
1
J

FFCF T F T (3.13)

Equation (3.12) (and its corresponding substitution in (3.13)) constitute expression of

the complete closed form tangential modulus for hyperelastic materials in tensor form.

3.1.3 Spectral decomposition of strain

The assumption that the response of a material to loading is isotropic enables the reduction

of constitutive representation into principal planes. A major advantage of such a representa-

tion is the significant reduction in experimental work required to fit and validate constitutive

relationships, particularly in the more complex of cases. This being said, most practical

numerical implementations will operate in full tensor space and so the implications of the

necessary spectral reconstruction are of significant importance, as will become clearer in

what follows.
1Note here that c is the tangential modulus corresponding to Cauchy stress
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Initially recalling the tensor strain quantities from Section 2.4.1, the spectral decompo-

sitions proceed

C =
3∑

A=1

ΛANA ⊗NA =
3∑

A=1

λ2
ANA ⊗NA (3.14)

b =
3∑

A=1

ΛAnA ⊗ nA =
3∑

A=1

λ2
AnA ⊗ nA (3.15)

F =
3∑

A=1

λAnA ⊗NA (3.16)

where now we refer to the NA ⊗NA and nA ⊗ nA terms as the Lagrangian and Eulerian

eigenvalue bases respectively. For convenience we introduce the notation NA⊗NA = MA

and nA ⊗ nA = mA.

The calculation of the eigenvalues proceeds in the conventional manner (Fitz-Gerald

and Peckham (1998)) by solving the characteristic equation

det [C − ΛI] = 0 (3.17)

here for the case of the right Cauchy-Green strain tensor. Due to C being a second order,

3× 3 tensor, it will have up to three distinct eigenvalues.

The determination of eigenvalue bases is wholly contingent on the presence of distinct

eigenvalues. Coalescence (equality) of two or more eigenvalues means that the corresponding

eigenvalue bases cannot be algebraically determined. It is this fact that necessitates the

separate treatment of spectral reconstruction dependent on the exclusivity of the three

eigenvalues as is done by both Simo and Taylor (1991) and Itskov (2001).

At this point it is convenient to exploit the pull back of the Eulerian eigenvalue bases,

recalling the spectral decomposition of F from equation (3.16) such that

F−1 (mA) F−T = λ−2
A MA = M̃A (3.18)

where here we refer to M̃A as the modified Lagrangian eigenvalue base noting that the

push forward of M̃A results directly in the actual Eulerian eigenvalue base mA.

Itskov (2001) provides a valuable definition of the Lagrangian eigenvalue bases MA. So

as to facilitate a more straight forward transition to Eulerian description, primarily for the
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further development that follows, we carry out a similar procedure for M̃A in Appendix

C.1. The results for these modified Lagrangian eigenvalue bases for all cases of eigenvalue

exclusivity are presented in the appendix. Taking the second order push forward of the

expression for the case of three distinct eigenvalues2, the Eulerian eigenvalue bases can be

found via

mA =
b2 − (IC − ΛA) b + IIICΛ−1

A I

DA
A = 1, 2, 3 (3.19)

A similar procedure can be performed for the other cases.

Extending the concept of spectral decomposition to the multiplicative split of C into

volumetric and deviatoric components, follows directly from (3.4)1, (3.5)1, (3.6)1 and (3.14)

such that

C = CvolC̄ (3.20)

Cvol = F T
volF vol = J 2/3I (3.21)

C̄ = F̄
T
F̄ =

3∑

A=1

J−2/3λ2
ANA ⊗NA =

3∑

A=1

λ̄2
ANA ⊗NA (3.22)

where in principal space J = λ1λ2λ3 and where λ̄A = J−1/3λA are defined as the deviatoric

principal stretches. An identical procedure can be carried out for the Eulerian counterpart,

b. It is important to note that the eigenvalue bases remain unchanged after the volumetric-

deviatoric separation.

As was discussed in Section 3.1.2, the constitutive behavior of hyperelastic materials

is represented by an expression of the thermodynamic free energy, equation (3.7). The

reduction of this constitutive representation into principal planes requires reformulation of

the free energy expression in terms of principal stretch quantities as

ψ = ψ̂ (λ1, λ2, λ3) = Û (J) + ω̂
(
λ̄1, λ̄2, λ̄3

)
(3.23)

Note (3.23) is consistent with (3.7) because the deviatoric term (here ω̂) is now functional

on the deviatoric principal stretches λ̄A.
2Note FCF T = b2, FIF T = b and FC−1F T = I
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3.1.4 Stress expression in principal stretches

Equation (3.23) constitutes a reformulation of the hyperelastic constitutive theory in prin-

cipal planes. It is, however, still necessary to relate this potential to tensor space stress

for the majority of solid mechanics implementations. This can be achieved via the direct

modification of (3.9) following the methodology presented here.

Substituting (3.23) and with further implementation of the chain rule, the second Piola-

Kirchhoff stress tensor expression becomes

S = 2
∂Û
∂J

∂J

∂C
+ 2

3∑

A=1

3∑

B=1

∂ω̂

∂λ̄B

∂λ̄B

∂λA

∂λA

∂C
(3.24)

For convenience here, we introduce the principal deviatoric stress term βA such that

βA =
3∑

B=1

∂ω̂

∂λ̄B

∂λ̄B

∂λA
λA =

∂ω̂

∂εA
A = 1, 2, 3 (3.25)

where εA are the principal logarithmic strains and so the second Piola-Kirchhoff stress is

then

S = 2
∂Û
∂J

∂J

∂C
+

3∑

A=1

βA

(
2λ−1

A

∂λA

∂C

)
(3.26)

Within (3.26) it can be observed that the jacobian and principal stretch derivative terms,

∂CJ and ∂CλA, must be second order tensors and so consequently these can be viewed as

driving the spectral reconstruction from principal quantities to tensor space. Once again

Itskov (2001) provides a complete derivation of the eigenvalue derivatives, functional on the

Lagrangian eigenvalue bases. An alternative derivation is provided in Appendices C.2 and

C.3 for the principal stretch and jacobian derivatives, functional on the modified Lagrangian

eigenvalue bases M̃A.

Using the results from Appendices C.2 and C.3, the stress tensor expressions for the

three different cases of eigenvalue exclusivity are defined as follows

(1) Distinct eigenvalues Λ1 6= Λ2 6= Λ3

From (C.19) and (C.29), the second Piola-Kirchhoff stress expression becomes

S =
∂Û
∂J

JC−1 +
3∑

A=1

βAM̃A (3.27)



CHAPTER 3. NUMERICAL IMPLEMENTATION AND VERIFICATION 43

Following the push forward (3.10), the Cauchy stress tensor is given by3

σ =
∂Û
∂J

I +
1
J

3∑

A=1

βAmA (3.28)

(2) Double coalescence of eigenvalues Λ1 6= Λ2 = Λ3 = Λ

Noting that because λ2 = λ3 = λ, following with some development from (3.25), it can be

shown that correspondingly β2 = β3 = β such that

S = 2
∂Û
∂J

∂J

∂C
+ β12λ−1

1

∂λ1

∂C
+ β2λ−1

(
∂λ2

∂C
+

∂λ3

∂C

)
(3.29)

It is now possible to substitute (C.23), (C.24) and (C.29) to yield

S =
∂Û
∂J

JC−1 + β1M̃1 + β
(
C−1 − M̃1

)
(3.30)

and again following the push forward, the Cauchy stress tensor is given by

σ =
∂Û
∂J

I +
1
J

βI +
1
J

(β1 − β) m1 (3.31)

(3) Triple coalescence of eigenvalues Λ1 = Λ2 = Λ3 = Λ

Exploiting equation (3.25), it is a straightforward proof to show that when λ1 = λ2 = λ3 =

λ, then correspondingly β1 = β2 = β3 = β. It is important, also, to observe that due to the

deviatoric nature of βA, then

β1 + β2 + β3 = 0 (3.32)

and as a consequence, the deviatoric stress term will vanish. The result that stress is wholly

volumetric when all eigenvectors are equal is unsurprising. Substituting (3.32) and (C.29)

into (3.26) gives

S =
∂Û
∂J

JC−1 (3.33)

3Note, equation boxes signify the final developed form of expressions which must be incorporated into an
updated Lagrangian, implicit numerical code.
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and following the push forward, the Cauchy stress tensor is given by

σ =
∂Û
∂J

I (3.34)

3.1.5 Closed-form tangential modulus expression in principal stretches

It remains to repeat the process of Section 3.1.4 to incorporate the principal stretch free

energy expression (3.23) into the closed-form tangential modulus expression, (3.12).

In view of the principal space free energy, (3.23), the Lagrangian form of the tangential

modulus expression becomes

C = 4
∂2Û
∂J2

∂J

∂C
⊗ ∂J

∂C
+ 4

∂Û
∂J

∂2J

∂C2︸ ︷︷ ︸
vol

+ 2
3∑

A=1

3∑

B=1

3∑

C=1

∂βA

∂λ̄C

∂λ̄C

∂λB

∂λB

∂C
⊗

(
2λ−1

A

∂λA

∂C

)
+ 2

3∑

A=1

βA
∂

∂C

(
2λ−1

A

∂λA

∂C

)

︸ ︷︷ ︸
dev

= Cvol + C̄ (3.35)

Again it is evident that the jacobian and principal stretch derivative terms are responsi-

ble for the spectral reconstruction from principal to tensor space. In this case, ∂CJ ⊗ ∂CJ ,

∂2
CCJ , ∂CλB ⊗ ∂CλA and ∂2

CCλA are fourth order tensors quantities that must be estab-

lished.

Initially devoting our attention to the volumetric modulus term, Cvol, the jacobian

derivative terms ∂CJ and ∂2
CCJ have been determined in Appendix C.3 such that

Cvol = J

(
∂Û
∂J

+ J
∂2Û
∂J2

)
C−1 ⊗C−1 − 2J

∂Û
∂J

IC−1

(3.36)

Carrying out the fourth order push forward of this expression4, the volumetric component

of the Eulerian tangential modulus is now

cvol =

(
∂Û
∂J

+ J
∂2Û
∂J2

)
I ⊗ I − 2

∂Û
∂J

I ′ (3.37)

4Observing the specific fourth order push forward results FF
`
C−1 ⊗C−1

´
F T F T = (I ⊗ I)ijkl = δijδkl

and FF (IC−1
)F T F T = I ′ijkl = 1

2
(δikδjl + δilδjk).



CHAPTER 3. NUMERICAL IMPLEMENTATION AND VERIFICATION 45

Because the jacobian first and second derivatives are invariant to the conditions of eigenvalue

exclusivity, this expression holds for all cases.

For the deviatoric tangential modulus expression, C̄, it is convenient to introduce the

tangential operator term γAB such that

γAB =
3∑

C=1

∂βA

∂λ̄C

∂λ̄C

∂λB
λB =

∂βA

∂εB
A,B = 1, 2, 3 (3.38)

where εB are again the principal logarithmic strains. The deviatoric tangential modulus

term then reduces to

C̄ =
3∑

A=1

3∑

B=1

γAB

(
2λ−1

B

∂λB

∂C

)
⊗

(
2λ−1

A

∂λA

∂C

)
+ 2

3∑

A=1

βA
∂

∂C

(
2λ−1

A

∂λA

∂C

)
(3.39)

Equation (3.39) is in generalized, closed-form, applicable to all conditions of eigenvalue

exclusivity. For practical implementation, explicit expression of the first and second prin-

cipal stretch differentials must be input5. The first principal stretch differentials have been

formulated in Appendix C.2. Again a modification of the methodology of Itskov (2001) is

used in Appendix C.4 to establish the second principal stretch derivatives, functional on

the modified Lagrangian eigenvalue bases as required.

Implementing the results from Appendices C.2 and C.4, the specific results for deviatoric

tangential modulus, dependent on the different states of eigenvalue exclusivity are presented

in the following

(1) Distinct eigenvalues Λ1 6= Λ2 6= Λ3

For the case of distinct eigenvalues, all three first principal stretch differentials can be

determined from (C.19), such that

C̄ =
3∑

A=1

3∑

B=1

γABM̃A ⊗ M̃B + 2
3∑

A=1

βA∂CM̃A (3.40)

5Note here that often the ∂C

`
2λ−1

A ∂CλA

´
differential is carried out via ∂C

fMA (Itskov (2001)) with
subsequent correction for eigenvalue coalescence, however for the circumstances when the eigenvalue bases
are indeterminate, it would seem more accurate to carry out this derivative in the general form of (3.39).
Refer to Appendix C.4.
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The fourth order modified eigenvalue base derivatives, ∂CM̃A, are found in Appendix C.4.

Carrying out the fourth order push forward gives the deviatoric component of the closed-

form Eulerian tangential modulus

c̄ =
1
J

3∑

A=1

3∑

B=1

γABmA ⊗mB +
2
J

3∑

A=1

βA∂gmA (3.41)

where ∂gmA results from the fourth order push forward6 of the modified eigenvalue base

derivative expression (C.36) giving

∂gmA =
1

DA

(
Ib −

3∑

B=1

[
2Λ2

B − (IC − ΛA) ΛB

]
mB ⊗mB − IIICΛ−1

A I ′
)

(3.42)

(2) Double coalescence of eigenvalues Λ1 6= Λ2 = Λ3 = Λ

The first and second principal stretch derivative terms from (3.39) for the single distinct

principal stretch (Λ1) can be determined explicitly given the results from Appendices C.2

and C.4. As such, these terms can be directly implemented as was the procedure above.

For the equal principal stretches, however, the explicit first and second principal stretch

derivatives remain undetermined and so further development is required.

By utilizing the combined differential terms from the Appendices, equations (C.24),

(C.46) and (C.47), and by exploiting the eigenvalue equality, it is possible to express the

deviatoric Lagrangian tangential modulus tensor, independent of the unknown principal

stretch differentials. A full account of this procedure is provided in Appendix D.1. The

resulting reduced expression is

C̄ = γ11M̃1 ⊗ M̃1 + γ22

(
C−1 − M̃1

)
⊗

(
C−1 − M̃1

)

+ γ21

(
C−1 − M̃1

)
⊗ M̃1 + γ12M̃1 ⊗

(
C−1 − M̃1

)

− 2βIC−1

+ 2 (β1 − β) ∂CM̃1 (3.43)

where the single fourth order modified eigenvalue base derivative, ∂CM̃1, is defined in Ap-

pendix C.4. Carrying out the fourth order push forward of (3.43), the deviatoric component

of the closed-form Eulerian tangential modulus becomes
6Noting the push forward of the fourth order, symmetric identity tensor FF (I ′)F T F T = Ib

ijkl =
1
2

(bikbjl + bilbjk)
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c̄ =
1
J

γ11m1 ⊗m1 +
1
J

γ22 (I −m1)⊗ (I −m1)

+
1
J

γ21 (I −m1)⊗m1 +
1
J

γ12m1 ⊗ (I −m1)

− 2
J

β2I
′ +

2
J

(β1 − β2) ∂gm1

(3.44)

where, as before, ∂gm1 is found from the fourth order push forward of the modified eigen-

value base derivative expression (C.45), such that

∂gm1 =
1

D1

(
Ib − 2Λ1 (Λ1 − Λ)m1 ⊗m1 − IIICΛ−1

1 I ′
)

(3.45)

(3) Triple coalescence of eigenvalues Λ1 = Λ2 = Λ3 = Λ

For the triple coalescence of eigenvalues, it is not possible to explicitly define any of the

first or second principal stretch derivatives. Instead, as before, the combined differential

expressions from the Appendices, equations (C.25) and (C.53), can be applied along with

the eigenvalue equality, to express the deviatoric Lagrangian tangential modulus tensor

independent of all the principal stretch differentials.

It is, however, initially advantageous to recall (3.32) and the consequential result that

when all three eigenvalues are equal, βA = 0 for all A = 1, 2, 3. As a result

2
3∑

A=1

βA
∂

∂C

(
2λ−1

A

∂λA

∂C

)
= 0 (3.46)

and (3.39) becomes greatly simplified.

In view of (3.46), expansion and manipulation of the reduced form of (3.39) is carried

out in Appendix D.2 to determine the deviatoric Lagrangian tangential modulus expression,

with the result

C̄ = γ
(
IC−1 − 1

3C−1 ⊗C−1
)

(3.47)

where the scalar, γ, is defined in Appendix D.2. After the fourth order push forward of

this expression, the deviatoric component of the closed-form Eulerian tangential modulus

for triple coalescence of eigenvalues can be given by

c̄ =
1
J

γ
(
I ′ − 1

3I ⊗ I
)

(3.48)
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Thus now the complete, closed-form tangential modulus has been defined for generalized

hyperelasticity in principal space, for all possible cases of eigenvalue equality. In what follows

this theory will be extended to the inelastic case.

3.2 Extension for generalized inelasticity

Developing on the formulations of Section 3.1, the generalized stress and closed-form tan-

gential modulus expressions must be determined for the case where both elastic and inelastic

deformation mechanisms are present (as for both viscoelasticity and viscoplasticity). Par-

ticular attention is again paid to the implementation of principal space constitutive theories.

While a similar methodology is used to that in Section 3.1, there are some important im-

plications associated with the introduction of inelasticity that are by and large treated

unsatisfactorily within the literature. It is the objective here to address this situation for

the general case.

3.2.1 Alternate treatment of the deformation gradient

For the case where material response exhibits both elastic and inelastic components, it is

initially convenient to introduce two additional manipulations of the deformation gradient.

The first of these is the conventional multiplicative split of the deformation gradient

into elastic and inelastic components (Kröner (1960); Lee and Liu (1967)) as was treated

in Section 2.4

F = F eF i (3.49)

Recalling the earlier separation of response into volumetric and deviatoric components then

it follows that

F = F e
volF

i
volF̄

e
F̄

i (3.50)

where

F e
vol = J e 1/3I F i

vol = J i 1/3I

F̄
e = J e−1/3F e F̄

i = J i−1/3F i (3.51)

Correspondingly, the elastic components of the right and left Cauchy-Green strain tensors
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can be given by

Ce = J e 2/3F̄
e T

F̄
e = J e 2/3C̄

e (3.52)

be = J e 2/3F̄
e
F̄

e T = J e 2/3b̄
e (3.53)

The second manipulation of the deformation gradient follows the work of Reese and

Govindjee (1998a). For a time discretization of the deformation history, over the time step

∆tn+1 = tn+1 − tn, the current deformation gradient can be given by

F n+1 = F e tr
n+1F

i
n (3.54)

where F e tr
n+1 is an initial trial estimate of the current elastic component while F i

n is the

inelastic deformation at the end of the previous time step. For the remainder of this section

we will omit the time subscripts from current quantities (i.e. when t = tn+1). The actual

interpretation of (3.54) will become clearer within the specific operator split algorithmic

development provided later in Section 3.3. Within the context of the current development,

it is sufficient to note the significance of Reese and Govindjee’s observation that F i
n is

constant at current time t = tn+1.

3.2.2 Implications for tensor space thermodynamics

The thermodynamic potential of materials exhibiting inelasticity involves additional func-

tionality to that defined earlier for the purely hyperelastic case (Section 3.1.2). This reflects

the multiple thermodynamic mechanisms at play.

Following authors such as Holzapfel (1996); Holzapfel and Simo (1996), Perić (1993),

Nedjar (2002a) and Simo and Hughes (2000) and in view of equations (2.8) and (3.52), the

free energy for generalized inelastic materials can be given by

ψ = ψ̂ (Ce, ξ) = Û (J e) + Ŵ (
C̄

e) + Ĥ (ξ) (3.55)

where this is functional on the elastic components of material strain, and ξ, some set of

internal variables commonly associated with inelastic dissipation mechanisms (Simo (1992);

Simo and Hughes (2000); Perić and Dettmer (2003)).

As for the hyperelastic case (Section 3.1.2), the second Piola-Kirchhoff stress expression
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is attained via the manipulation of the Clausius-Duhem form of the second law of thermo-

dynamics from Appendix A. From (2.12), for some arbitrary element with both elastic and

inelastic components

S = 2
∂ψ̂

∂C
= 2F i−1 ∂ψ̂

∂Ce F i−T (3.56)

Incorporating the decoupled form of (3.55), using the chain rule then

S = 2F i−1

(
∂Û
∂J e

∂J e

∂Ce +
∂Ŵ
∂C̄

e
∂C̄

e

∂Ce

)
F i−T (3.57)

Following equation (3.11), the Lagrangian tangential modulus tensor for generalized

inelasticity is found via the differential of (3.57)

C = 2
∂S

∂C
= 2

∂

∂C

{
2F i−1

(
∂Û
∂J e

∂J e

∂Ce +
∂Ŵ
∂C̄

e
∂C̄

e

∂Ce

)
F i−T

}
(3.58)

It is convenient to exploit the second separation of the deformation gradient (3.54), such

that the right Cauchy-Green strain tensor takes the alternate form

C = F i T
n F e tr T F e trF i

n = F i T
n Ce trF i

n (3.59)

where Ce tr is the elastic trial right Cauchy-Green strain tensor7. Using this expression, the

separated forms of the deformation gradient (3.49) and (3.54), and observing that because

F i
n is constant at time tn+1, it can be taken outside the differential, then the Lagrangian

modulus term becomes

C = 2F i−1
n F i−1

n

∂

∂Ce tr

{
2F e tr−1F e

(
∂Û
∂J e

∂J e

∂Ce +
∂Ŵ
∂C̄

e
∂C̄

e

∂Ce

)
F e T F e tr−T

}
F i−T

n F i−T
n

(3.60)

The motivation for expressing the tangential modulus expression in this way will become

clearer within the principal space development that follows.

3.2.3 Spectral decomposition of elastic strain

For practical applications, as was the case for pure hyperelasticity, the assumption of

isotropy within general inelasticity facilitates the reduction of constitutive representation
7It follows directly that the Eulerian counterpart elastic trial left Cauchy-Green strain tensor be defined

by be tr = F e trF e tr T .
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into principal planes.

By an identical methodology to that used for the total values in expressions (3.14) to

(3.16), it is possible to spectrally decompose the elastic components of right and left Cauchy-

Green stain, Ce and be, and the deformation gradient F e. It follows that for A = 1, 2, 3 the

elastic eigenvalues Λe
A, the elastic principal stretches λe

A, and the elastic Lagrangian and

Eulerian eigenvalue bases, N
(e)
A ⊗N

(e)
A = M

(e)
A and n

(e)
A ⊗n

(e)
A = m

(e)
A , can be defined. The

push forward of the Eulerian eigenvalue base in elastic space gives

F e−1(m(e)
A )F e−T = λe−2

A M
(e)
A = M̃

(e)

A (3.61)

where M̃
(e)

A are the modified elastic Lagrangian eigenvalue bases.

Because the moduli expression (3.60) involves elastic trial values also, the similar spectral

decompositions of Ce tr, be tr and F e tr give the elastic trial eigenvalues Λe tr
A , the elastic trial

principal stretches λe tr
A , and the elastic trial Lagrangian and Eulerian eigenvalue bases,

N
(e tr)
A ⊗N

(e tr)
A = M

(e tr)
A and n

(e tr)
A ⊗ n

(e tr)
A = m

(e tr)
A . The push forward of the Eulerian

eigenvalue base in elastic trial space gives

F e tr−1(m(e tr)
A )F e tr−T = λe tr−2

A M
(e tr)
A = M̃

(e tr)

A (3.62)

where M̃
(e tr)

A are the modified elastic trial Lagrangian eigenvalue bases.

Referring to authors such as Simo (1992), the principal planes determined for the initial

elastic trial state are equal to those for the final elastic state, i.e. m
(e tr)
A = m

(e)
A and

M
(e tr)
A = M

(e)
A . Given a similar development to that presented in Appendix C.1, the

elastic Eulerian eigenvalue bases can be defined8

m
(e)
A = m

(e tr)
A =

be tr 2 − (
Ie tr
C − Λe tr

A

)
be tr + IIIe tr

C Λe tr−1
A I

De tr
A

A = 1, 2, 3 (3.63)

where

Ie tr
C = Λe tr

1 + Λe tr
2 + Λe tr

3

IIe tr
C = Λe tr

1 Λe tr
2 + Λe tr

1 Λe tr
3 + Λe tr

2 Λe tr
3 (3.64)

IIIe tr
C = Λe tr

1 Λe tr
2 Λe tr

3

8Note that for the elastic case F eCeF e T = be 2, F eIF e T = be and F eCe−1F e T = I.
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and

De tr
A =

(
Λe tr

A − Λe tr
B

) (
Λe tr

A − Λe tr
C

)
A 6= B 6= C (3.65)

and where determination of m
(e)
A is conveniently expressed functional on the initial elastic

trial values only.

It is finally pertinent to observe that, in principal space, the elastic jacobian is defined

J e = λe
1λ

e
2λ

e
3 and also the elastic deviatoric principal stretches are given by λ̄e

A = J e−1/3λe
A.

The free energy expression for generalized inelasticity (3.55), is thus expressed in principal

planes via

ψ = ψ̂(λe
1, λ

e
2, λ

e
3,

~ξ ) = Û (J e) + ω̂
(
λ̄e

1, λ̄
e
2, λ̄

e
3

)
+ ĥ(~ξ ) (3.66)

where ~ξ is now some vector of principal space internal variables.

3.2.4 Stress expression in principal stretches

Extension of the stress expression to account for the principal space free energy expression

(3.66), follows directly from the methodology used for the hyperelastic case in Section 3.1.4.

Given the principal space form of free energy, further implementation of the chain rule

on the second Piola-Kirchhoff stress expression (3.57), gives

S = 2F i−1 ∂Û
∂J e

∂J e

∂Ce F i−T + 2F i−1
3∑

A=1

3∑

B=1

∂ω̂

∂λ̄e
B

∂λ̄e
B

∂λe
A

∂λe
A

∂Ce F i−T (3.67)

We again introduce a principal deviatoric stress term, τA, where

τA =
3∑

B=1

∂ω̂

∂λ̄e
B

∂λ̄e
B

∂λe
A

λe
A =

∂ω̂

∂εe
A

(3.68)

and εe
A are the principal elastic logarithmic strains and now

S = 2F i−1 ∂Û
∂J e

∂J e

∂Ce F i−T + F i−1
3∑

A=1

τA

(
2λe−1

A

∂λe
A

∂Ce

)
F i−T (3.69)

The elastic jacobian and elastic principal stretch differential terms, ∂CeJ e and ∂Ceλe
A

can be determined via an identical methodology to that presented in Appendices C.2 and

C.3 using elastic component terms. The explicit stress definitions remain dependent on the

three different cases of elastic eigenvalue exclusivity.
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(1) Distinct elastic eigenvalues Λe
1 6= Λe

2 6= Λe
3

The second Piola-Kirchhoff stress expression can be defined

S = F i−1 ∂Û
∂J e

J eCe−1F i−T + F i−1
3∑

A=1

τAM̃
(e)

A F i−T (3.70)

The Cauchy stress expression is determined via the second order push forward operation

defined in equation (3.10). It is pertinent to recall that authors such as Reese and Govindjee

(1998a) and Holzapfel (1996) have observed the inelastic response of a variety of materials to

be wholly deviatoric. Employing such a restriction J i = 1, such that J = J e and recalling

equations (3.49) and (3.61), the Cauchy stress is given9

σ =
∂Û
∂J e

I +
1

J e

3∑

A=1

τAm
(e)
A (3.71)

For the cases of double and triple elastic eigenvalue coalescence, a similar modification

to the stress expressions from Section 3.1.4 can be employed.

3.2.5 Closed-form tangential modulus expression in principal stretches

Following the implementation of the principal space free energy into the stress expressions

in Section 3.2.4, the tangential modulus expression (3.60), can be correspondingly modified.

The Lagrangian tangential modulus expression becomes

C = 2F i−1
n F i−1

n

∂

∂Ce tr

{
2F e tr−1F e ∂Û

∂J e

∂J e

∂Ce F e T F e tr−T

}
F i−T

n F i−T
n

︸ ︷︷ ︸
vol

+ 2F i−1
n F i−1

n

∂

∂Ce tr

{
2F e tr−1F e

3∑

A=1

3∑

B=1

∂ω̂

∂λ̄e
B

∂λ̄e
B

∂λe
A

∂λe
A

∂Ce F e T F e tr−T

}
F i−T

n F i−T
n

︸ ︷︷ ︸
dev

(3.72)

Initially focussing attention on the volumetric component of (3.72), it is beneficial to

observe that via a development analogous to that in Appendix C.3, the elastic jacobian

9Note F (F i−1 fM (e)

A F i−T )F T = F e fM (e)

A F e T = m
(e)
A from (3.61).
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differential used in the preceding section is given

∂J e

∂Ce = 1
2J eCe−1 (3.73)

By carrying out the elastic push forward of this expression, followed by the elastic trial pull

back and noting that J = J e = J e tr because the inelastic response is wholly deviatoric, it

can be shown that

F e tr−1F e ∂J e

∂Ce F e T F e tr−T = 1
2J e trCe tr−1 =

∂J e tr

∂Ce tr (3.74)

Trivially ∂J e/∂J e tr = 1, and so with some work, the volumetric component of the La-

grangian tangential modulus becomes

Cvol = 2F i−1
n F i−1

n

∂

∂Ce tr

{
∂Û
∂J e

J e trCe tr−1

}
F i−T

n F i−T
n

= F i−1
n F i−1

n

{
J e

(
∂Û
∂J e

+ J e ∂2Û
∂J e 2

)
Ce tr−1 ⊗Ce tr−1 − 2J e ∂Û

∂J e
ICe tr−1

}
F i−T

n F i−T
n

(3.75)

where ICe tr−1

ijkl = 1
2(Ce tr−1

ik Ce tr−1
jl + Ce tr−1

il Ce tr−1
jk ). Carrying out the fourth order push for-

ward10 of (3.75) and recalling the separation of the deformation gradient given by equation

(3.54), then the volumetric component of the Eulerian tangential modulus for generalized

inelasticity becomes

cvol =

(
∂Û
∂J e

+ J e ∂2Û
∂J e 2

)
I ⊗ I − 2

∂Û
∂J e

I ′ (3.76)

for all cases of elastic eigenvalue exclusivity.

Following from the generalized stress expression (3.69), the deviatoric component of the

Lagrangian tangential modulus for generalized inelasticity becomes

C̄ = 2F i−1
n F i−1

n

∂

∂Ce tr

{
F e tr−1F e

3∑

A=1

τA

(
2λe−1

A

∂λe
A

∂Ce

)
F e T F e tr−T

}
F i−T

n F i−T
n (3.77)

10Observing that F e trF e tr(Ce tr−1 ⊗Ce tr−1)F e tr T F e tr T = I ⊗ I and

F e trF e tr(ICe tr−1
)F e tr T F e tr T = I ′.
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Via a development analogous to that in Appendix C.2, it can be shown that for the general

case of three distinct elastic eigenvalues, then

(
2λe−1

A

∂λe
A

∂Ce

)
= M̃

(e)

A (3.78)

Recalling equations (3.61) and (3.62), and noting that m
(e tr)
A = m

(e)
A , then it can be shown

that by taking the elastic push forward and subsequent elastic trial pull back of (3.78), then

F e tr−1F e

(
2λe−1

A

∂λe
A

∂Ce

)
F e T F e tr−T = F e tr−1m

(e)
A F e tr−T

= M̃
(e tr)

A =
(

2λe tr−1
A

∂λe tr
A

∂Ce tr

)
A = 1, 2, 3

(3.79)

With substitution of this expression into (3.77), then

C̄ = 2F i−1
n F i−1

n

∂

∂Ce tr

{
3∑

A=1

τA

(
2λe tr−1

A

∂λe tr
A

∂Ce tr

)}
F i−T

n F i−T
n

= 2F i−1
n F i−1

n

{
3∑

A=1

3∑

B=1

3∑

C=1

3∑

D=1

∂τA

∂λ̄e
D

∂λ̄e
D

∂λe
C

∂λe
C

∂λe tr
B

∂λe tr
B

∂Ce tr ⊗
(

2λe tr−1
A

∂λe tr
A

∂Ce tr

)

+
3∑

A=1

τA
∂

∂Ce tr

(
2λe tr−1

A

∂λe tr
A

∂Ce tr

)}
F i−T

n F i−T
n

(3.80)

Use of equation (3.79) in this way circumvents the need to explicitly define any eigenvalue

bases, hence the newly formed tangential modulus expression is applicable for all cases of

elastic (trial) eigenvalue exclusivity.

As for hyperelasticity in Section 3.1.5, we introduce a tangential operator term, Calg
AB,

such that

Calg
AB =

3∑

C=1

3∑

D=1

∂τA

∂λ̄e
D

∂λ̄e
D

∂λe
C

∂λe
C

∂λe tr
B

λe tr
B =

∂τA

∂λe tr
B

λe tr
B =

∂τA

∂εe tr
B

A,B = 1, 2, 3 (3.81)

where εe tr
A are the principal elastic trial logarithmic strains. Calg

AB is commonly referred to

as the algorithmic tangential operator and is treated widely in plasticity (Simo (1992); Perić

(1993); Simo and Hughes (2000)). Through association with the incremental algorithmic



CHAPTER 3. NUMERICAL IMPLEMENTATION AND VERIFICATION 56

solution (i.e. through εe tr
A ), Calg

AB introduces consistency into the expression of the tangential

modulus (Simo and Hughes (2000)). This concept will be treated further in Section 3.3.

Correspondingly, the Lagrangian tangential modulus expression becomes

C̄ = F i−1
n F i−1

n

{
3∑

A=1

3∑

B=1

Calg
AB

(
2λe tr−1

B

∂λe tr
B

∂Ce tr

)
⊗

(
2λe tr−1

A

∂λe tr
A

∂Ce tr

)

+ 2
3∑

A=1

τA
∂

∂Ce tr

(
2λe tr−1

A

∂λe tr
A

∂Ce tr

)}
F i−T

n F i−T
n (3.82)

The first and second elastic trial principal stretch differential terms, ∂Ce trλe tr
A and

∂2
Ce trCe trλe tr

A , can be determined, as before, via the methodology presented in Appen-

dices C.2 and C.4 with substitution of elastic trial strain terms. These expressions are

again functional on the exclusivity of elastic trial eigenvalues.

(1) Distinct elastic trial eigenvalues Λe tr
1 6= Λe tr

2 6= Λe tr
3

The deviatoric component of the Lagrangian tangential modulus can be given

C̄ = F i−1
n F i−1

n

{
3∑

A=1

3∑

B=1

Calg
ABM̃

(e tr)

A ⊗ M̃
(e tr)

B + 2
3∑

A=1

τA∂Ce trM̃
(e tr)

A

}
F i−T

n F i−T
n

(3.83)

The Eulerian counterpart to this term is again attained via the fourth order push for-

ward, recalling equations (3.54) and (3.62), then

c̄ =
1

J e

3∑

A=1

3∑

B=1

Calg
ABm

(e)
A ⊗m

(e)
B +

2
J e

3∑

A=1

τA∂trm
(e)
A (3.84)

where it can be shown that following the methodology of Appendix C.4

∂trm
(e)
A =

1
De tr

A

(
Ibe tr −

3∑

B=1

[
2Λe tr 2

B − (
Ie tr
C − Λe tr

A

)
Λe tr

B

]
m

(e)
B ⊗m

(e)
B − IIIe tr

C Λe tr−1
A I ′

)

(3.85)

where Ibe tr

ijkl = 1
2

(
be tr
ik be tr

jl + be tr
il be tr

jk

)
.

For the cases of double and triple elastic trial eigenvalue coalescence, a similar mod-

ification to the tangential modulus expressions from Section 3.1.5 can be employed. In

such cases, it is pertinent to note that, like for the purely hyperelastic case, a condition is
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imposed on the algorithmic tangential operator such that for double eigenvalue coalescence

Calg
12 = Calg

13 , Calg
21 = Calg

31 , Calg
22 = Calg

23 = Calg
32 = Calg

33 (3.86)

and for triple eigenvalue coalescence

Calg
11 = Calg

22 = Calg
33 = Calg − 1

3Calg, Calg
12 = Calg

13 = Calg
21 = Calg

23 = Calg
31 = Calg

32 = −1
3Calg

(3.87)

Observing the chain rule expansion of Calg
AB,

Calg
AB =

3∑

C=1

∂τA

∂λe
C

λe
C

∂εe
C

∂εe tr
B

.=
3∑

C=1

γe
AC

∂εe
C

∂εe tr
B

(3.88)

where γe
AB can be referred to as the elastic moduli, akin to γAB from Section 3.1.5, then

by a lengthy proof it can be shown that (3.86) and (3.87) are satisfied for all cases when

∂εe
A/∂εe tr

B is symmetric.

Now the complete, consistent closed-form tangential modulus has been defined for gen-

eralized inelastic materials, formulated in principal space and most significantly, invariant

to the actual form of inelastic constitutive expression within the broad grouping of operator

split theories. Within the context of the current investigation, this theory applies to both

the viscoelastic and viscoplastic cases as will treated further in what follows.

3.3 Principal space algorithmic development of the three

specific cases

Following from the results of Sections 3.1 and 3.2, it remains to determine the principal

deviatoric stress terms and the tangential operator matrices for the three specific cases, i.e.

the elastic, viscoelastic and viscoplastic elements. This is done via principal space algo-

rithmic solution of the pertinent evolution equations. Following Perić and Dettmer (2003),

Reese and Govindjee (1998a) and Nedjar (2002a,b), because of the parallel configuration of

the total constitutive theory, the algorithmic treatment of each element may be decoupled.

Thus, the elastic, viscoelastic and viscoplastic algorithms are treated separately in what

follows, each requiring subsequent separate spectral reconstruction using the methodology

from one of the preceding two sections.
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It is important to note that within the development that follows, no provision has been

made for the case of strain dependent material viscosity. As was discussed in Chapter

2, such provision would be desirable for the representation of semicrystalline polymer re-

sponse, however an expression with the correct three-dimensional characteristics is yet to be

developed. In the chapters that follow, an experimental and data processing methodology

is outlined that makes possible the development of such an expression from future experi-

mental work, however any further development has been outside the scope and capabilities

of the current research. Constant viscosity terms are used herein as a result.

It is additionally pertinent to observe that the assumption of finite strain isotropy, which

has been made to facilitate principal space treatment and practical parameter estimation,

removes the ability to account for anisotropic constitutive behavior. As such, kinematic

hardening cannot be accounted for within the current principal space development11. What

follows is correspondingly limited to the inclusion of isotropic hardening.

3.3.1 Elastic element

In the absence of inelastic evolution, the majority of issues associated with the numerical

implementation of a purely hyperelastic constitutive theory have been addressed in Section

3.1. It remains to discuss the principal stress and tangential operator terms and also the

selected form of free energy potential.

Using a separated form of the hyperelastic free energy expression as in (3.23), the prin-

cipal deviatoric stress terms βA, A = 1, 2, 3 are given by (3.25). Observing (3.22), then it

can be shown that
∂λ̄B

∂λA
= J−1/3

(
δBA − 1

3λBλ−1
A

)
(3.89)

and consequently (3.25) reduce to

βA =
∂ω̂

∂λ̄A
λ̄A − 1

3

3∑

B=1

∂ω̂

∂λ̄B
λ̄B (3.90)

The tangential operator matrix for pure hyperelasticity is given by expression (3.38).

Exploiting equations (3.89) and (3.90), the corresponding expanded form of (3.38) can be
11This point highlights a fundamental flaw with a small component of the work of Simo (1992) where

kinematic hardening has been incorrectly included within a principal space radial return mapping algorithm
for viscoplasticity.
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given

γAB =
∂ω̂

∂λ̄A
δABλ̄B +

∂2ω̂

∂λ̄A∂λ̄B
λ̄Aλ̄B +

1
9

3∑

C=1

3∑

D=1

[
∂ω̂

∂λ̄C
δCDλ̄D +

∂2ω̂

∂λ̄C∂λ̄D
λ̄C λ̄D

]

− 1
3

3∑

C=1

[
∂ω̂

∂λ̄A
δAC λ̄C +

∂ω̂

∂λ̄C
δCBλ̄B +

∂2ω̂

∂λ̄A∂λ̄C
λ̄Aλ̄C +

∂2ω̂

∂λ̄C∂λ̄B
λ̄C λ̄B

]
(3.91)

The formulation to this point is general for all hyperelastic constitutive theories taking

the decoupled principal space form of (3.23). For polymeric applications, it is deemed

suitable here to implement a hyperelastic Ogden constitutive theory for the elastic element

(Perić and Dettmer (2003); Simo and Taylor (1991); Reese and Govindjee (1998a)). The

corresponding free energy expression can be given

ψ =
Kel

4
(
J 2 − 2 lnJ − 1

)
︸ ︷︷ ︸

Û(J)

+
3∑

r=1

(µel)r

(αel)r

(
λ̄

(αel)r

1 + λ̄
(αel)r

2 + λ̄
(αel)r

3 − 3
)

︸ ︷︷ ︸
ω̂(λ̄1,λ̄2,λ̄3)

(3.92)

where Kel, (µel)r and (αel)r are material parameters. For near incompressibility, Kel is

given a large value (of the order of ≈ 1000(µel)r following Reese and Govindjee (1998a))

which constitutes a Lagrange multiplier approach to incompressibility (Simo and Taylor

(1991); Bonet and Wood (1997)).

It is now trivial to calculate the first and second differentials of Û and ω̂ given (3.92),

for substitution into equations (3.90), (3.91) and also (3.28), (3.31), (3.34) and (3.37) to

give the complete form of the hyperelastic algorithm.

3.3.2 Viscoelastic element

The principal space viscoelastic model chosen for this investigation, follows the work of

Reese and Govindjee (1998a). The isolated viscoelastic element treated by these authors

can be represented by the one-dimensional Maxwell model12 shown in Figure 3.1. Here the

numerical implementation of the Reese and Govindjee viscoelastic model is discussed as it

applies to the general framework for inelasticity discussed in Section 3.2.

The viscoelastic element stress is related to the elastic principal strain through the

expressions (3.66) and (3.68), noting that for this case of viscoelasticity, no internal variables
12Note that this element must be implemented in parallel with an elastic element (as in Figure 2.3) to be

truly viscoelastic.
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Figure 3.1: 1D rheological representation of the viscoelastic element.

are required. By a similar method to that of Section 3.3.1, the principal deviatoric stress

terms τA, A = 1, 2, 3 can be defined for viscoelasticity as

τA =
∂ω̂

∂λ̄e
A

λ̄e
A −

1
3

3∑

B=1

∂ω̂

∂λ̄e
B

λ̄e
B = T̂ (

λ̄e
1, λ̄

e
2, λ̄

e
3

)
(3.93)

where T̂ represents this function in later operations. The elastic strain components must

be calculated via algorithmic solution of element evolution.

The constitutive expression accounting for viscoelastic evolution has been defined in

Section 2.4. For the case of purely deviatoric inelastic evolution, (2.16) reduces to

−1
2

(Lvb
e) be−1 =

1
2ηve

dev [τ ] (3.94)

where ηve is the material viscosity, dev [τ ] = (I ′− 1
3I⊗I) : τ is the deviatoric component of

the Kirchhoff stress tensor, while Lvb
e is the Lie derivative of the elastic left Cauchy-Green

strain tensor as treated in Appendix A. It is convenient to note the common expansion of

the Lie derivative (Perić and Dettmer (2003); Reese and Govindjee (1998a))

Lvb
e = F

˙
Ci−1F T = ḃ

e − lbe − belT (3.95)

where l = Ḟ F−1 is the spatial velocity gradient tensor.

Conventional operator split methodology of classical plasticity (Ortiz et al. (1983); Simo

and Hughes (2000); Perić and Owen (1998)) is used to solve the evolution equation (3.94).

Initially, over the time increment ∆tn+1 = tn+1 − tn, an elastic trial state is specified (i.e.

elastic predictor) where from the rearrangement of (3.54)

F e tr
n+1 = F n+1F

i−1
n (3.96)
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Because F i
n is assumed constant during this step, then inelastic strain rate is zero and

correspondingly from (3.95), Lvb
e = 0; i.e. initially no inelastic evolution.

Given that inelastic flow is present (unconditional for viscoelasticity), a plastic correction

step is then performed to account for any inelastic evolution that may have occurred. Over

such a step, the total deformation gradient is constant, thus l = 0 and correspondingly

(3.94) can be reduced to

ḃ
e

= −2
1

2ηve
dev [τ ] · be (3.97)

Solution of this differential equation by conventional exponential mapping (Simo and Hughes

(2000)) gives for the time step ∆tn+1 = tn+1 − tn

be
n+1 = exp

{
−2

∆tn+1

2ηve
dev [τn+1]

}
· be tr

n+1 (3.98)

Because the tensor quantities be
n+1, τn+1 and be tr

n+1 are know to commute for isotropic

response (Reese and Govindjee (1998a); Simo (1992)), then expression (3.98) can be reduced

to the principal space expression

λe 2
A n+1 = exp

{
−2

∆tn+1

2ηve
dev [τA n+1]

}
λe tr 2

A n+1 A = 1, 2, 3 (3.99)

where τA n+1 are the principal deviatoric stress terms given by equation (3.93). Taking the

logarithm of (3.99) and noting the vector notation ~x = [x1, x2, x3]T , then this expression

becomes

~ε e
n+1 = −∆tn+1

2ηve
~τn+1 + ~ε e tr

n+1 (3.100)

Through (3.93), it is apparent that ~τn+1 and ~ε e
n+1 are mutually dependent and, as such,

(3.100) must be solved iteratively. A suitable Newton iteration scheme is summarized in

Box 1.

The algorithmic tangential operator, can be formulated following the linearization of

the residual derivative term from Box 1 via

∆R~ε e
n+1

= ∆~ε e
n+1 +

∆tn+1

2ηve
∆~τn+1

︸ ︷︷ ︸
∆~ε e tr

n+1

= Kn+1∆~ε e
n+1 (3.101)
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Box 1: Viscoelastic algorithm

1. Initialize: t = tn+1, k = 0, ~ε
e(0)
n+1 = ~ε e tr

n+1, ~τ
(0)

n+1 = T̂ (~ε e(0)
n+1 )

2. Evaluate flow rule residual

R
(k)
~ε e
n+1

= ~ε
e(k)
n+1 +

∆tn+1

2ηve
~τ

(k)
n+1 − ~ε e tr

n+1

IF:
∣∣R(k)

~ε e
n+1

∣∣ < TOL THEN: EXIT

3. Compute the Newton’s method increment in strain

∂R
(k)
~ε e
n+1

∂~ε
e(k)
n+1

= I +
∆tn+1

2ηve

∂~τ
(k)

n+1

∂~ε
e(k)
n+1

= K
(k)
n+1

∆~ε
e(k)
n+1 = −(

K
(k)
n+1

)−1
R

(k)
~ε e
n+1

4. Update strain and stress

~ε
e(k+1)
n+1 = ~ε

e(k)
n+1 + ∆~ε

e(k)
n+1

~τ
(k+1)

n+1 = T̂ (~ε e(k+1)
n+1 )

Set k ←− k + 1 and GO TO 2.

Dividing by ∂~ε e
n+1, it can be shown that

∂~ε e tr
n+1

∂~ε e
n+1

= Kn+1 (3.102)

Recalling (3.81), an alternative implementation of the chain rule gives the expression

Calg =
∂~τn+1

∂~ε e
n+1

∂~ε e
n+1

∂~ε e tr
n+1

=
∂~τn+1

∂~ε e
n+1

K−1
n+1 (3.103)

where the differential ∂~ε e
n+1

~τn+1 can be likened to an elastic modulus and following from

(3.93), takes on an analogous form to equation (3.91) modified to be functional on elastic

components of strain. Clearly K−1
n+1 is extracted from the converged algorithmic solution

from Box 1.

As before, the explicit free energy potential for the viscoelastic element must be de-

fined. Noting that no viscoelastic internal variables have been defined, then following Reese
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and Govindjee (1998a) and also Perić and Dettmer (2003), a suitable choice for polymeric

materials is again the Ogden model, i.e.

ψ =
Kve

4
(
J e 2 − 2 lnJe − 1

)
︸ ︷︷ ︸

Û(Je)

+
3∑

r=1

(µve)r

(αve)r

(
λ̄

e (αve)r

1 + λ̄
e (αve)r

2 + λ̄
e (αve)r

3 − 3
)

︸ ︷︷ ︸
ω̂(λ̄e

1,λ̄e
2,λ̄e

3)

(3.104)

where Kve, (µve)r and (αve)r and from the evolution expressions, ηve are the viscoelastic

material parameters fully defining the viscoelastic constitutive behavior.

As before, all the expressions necessary for complete numerical implementation, in this

case for the Reese and Govindjee viscoelastic model, have been presented. The principal

deviatoric stress terms and the algorithmic tangential operator matrix, calculated with

converged incremental values for elastic strain, are implemented within the generalized

framework of Section 3.2 to define the full tensor space expressions for stress and consistent,

closed-form tangential modulus.

3.3.3 Viscoplastic element

Presented here is the development of a new principal space closest point projection return

mapping algorithm for viscoplasticity with isotropic hardening. A one-dimensional rheolog-

ical representation of the isolated viscoplastic element is provided for illustration in Figure

3.2.

Figure 3.2: 1D rheological representation of the viscoplastic element.

As was the case for the viscoelastic element, the principal deviatoric stress vector and the

corresponding elastic modulus are related to the elastic strain components via relationships



CHAPTER 3. NUMERICAL IMPLEMENTATION AND VERIFICATION 64

of the form

~τn+1 =
∂ω̂

(
~ε e
n+1

)

∂~ε e
n+1

= T̂ (~ε e
n+1)

∂~τn+1

∂~ε e
n+1

=
∂2ω̂

(
~ε e
n+1

)

∂~ε e 2
n+1

= Ĉ(~ε e
n+1) (3.105)

where, given the principal space free energy expression (3.66), T̂ and Ĉ are functions taking

on analogous forms to equations (3.90) and (3.91) with modified functionality on elastic

strain components.

Recall from Section 2.4.4 the stress space scalar internal state variable q accounting for

isotropic hardening. For algorithmic treatment in principal space, because of the nature of

isotropic hardening, q remains scalar. Following from equations (2.23)1 and (2.24)1, given

a principal space free energy expression (3.66), the stress space scalar isotropic hardening

internal variable and its corresponding hardening modulus can be related to its strain space

scalar conjugate, α, via the functions

qn+1 = −∂ĥiso(αn+1)
∂αn+1

= Q̂iso(αn+1)
∂qn+1

∂αn+1
= −∂2ĥiso(αn+1)

∂α2
n+1

= K̂(αn+1) (3.106)

where Q̂iso and K̂ are directly dependent on the explicit form of free energy expression

(3.66) chosen.

The tensor space viscoplastic yield and evolution expressions have been defined in Sec-

tion 2.4.4. Restricting these expressions to isotropic hardening

f = ‖dev[τ ]‖ −
√

2
3 (σy − q) (3.107a)

−1
2

(Lvb
e) be−1 =

〈f〉
2ηvp

∂f

∂τ
(3.107b)

α̇ =
〈f〉
2ηvp

∂f

∂q
(3.107c)

where, as before, inelastic deformation is assumed to be wholly deviatoric (see Perić and

Dettmer (2003); Simo (1992)). It is pertinent to note that as a consequence of this property,

it is trivially shown that ∂τ f = ∂dev[τ ]f .

Following an identical operator spit methodology to that discussed for viscoelasticity

in Section 3.3.2, during the plastic corrector step the strain evolution expression (3.107b)
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reduces to

ḃ
e

= −2
〈f〉
2ηvp

∂f

∂τ
· be (3.108)

Note that if yield has not been satisfied, (3.108) reduces to zero, i.e. no inelastic evolution as

expected. Solution of this differential expression by exponential mapping for the increment

∆tn+1 = tn+1 − tn gives

be
n+1 = exp

{
−2

∆tn+1 〈fn+1〉
2ηvp

∂fn+1

∂τn+1

}
· be tr

n+1 (3.109)

As was the case during the viscoelastic development, the tensors be
n+1, τn+1 and be tr

n+1

commute due to isotropy and so the solution can be carried out in principal space

λe 2
A n+1 = exp

{
−2

∆tn+1 〈fn+1〉
2ηvp

∂fn+1

∂τA n+1

}
λe tr 2

A n+1 A = 1, 2, 3 (3.110)

where τA n+1 are the viscoplastic deviatoric principal stress values defined by (3.105)1 and

now the yield function can be written in principal space

fn+1 = f̂ (~τn+1, qn+1) = ‖~τn+1‖ −
√

2
3 (σy − qn+1) (3.111)

Taking the logarithm of (3.110) gives the final expression

~ε e
n+1 = −∆tn+1

〈
fn+1

〉

2ηvp

∂fn+1

∂~τn+1
+ ~ε e tr

n+1 (3.112)

For the isotropic hardening flow rule (3.107c), the scalar expression requires no modifi-

cation for application in principal space. Thus, simple differential solution gives

αn+1 =
∆tn+1

〈
fn+1

〉

2ηvp

∂fn+1

∂qn+1
+ αn (3.113)

A combined iterative solution to expressions (3.112) and (3.113) is necessary because

of the mutual dependence of the respective stress and strain space quantities. Solution via

closest point projection can thus be likened to a generalized Newton’s method solution for

multiple, mutually dependent expressions. This analogy will be exploited further in Chapter

5.

Developing on the conventional closest point projection derivations of Simo and Hughes
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(2000), Perić and Owen (1992) and Perić (1993), then from (3.112) and (3.113), the global

flow residual array, Rn+1, can be determined as

Rn+1 =





R~ε e
n+1

Rαn+1



 =





~ε e
n+1 − ~ε e tr

n+1

αn+1 − αn



 +

∆tn+1

〈
fn+1

〉

2ηvp





∂~τfn+1

−∂qfn+1



 (3.114)

The two specific flow residuals R~ε e
n+1

and Rαn+1 can now be differentiated with respect to

their corresponding stress space terms. For the strain residual, R~ε e
n+1

, noting that ~ε e tr
n+1 is

constant over the return mapping, this differential is given

∂R~ε e
n+1

∂~τn+1
=

∂~ε e
n+1

∂~τn+1
+

∆tn+1

2ηvp
∂~τfn+1 ⊗ ∂~τfn+1 +

∆tn+1

〈
fn+1

〉

2ηvp
∂2

~τ~τfn+1

+
∆tn+1

2ηvp
∂qfn+1∂~τfn+1 ⊗ ∂qn+1

∂~τn+1
+

∆tn+1

〈
fn+1

〉

2ηvp
∂2

~τqfn+1 ⊗ ∂qn+1

∂~τn+1
(3.115)

Linearizing (3.115), recalling (3.105)2 and observing that it is the objective of the New-

ton increment to enforce R~ε e
n+1

+ ∆R~ε e
n+1

−→ 0 then it can be shown

−R~ε e
n+1

=

[
Ĉ(~ε e

n+1)
−1 +

∆tn+1

2ηvp
∂~τfn+1 ⊗ ∂~τfn+1 +

∆tn+1

〈
fn+1

〉

2ηvp
∂2

~τ~τfn+1

]
∆~τn+1

+

[
∆tn+1

2ηvp
∂qfn+1∂~τfn+1 +

∆tn+1

〈
fn+1

〉

2ηvp
∂2

~τqfn+1

]
∆qn+1 (3.116)

By repeating an identical procedure for the isotropic hardening residual term and com-

bining the two results into matrix form, it becomes possible to rearrange for the two incre-

mental values ∆~τn+1 and ∆qn+1. This is presented in Box 2 describing the full iterative

algorithmic solution over the time step ∆tn+1 = tn+1 − tn.

Following primarily the work of Perić (1993), determination of the algorithmic tangential

operator matrix is facilitated via the direct linearization of the algorithm in Box 2. As for

the viscoelastic case, it can be shown that over the increment ∆tn+1 = tn+1 − tn, then

−Rn+1 = ∆Rn+1 = [∆~ε e tr
n+1, ∆αn]T such that manipulation of the matrix incremental

update expression from Box 2 gives


Ξ~τ~τ

n+1 Ξ~τq
n+1

Ξq~τ
n+1 Ξqq

n+1








∂~τ
(k)
n+1

∂q
(k)
n+1



 =





∂~ε e tr
n+1

∂αn



 (3.117)
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Box 2: Viscoplastic algorithm

1. Initialize: t = tn+1, k = 0, ~ε
e(0)
n+1 = ~ε e tr

n+1, α
(0)
n+1 = αn, ~τ

(0)
n+1 = T̂ (~ε e(0)

n+1 ) and q
(0)
n+1 =

Q̂iso(α
(0)
n+1).

2. Evaluate yield and flow rule residual

f
(k)
n+1 = f̂

(
~τ

(k)
n+1, q

(k)
n+1

)
; R

(k)
n+1 =

{
~ε

e (k)
n+1 − ~ε e tr

n+1

α
(k)
n+1 − αn

}
+

∆tn+1

〈
f

(k)
n+1

〉

2ηvp

{
∂~τf

(k)
n+1

−∂qf
(k)
n+1

}

IF:
∥∥R

(k)
n+1

∥∥ < TOL THEN: EXIT, ELSE:

3. Calculate the complete algorithmic modulus

Ξ(k)−1
n+1 =

[
Ξ~τ~τ (k)

n+1 Ξ~τq (k)

n+1

Ξq~τ (k)

n+1 Ξqq (k)

n+1

]−1

where

Ξ~τ~τ (k)

n+1 = Ĉ(k)−1
n+1 + ∆tn+1

2ηvp
∂~τf

(k)
n+1 ⊗ ∂~τf

(k)
n+1 +

∆tn+1

〈
f
(k)
n+1

〉
2ηvp

∂2
~τ~τf

(k)
n+1

Ξ~τq (k)

n+1 = ∆tn+1

2ηvp
∂qf

(k)
n+1∂~τf

(k)
n+1 +

∆tn+1

〈
f
(k)
n+1

〉
2ηvp

∂2
~τqf

(k)
n+1

Ξq~τ (k)

n+1 = −∆tn+1

2ηvp
∂qf

(k)
n+1∂~τf

(k)
n+1 −

∆tn+1

〈
f
(k)
n+1

〉
2ηvp

∂2
q~τf

(k)
n+1

Ξqq (k)

n+1 = K̂(k)−1
n+1 − ∆tn+1

2ηvp
∂qf

(k)
n+1∂qf

(k)
n+1 −

∆tn+1

〈
f
(k)
n+1

〉
2ηvp

∂2
qqf

(k)
n+1

4. Compute the incremental update of stress space quantities

{
∆~τ

(k)
n+1

∆q
(k)
n+1

}
= −Ξ(k)−1

n+1 ·R(k)
n+1

5. Update stress, strain and hardening terms
{

~τ
(k+1)
n+1

q
(k+1)
n+1

}
=

{
~τ

(k)
n+1

q
(k)
n+1

}
+

{
∆~τ

(k)
n+1

∆q
(k)
n+1

}
−→

{
~ε

e (k+1)
n+1

α
(k+1)
n+1

}
=

{
~ε

e (k)
n+1

α
(k)
n+1

}
+

{
Ĉ(k)−1

n+1 ·∆~τ
(k)
n+1

K̂(k)−1
n+1 ∆q

(k)
n+1

}

Set k ←− k + 1 and GO TO 2.
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Expanding and dividing by ∂~ε e tr
n+1 it can be shown that

Ξ~τ~τ
n+1

∂~τn+1

∂~ε e tr
n+1

+ Ξ~τq
n+1 ⊗

∂qn+1

∂~ε e tr
n+1

= I (3.118a)

Ξq~τ
n+1 ·

∂~τn+1

∂~ε e tr
n+1

+ Ξqq
n+1

∂qn+1

∂~ε e tr
n+1

= ~0 (3.118b)

This system of equations has two unknowns, ∂~ε tr
n+1

~τn+1 and ∂~ε tr
n+1

qn+1. Simultaneous solu-

tion for ∂~ε tr
n+1

~τn+1 then gives with some manipulation, the algorithmic tangential operator

matrix

Calg =
∂~τn+1

∂~ε e tr
n+1

=

[
Ξ~τ~τ

n+1 −
(
Ξqq

n+1

)−1 Ξ~τq
n+1Ξ

q~τ
n+1

]−1

(3.119)

It remains to specify the exact free energy expression that governs the elastic and hard-

ening relationships within expressions (3.105) and (3.106). The generalized form of the free

energy expression (3.66), becomes for isotropic hardening

ψ = ψ̂(λe
1, λ

e
2, λ

e
3, α) = Û (J e) + ω̂

(
λ̄e

1, λ̄
e
2, λ̄

e
3

)
+ ĥiso(α) (3.120)

Once again implementing an Ogden potential for the elastic components of (3.120) then

Û(J e) =
Kvp

4
(
J e 2 − 2 lnJ e − 1

)
(3.121)

ω̂(λ̄e
1, λ̄

e
2, λ̄

e
3) =

3∑

r=1

(µvp)r

(αvp)r

(
λ̄

e (αvp)r

1 + λ̄
e (αvp)r

2 + λ̄
e (αvp)r

3 − 3
)

(3.122)

The remaining term of (3.120) is chosen here as a simple linear isotropic hardening law

analogous to that from Section 2.4.4 (Hughes (1984); Simo and Hughes (2000)), i.e.

ĥiso(α) = 1
2 K̄α2 (3.123)

where K̄ is the scalar isotropic hardening modulus. Now Kvp, (µvp)r, (αvp)r, K̄ and, from

the evolution expressions, ηvp are the viscoplastic material parameters fully defining the

viscoplastic constitutive behavior.

Selection of a linear isotropic hardening relationship is done largely for numerical sim-

plicity and also for the significant reductions in experimental work required to fulfill the

hardening parameter when compared to more complex, nonlinear theories. It would be,

however, equally applicable to implement a more complex hardening relationship were there
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a need to do so. This is a prime example of the power of closest point projection return

mapping algorithms.

The principal deviatoric stress terms and the algorithmic tangential operator matrix for

the viscoplastic case, calculated with converged incremental values for elastic strain, are

again implemented within the generalized framework of Section 3.2 to define the full tensor

space expressions for stress and consistent, closed-form tangential modulus.

3.4 Numerical verification

The performance of the numerical model treated in the preceding sections is demonstrated

here through several verification finite element models. The developed elasto-viscoelastic-

viscoplastic material model has been implemented in the form of a user material subrou-

tine (UMAT) for use with the commercial finite element package ABAQUS. The examples

presented in what follows provide evidence of the robust nature of the formulation and

demonstrate the industrial applicability of the model. Because the results presented repre-

sent model testing, the model parameters have been selected qualitatively during the initial

testing stages to best demonstrate the performance of the model.

3.4.1 Single element normal tests

Figure 3.3: Single element geometry for normal testing.

The simplest verification tests involve normal loading of a single element such as the

8-node brick element in Figure 3.3. Loading of this type means the principal planes and

global axes coincide and so many of the spectral implications associated with principal



CHAPTER 3. NUMERICAL IMPLEMENTATION AND VERIFICATION 70

stretch constitutive treatment in tensor space (see Sections 3.1 and 3.2) are negated. Corre-

spondingly, such tests assess, primarily, the performance of the principal space algorithmic

aspects treated in Section 3.3.

Taking direction from the types of testing performed on real materials (see for exam-

ple G’Sell et al. (1992); Zhang and Moore (1997a,b); Brusselle-Dupend et al. (2001, 2003))

uniaxial and biaxial tests incorporating various combinations of loading, unloading, relax-

ation, recovery and creep were performed to test the implemented material model. Specific

examples of these types of tests have formed the basis for the development of the testing

methodology outlined in Chapter 4. For actual results from testing of this type, refer to

Chapter 4.

3.4.2 Simple shear tests

Figure 3.4: Four element simple shear test geometry (figure based on that of Reese and
Govindjee (1998a)).

The geometry and simple finite element mesh for the second numerical example is shown

in Figure 3.4. This plane strain, simple shear example has been used previously by Reese and

Govindjee (1998a) for verification of an elasto-viscoelastic constitutive model. The goal of

this numerical simulation is to assess the performance of the treated principal space elasto-

viscoelastic-viscoplastic model during a fully three-dimensional problem where rotation of

the principal axes is significant. The selected material parameters are provided in Table

3.1.
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Table 3.1: Elasto-viscoelastic-viscoplastic material param-
eters for simple shear testing; the subscript n = el, ve, vp
for the elastic, viscoelastic and viscoplastic elements respec-
tively.

Parameter Units Elastic Viscoelastic Viscoplastic
Kn [psi] 1× 105 1× 105 1× 105

(µn)1 [psi] 20 51.4 20
(µn)2 [psi] -7 -18 -
(µn)3 [psi] 1.5 3.86 -
(αn)1 1.8 1.8 2
(αn)2 -2 -2 -
(αn)3 7 7 -
ηn [psi s] - 1360.975 1360.975
σy [psi] - - 5
K̄ [psi] - - 250

Figure 3.5: In-plane Cauchy shear stress vs shear logarithmic strain for sinusoidal simple
shear test.
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Figure 3.6: Stress space isotropic hardening internal variable during cyclic simple shear test.

A prescribed horizontal displacement was applied to the top edge of the test square

sinusoidally such that γ = sin (0.3 t). This top edge was constrained in the vertical dimen-

sion while the three bottom nodes were pinned. In what follows the results from three full

sinusoidal cycles are presented (t = 0 −→ 62.83 s).

The in-plane Cauchy shear stress is plot against logarithmic shear strain in Figure 3.5 for

the sinusoidal simple shear simulation. The plot shows a relatively rapid approach toward

cyclic equilibrium.

Of particular importance for the principal plane formulation treated in the preceding

sections is the correct spectral treatment of the internal state variables during rotation

such as that during simple shear. The sinusoidal testing in this section demonstrates a

combination of finite strain, finite rotation and load reversal. Provided in Figure 3.6 is a

plot of the stress space isotropic hardening internal variable which shows that the numerical

implementation being verified, performs as required from both a rotation and load reversal

standpoint.
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3.4.3 Simply supported beam: Creep

In the third numerical example, the creep response of a three-dimensional elasto-viscoelastic-

viscoplastic simply supported beam during a constantly applied distributed top load was

observed (see Figure 3.7). This is a more practical example with creep response being

commonly observed when semicrystalline polymers have been used in such circumstances

in the past. The material parameters used for this example are the same as for the previous

example provided in Table 3.1.

Figure 3.7: Distributed load applied to simply supported beam during creep test.

The beam geometry used for the numerical simulation was 200 in×20 in×10 in (Length

× Height × Width) and a plane of symmetry A − A (see Figure 3.7) was subsequently

observed. 375 8-node brick elements were used to discretize the beam half. A distributed

pressure of 0.05 psi was applied to the top surface. This surface load was initially ramped up

to 0.05 psi over 10 s and was then held constant for a creep period of 400 s. The deflection of

the center section A−A during this period was of most significance. This deflection (δA−A)

is plot against time in Figure 3.8 (note the initial 10 s ramping of the load).
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Figure 3.8: Diagram showing the deflection (creep) over time of the simply supported beam

following an initially ramped application of the loading; deflection corresponds to a section

at the beams center.

3.4.4 Simply supported beam: Relaxation

The final example presented here is an alternate form of the simply supported beam example

from Section 3.4.3 above. In this example the center section of the beam A−A was loaded

with a prescribed deflection (Figure 3.9) and the relaxation of the axial stress component

was observed. The geometry and material model parameters are the same as those used in

Section 3.4.3.
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Figure 3.9: Prescribed displacement, applied to the center section of a simply supported

beam during relaxation test.

Figure 3.10: Relaxation of the center section axial stress components of the simply supported

beam over time. t1, t2, ...t4 correspond to arbitrary times during the period of relaxation.

An initial prescribed vertical displacement of −20 in was applied to section A − A,

ramped over a period of 10 s as before. This displacement was then held for a period of

1000 s and the relaxation of the axial component of stress (σ11) across the whole central



CHAPTER 3. NUMERICAL IMPLEMENTATION AND VERIFICATION 76

section was observed. A diagram of this axial stress relaxation across the section A− A is

provided in Figure 3.10. As would be expected, the axial stress can be seen to reduce or

relax over time.

3.5 Summary

The objective of this chapter has been to present the principal space numerical implementa-

tion of the developed constitutive theory. The form of the implementation generally accom-

modates possible constitutive variabilities that may arise between polymer classes, provided

that they can be broadly classified as being elasto-viscoelastic-viscoplastic. Tensorial ex-

pressions for stress and consistent closed-form tangential modulus have been developed for

the generalized principal space cases of hyperelasticity and inelasticity. This was done to

enable the subsequent algorithmic developments for the three model elements, to be car-

ried out wholly in principal space. Most significantly, a new principal space closest point

projection algorithm has been developed for viscoplasticity accommodating isotropic hard-

ening. Numerical examples have been presented as illustration of the implemented model

and as a demonstration of the models reproduction of deforming phenomena observed in

real situations.



Chapter 4

Development of Testing

Methodology

A complex deformation response such as that of semicrystalline polymers results in sig-

nificant difficulty in generating the parameters for a correspondingly complex constitutive

theory such as that developed in this research. This has greatly limited the industrial appli-

cability of similar models in the past. This chapter presents a new testing methodology for

isolating the relative elastic, viscoelastic and viscoplastic stress contributions of such mate-

rials. By isolating the individual modes of deformation, the task of accurately estimating

the model parameters becomes greatly simplified as is subsequently treated in Chapter 5.

The testing methodology proposed has been developed using the computational model of

Chapter 3. Simulations of real uniaxial testing procedures were used with arbitrarily chosen

material parameters. All graphics in this chapter are taken from the numerical results1.

The major advantage of using such a process to develop a testing regime was the ability to

extract the actual component stress values from the program for comparison and validation.

This insight allows confidence in the accuracy of the method.

The experimental interrogation and constitutive modeling of semicrystalline polymers

has been the focus of many research publications. Authors such as G’Sell and Jonas (1981)

pioneered constant strain rate testing of these types of materials using stress relaxation

and transient strain rate jumps between loadings to help understand time-dependence and
1Note numerical simulations use self consistent units; that is, the system of units used for the material

parameters gives results in the same unit system. SI units have been used arbitrarily within our simulations
however this is a wholly inconsequential specification. All presented graphical results have unspecified units
in view of this generality.

77
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plasticity. Similar techniques were adopted by Kitagawa and co workers (Kitagawa and Mat-

sutani (1988); Kitagawa et al. (1989)). A more traditional technique to study viscoelasticity

involves using creep and relaxation (Findley et al. (1976)). More recently, creep tests have

been used by Zhang and Moore (1997a,b) in combination with constant strain rate testing to

phenomenologically fit elasto-viscoelastic and viscoplastic models to polyethylene. In spite

of the significant body of research on fitting models to experimental results, the method-

ology has been predominantly to fit models to total stress-strain data, until a two part

publication by Brusselle-Dupend et al. (2001, 2003) on polypropylene. Brusselle-Dupend

utilized a variety of loading, relaxation, unloading and recovery type tests to partially isolate

specific deformation modes, thus allowing insight into the actual behavior of the material.

Three-dimensionality was, however, not treated and viscoplasticity was not incorporated in

parallel so significant further development of the testing procedure is required for such a

method to suit the current theory.

A one-dimensional rheological representation of elasto-viscoelasto-viscoplasticity has

been shown in Figure 2.3. Some of the major difficulties with component response sep-

aration can immediately be observed from this figure. Firstly there are three independent

expressions of elasticity (springs). Distinction between each of these is particularly im-

portant to the behavior of each component; however the contribution of each may not be

easily discernable during testing. Also, there are two viscous or time-dependent components

(dashpots) whose separate contributions to time evolution may also not be immediately ob-

vious. These difficulties are compounded by the presence of viscoplastic yield and strain

hardening. It was the aim when developing the methodology presented in what follows, to

circumvent such limitations.

4.1 3D results from uniaxial testing

Of critical importance to accurate measurement of material response is correct interpreta-

tion of tensile test results. One of the most widely used and available methods of testing

is the uniaxial tensile test (G’Sell and Jonas (1981); Brusselle-Dupend et al. (2001, 2003);

G’Sell and Jonas (1979)). For polymeric, large strain applications, the most desirable for-

mat of such a test incorporates closed loop strain control (G’Sell and Jonas (1979)) in the
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tensile direction as well as instantaneous measurement of strain in the lateral direction(s)2.

This can be done using mechanical, laser or video extensometry (G’Sell et al. (1992); Kontou

and Farasoglou (1998); Michaeli and Glißmann (2000); Hung and Voloshin (2003)). Instan-

taneous lateral strain measurement allows for true tensile stress calculations throughout

the testing and is also important for the three-dimensional interpretation of the data which

follows.

Many research papers treat the results of uniaxial experiments as being one-dimensional

in nature (see for example G’Sell and Jonas (1981); Brusselle-Dupend et al. (2001, 2003);

Twizell and Ogden (1983)). This may be an inaccurate assumption and could be a major

contributor in the inability of such results to be extended to account for three-dimensionality,

particularly for large strain. Referring to Figure 4.1 (a) it is evident that because the uniaxial

tensile specimen is unconstrained in the lateral dimensions during testing (axis 1 and 2),

total corresponding lateral stress is zero. Lateral strain is however nonzero and providing the

material is reasonably isotropic in nature, some lateral compressive stress component must

result. Explanation for this discrepancy comes from the fact that all material deformation

invokes a hydrostatic pressure on the deforming material (Bonet and Wood (1997)). For

tensile loading, this pressure acts to increase the volume and so a correspondingly positive

volumetric stress acts equally in all material directions. In the uniaxial test case, this stress

balances the lateral compressive stresses. Total stress can thus be separated into volumetric

(directionally invariant) and deviatoric (directionally dependent) components, a procedure

treated at length in the computational mechanics literature (Simo and Hughes (2000); Reese

and Govindjee (1998a); Simo (1992); Simo and Taylor (1991); Flory (1961)).

The governing equations for principal volumetric/deviatoric stress separation are

σA = σvol + dev [σA] (4.1)

σvol =
σ1 + σ2 + σ3

3
(4.2)

dev [σA] = σ̄A = σA − σ1 + σ2 + σ3

3
(4.3)

for A = 1, 2, 3, the principal directions. The separation of principal logarithmic strain into

volumetric and deviatoric components takes the same form with substitution of ε for σ in
2For cylindrical test specimens a single radial strain measurement is needed while for rectangular test

samples, measurement of width and thickness strain is necessary.
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(a) (b)

Figure 4.1: Square cross-sectioned uniaxial tensile test sample showing corresponding (a)
total stress-time and logarithmic stain-time response, and (b) stress-time and logarithmic
strain-time with separated volumetric and deviatoric components.

equations (4.1), (4.2) and (4.3). The resulting separated stress-time and strain-time curves

are given in Figure 4.1 (b).

By calculating the volumetric and deviatoric stress and strain components from uniaxial

testing, non-zero three-dimensional stress/strain data can be attained using common uni-

axial testing equipment. Continuum mechanics constitutive theories are most commonly

expressed in terms of separated volumetric and deviatoric relationships (Perić and Dettmer

(2003); Simo and Hughes (2000); Reese and Govindjee (1998a); Simo (1992); Simo and

Taylor (1991)) and each of these is able to be fit from the uniaxial test results. When par-

allel deformation modes are present, a volumetric and deviatoric constitutive relationship

must be found for each mode. A common practice in computational mechanics is to treat

all volumetric response as elastic and thus account for all time-dependence and plasticity

within the deviatoric constitutive relationships (Perić and Dettmer (2003); Simo (1992)).

Correspondingly, only the deviatoric data set will be treated in what follows, however if

inelasticity is present in the volumetric response, this procedure can identically be applied

to the volumetric data set. Note also that for the sake of clarity, the methodology discussed
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herein deals with only one of the three deviatoric principal stress directions. The proce-

dure presented is intended to be repeated for all other principal directions to fulfill the true

three-dimensional data set.

4.2 Isolation of viscoelastic component stress

The measurement of viscoelastic contribution to total deforming stress has been treated in

detail by Brusselle-Dupend et al. (2001, 2003) for polypropylene. Their procedure works on

the premise that when conducting a constant strain rate loading test up to some specified

ultimate strain εult, viscoelastic component stress will develop which will wholly relax if

that strain were then held constant for some relaxation period. By measuring the relaxed

stress for a variety of εult values, up to some maximum, the relaxed stress data points will

lie on the isolated viscoelastic component stress curve.

For materials with parallel elastic, viscoelastic and viscoplastic modes of deformation

(Figure 2.3), the accuracy of Brusselle-Dupend’s method relies on i) the elementary assump-

tion that elastic component stress remains constant during a period of constant total strain

and ii) a rather less elementary assumption that there is also no (or negligible) viscoplas-

tic relaxation. This second assumption is however not necessarily consistent with what is

known about viscoplasticity from metals research whereby viscoplastic relaxation has been

experimentally observed (see for example Yang et al. (2004)). The amount of this relax-

ation is largely influenced by the degree of strain hardening and is often non-negligible when

compared to that of the viscoelastic element. This fact has been further confirmed during

our numerical experiments. Consequently, modification of the method of Brusselle-Dupend

to isolate viscoelastic stress is required for it to be more representative in the presence of a

simultaneous viscoplastic contribution.

Viscoplastic relaxation will be negligible generally only when strain hardening is suf-

ficient to immobilize viscous evolution, either prior to, or as an instantaneous result of

initiating reverse loading (i.e. relaxation). For monotonic loading, this is the case for pre-

yield, but generally not for loading after the onset of plasticity. It is possible, however, to

condition a material such that hardening is sufficiently high.

Cyclic loading is often used in plasticity research to develop and test strain hardening

(Ortiz et al. (1983); Perić and Dettmer (2003)). Here, isotropic hardening increases with
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Figure 4.2: Total logarithmic strain control profile for cyclic load-unload test ending with
a stress relaxation period.

each cycle, ultimately to a point where all subsequent element response is elastic. The strain-

time profile of a cyclic stress conditioning prior to a relaxation test is shown in Figure 4.2.

Strain is applied cyclicly between εult in tension and some compressive strain εcomp. By

cycle n−1, viscoplastic strain hardening has increased to the level that for subsequent cycle

n, the viscoplastic element behaves elastically and so after subsequent reloading, relaxation

will be wholly viscoelastic. Of critical importance to this method is that the viscoelastic

stress profile follows exactly the same path for each cycle. Because viscoelastic stress begins

at zero (point 0, Figure 4.2), viscoelastic stress must return to zero at the end of each cycle

(points 1, 2, ..., n). This can be achieved via the correct selection of εcomp.

To find εcomp, several trials may need to be carried out. Referring to Figure 4.3, one

cycle follows the path a, b, c, d. The specification of εcomp defines the position of c and d.

The aim is for there to be zero viscoelastic stress at the end of the loop (point d) which

can be confirmed by conducting a relaxation period at zero total strain at this point3. If

viscoelastic stress is zero as required, then stress will remain constant during relaxation4.

Too small a value of εcomp will result in positive relaxation and too large a εcomp will result

in negative relaxation as is illustrated in the figure. Hence, a suitably close value for εcomp

can be found using relatively few trial estimates.
3The viscoplastic element is assumed elastic and so will have no contribution to this relaxation, providing

total stress at d is small.
4Total stress may be nonzero at this point because of plasticity.
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Figure 4.3: Total stress, total logarithmic strain curve for a single conditioning loop to
calculate εcomp.

With a suitable εcomp value, cyclic conditioning prior to relaxation can be carried out

with no alteration of the initial viscoelastic stress path. An example of the resulting stress

strain data (deviatoric) is shown in Figure 4.4. A sufficient number of cycles are performed

when consecutive maximum stress values, corresponding to εult, are within a suitable tol-

erance of one another. The subsequent relaxation stress can then be used in an analogous

manner to that by Brusselle-Dupend et al. (2001, 2003).

An important consideration in the interpretation of data, such as from Figure 4.4, is

in regards to the form of strain measured. Ideally, uniaxial deviatoric strain should be

controlled during testing. Unfortunately, deviatoric strain is a function of all principal

directions of the test specimen as has been discussed in Section 4.1. The resulting strain

control would thus need to be functional on all three dimensions of strain readings, a largely

impractical requirement. Instead, careful treatment of total uniaxial strain control data can

assure accuracy. The most significant implication of this, is in regards to relaxation. Re-

ferring to Figure 4.4, while the total uniaxial strain is held constant during the relaxation

period, clearly deviatoric strain increases (for tension). By splitting the response into vis-

coelastic (ve) and combined elastic and viscoplastic (e + vp) components (Figure 4.5), it

can be seen that this increase in deviatoric strain results in an increase in σ̄e+vp, meaning
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Figure 4.4: Example of deviatoric stress, deviatoric logarithmic strain curve for a cyclic
conditioning test to isolate the viscoelastic component of stress.

the relaxed stress or σ̄ve(apparent) underestimates the actual viscoelastic stress, σ̄ve corre-

sponding to ε̄ult. While this is the case, the end point of the relaxation at (ε̄relax, σ̄relax)

remains on the combined e + vp curve. By developing a set of stress and strain data points

on this curve, the result can be subtracted from the total response curve to give the correct

viscoelastic stress component.

The discontinuity between total strain control during testing and the actual deviatoric

strain result has an effect on various other conventions of traditional testing including the

accuracy of constant applied strain rate. This is however outside the scope of this research.

For completeness, is it worthwhile to note that this behavior also affects relaxation at zero

strain as in Figure 4.3, however this affect has been observed to be negligible in all numerical

test cases to date and so no correction has been treated here.

4.3 Separation of elastic and viscoplastic component stresses

There is significant difficulty associated with the separation of elastic and viscoplastic com-

ponents of stress. Direct isolation is theoretically possible in the absence of strain hardening

using infinitely low strain rate testing, however this is not the case when hardening is present.

Unlike in the viscoelastic case, viscoplastic evolution results from a complex combination
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Figure 4.5: Interpretation of relaxation test data accounting for the slip in deviatoric loga-
rithmic strain resulting from the use of total, uniaxial strain control.

of viscous, yield and hardening stress contributions and as such its direct distinction from

the elastic component of stress is impossible. Measurement of the exact contributions of

each deformation mode is particularly important if a constitutive representation is to re-

produce phenomena like unloading and recovery accurately. This section presents a method

using realistic testing procedures and iterative data manipulation to separate the elastic

and viscoplastic components of stress.

The procedure that follows is made possible by the assumption that the viscoplastic

element elastic potential is linear5. This is a common convention in computational mechan-

ics (Simo (1992); Perić and Dettmer (2003)). Any deviations of the total elasticity from

linearity can be accounted for in the potentials of the elastic or viscoelastic elements. Such

deviations are, however, inferred to be small for polymeric materials in the ranges of strain

being treated here (pre-necking region, see Twizell and Ogden (1983); Brusselle-Dupend

et al. (2001, 2003)). As such, very little loss of generality is predicted to result from the

assumption.
5Note, this has no effect on the nonlinearity of the viscous evolution or hardening potentials of the

viscoplastic element, only that the ‘spring’ component of the element has a linear stress-strain relationship
(such as the St. Venant-Kirchhoff potential, Bonet and Wood (1997))
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4.3.1 Initial elastic stress estimate

The first step in the procedure is to get an initial, plausible range estimate for the elastic

component of stress. It is an elementary conclusion that the elastic stress curve must

lie somewhere within the combined elastic and viscoplastic forward loading curve, σ̄e+vp

(Section 4.2). Further refinement can be achieved by finding the curvature of the elastic

stress-strain curve.

It has been commonly observed in the literature (see for example Dickson et al. (1984)

and Feaugas (1999) for plasticity and Neu et al. (2000) and Brusselle-Dupend et al. (2001,

2003) for viscoplasticity) that a linear region exists in the unloading curve of purely plastic

materials. For viscoplastic materials the bounds of this linear region correspond to where

forward viscous evolution ends and where backward viscous evolution begins. Within the

linear region, the viscoplastic element behaves elastically. The implication for materials

with simultaneous viscoelastic and viscoplastic response is that within this elastic region

of viscoplastic unloading, any stress relaxation becomes wholly viscoelastic. Because it is

the linear region that is of interest here, points on the σ̄e+vp curve in this region can then

be generated using load-unload-recovery tests as in Section 4.2 but without the need for

cyclic conditioning. The linear region of viscoplastic unloading will result in a quasi-linear

region on this combined elastic and viscoplastic curve. Any deviation from linearity in

this section can be wholly attributed to the curvature of the elastic response curve. This

curvature can be measured as a vertical difference from a line tangential to the quasi-linear

region at its origin. This will be the same vertical difference as between the elastic response

curve and a tangent to it at the same strain. Using geometric techniques, this deviation

can be combined with that from one or more similar tests, taken to different levels of

ultimate strain, to generate the curvature of the complete elastic curve6. While the angle

of any tangent to the elastic curve is unknown, the evident limitations on it will result in a

reduced elastic range.

Referring to Figure 4.6 (a), for the case where the elastic curve has decreasing slope,

the maximum limit of the elastic range will not exceed the σ̄e+vp curve at any point and

the minimum limit will have a positive slope at all points. It can be seen from the figure
6Note here that the elastic unloading stress-strain curvature is found and due to the nature of elasticity,

this is identical to its forward loading counterpart. Consequently, the forward loading elastic curvature can
be determined.
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(a) (b) (c)

Figure 4.6: Reduced elastic range utilizing measured curvature and the limits on it for an
elastic curve of (a) decreasing slope, (b) constant slope and (c) increasing slope.

that these two limitations, reduce the range of possible elastic stress values from that known

initially. Figure 4.6 (b) and (c) indicate two other possibilities for elastic response curvature

for the linear case and the case of increasing slope respectively. The refinement of the elastic

stress curve range and the explicit specification of its curvature are useful for what follows.

4.3.2 Testing regime

Two additional types of experimental tests are required for the isolation of elastic and

viscoplastic stress components. The first of these is a loading-unloading-recovery test. Re-

ferring to Figure 4.7, loading (up to some specified ε̄ult) and unloading is carried out at the

same constant strain rate magnitude. Unloading proceeds until zero total stress is observed

at which point that stress is held at zero for a period of recovery. The strain measurements

before and after recovery (ε̄a and ε̄b, Figure 4.7) are of particular importance. This type

of test must be repeated for multiple ε̄ult values up to the maximum strain required. The

number and spacing of these tests must be adequate to gain sufficient resolution on the

desired isolated stress curves as will become apparent.

There are several possible implementations of the second test required. The aim of this

test is to provide the combined elastic and viscoplastic unloading curve stress component,

σ̄e+vp, corresponding to the strain at the onset of recovery, ε̄a (i.e. σ̄e+vp (ε̄a), see Figure

4.8). In almost all conceivable cases of strain in the pre-necking region, kinematic hardening

will be small enough for the viscoplastic element deformation to be in the elastic range when
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Figure 4.7: Load-unload-recovery testing.

total stress returns to zero. As a result, monotonic load-unload-relaxation testing can be

used to locate σ̄e+vp points in analogous form to that discussed in Section 4.3.1. Specification

of the exact point where relaxation should be initiated is made difficult by the previously

discussed shift in deviatoric strain during total strain control, stress relaxation. The most

direct account for this is achieved by carrying out several tests with relaxation periods

defining points on the σ̄e+vp curve either side of that required. Interpolation between the

points will then provide the exact stress measurement required (‘Direct method’, Figure

4.8).

Carrying out several relaxation tests for each recovery strain corresponds to a significant

number of experiments. A more efficient alternative involves carrying out a single load-

unload-relaxation test for each recovery test, beginning the relaxation period at or near the

initial point of zero stress (point a). An approximation for σ̄e+vp (ε̄a) can then be made based

on the nature of recovery. At ε̄a, while total stress is zero, component stresses need not be.

During recovery, non-zero viscoelastic stress drives its relaxation such that ultimately only

elastic and viscoplastic stress components are left. Component stress redistribution during

this process drives strain recovery. Because only elastic and viscoplastic stresses are present

at the end of recovery, it is known to be a point on the σ̄e+vp curve (i.e. σ̄e+vp = 0). By

tracing a line from this point, b, through the point of relaxation from a, an approximation to
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Figure 4.8: Combined elastic and viscoplastic component of stress at the beginning of
recovery and the Approximate and Direct methods of its calculation.

the required stress data point will exist where the line intersects ε̄a; ‘Approximate method’,

Figure 4.8. Any error with this approximation will relate to the curvature of the elastic

stress (see Section 4.3.1). This too could be incorporated into the calculations for a totally

accurate result however the error involved will in most cases be small.

Each of these methods should yield sufficiently accurate value for σ̄e+vp (ε̄a). In the case

where the elastic stress curve is highly nonlinear, the direct method may be superior, in

most other cases the approximate method will suffice.

4.3.3 The viscoplastic element modulus

It is the processing of the data acquired in Section 4.3.2 above that enables the explicit

elastic and viscoplastic stress components to be attained. For clarity, the methodology

that follows is presented as a graphical technique however development of an algebraic or

numerical analogue is a trivial extension.
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Figure 4.9: X diagram representation of (4.4).

Initially choosing a single recovery test set (ε̄a, ε̄b and σ̄e+vp (ε̄a)) it can be seen that

σ̄e+vp (ε̄a) = σ̄e (ε̄a) + σ̄vp (ε̄a) (4.4)

This relationship can be represented graphically as in Figure 4.9 where any vertical section

A − A will satisfy (4.4). For convenience, we will refer to this diagram as an X diagram.

Algebraically, σ̄e (ε̄a) and σ̄vp (ε̄a) are functional on one another but are unknown and so

have an infinite range. Suppose that the elastic stress curve is known, then for any σ̄e (ε̄a)

stress component, the X diagram can be used to calculate the companion viscoplastic

stress component, σ̄vp (ε̄a). This is demonstrated in Figure 4.10 where for some strain ε̄a,

the σ̄e+vp (ε̄a) and σ̄e (ε̄a) values are projected from the stress-strain curve (a), onto the X

diagram (b), the corresponding viscoplastic value is found and returned to the stress-strain

plot.

Using the arbitrarily chosen elastic stress curve from Figure 4.10 (a), the strains before

and after recovery are known (ε̄a and ε̄b), therefore the change in elastic stress, ∆σ̄e (∆ε̄),

during relaxation is also known, Figure 4.11 (a). As was done for the single data point in

Figure 4.10, here both stress points can be projected onto the X diagram (Figure 4.11 (b))
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(a) (b)

Figure 4.10: Calculation of the viscoplastic stress component corresponding to a known
elastic stress component via projection between (a) the stress-logarithmic strain curve and
(b) the X diagram.

to calculate the corresponding change in viscoplastic stress during relaxation, ∆σ̄vp (∆ε̄).

It is important to note that the elastic stress corresponding to the end of recovery, σ̄e (ε̄b),

is projected onto the σ̄e+vp (ε̄b) = 0 line on the X diagram because, as noted previously, the

combined elastic and viscoplastic stress curve is always zero at the end of recovery.

The most important step here is to recall that the viscoplastic element behaves elastically

during the entire recovery period. Consequently, the change in the elastic component of

viscoplastic strain during the recovery will be equal to the change in total strain, i.e.

∆ε̄ e
vp = ∆ε̄ (4.5)

Because the elastic potential of the viscoplastic element has been assumed linear, the cor-

responding elastic modulus, Evp, will be constant and thus can be defined from any and all

i = 1, 2, ..., n recovery test sets as

Evp =
∆σ̄vp

∆ε̄ e
vp

∣∣∣∣
i=1,2,...,n

=
∆σ̄vp

∆ε̄

∣∣∣∣
i=1,2,...,n

(4.6)

Carrying out the procedure from Figure 4.11 to calculate Evp for i = 1, 2, ..., n sets of
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(a) (b)

Figure 4.11: Calculation of the change in viscoplastic stress corresponding to the change
in elastic stress during relaxation via projection between (a) the stress-logarithmic strain
curve and (b) the X diagram.

data, an average value for the viscoplastic modulus can be attained that is representative of

the entire range of strain of interest. This process is carried out in Figure 4.12. Graphically,

the average Evp value can be attained by plotting ∆σ̄vp (∆ε̄)|i, against ∆ε̄|i and calculating

the slope of a linear trend-line (Figure 4.13). It is pertinent to note that because the

viscoplastic modulus is equal for all magnitudes of strain, its value is solely dependent on

the elastic stress curve that was initially chosen. This functionality is denoted by Evp (σ̄e).

It is this relationship that can be exploited to establish the explicit components of elastic

and viscoplastic stress, as presented in the next section.

4.3.4 Elastic and viscoplastic stress and strain components

The previous section has established the relationship between an arbitrarily chosen elastic

stress curve and the viscoplastic modulus. Because the viscoplastic potential is linear, this

can be extended to calculate the elastic and plastic components of viscoplastic strain during

loading via

ε̄ e
vp =

σ̄e+vp − σ̄e

Evp
(4.7)

ε̄ p
vp = ε̄− ε̄ e

vp (4.8)
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(a) (b)

Figure 4.12: Calculation of the change in viscoplastic stress for all n = 4 sets of experimental
data via projection between (a) the stress-logarithmic strain curve and (b) the X diagram.

Figure 4.13: Change in viscoplastic stress during recovery against change in total logarithmic
strain during recovery showing the subsequently calculated average Evp.
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where all values correspond to that from forward loading.

Conventionally it has been assumed that the residual strain in an elasto-viscoelastic-

viscoplastic material after recovery (ε̄b in Section 4.3.2) is equivalent to the maximum

plastic strain developed during loading (i.e. that accumulated at ε̄ult, see Brusselle-Dupend

et al. (2001, 2003)). From (4.8) however, it can be inferred that the accuracy of such an

assumption would be offset by any elastic component of viscoplastic strain present after

recovery (non-zero if ε̄b 6= 0). In all numerical test cases to date, however, such an offset

has been observed to become significant only in the later stages of plastic evolution. Within

the initial stages of plastic deformation (within pre-necking region), the assumption that

residual recovery strain is equivalent to the generated plastic component of viscoplastic

strain is accurate.

Knowing the value of ε̄ p
vp at the early stages of viscoplastic evolution and knowing the

subsequent relationships back to Evp and σ̄e from equations (4.7) and (4.8), and Section

4.3.3, it is possible to define the explicit values for elastic and viscoplastic stress components

as required. This will be done graphically using the most basic form of trial estimate and

correction however it is conceivable that a numerical analogue may also be possible.

In Section 4.3.1, a range for the elastic stress curve was developed and its actual cur-

vature was determined. Using the known curvature of the elastic stress, it is possible to

discretize this range into multiple possible curves between the maximum and minimum

known limits. An example of such a discretization is illustrated in Figure 4.14 (a). Pro-

ceeding with the X diagram method (Figure 4.14(b)7) to determine the various possible

viscoplastic modulus values (Figure 4.14(c)), equations (4.7) and (4.8) are then used to

determine the corresponding ε̄ p
vp curves, Figure 4.14(d).

Superimposed on Figure 4.14(d), are the residual strain values left after recovery. As

noted before, these points approximate the plastic component of viscoplastic strain gen-

erated during forward loading and as such are ploted against the time to maximum for-

ward strain (ε̄ult). It is evident from the figure that the approximate plastic strain curve,

ε̄p
vp(approximate), lies between the second and third trial curves. Thus

ε̄ p
vp

(
Evp

(
σ̄e(2)

))
> ε̄ p

vp > ε̄ p
vp

(
Evp

(
σ̄e(3)

))
(4.9)

7Only the elastic stress curves corresponding to ε̄a|i, i = 1, 2, ..., n have been shown. The other points
have been generated as in Section 4.3.3 but are omitted from the figure for clarity.
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(a) (b)

(c) (d)

Figure 4.14: Calculation of the plastic component of viscoplastic logarithmic strain using
X diagram methodology showing the relative (a) stress-logarithmic strain curves, (b) the
X diagram, (c) the resulting viscoplastic modulus curves and (d) the calculated plastic
component of viscoplastic logarithmic strain vs time.
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and correspondingly

σ̄e(2) < σ̄e < σ̄e(3) (4.10)

Clearly, the range for σ̄e has been significantly reduced during this process. If necessary,

σ̄e(2) and σ̄e(3) can be used as the updated minimum and maximum elastic stress curves and

the process can be repeated with subsequent iterations converging toward more accurate

values for σ̄e, Evp and ε̄ p
vp. As has been the case for the example shown here, the variability

of the approximation ε̄b ' ε̄p
vp may limit this type of further refinement. The most practical

way to circumvent this is to carry out this procedure at two or more strain rates (generally

the maximum and minimum rates of interest) and take average values for σ̄e within where

the two calculated end ranges intersect. This will give exact values for σ̄e and subsequently

Evp and ε̄ p
vp.

Recalling from Section 4.2 that the combined elastic and viscoplastic loading curve,

σ̄e+vp is known then

σ̄vp = σ̄e+vp − σ̄e (4.11)

and all required stress components have been isolated.

The accuracy of the isolated stress components found using the presented methodology

is evident from comparison with the actual values output from the numerical simulation,

Figure 4.15. Relatively few assumptions were required to arrive at this outcome with the

result being a more comprehensive account of the deforming behavior of such materials

than has been possible in previous research of this nature (Brusselle-Dupend et al. (2001,

2003)).

4.4 Measurement of subset viscoplastic viscous, yield and

hardening stresses

There exists a significant amount of published research concerned with the isolation of subset

stress components for plastic and viscoplastic materials (see for example Brusselle-Dupend

et al. (2001, 2003); Dickson et al. (1984); Feaugas (1999); Neu et al. (2000)). In plasticity

these subset stresses are commonly referred to as back and effective stress, referring to the

translation and radius of the yield surface respectively (Feaugas (1999)). From a continuum

mechanics standpoint, back stress is associated with kinematic hardening, while effective
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Figure 4.15: Comparison of the isolated elastic and viscoplastic forward loading stress
components found using the X diagram methodology with the actual values output from
the numerical analysis.

stress refers to the combined measures of yield stress and isotropic hardening. In viscoplas-

ticity, a fourth stress component is present, accounting for viscous evolution. The explicit

separation of viscoplastic stress into four components; yield stress (σ̄y), kinematic harden-

ing stress (σ̄kin), isotropic hardening stress (σ̄iso) and viscous or dashpot stress (σ̄d−p), is a

largely theoretical convenience as, from a micro-mechanical perspective, it is more common

to think of yield and hardening as being one entity. To spite this fact, the constitutive be-

haviors of each are indeed independent (or at least separate) and so individual measurement

is quite valuable. Back-stress type isolation methodology is modified to this end in what

follows, noting that while kinematic hardening was neglected within the numerical model

of Chapter 3, here it has been retained for generality (see Simo and Hughes (2000) for more

on the components of viscoplasticity).

As was the case in the previous section, data from numerical simulations was used to

gain insight into the actual mechanism of the isolation testing method. From a load-unload

test, the viscoplastic stress and the relative subset stress components (σ̄y, σ̄kin, σ̄iso and

σ̄d−p)8 are shown in Figure 4.16. From the methodology presented in previous sections it

8The inclusion of kinematic hardening within these numerical simulations was done on an ad-hoc basis,
justified by the uniaxial nature of the tests.
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Figure 4.16: Components of viscoplastic stress during a load-unload simulation showing
regions of importance for back-stress isolation technique.

is possible to define the following values from such a test:

1. the value of viscoplastic stress at yield, Y

2. the whole viscoplastic loading curve, 0 to A, and

3. the linear section of unloading stress and correspondingly its bounds, B and C.

It is the aim of the back-stress isolation methodology to calculate the subset viscoplastic

components at the end of loading (A). By carrying out such tests across a range of peak

stress values (strain controlled), data points on each component stress curve can be defined.

Because the values of viscoplastic stress (σ̄vp) at Y , A, B and C can be measured from

tests, these values can be used to calculate the required component values.

Conventional back-stress isolation methodology applied to this circumstance exploits

the following observations

σ̄vp|Y = σ̄y (4.12)

σ̄vp|A = σ̄d−p + σ̄y + σ̄iso + σ̄kin (4.13)

σ̄vp|B = σ̄y + σ̄iso + σ̄kin (4.14)

σ̄vp|C = −σ̄y − σ̄iso + σ̄kin (4.15)
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Simultaneous solution of equations (4.12) to (4.15) enables the calculation of the four un-

known subset stress components.

There is an evident discrepancy with equations (4.12) to (4.15) whereby for the method

to calculate the component stresses at A, σ̄y, σ̄iso and σ̄kin must all remain constant dur-

ing initial unloading (A to B). Clearly from the figure this is not the case. In the early

stages of unloading, while steadily decreasing in magnitude, forward viscous plastic evolu-

tion continues until B. As a consequence, the strain hardening quantities σ̄iso and σ̄kin,

correspondingly continue to increase until the end of forward plastic strain evolution. As-

suming σ̄iso and σ̄kin to be constant over this period results in significant error; in the case

of Figure 4.16, this error is of the order of 50%.

Amending equations (4.12) to (4.15) to account for the change in σ̄iso and σ̄kin from A

to B

σ̄vp|Y = σ̄y (4.16)

σ̄vp|A = σ̄d−p + σ̄y + σ̄iso + σ̄kin (4.17)

σ̄vp|B = σ̄y + σ̄iso + ∆σ̄iso + σ̄kin + ∆σ̄kin (4.18)

σ̄vp|C = −σ̄y − σ̄iso −∆σ̄iso + σ̄kin + ∆σ̄kin (4.19)

where σ̄y, σ̄kin, σ̄iso and σ̄d−p are the true values at A and where ∆σ̄iso = σ̄iso|B − σ̄iso|A
and ∆σ̄kin = σ̄kin|B − σ̄kin|A.

We now have six unknown values with only four equations and hence a unique solution

cannot be achieved. This deficiency can be resolved by exploiting the useful outcome from

Section 4.3.4 that, given the viscoplastic stress and elastic relationship, the elastic and

plastic components of viscoplastic strain can be found, i.e.

ε̄e
vp =

σ̄vp

Evp
(4.20)

ε̄p
vp = ε̄− ε̄e

vp (4.21)

Thus, the plastic components of viscoplastic strain at A and B (i.e. ε̄p
vp|A and ε̄p

vp|B )

can be calculated. A common convention in computational plasticity is to assume the

relationship between kinematic and isotropic hardening stresses and the plastic component

of viscoplastic strain to be linear (Simo and Hughes (2000); Hughes (1984)). Here a similar
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assumption will be adopted as a means of achieving the objective. This assumption can be

implemented as follows
ε̄p
vp|A

ε̄p
vp|B

=
σ̄iso|A
σ̄iso|B

=
σ̄iso

σ̄iso + ∆σ̄iso
(4.22)

and likewise
ε̄p
vp|A

ε̄p
vp|B

=
σ̄kin|A
σ̄kin|B

=
σ̄kin

σ̄kin + ∆σ̄kin
(4.23)

Because the plastic strain components at A and B are known, equations (4.22) and (4.23)

can be solved simultaneously with equations (4.16) to (4.19) to result in a unique solutions

for the four subset stress components at A.

A weakness with the theory proposed here is that the hardening moduli are assumed

linear when this may not be the case for real materials. This being said, within the range

of strains being discussed, there is only a small likelihood that nonlinearity would be severe

enough to affect the result significantly. Given the degree of error associated with the

conventional back-stress method, any correction, linear or otherwise, would result in a

considerable increase in accuracy to that used previously and so is worthwhile.

4.5 Summary

The testing and data manipulation methodology presented in this chapter, makes possible

the total isolation of the elastic, viscoelastic and viscoplastic stress components of semicrys-

talline polymer response, as well as the subset viscoplastic element stress components.

Isolating the respective deformation response characteristics greatly simplifies the determi-

nation of material model parameters as will become evident in the following chapter. The

performance of the developed testing methodology has been compared against the results

from numerical simulations with known stress components. The result of this comparison

has demonstrated the developed method to be highly accurate.



Chapter 5

Parameter Estimation

In this chapter, the theoretical aspects of the parameter estimation for the developed elasto-

viscoelastic-viscoplastic constitutive model are presented. This methodology is intended for

use with experimental data of the type treated in Chapter 4. The work presented here,

represents the bridging between the theoretical model and physical experimentation and is

critical for the meaningful implementation of a constitutive theory such as that developed in

the earlier chapters of this thesis. The difficulties associated with parameter estimation have

been a major contributing factor toward the inadequacies of existing constitutive theories

with comparable levels of complexity. It has been the aim of the testing methodology

of Chapter 4 and the techniques presented in what follows, to circumvent many of these

difficulties.

For hyperelastic materials such as rubbers, relatively standardized parameter determi-

nation techniques have been developed using least squares optimization algorithms such

as that commonly attributed to Levenberg and Marquardt (Levenberg (1944); Marquardt

(1963)). This methodology and others such as the Gauss-Newton and various quasi-Newton

methods (Gill and Murray (1978); Nocedal and Wright (1999)) have found wide implemen-

tation within many commercial curve fitting software packages. It is a major advantage

of the methodology presented in Chapter 4, that the majority of material parameters re-

quired for the constitutive theory developed here can be calculated using such conventional

optimization methods.

For the viscoelastic element, however, it is not possible to distinguish between the elastic

and inelastic components of strain during testing. Consequently, because of the complex

101
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nature of the constitutive relationships ((2.14), (2.16) and (2.18)), the standard curve fitting

approach is insufficient to fully develop the viscoelastic parameter set. A modification

on the methodology of Levenberg and Marquardt is presented in Section 5.2 assuming

a constant viscoelastic viscosity coefficient. As will be discussed, the formal derivation

of this methodology can easily be extended to the case where the viscoelastic constitutive

relationship incorporates a strain(rate) dependent viscosity, such as that discussed in Section

2.4.3. Such an extension is, at this stage, left to the reader, however the benefits of such

a generalized approach to parameter estimation for future research in this area, are self-

evident.

As has been the case in the preceding chapters of this thesis, the parallel configuration

of material response enables the parameter estimation techniques for each corresponding

model element to be treated separately in the sections that follow.

5.1 Levenberg-Marquardt optimization for hyperelasticity

Various authors such as Twizell and Ogden (1983), Benjeddou et al. (1993) and Ogden

et al. (2004) have reported on the implementation of Levenberg-Marquardt optimization for

the estimation of hyperelastic constitutive model parameters. Through the experimental

methods of Chapter 4, the elastic element stress component can be isolated from the total

response and so such optimization techniques can be used in the conventional manner

to generate the corresponding elastic element parameters. An alternate derivation of the

Levenberg-Marquardt method is developed here, firstly to enable the implementation of

fully three-dimensional data of the type discussed in Section 4.1 and secondly as a prelude

to the more complex development that is required for the viscoelastic element.

The elastic element constitutive relationship is assumed to be best fit by an Ogden

thermodynamic potential of the type given in equation (3.92). Fit of the linear volumetric

component of this expression, Û(J), is a trivial procedure and need not be treated further

here. The highly nonlinear deviatoric component is our primary focus in what follows.

Substitution of equation (3.92) in (3.90) for k = 1, K experimental data points, gives the

three-dimensional principal deviatoric stress expression

βA k =
3∑

r=1

(µel)r

[
λ̄

(αel)r

A k − 1
3

3∑

B=1

λ̄
(αel)r

B k

]
A = 1, 2, 3 (5.1)
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The deviatoric principal stresses βA k and deviatoric principal stretches λ̄A k are obtained

directly from the experimental testing, while the model parameters (µel)r and (αel)r, r =

1, 2, 3 are conventionally determined through the least squares optimization of (5.1).

From (5.1) a straight forward development obtains the residual function

RβA k = βA k −
3∑

r=1

(µel)r

[
λ̄

(αel)r

A k − 1
3

3∑

B=1

λ̄
(αel)r

B k

]
A = 1, 2, 3 (5.2)

which must be minimized over the whole data set (i.e. k = 1,K experimental data points).

In a least squares sense, we require the minimization of a least squares criterion S, i.e.

S = Ŝ(~µel, ~αel) =
K∑

k=1

R~β k
·R~β k

(5.3)

where R~β k
is the vector notation of the residuals and likewise, the two Ogden parameter

sets are denoted by the vectors

~µel = ((µel)1, (µel)2, (µel)3)T and ~αel = ((αel)1, (αel)2, (αel)3)T (5.4)

Departing from the conventional derivation of Levenberg (1944) and Marquardt (1963),

it is convenient to regard (5.2) in a similar way to the viscoplastic residual functions of

Section 3.3.3. Using differential techniques taken from closest point projection, and initially

focusing on the formulation for a single data point, i.e. k = 1, the differentiation of R~β
with

respect to ~µel
1 can proceed

∂RβA

∂(µel)B
=

(
−λ̄

(αel)B

A +
1
3

3∑

C=1

λ̄
(αel)B

C

)

+
3∑

C=1

(
−(µel)C

[
λ̄

(αel)C

A lnλ̄
(αel)C

A − 1
3

3∑

D=1

λ̄
(αel)C

D lnλ̄
(αel)C

D

])
∂(αel)C

∂(µel)B

A,B = 1, 2, 3 (5.5)

linearizing around ∂~µel and noting that by the standard argument, an incremental correction
1As will become evident, the arbitrary initial selection of ∂~µel or ∂~αel here, has no effect on the final

outcome of the development
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of the residual should enforce R~β
+ ∂R~β

−→ 0, then

−RβA
=

3∑

B=1

(
−λ̄

(αel)B

A +
1
3

3∑

C=1

λ̄
(αel)B

C

)
∂(µel)B

+
3∑

B=1

(
−(µel)B

[
λ̄

(αel)B

A lnλ̄
(αel)B

A − 1
3

3∑

C=1

λ̄
(αel)B

C lnλ̄
(αel)B

C

])
∂(αel)B

A = 1, 2, 3 (5.6)

which is nonspecific to the initial choice of derivative denominator.

Following the convention of closest point projection, (5.6) can be represented by the

matrix form

−R~β
= −





Rβ1

Rβ2

Rβ3





=


 Ξ(µel) Ξ(αel)








∆(µel)1

∆(µel)2

∆(µel)3

∆(αel)1

∆(αel)2

∆(αel)3





(5.7)

where

Ξ(µel)
AB = −λ̄

(αel)B

A +
1
3

3∑

C=1

λ̄
(αel)B

C

Ξ(αel)
AB = −(µel)B

[
λ̄

(αel)B

A lnλ̄
(αel)B

A − 1
3

3∑

C=1

λ̄
(αel)B

C lnλ̄
(αel)B

C

]

A, B = 1, 2, 3 (5.8)

and where ∆(µel)A and ∆(αel)A, A = 1, 2, 3, correspond to incremental updates of the

Ogden parameters within some iterative solution scheme.

It can be seen that the composite system of equations (5.7), are presently insufficient

to allow exclusive pointwise determination of the incremental update terms ∆(µel)A and

∆(αel)A. For the general case, the matrix expression (5.7) can be formulated for each

of k = 1,K data points. Combining these array sets together, noting that ~µel and ~αel are

constant parameters over the whole data set, then we find that one, overdeterminate system

of equations is the result (i.e. there are multiple solution possibilities). A least squares
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solution becomes necessary. For k = 1, K data points, the composite matrix expression can

be given

−





R~β 1

R~β 1
...

R~β K





=




Ξ(µel)
1 Ξ(αel)

1

Ξ(µel)
2 Ξ(αel)

2

...
...

Ξ(µel)
K Ξ(αel)

K








∆(µel)1

∆(µel)2

∆(µel)3

∆(αel)1

∆(αel)2

∆(αel)3





−→ −R~β
= Ξ∆ (5.9)

where Ξ is commonly referred to as the Jacobian matrix.

The mechanisms of the Levenberg-Marquardt method begin to become clearer when

considering the solution to (5.9) using Moore-Penrose pseudoinverse techniques (Ben-Israel

and Greville (1974)). For some rectangular matrix Amn, where a conventional matrix inverse

may remain indeterminant for reasons of rank deficiency or because m 6= n, Moore (1935)

and Penrose (1954) are first credited as showing that a quasi or pseudo inverse, denoted

by A†nm, can still be determined that provides a solution to some system of equations

Amnxn = bm, i.e. xn = A†nmbm. Given the circumstance where m > n, as in (5.9), such a

solution is not unique; rather, it corresponds to a set of solutions which satisfy some least

squares type criteria. Authors such as Bjerhammar (1951a,b) and then Penrose (1954) first

recognized this link between pseudoinverse methodology and least squares optimization.

Following the development summarized by Ben-Israel and Greville (1974), a suitable

form of pseudoinverse solution for an overdetermined system with the general expression

A ~x = ~b, can be defined

~x =
[
AT A + γI

]−1
AT ~b (5.10)

where I denotes a suitably scaled, square identity matrix (i.e. if A = Amn then I = Inn),

and where the scalar γ, arbitrarily accounts for all possible solutions for ~x. Equation (5.10)

corresponds to a set of generalized minimizations of the Euclidean vector norm

∥∥∥~b−A ~x
∥∥∥ (5.11)

in a least squares sense.

Neglecting for a moment that, as yet, a unique solution to ~x in (5.10) has not been
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determined; implementing this procedure for the parameter estimation case being treated,

the generalized solution to (5.9) at some arbitrary increment, j, becomes

∆(j ) = −
[
(Ξ(j ))T Ξ(j ) + γ(j )I

]−1
(Ξ(j ))T R

(j )
~β

(5.12)

The incremental update for the Ogden parameters is correspondingly





~µel

~αel





(j +1)

=





~µel

~αel





(j )

+ ∆(j ) (5.13)

On closer inspection, it becomes apparent that expressions (5.12) and (5.13) exactly recover

the classical form of the Levenberg-Marquardt update expression for the determination of

hyperelastic constitutive parameters as treated by authors such as Twizell and Ogden (1983)

and Benjeddou et al. (1993).

The determination of a unique value for the scalar term γ is necessary to allow an

exclusive solution to (5.12). Marquardt (1963) is generally cited as having been first to

propose a specific convergence based searching algorithm for γ which is often compared

to line search type methodology (see Nocedal and Wright (1999) for more on line search

methods). Numerous modifications and reformulations of such algorithms have been sub-

sequently published (see for example Benjeddou et al. (1993), Fan and Yuan (2005) and

Nocedal and Wright (1999)) with the intention of improving efficiency, stability and/or

convergence. The objective of all such algorithms is to determine a value for γ, known

to exist for all possible cases (Marquardt (1963)), such that for successive increments, say

j −→ j + 1, reduction of the initially determined least squares criterion, S, is enforced, i.e.

S(j +1) < S(j ) (5.14)

As was the case for (5.10), when given some arbitrary γ ∈ R within (5.12), the minimization

of the corresponding Euclidean vector norm, ‖R~β
− Ξ∆‖, is satisfied in a non-unique

fashion. Implementation of a convergence based searching algorithm for γ, enforces the

necessary additional, specific, minimization of the stress residual, in a least squares sense and

over the whole data set (i.e. through (5.3)). Thus, the determination of successive suitable

values for the increment, ∆(j ), is made possible that will result in iterative convergence
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Box 3: Searching algorithm for Levenberg-Marquardt parameter

Initialize: j = 0; estimate trial values for ~µ
(0)
el and ~α

(0)
el and correspondingly calculate

S(0)

Provide initial estimate of the Levenberg-Marquardt parameter, γ, and a suitable
scaling factor, u, i.e. γ (0) = 0.01, u = 10

1. Calculate the least squares criterion

S(j +1) =
∥∥∥R

(j +1)
~β

(
∆(j )

(
γ (j )

))∥∥∥

for the cases of γ (j ) = γ (j ) and γ (j ) = γ (j )/u, i.e. S(j +1)
(
γ (j )

)
and S(j +1)

(
γ (j )/u

)

2. IF: S(j +1)
(
γ (j )/u

) ≤ S(j ) THEN: γ (j +1) = γ (j )/u;

IF: S(j +1)
(
γ (j )/u

)
> S(j ) ≥ S(j +1)

(
γ (j )

)
THEN: γ (j +1) = γ (j );

IF: S(j +1)
(
γ (j )/u

)
> S(j ) < S(j +1)

(
γ (j )

)
THEN: multiply γ (j ) by u successively

until S(j +1)
(
γ (j )un

) ≤ S(j ); Let γ (j +1) = γ (j )un

3. Check for convergence

IF: S(j +1)
(
γ (j +1)

)
< TOL THEN: EXIT

ELSE: Set j ←− j + 1 and GO TO 1.

toward appropriate, unique, least squares approximations to ~µel and ~αel (i.e. as a result of

successive decreases in S).

The searching algorithm for the incremental determination of γ, originally proposed by

Marquardt (1963), is outlined in Box 3 as an example of such methods. The particular

choice to use a more modern, improved method is left at the discretion of the reader, noting

that most commercial Levenberg-Marquardt numerical algorithms will perform sufficiently

well in the majority of cases.

5.2 A modified Levenberg-Marquardt technique for nonlin-

ear viscoelasticity

The alternate manner by which the classical Levenberg-Marquardt expression has been de-

rived in Section 5.1, has some key advantages for the determination of such an expression

when multiple constitutive expressions are to be fit (as with viscoelasticity). Most signifi-

cantly, by conducting the residual differentiation using closest point projection techniques,
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it becomes possible to develop the jacobian matrix from multiple residual functions (recall

the operations of Section 3.3.3). Correspondingly, only one optimization algorithm needs

to be solved to establish the least squares solution. There are several benefits associated

with such an approach as will become clearer in what follows.

The specific viscoelastic constitutive theory that has been treated in this work follows

that of Reese and Govindjee (1998a), as outlined in Sections 2.4.3 and 3.3.2. Again limiting

attention to the nonlinear deviatoric response, substituting the Ogden hyperelastic potential

(3.104) into the principal deviatoric stress expression (3.93) and also utilizing a modified

form of the principal space evolution equation (3.99), then the two governing constitutive

equations to be optimized become

τA k =
3∑

r=1

(µve)r

[
λ̄

e (αve)r

A k − 1
3

3∑

B=1

λ̄
e (αve)r

B k

]
A = 1, 2, 3 (5.15)

λ̄e
A k = exp

{−∆tk
2 ηve

τA k

}
λ̄e tr

A k A = 1, 2, 3 (5.16)

For some arbitrary data point k, τA k denote the viscoelastic principal deviatoric stress

components, λ̄e
A k are the elastic components of the principal deviatoric stretches, ∆tk =

tk − tk−1 is the time increment between successive data points and λ̄e tr
A k is the trial elastic

deviatoric principal stretch (see Section 3.2.3).

For the viscoelastic case, the form of (5.15) and (5.16) suggest that the model parameters

~µve, ~αve and ηve should ideally be fit to stress and elastic strain data. As has already been

noted, however, the elastic components of strain cannot be determined during testing. As

such, in what follows we include λ̄e
A k as an undetermined set of parameters to be additionally

fit to stress and total strain data. This capability is one of the main motivations for the use

of closest point projection style differentiation.

The residual forms of equations (5.15) and (5.16) are trivially determined as

RτA = τA k −
3∑

r=1

(µve)r

[
λ̄

e (αve)r

A k − 1
3

3∑

B=1

λ̄
e (αve)r

B k

]
A = 1, 2, 3 (5.17)

RλA
= λ̄e

A k − exp
{−∆tk

2ηve
τA k

}
λ̄e tr

A k A = 1, 2, 3 (5.18)

As before, we initially limit attention to a single arbitrary data point (i.e. k = 1) such
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that the residual differential functions are given2

∂RτA

∂λ̄e
B

=
3∑

C=1

(
−λ̄

e (αve)C

A +
1
3

3∑

D=1

λ̄
e (αve)C

D

)
∂(µve)C

∂λ̄e
B

+
3∑

C=1

(
−(µve)C

[
λ̄

e (αve)C

A lnλ̄
e (αve)C

A − 1
3

3∑

D=1

λ̄
e (αve)C

D lnλ̄
e (αve)C

D

])
∂(αve)C

∂λ̄e
B

+

(
0A

)
∂ηve

∂λ̄e
B

+

(
−

3∑

r=1

(µve)r(αve)r

[
λ̄

e [(αve)r−1]
A δAB − 1

3
λ̄

e [(αve)r−1]
B

])

A,B = 1, 2, 3 (5.19)

∂RλA

∂ηve
=

3∑

B=1

(
0AB

)
∂(µve)B

∂ηve
+

3∑

B=1

(
0AB

)
∂(αve)B

∂ηve

+

(
− ∆t

2 η2
ve

τA exp
{
− ∆t

2 ηve
τA

}
λ̄e tr

A

)
+

3∑

B=1

(
δAB

)
∂λ̄e

B

∂ηve

A = 1, 2, 3 (5.20)

where 0A = 0 and 0AB = 0 for A,B = 1, 2, 3 which represent a null vector and null

matrix respectively. Linearizing each equation around its respective differential base and

noting that over the update increment the aim is to now enforce R~τ + ∂R~τ −→ 0 and

R~λ
+ ∂R~λ

−→ 0, then

−RτA =
3∑

B=1

(
−λ̄

e (αve)B

A +
1
3

3∑

C=1

λ̄
e (αve)B

C

)
∂(µve)B

+
3∑

B=1

(
−(µve)B

[
λ̄

e (αve)B

A lnλ̄
e (αve)B

A − 1
3

3∑

C=1

λ̄
e (αve)B

C lnλ̄
e (αve)B

C

])
∂(αve)B

+

(
0A

)
∂ηve +

3∑

B=1

(
−

3∑

r=1

(µve)r(αve)r

[
λ̄

e [(αve)r−1]
A δAB − 1

3
λ̄

e [(αve)r−1]
B

])
∂λ̄e

B

A = 1, 2, 3 (5.21)

2Note that, again, the selection of the differential denominator terms are wholly arbitrary within the
context of the current development.
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−RλA
=

3∑

B=1

(
0AB

)
∂(µve)B +

3∑

B=1

(
0AB

)
∂(αve)B

+

(
− ∆t

2 η2
ve

τA exp
{
− ∆t

2 ηve
τA

}
λ̄e tr

A

)
∂ηve +

3∑

B=1

(
δAB

)
∂λ̄e

B

A = 1, 2, 3 (5.22)

Equations (5.21) and (5.22) can once again be composed into matrix form via

−




R~τ

R~λ



 = −





Rτ1

Rτ2

Rτ3

Rλ1

Rλ2

Rλ3





=




Ξτµ Ξτα ~0 Ξτλ

0 0 ~Ξλη I








∆(µve)1

∆(µve)2

∆(µve)3

∆(αve)1

∆(αve)2

∆(αve)3

∆ηve

∆λ̄e
1

∆λ̄e
2

∆λ̄e
3





(5.23)

where

Ξτµ
AB = −λ̄

e (αel)B

A +
1
3

3∑

C=1

λ̄
e (αel)B

C

Ξτα
AB = −(µel)B

[
λ̄

e (αel)B

A lnλ̄
e (αel)B

A − 1
3

3∑

C=1

λ̄
e (αel)B

C lnλ̄
e (αel)B

C

]

Ξτλ
AB = −

3∑

r=1

(µve)r(αve)r

[
λ̄

e [(αve)r−1]
A δAB − 1

3
λ̄

e [(αve)r−1]
B

]

Ξλη
A = − ∆t

2 η2
ve

τA exp
{
− ∆t

2 ηve
τA

}
λ̄e tr

A

A, B = 1, 2, 3 (5.24)

and where ∆(µve)A, ∆(αve)A, ∆ηve and ∆λ̄e
A, A = 1, 2, 3, correspond to incremental updates

of the viscoelastic parameters and elastic strains within some iterative solution scheme. Note

also that the null arrays have been denoted here using standard matrix notation, i.e. ~0 → 0A
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Table 5.1: Effect on the nature of the opti-
mization equation set as subsequent data
points are included in the calculations

Number of Number of Number of
data points equations parameters

1 6 10
2 12 13
3 18 16
4 24 19
...

...
...

and 0 → 0AB, A,B = 1, 2, 3.

As before, the system of equations represented by (5.23) is indeterminate for any single

data point. Following the procedure of Section 5.1, a combined form of (5.23) is incorporated

for k = 1,K data points. Where the number of undetermined parameters remaind constant

throughout such an expansion for the hyperelastic case, here the parameter set will have

both constant and variable components such that the parameter array will now expand with

the residual and jacobian arrays as data points are added. Table 5.1 illustrates the nature

of the equation set as subsequent data points are included in the optimization.

It can be seen from Table 5.1, that the system of equations becomes overdeterminate

when 3 or more data points are used. In such circumstances a least squares solution is

possible, as desired.

The matrix expansion of (5.23) over k = 1,K data points can be carried out using the

following structure

−





R~τ 1

R~λ 1

R~τ 2

R~λ 2
...

R~τ K

R~λ K





=




Ξτµ
1 Ξτα

1
~0 Ξτλ

1 0 0

0 0 ~Ξλη
1 I 0 . . . 0

Ξτµ
2 Ξτα

2
~0 0 Ξτλ

2 0

0 0 ~Ξλη
2 0 I 0
...

. . .
...

Ξτµ
K Ξτα

K
~0 0 0 . . . Ξτλ

K

0 0 ~Ξλη
K 0 0 I








∆(~µve)

∆(~αve)

∆ηve

∆~λe
1

∆~λe
2

...

∆~λe
K





(5.25)

Denoting the jacobian by the indexed form Ξmn, then for each subsequent data point
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added, the result on the indices follows m = m + 6 and n = n + 3. For the general case,

the matrix expression dimensions can be given as −R(6K) = Ξ(6K)(7+3K)∆(7+3K) which is

comparable to the results of Table 5.1.

By iteratively solving (5.25) within the Levenberg-Marquardt scheme of (5.12) and

using the γ searching algorithm of Box 3 (or an equivalent method) the full viscoelastic

parameter set can be determined, as well as the elastic components of strain, over the whole

set of data. This is carried out simultaneously within the one least squares operation. It is

pertinent to note that because the update expression presented, does not differ in theoretical

form from that seen in most commercial software packages, only minor modification of an

existing numerical Levenberg-Marquardt algorithm would be necessary for full numerical

implementation. Also, as a result of this, it can be inferred that such an algorithm would also

retain the convergence qualities of the conventional Levenberg-Marquardt implementations;

a particularly beneficial result.

5.3 Estimation of viscoplastic element parameters

Estimation of the viscoplastic component parameters proves to be a relatively trivial pro-

cedure in comparison to the viscoelastic case treated above. This can be attributed to

the rather comprehensive nature of the testing methodology presented in Chapter 4. This

testing methodology facilitates the full isolation of the element subset stress and strain

components and so the corresponding constitutive relationships can be fit independently of

one another with relative ease.

While the specific parameter estimation operations are straight forward, we still must

convert the results from the testing of Chapter 4 to a specific form which is appropriate

for use within an optimization of the viscoplastic constitutive theory (theory outlined in

Sections 2.4.4 and 3.3.3). From Section 3.3.3, the principal space strain evolution expression

(3.112) can be rewritten

~ε i =

〈
f
〉

2ηvp

∂f

∂~τ
(5.26)

Substituting the explicit yield function (3.111) and observing the relevant differentiation

rules outlined by authors such as Simo (1992) and Itskov (2007), then this expression can
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be expanded such that

~ε i =
1

2ηvp

~τ

‖~τ ‖
(
‖~τ ‖ −

√
2
3 (σy − q)

)
(5.27)

and rearranging

2ηvp ~ε i = ~τ −
√

2
3

~τ

‖~τ ‖ σy +
√

2
3

~τ

‖~τ ‖ q (5.28)

Recalling from Section 2.3 the standard constitutive equation governing dashpot evolution,

(2.2)2, then with some manipulation, we attain an expression for total viscoplastic stress,

functional on the three subset stress components as

~τ = ~τd−p +
√

2
3

~τ

‖~τ ‖ σy −
√

2
3

~τ

‖~τ ‖ q (5.29)

where ~τd−p represents the principal components of stress in the theoretical viscoplastic

dashpot and the other two terms are the three dimensional stress contributions of the yield

and isotropic hardening respectively.

From Chapter 4, Figure 4.16, it has been shown that the viscoplastic element subset

stress components can be separately determined from experimentation. Correspondingly,

the total deviatoric principal Cauchy stress can be written as a function of the four calculated

components via (4.17), i.e.

σ̄vp|A = σ̄d−p |A + σ̄kin|A + σ̄y|A + σ̄iso|A A = 1, 2, 3 (5.30)

For the numerical model of Chapter 3, kinematic hardening is neglected and so the kinematic

hardening stress component, σ̄kin|A, is assumed to be zero, thus

σ̄vp|A = σ̄d−p |A + σ̄y|A + σ̄iso|A A = 1, 2, 3 (5.31)

Paying careful attention to that fact that (5.29) refers to principal deviatoric Kirchhoff

stress while (5.31) refers to principal deviatoric Cauchy stress, then these two expressions

are related via

σ̄vp|A =
1
J

τA A = 1, 2, 3 (5.32)

Also, because ~τ remains deviatoric across the whole range of data, then for the case of
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uniaxial tension in, for example, the A = 1 direction, then

√
2
3

~τ

‖~τ ‖ = ( 2/3,−1/3,−1/3 )T (5.33)

which is constant for all ~τ during the tensile test.

Through substitution of (5.29) and (5.31) into (5.32), and by observing (5.33), then it

becomes possible to develop functional relationships between the three constitutive model

stress terms, and the corresponding three experimentally determined stress terms. The

component relationships are

τd−p|A = J σ̄vp|A A = 1, 2, 3 (5.34a)

σy = 11
2 J σ̄y|1 = −3 J σ̄y|2 = −3 J σ̄y|3 (5.34b)

q = −11
2 J σ̄y|1 = 3 J σ̄y|2 = 3 J σ̄y|3 (5.34c)

In addition, it has also been shown that the principal inelastic logarithmic strain com-

ponents, ~ε i, can be determined from the experimental testing. Observing the relationship

of this strain to the strain space conjugate of the isotropic hardening internal variable (see

Appendix B), then through the rate equality

α̇ =
∣∣∣~̇ε i

∣∣∣ (5.35)

the strain space isotropic hardening internal variable may also be determined from the

experimental results.

Now, having determined an association between the form of the experimental data and

that of the variable terms used within the viscoplastic constitutive theory, it is a direct

development to determine estimates for the pertinent model parameters using conventional

curve fitting operations. The viscosity coefficient can be directly related to inelastic strain

rate and the dashpot stress component through the three-dimensional analogue of (2.2)2,

while the isotropic hardening parameter can be fit via the direct solution of equation (3.106)

(with substitution of (3.123) ). The viscoplastic yield criterion is directly output from

(5.34b) and the element elastic relationship (Ogden or otherwise) can be determined through

the exact methodology of Section 5.1 using the total deviatoric viscoplastic stress and elastic
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strain component vectors within the optimization.

It is worthwhile to note that while a constant viscosity and hardening coefficient have

been used within this work, from a parameter estimation perspective, it would be a simple

extension to implement nonlinear relationships for these terms. Because all element stress

and strain components are discernable from the experimental tests, such expressions could

easily be fit using analogous optimization procedures to that used in Section 5.1.

5.4 Generalization of the modified Levenberg-Marquardt method

Section 5.2 has outlined the application of the modified Levenberg-Marquardt method to

the specific case of a viscoelastic constitutive theory with constant viscosity coefficient.

Where the conventional Levenberg-Marquardt formulation is generally applicable to any

single expression optimization procedure3, the developed modification has a more gener-

alized applicability to parameter estimation situations, allowing for multiple constitutive

relationships and additional unknown terms that can span and vary across the whole range

of data. Such a method is potentially applicable to a wide variety of complex solid mechanics

optimization problems where conventional optimization techniques may be inappropriate.

Here we will briefly treat the generalized implementation of the new method and discuss its

advantages from a materials research perspective, specifically in regards to the inclusion of

a strain(rate) dependent viscosity term within the viscoelastic constitutive expressions (an

important component of semicrystalline polymer response, see Chapter 2).

A primary consideration for the generalized formulation of the modified Levenberg-

Marquardt method is that any equation system to be numerically fit using the method

must satisfy the condition

Neq > Npar(var) (5.36)

where Neq is the number of equations per data point4 while Npar(var) is the number of

variable parameters per data point5. This condition is critical to the least squares solvability

of a system of equations as it ensures that the system will become overdeterminate at some
3‘Single expression’ refers to a single algebraic relationship, be it between scalars, vectors or tensors.
4Note that for the principal space example of Section 5.2, a single data point from 3D testing corresponds

to a set of principal stress and strain vectors whose components are related through a system of 6 equations,
i.e. Neq = 6.

5Variable parameters are those which change across the data set, i.e. elastic strain components in Section
5.2, Npar(var) = 3.



CHAPTER 5. PARAMETER ESTIMATION 116

stage during the successive inclusion of test data points.

The number of data points above which the system will become overdeterminant, pro-

vides an insight into the minimum frequency of data records required during experimental

testing so as to fully resolve the least squares solution. This criterion can be defined as

Ndata(min) >
Npar(const)

Neq −Npar(var)
(5.37)

where Ndata(min) is the minimum number of data points required, while Npar(const) is the

number of parameters which remain constant across the whole data set (the constant pa-

rameters in Section 5.2 were ~µve, ~αve and ηve, such that in that case Npar(const) = 7). For

the development in Section 5.2, Table 5.1 provides a manual demonstration of this concept,

where

Ndata(min) = 3 >
7

6− 3
(5.38)

such that in that example, any experimental test result sets need more than 3 data points

to enable a least squares solution.

For the general case, any system of interdependent equations to be optimized should

converge toward a least squares solution providing the system satisfies (5.36) and that it is

possible to generate significantly more actual experimental data points (denoted by Ndata)

than the minimum number required for the system to become overdeterminant, i.e.

Ndata À Ndata(min) (5.39)

Few other theoretical restrictions on general application of the developed optimization tech-

nique have been encountered within the scope of applicability outlined already.

For the viscoelastic behavior of semicrystalline polymers, the optimization method de-

veloped in this chapter represents a powerful research tool for possible future extensions.

While the viscosity coefficient of these materials has been shown to posses strain(rate)

dependence (Brusselle-Dupend et al. (2001, 2003)), what little treatment there is in the

literature on such a functionality is largely inappropriate for the case of three-dimensional

response and particularly when a nonlinear elastic relationship is also taken into consid-

eration. The developed model reported on in this thesis has retained a simpler, constant

viscosity coefficient as a necessary approximation, however it would be highly desirable to
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facilitate the inclusion of a nonlinear term for future work.

The nonlinear behavior of the viscosity coefficient can be directly determined with a

single modification to the method of Section 5.2. By including the viscosity term as an ad-

ditional variable parameter (like the elastic strain components), (5.36) is still satisfied and

the whole system can be optimized prior to any specific definition of a viscosity function.

Once the behavior of viscosity over the test range is determined, a suitably representative ex-

pression can be developed ‘after the fact’. In such a way, the modified Levenberg-Marquardt

method has additional capabilities as a response isolation tool, enabling research on a ma-

terials constitutive behavior without the limitation of needing a pre-formulated expression.

5.5 Summary

In this chapter, techniques have been developed to determine the explicit material model

parameters from experimental test results of the type outlined in Chapter 4. A modifica-

tion to conventional Levenberg-Marquardt optimization has been developed that enables

generation of both the hyperelastic and viscoelastic element parameters. Determination of

the viscoplastic model parameters has been subsequently treated; a trivial process due to

the full isolation of stress results from the testing methods of Section 4.4. The generaliza-

tion of the modified Levenberg-Marquardt method has briefly been discussed to facilitate

the future extension of this work to incorporate additional nonlinearity, particularly within

expression of material viscosity. Using the testing methodology of Chapter 4 and the opti-

mization and parameter generation methods presented in this chapter, the full parameter

set for the proposed elasto-viscoelastic-viscoplastic model can be determined.



Chapter 6

Conclusions

In this chapter the implications and importance of the work presented in this thesis are

discussed with the intention of bringing the various treated theoretical facets into practical

context. An objective assessment of the associated limitations is presented, as is a brief

outline of the most important directions in which future work in this area should proceed.

6.1 Discussions on the proposed theories

The constitutive theory developed in this work, has been formulated using conventional

continuum mechanics techniques. The suitability of this class of constitutive theory for

the representation of semicrystalline polymers has been inferred from the accuracy of such

theories when used for the constitutive representation of other complex materials such as

rubbers and metals. A key advantage of using a continuum mechanics constitutive theory

is the inherent suitability of such theories to three-dimensional numerical implementation.

In spite of the wide prior implementation of continuum mechanics constitutive theories,

the theoretical implications of experimentally fitting such models, particularly the more

complex nonlinear forms, are addressed rather poorly within the literature. In the early

stages of this work it became obvious that, while physical experimentation is critically

important for any implemented theory, the major void in published knowledge is associated

with the theoretical aspects of such testing methodologies and the meaning of the subsequent

results in regards to constitutive behavior. As a result, the experimental components of this

thesis have remained largely theoretical in nature in an attempt to develop an insight into

the actual constitutive functionality of the material, something which cannot be easily
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achieved using just phenomenological experimental testing.

While this work has been largely theoretical in nature, care has been taken to ensure the

theoretical components retain strong foundations in reality. Through an extensive review

of semicrystalline polymer literature, it has become clear that, in spite of the inadequacies

of existing constitutive representation, there is significant agreement on the actual response

characteristics of the material. Using this information within the model development, it has

been possible to make an informed judgement on the most appropriate model characteris-

tics without the need to carry out additional testing. Also, the developed model and the

subsequent theoretical testing and parameter estimation methodologies, have been devel-

oped so as to be self consistent. That is; the testing and, to a lesser extent, the parameter

estimation methodologies have been developed and verified using the results from the de-

veloped numerical model. Thus, providing the initial lemma associated with the selection

of suitable response characteristics is proven correct, then the subsequent testing and pa-

rameter estimation methodologies will also hold up to scrutiny. Given the strength of the

conclusions drawn about material deformation characteristics from the literature review,

there can be considerable confidence in the accuracy and the physical applicability of the

theories that have been proposed.

A priority has been placed on industrial practicality, in this thesis, and there are several

important aspects which illustrate this. Firstly, within the numerical model implementation,

an emphasis has been placed on the flexibility of the actual subset constitutive relationships.

While the broad classification of these materials as being elasto-viscoelastic-viscoplastic is

verified widely in the literature, the variability of specific subset response characteristics

such as element elastic relationships and an explicit hardening rule can be dependent on

things like polymer type, grade and moulding conditions. The implementation that has been

presented, has accounted for all these subset constitutive components in a general fashion

and so can be generally applied for the majority of semicrystalline polymer situations with

very little modification needed between different grades etc. Secondly, while the proposed

experimental testing methodology is extensive, the actual tests it requires can be easily

carried out using no more specialized testing apparatus than would be available in most

commercial or university structural laboratories. The advantage of such features, from an

industrial point of view, is the versatility that results, firstly with respect to the flexibility

of materials which can be represented and secondly with respect to the ability of someone
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in industry to determine their own model parameters for a given design situation. The work

in this thesis, through the generalized theoretical approach taken, can correspondingly be

seen to be applicable to a wider audience than may have been the case had a single specific

material been the focus.

6.2 Critiques and limitations

Throughout the chapters of this thesis, the various working assumptions and simplifications

that have been used, have been clearly outlined. As such, the majority of these need

not be repeated here. It is, however, pertinent to briefly discuss some additional limiting

implications, associated with this work.

One of the more fundamental restrictions to the general use of the developed numerical

model, stems from the assumption of material isotropy. Here, material isotropy refers to

the isotropic nature of the deformation properties of the material, i.e. model parameters are

equal in each direction. While in most industrial circumstances this is a sound assumption,

poor moulding or fabrication practices can adversely affect the material properties and cause

anisotropy. The material’s properties can vary significantly due to factors such as molecu-

lar orientation and degree of crystallinity (Sharples (1966)). As such, care must be taken

when using the developed numerical model in industrial and design circumstances, that the

corresponding moulding and fabrication conditions promote isotropic material properties,

necessary for this assumption to remain valid. It should be said that a priority is gener-

ally placed on such moulding and fabrication conditions within modern industry already,

regardless of the implications to numerical modeling.

A further restriction resulting from the isotropic assumption has been the consequential

limitations imposed on the inclusion of strain hardening within the numerical model. While

it could be argued that the inclusion of isotropic hardening allows a general account of strain

hardening mechanisms, authors such as Brusselle-Dupend et al. (2001, 2003) have indicated

the additional importance of kinematic hardening within semicrystalline polymer response.

Also, shear strain softening has been observed under certain conditions in semicrystalline

polypropylene by G’Sell et al. (1997). For circumstances where inclusion of these additional

anisotropic hardening behaviors is deemed important, an involved, full tensor space numer-

ical implementation becomes necessary. Such a development has, however, fallen outside
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the scope of the current research.

It is additionally important to note that the developed numerical model neglects possible

variations in temperature that may occur in real loading circumstances (i.e. assumes an

isothermal deformation environment). Extension of this work to account for temperature

effects is possible using techniques such as those outlined by Reese and Govindjee (1998b),

however this too has been outside the scope of this thesis.

Within the developed testing methodology, an assumption has been made that the

viscoplastic element elastic relationship is linear. This may prove limiting for particularly

nonlinear materials, however due to the restricted range of strain (< 15%) being treated, it

would be rare that such an assumption would cause significant error.

Throughout the progression of this research, a major emphasis has been placed on lim-

iting the number of simplifications and assumptions. The intention has been to represent

the behavior of semicrystalline polymers as closely as possible without many of the simpli-

fications that have restricted the accuracy and applicability of such previous models. It is

hoped that the result is a practical theory that performs accurately for the general case of

response.

6.3 Future directions

Within this work, it has not been possible to carry out the physical experimental test-

ing needed for final model verification, due to the obvious time and scope restrictions on

doctoral research. This aspect is perhaps the most important future direction for subse-

quent research to progress in, so as to confirm the results discussed in this work. Within

such experimental research, further study on possible nonlinear viscosity and hardening

relationships should also be pursued, making use of the research techniques discussed in

the preceding chapters. The inclusion of such nonlinear functions would have important

implications for the numerical model implementation, thus necessitating additional careful

consideration.

6.4 Conclusion

It was the aim of this work to develop a constitutive theory that would be both accurate

and practical for use within industry. A new constitutive model has been developed for the
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representation of semicrystalline polymer response in the pre-necking region of finite strain.

A generalized numerical model has been developed to enable finite element analysis using

the model, while a testing and parameter estimation methodology has been proposed which

enables the determination of the full model parameter set.
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Appendix A

Derivation of the dissipation

requirement

For a constant temperature process, the Clausius-Plank form of the 2nd law of thermody-

namics is expressed in Lagrangian form via

S : 1
2Ċ − ψ̇ ≥ 0 (A.1)

where Ċ is the time differential of the right Cauchy-Green strain tensor, : denotes the tensor

double contraction (see Bonet and Wood (1997)) and ψ̇ is the time derivative of the free

energy expression. The free energy expression ψ is expressed in terms of elastic, viscoelastic

and viscoplastic components as

ψ = ψ̂e (C) + ψ̂ve (Ce
ve, ηve) + ψ̂vp

(
Ce

vp, ηvp, α,α
)

(A.2)

Note here that for the semicrystalline polymer application, the viscosity terms ηve and ηvp

have become internal variables because of their functionality on strain (rate). Recalling the

definition C = F T F and the multiplicative split of the deformation gradient, (2.6), it is

convenient to substitute the relationships

Ce
ve = F i−T

ve CF i−1
ve and Ce

vp = F i−T
vp CF i−1

vp (A.3)
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such that now

ψ = ψ̂e (C) + ψ̂ve

(
F i−T

ve CF i−1
ve , ηve

)
+ ψ̂vp

(
F i−T

vp CF i−1
vp , ηvp, α,α

)
(A.4)

Following Reese and Govindjee (1998a) and Nedjar (2002a), taking the chain rule dif-

ferential of (A.4) with respect to time gives

ψ̇ =
∂ψ̂e

∂C
: Ċ +

∂ψ̂ve

∂Ce
ve

:
∂Ce

ve

∂C
: Ċ +

∂ψ̂ve

∂Ce
ve

:
∂Ce

ve

∂F i
ve

: Ḟ
i
ve

+
∂ψ̂vp

∂Ce
vp

:
∂Ce

vp

∂C
: Ċ +

∂ψ̂vp

∂Ce
vp

:
∂Ce

vp

∂F i
vp

: Ḟ
i
vp

+
∂ψ̂ve

∂ηve
· η̇ve +

∂ψ̂vp

∂ηvp
· η̇vp +

∂ψ̂vp

∂α
· α̇ +

∂ψ̂vp

∂α
: α̇ (A.5)

Separately evaluating specific terms from within (A.5), for the Ċ terms, where the

subscript n = ve, vp

∂ψ̂n

∂Ce
n

:
∂Ce

n

∂C
: Ċ =

∂ψ̂n

∂Ce
n

:
∂

(
F i−T

n CF i−1
n

)

∂C
: Ċ

=
∂ψ̂n

∂Ce
n

: F i−T
n I4F

i−1
n : Ċ

where from Itskov (2000, 2002) and Kintzel (2005), the derivative of some second order

tensor Aij with respect to its self is given by ∂Aij/∂Akl = I4 ijkl = δijδkl, the fourth order

identity tensor. Also, a useful identity used by Reese and Govindjee (1998a) associated

with the double tensor contraction is A : B = C−1AD−1 : DBC. Correspondingly

= 2F i−1
n

∂ψ̂n

∂Ce
n

F i−T
n : 1

2Ċ (A.6)

For the Ḟ
i
n terms

∂ψ̂n

∂Ce
n

:
∂Ce

n

∂F i
n

: Ḟ
i
n =

∂ψ̂n

∂Ce
n

:
∂

(
F i−T

n CF i−1
n

)

∂F i
n

: Ḟ
i
n

=
∂ψ̂n

∂Ce
n

:
(

∂F i−T
n

∂F i T
n

CF i−1
n : Ḟ

i T
n + ∂F i−T

n C
∂F i−1

n

∂F i
n

: Ḟ
i
n

)

From Itskov (2000, 2002), for second order tensors ∂A−1/∂A = −A−1 ⊗ A−1 and also

A ⊗ B : C = ACB. Using these properties and the double contraction identity used in
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(A.6) then with some development

= F i−1
n

∂ψ̂n

∂Ce
n

F i−T
n :

(
−Ḟ

i T
n F i−T

n C −CF i−1
n Ḟ

i
n

)
(A.7)

Using (A.6) and (A.7) in (A.5) and substituting this for the free energy time differential

term in (A.1) gives the new form of the Clausius-Plank inequality for the semicrystalline

polymers as

(
S − 2

∂ψ̂e

∂C
− 2F i−1

ve

∂ψ̂ve

∂Ce
ve

F i−T
ve − 2F i−1

vp

∂ψ̂vp

∂Ce
vp

F i−T
vp

)
: 1

2Ċ

+ F i−1
ve

∂ψ̂ve

∂Ce
ve

F i−T
ve :

(
Ḟ

i T
ve F i−T

ve C + CF i−1
ve Ḟ

i
ve

)

+ F i−1
vp

∂ψ̂vp

∂Ce
vp

F i−T
vp :

(
Ḟ

i T
vp F i−T

vp C + CF i−1
vp Ḟ

i
vp

)

− ∂ψ̂ve

∂ηve
· η̇ve − ∂ψ̂vp

∂ηvp
· η̇vp − ∂ψ̂vp

∂α
· α̇− ∂ψ̂vp

∂α
: α̇ ≥ 0 (A.8)

By the standard argument treated by authors such as Simo (1992), Reese and Govindjee

(1998a), Perić and Owen (1998), Nedjar (2002a,b) and Perić and Dettmer (2003), the first

term of (A.8) is equated to zero such that

S = 2
∂ψ̂e

∂C
+ 2F i−1

ve

∂ψ̂ve

∂Ce
ve

F i−T
ve + 2F i−1

vp

∂ψ̂vp

∂Ce
vp

F i−T
vp

= Se + Sve + Svp (A.9)

Also, the Eulerian counterpart, the Kirchhoff stress tensor, can be attained via the second

order push forward of (A.9) (Bonet and Wood (1997); Simo and Taylor (1991)) such that

τ = 2F
∂ψ̂e

∂C
F T + 2F e

ve

∂ψ̂ve

∂Ce
ve

F e T
ve + 2F e

vp

∂ψ̂vp

∂Ce
vp

F e T
vp

= τ e + τ ve + τ vp (A.10)

Using (A.10) it is now possible to further develop (A.7). Firstly exploiting the symmetric

nature of C, then

∂ψ̂n

∂Ce
n

:
∂Ce

n

∂F i
n

: Ḟ
i
n = 2F i−1

n

∂ψ̂n

∂Ce
n

F i−T
n : −CF i−1

n Ḟ
i
n
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Using the previously noted double contraction identity

= −2F e
n

∂ψ̂n

∂Ce
n

F eT
n : F−T CF i−1

n Ḟ
i
nF−1

Substituting the result from (A.10) and exploiting the multiplicative split of the deformation

gradient, (2.6), then with some development

= −τn : F e
nḞ

i
nF i−1

n F e−1
n (A.11)

It is convenient here to introduce the Lie derivative of the elastic left Cauchy-Green

strain tensor, Lvb
e
n where from Bonet and Wood (1997), Perić and Owen (1998), Simo and

Hughes (2000), Itskov (2000), Perić and Dettmer (2003) and Kintzel (2005)

Lvb
e
n = F

˙(
F−1be

nF−T
)
F T = ḃ

e
n − lbe

n − be
nlT (A.12)

where l is the spatial velocity gradient given by l = Ḟ F−1 (Reese and Govindjee (1998a);

Perić and Dettmer (2003)). Making further use of (2.6), and noting that be
n = F e

nF e T
n then

after some development

Lvb
e
n = −F e

nḞ
i
nF i−1

n F e−1
n be

n − be
nF e−T

n F i−T
n Ḟ

i T
n F e T

n (A.13)

Observing the symmetry of be
n, rearranging gives

F e
nḞ

i
nF i−1

n F e−1
n = −1

2 (Lvb
e
n) be−1

n (A.14)

such that now (A.11) becomes

∂ψ̂n

∂Ce
n

:
∂Ce

n

∂F i
n

: Ḟ
i
n = τn : 1

2 (Lvb
e
n) be−1

n (A.15)

In view of (A.9) and (A.15) it is a direct development to show that the Clausius-Plank
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inequality, (A.8), takes the final form

τ ve :
(−1

2 (Lvb
e
ve) be−1

ve

)
+ τ vp :

(−1
2

(Lvb
e
vp

)
be−1

vp

)

− ∂ψ̂ve

∂ηve
· η̇ve − ∂ψ̂vp

∂ηvp
· η̇vp − ∂ψ̂vp

∂α
· α̇− ∂ψ̂vp

∂α
: α̇ ≥ 0 (A.16)



Appendix B

Viscoplastic constitutive equations

in 1D

The one dimensional viscoplastic rheological element discussed here is comparable to that

treated by Simo and Hughes (2000), Owen and Hinton (1986) and Zienkiewicz and Taylor

(2003). The 1D rheological form is provided in Figure B.1.

Figure B.1: One-dimensional elasto-viscoplastic rheological element (based on figure sup-
plied by Simo and Hughes (2000)).

From the figure it can be observed that the total element strain is the sum of the elastic

and inelastic components

ε = εe + εi (B.1)

The spring element accounts for the instantaneous elastic behavior where total element

stress is related to elastic strain via Hooke’s law

σ = Eεe = E
(
ε− εi

)
(B.2)

137



APPENDIX B. VISCOPLASTIC CONSTITUTIVE EQUATIONS IN 1D 138

Within the inelastic element, firstly from time independent plasticity (Owen and Hinton

(1986); Simo and Hughes (2000)), the friction slider is known to be only capable of carrying

stress levels up to and including its yield threshold (σy in the case of perfect plasticity).

Inelastic evolution is only possible when σ = ±σy. In the case of viscoplasticity as in

Figure B.1, the parallel inclusion of the dashpot enables the element to carry more stress

than that of the yield limit with the extra stress above σy being taken up in the dashpot

and consequently governing inelastic evolution. The extra stress, σex, can be defined by

σex =





σ − σy if σ ≥ σy

σ + σy if σ ≤ −σy

0 if σ ∈ (−σy, σy)

(B.3)

For the case of nonzero extra stress, it can be shown that

σex = (|σ| − σy) sign (σ) (B.4)

where |·| =
√

(·)2 denotes the scalar magnitude and where sign (·) is a commonly used

operator adequately defined by Simo and Hughes (2000) as

sign (x) =





x if x > 0

−x if x < 0
(B.5)

From (B.3), σex is nonzero only if

f (σ) = |σ| − σy > 0 (B.6)

where f (σ) is referred to as the yield function. To allow σex to be defined for all cases of

f (σ), following the work of Perić and Dettmer (2003), Simo (1992), Simo and Hughes (2000),

Zienkiewicz and Taylor (2003) and Crisfield (1997), a ramp function, 〈·〉, is introduced such

that

σex = 〈f (σ)〉∂f (σ)
∂σ

(B.7)
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where

〈x〉 =
(x + |x|)

2
=





x if x > 0

0 if x ≤ 0
(B.8)

and also it was convenient to exploit the differential of (B.6) where

∂

∂σ
(f (σ)) =

∂

∂σ

(√
σ2 − σy

)
=

σ√
σ2

= sign (σ) (B.9)

Now (B.7) is consistent with (B.3).

Observing that the inelastic evolution of a dashpot is governed by the newtonian evo-

lution equation similar to equation (2.2) (Findley et al. (1976); Owen and Hinton (1986);

Simo and Hughes (2000)), then for the viscoplastic element

ε̇i =
1
η
σex =

〈f (σ)〉
η

∂f (σ)
∂σ

f (σ) = |σ| − σy (B.10)

A viscoplastic constitutive relationship in the form of (B.10) was first proposed by Perzyna

(1971).

The one-dimensional viscoplastic constitutive theory presented so far has dealt with

perfect viscoplasticity in the sense that strain hardening of the plastic element (friction

slider) has not been accounted for. Both isotropic and kinematic hardening have been

shown to be important properties for semicrystalline polymers and so further development

is necessary.

Firstly, the elastic limit, Eσ, for the case of perfect plasticity is diagrammatically rep-

resented in Figure B.2. When stress is within the elastic limit, |σ| − σy ≤ 0, deformation

is wholly elastic. For stresses exceeding the elastic range, (B.6) is satisfied and there is

inelastic evolution governed by (B.10).

When strain hardening is present, the internal variables αiso and αkin are introduced

(Simo and Hughes (2000)) which are related to the inelastic strain evolution by

α̇iso =
∣∣ ε̇i

∣∣

α̇kin = ε̇i (B.11)
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(a)

(b) (c)

Figure B.2: Diagrammatical representation of the elastic limit for (a) perfect plasticity, (b)
isotropic hardening (developed from Simo and Hughes (2000), Figure 1.6, page 13) and (c)
kinematic hardening.

Graphical representation of the effect of isotropic and kinematic hardening on the elastic

range in response to inelastic strain evolution is provided in Figures B.2 (b) and (c) re-

spectively. The strain space internal variables αiso and αkin are related to the stress space

elastic range through the isotropic and kinematic hardening moduli, K and H.

Combining the boundary expressions of the elastic range from Figure B.2 (b) and (c)

for the combined case of isotropic and kinematic hardening gives the new expression for

yield function

f (σ, αiso, αkin) = |σ −Hαkin| − (σy + Kαiso) (B.12)

Because (B.12) is expressed in a combination of stress and strain space terms, it is

convenient from a numerical standpoint to introduce the stress space conjugates to the

internal variables, qiso and qkin, where

qiso = −Kαiso

qkin = −Hαkin (B.13)
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such that now

f (σ + qkin, qiso) = |σ + qkin| − (σy − qiso) (B.14)

An identical procedure to that carried out for the perfect viscoplastic case above then

leads us to the result

ε̇i =
〈f (σ + qkin, qiso)〉

η

∂f (σ + qkin, qiso)
∂σ

(B.15)

where now
∂f (σ + qkin, qiso)

∂σ
=

σ + qkin

|σ + qkin| = sign (σ + qkin) (B.16)

It is a useful result to derive (B.14) with respect to qiso and qkin such that

∂f (σ + qkin, qiso)
∂qiso

= 1 (B.17)

∂f (σ + qkin, qiso)
∂qkin

=
σ + qkin

|σ + qkin| =
∂f (σ + qkin, qiso)

∂σ
(B.18)

Now using (B.11), (B.17) and (B.18) and noting that
∣∣∣ x√

x2

∣∣∣ = 1, with some development

the evolution of internal hardening variables can be defined by

α̇iso =
〈f (σ + qkin, qiso)〉

η

∂f (σ + qkin, qiso)
∂qiso

(B.19)

and

α̇kin =
〈f (σ + qkin, qiso)〉

η

∂f (σ + qkin, qiso)
∂qkin

(B.20)

A numerical solution strategy such as radial return mapping or closest point projection

(Simo and Hughes (2000)) can be used to solve for the mutually dependent plastic evo-

lution equations, (B.15), (B.19) and (B.20). Equations (B.2), (B.14), (B.15), (B.19) and

(B.20) constitute a complete constitutive equation set for one-dimensional viscoplasticity

accounting for isotropic and kinematic hardening.



Appendix C

Principal Space Differentials

C.1 Modified Lagrangian eigenvalue base definition

From the definition of the modified Lagrangian eigenvalue base, equation (3.18), it can be

shown that

M̃1 + M̃2 + M̃3 = C−1 (C.1)

Λ1M̃1 + Λ2M̃2 + Λ3M̃3 = I (C.2)

Λ2
1M̃1 + Λ2

2M̃2 + Λ2
3M̃3 = C (C.3)

(1) Distinct eigenvalues Λ1 6= Λ2 6= Λ3

Solving the system of equation (C.1) to (C.3) yields

M̃A =
C − (IC − ΛA) I + IIICΛ−1

A C−1

DA
A = 1, 2, 3 (C.4)

where

DA = (ΛA − ΛB) (ΛA − ΛC) A 6= B 6= C (C.5)

and the well known first and third principal invariants IC and IIIC have been exploited

where

IC = Λ1 + Λ2 + Λ3 IIC = Λ1Λ2 + Λ1Λ3 + Λ2Λ3 IIIC = Λ1Λ2Λ3 (C.6)

Note that this is an identical result to that found by Simo and Taylor (1991).
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(2) Double coalescence of eigenvalues Λ1 6= Λ2 = Λ3 = Λ

From standard algebra, it can be shown that for the case when Λ2 = Λ3, the corresponding

modified eigenvalue bases remain undetermined given only equations (C.1) to (C.3). To

account for this (C.1) and (C.2) can take the modified form

M̃1 +
(
M̃2 + M̃3

)
= C−1 (C.7)

Λ1M̃1 + Λ
(
M̃2 + M̃3

)
= I (C.8)

Here now the modified eigenvalue base corresponding to the single distinct eigenvalue Λ1

can be determined as can the combined
(
M̃2 + M̃3

)
contribution as

M̃1 =
I − ΛC−1

Λ1 − Λ
(C.9)

(
M̃2 + M̃3

)
= C−1 − M̃1 (C.10)

Although Simo and Taylor (1991) do not present an alternative definition such as this

for the case of double eigenvalue coalescence, it can be trivially shown that (C.4) reduces to

(C.9) in such circumstances and so there would be no loss in generality to use only equation

(C.4) in both cases.

(3) Triple coalescence of eigenvalues Λ1 = Λ2 = Λ3 = Λ

For the case of triple coalescence of eigenvalues, from equations (C.1) to (C.3) the modified

eigenvalue bases are all algebraically indeterminate. In this case, (C.1) is of sole importance

to the corresponding spectral reconstruction.

C.2 First principal stretch differentials

Recalling the three principal invariants, equations (C.6), by exploiting the traditional tensor

forms of these invariants (Bonet and Wood (1997)) (functional on the right Cauchy-Greens
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strain), (C.6) become

tr [C] = Λ1 + Λ2 + Λ3 (C.11)

1
2

(
tr [C]2 + tr

[
C2

])
= Λ1Λ2 + Λ1Λ3 + Λ2Λ3 (C.12)

det [C] = Λ1Λ2Λ3 (C.13)

Differentiating equations (C.11) to (C.13) with respect to C gives after manipulation

I = ∂CΛ1 + ∂CΛ2 + ∂CΛ3 (C.14)

C = ICI − (Λ2 + Λ3) ∂CΛ1 − (Λ1 + Λ3) ∂CΛ2 − (Λ1 + Λ2) ∂CΛ3 (C.15)

IIICC−1 = Λ2Λ3∂CΛ1 + Λ1Λ3∂CΛ2 + Λ1Λ2∂CΛ3 (C.16)

(1) Distinct eigenvalues Λ1 6= Λ2 6= Λ3

Appendix C.1 provided definition of the modified eigenvalue bases, M̃A, A = 1, 2, 3 func-

tional on the eigenvalues and C, I and IIICC−1. Equations (C.14) to (C.16) can be

substituted into (C.4) and following straight forward manipulation

∂CΛA = ΛAM̃A, A = 1, 2, 3 (C.17)

Recalling the relationship λA =
√

ΛA, the corresponding principal stretch derivatives

can be found via the chain rule expansion

∂λA

∂C
=

3∑

B=1

∂λA

∂ΛB

∂ΛB

∂C

=
1
2
λ−1

A

∂ΛA

∂C
(C.18)

such that now

∂CλA = 1
2λAM̃A, A = 1, 2, 3 (C.19)
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(2) Double coalescence of eigenvalues Λ1 6= Λ2 = Λ3 = Λ

For the case of double eigenvalue coalescence, again substituting equations (C.14) to (C.16)

into the modified eigenvalue base expression (C.9), yields

∂CΛ1 = Λ1M̃1 (C.20)

Rearranging (C.16), such that

C−1 = Λ−1
1 ∂CΛ1 + Λ−1

2 ∂CΛ2 + Λ−1
3 ∂CΛ3 (C.21)

then exploiting (C.20) it can be shown

∂C (Λ2 + Λ3) = Λ
(
C−1 − M̃1

)
(C.22)

Again implementing equation (C.18), the principal stretch derivatives for double eigenvalue

coalescence become

∂Cλ1 = 1
2λ1M̃1

∂C (λ2 + λ3) = 1
2λ

(
C−1 − M̃1

)
(C.23)

(C.24)

(3) Triple coalescence of eigenvalues Λ1 = Λ2 = Λ3 = Λ

Because the eigenvalue bases remain undetermined in the case of triple coalescence of eigen-

values, no distinct principal stretch derivatives can be found, however utilizing equations

(C.18) and (C.21) it can be shown that

∂C (λ1 + λ2 + λ3) = 1
2λC−1 (C.25)

which is a useful result.
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C.3 First and second jacobian differentials

Noting the definition of the jacobian, J , in principal space as J = λ1λ2λ3, then using the

chain rule, its derivative with respect to the right Cauchy-Green strain tensor becomes

∂J

∂C
=

3∑

A=1

∂J

∂λA

∂λA

∂C
(C.26)

Observing
∂J

∂λA
= λBλC , A 6= B 6= C (C.27)

and assuming the case of distinct eigenvalues, then equations (C.19) and (C.27) can be

substituted into (C.26) to give

∂J

∂C
=

1
2
JM̃1 +

1
2
JM̃2 +

1
2
JM̃3 (C.28)

Finally, recalling (C.1), then

∂CJ = 1
2JC−1 (C.29)

Equation (C.29) is identical to that used by Simo and Taylor (1991). It is worthwhile to

note that similarly, this process can be repeated for the cases of double and triple eigenvalue

coalescence yielding, with some manipulation, the same expression. This result clearly

demonstrates the invariance of the volumetric terms to dimensionally variant strain as

expected.

The second differential of the jacobian, ∂2
CCJ can be found via the straightforward

differential of equation (C.29). From the chain rule

∂2J

∂C2 =
∂

∂C

(
1
2JC−1

)

=
1
2

∂J

∂C
C−1 +

1
2
J

∂C−1

∂C
(C.30)

Simo and Taylor (1991) represent the differential, ∂CC−1, by the fourth order tensor −IC−1

where it can be shown that

∂C−1
ij

∂Ckl
= −IC−1

ijkl = −1
2

(
C−1

ik C−1
jl + C−1

il C−1
jk

)
(C.31)



APPENDIX C. PRINCIPAL SPACE DIFFERENTIALS 147

Using this and with further implementation of (C.29), the second differential of the jacobian

(C.30), becomes

∂2
CCJ = 1

4JC−1 ⊗C−1 − 1
2JIC−1

(C.32)

C.4 Second principal stretch differentials

The different treatment of the first principal stretch differentials dependent on eigenvalue

equalities in Appendix C.2, necessitates the analogous separation of the second principal

stretch differentials as follows.

(1) Distinct eigenvalues Λ1 6= Λ2 6= Λ3

Because all eigenvalue bases are independently discernable for distinct eigenvalues, the

second principal stretch derivative terms reduce to first modified eigenvalue base derivatives

as has been noted in Section 3.1.5. Taking the derivative of equations (C.1) to (C.3) with

respect to the right Cauchy-Green strain tensor yields

∂CM̃1 + ∂CM̃2 + ∂CM̃3 = −IC−1

(C.33)

Λ1∂CM̃1 + Λ2∂CM̃2 + Λ3∂CM̃3 = −
3∑

A=1

ΛAM̃A ⊗ M̃A (C.34)

Λ2
1∂CM̃1 + Λ2

2∂CM̃2 + Λ2
3∂CM̃3 = I ′ − 2

3∑

A=1

Λ2
AM̃A ⊗ M̃A (C.35)

having used the relationship ∂CΛA = ΛAM̃A from (C.17). By simultaneous solution and

subsequent algebraic manipulation of equation (C.33) to (C.35) it can be shown that the

modified Lagrangian eigenvalue base derivatives are given by

∂CM̃A =
1

DA

(
I ′ −

3∑

B=1

[
2Λ2

B − (IC − ΛA) ΛB

]
M̃B ⊗ M̃B − IIICΛ−1

A IC−1

)

A = 1, 2, 3 (C.36)

(2) Double coalescence of eigenvalues Λ1 6= Λ2 = Λ3 = Λ

When two eigenvalues are equal, only the other distinct eigenvalue has an explicitly defined

eigenvalue base. Consequently, it would be inconsistent to replace the second derivatives
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of the non-unique principal stretches with the first derivatives of undetermined eigenvalue

bases as was possible when all the eigenvalues were distinct. An alternate methodology will

be used such that the second differential terms are functional on the determined eigenvalue

base only.

Recalling equation (C.10)

C−1 − M̃1 = M̃2 + M̃3 (C.37)

Substitution of this expression into (C.22) gives

M̃2 + M̃3 = Λ−1∂C (Λ2 + Λ3) (C.38)

Using this expression, the system of equations (C.1) to (C.3) are modified

M̃1 + Λ−1∂C (Λ2 + Λ3) = C−1 (C.39)

Λ1M̃1 + ∂C (Λ2 + Λ3) = I (C.40)

Λ2
1M̃1 + Λ∂C (Λ2 + Λ3) = C (C.41)

Now taking the differential of the modified expressions (C.39) to (C.41), with respect to the
right Cauchy-Green strain tensor gives

∂C
fM1 + Λ−1∂2

CC (Λ2 + Λ3)− Λ−2 (∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3) = −IC−1

(C.42)

Λ1∂C
fM1 + ∂2

CC (Λ2 + Λ3) = −Λ1
fM1 ⊗ fM1 (C.43)

Λ2
1∂C

fM1 + Λ∂2
CC (Λ2 + Λ3) + (∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3) = I ′ − 2Λ2

1
fM1 ⊗ fM1 (C.44)

Within the new system of equations (C.42) to (C.44), there are three unknowns; ∂CM̃1,

∂2
CC (Λ2 + Λ3) and (∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3). Simultaneous solution for the modified

Lagrangian eigenvalue base derivative ∂CM̃1 gives

∂CM̃1 =
1

D1

(
I ′ − 2Λ1 (Λ1 − Λ) M̃1 ⊗ M̃1 − IIICΛ−1

1 I ′
)

(C.45)

Correspondingly, the second and third unknown terms can be given by the functions

∂2
CC (Λ2 + Λ3) = −Λ1M̃1 ⊗ M̃1 − Λ1∂CM̃1 (C.46)
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(∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3) = −Λ1ΛM̃1 ⊗ M̃1 + IIICΛ−1
1 IC−1 − Λ (Λ1 − Λ) ∂CM̃1

(C.47)

where (C.46) and (C.47) are expressed wholly in terms of the known modified eigenvalue

base and its derivative as desired.

(3) Triple coalescence of eigenvalues Λ1 = Λ2 = Λ3 = Λ

As was the case for the first principal strain differentials, when Λ1 = Λ2 = Λ3 = Λ, the

second differentials are also all exclusively indeterminate. This being said, a useful result

can be attained via a procedure similar to that used above for the case of double eigenvalue

coalescence.

From equations (C.1) and (C.21)

M̃1 + M̃2 + M̃3 = Λ−1∂C (Λ1 + Λ2 + Λ3) (C.48)

Substitution of this term into equations (C.1) and (C.2) gives the modified equation system

Λ−1∂C (Λ1 + Λ2 + Λ3) = C−1 (C.49)

∂C (Λ1 + Λ2 + Λ3) = I (C.50)

Differentiation with respect to the right Cauchy-Green strain tensor gives

Λ−1∂2
CC (Λ1 + Λ2 + Λ3)− Λ−2 (∂CΛ1 ⊗ ∂CΛ1 + ∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3) = −IC−1

(C.51)

∂2
CC (Λ1 + Λ2 + Λ3) = 0 (C.52)

and by trivial simultaneous solution,

(∂CΛ1 ⊗ ∂CΛ1 + ∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3) = Λ2IC−1

(C.53)



Appendix D

Expansions of C̄

D.1 Expansion of C̄ for double coalescence of eigenvalues

Due to the nature of the results for first and second principal stretch derivatives from

Appendices C.2 and C.4 when two eigenvalues coalesce, expression of the specific deviatoric

component of the closed-form tangential modulus is only possible after expansion of equation

(3.39).

Recalling that the derivative of the single exclusive eigenvalue is know from (C.23), then

the expansion of the deviatoric tangential modulus proceeds

C̄ = γ11M̃1 ⊗ M̃1+ γ12M̃1 ⊗
(

2λ−1
2

∂λ2

∂C

)
+ γ13M̃1 ⊗

(
2λ−1

3

∂λ3

∂C

)

+ γ21

(
2λ−1

2

∂λ2

∂C

)
⊗ M̃1+ γ22

(
2λ−1

2

∂λ2

∂C

)
⊗

(
2λ−1

2

∂λ2

∂C

)
+ γ23

(
2λ−1

2

∂λ2

∂C

)
⊗

(
2λ−1

3

∂λ3

∂C

)

+ γ31

(
2λ−1

3

∂λ3

∂C

)
⊗ M̃1+ γ32

(
2λ−1

3

∂λ3

∂C

)
⊗

(
2λ−1

2

∂λ2

∂C

)
+ γ33

(
2λ−1

3

∂λ3

∂C

)
⊗

(
2λ−1

3

∂λ3

∂C

)

+ 2β1∂CM̃1+ 2β2
∂

∂C

(
2λ−1

2

∂λ2

∂C

)
+ 2β3

∂

∂C

(
2λ−1

3

∂λ3

∂C

)

(D.1)

Of particular importance to the reduction of this expression is the observation that when

Λ2 = Λ3 = Λ, then via algebraic manipulation of equation (3.38) it can be shown that

γ12 = γ13, γ21 = γ31, γ22 = γ23 = γ32 = γ33 (D.2)

Also, recalling equation (C.18), it is convenient to use the eigenvalue form of the second
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principal stretch derivatives via

∂

∂C

(
2λ−1

A

∂λA

∂C

)
=

∂

∂C

(
Λ−1

A

∂ΛA

∂C

)
(D.3)

such that now (D.1) reduces to

C̄ = γ11M̃1 ⊗ M̃1 + γ12M̃1 ⊗
[
2λ−1∂C (λ2 + λ3)

]

+ γ21

[
2λ−1∂C (λ2 + λ3)

]⊗ M̃1 + γ22

[
2λ−1∂C (λ2 + λ3)

]⊗ [
2λ−1∂C (λ2 + λ3)

]

+ 2β1∂CM̃1 + 2βΛ−1∂2
CC (Λ2 + Λ3)− 2βΛ−2 (∂Cλ2 ⊗ ∂Cλ2 + ∂Cλ3 ⊗ ∂Cλ3) (D.4)

With substitution of equations (C.24), (C.46) and (C.47), following some development the

deviatoric component of the specific Lagrangian tangential modulus for double coalescence

of eigenvalues becomes

C̄ = γ11M̃1 ⊗ M̃1 + γ22

(
C−1 − M̃1

)
⊗

(
C−1 − M̃1

)

+ γ21

(
C−1 − M̃1

)
⊗ M̃1 + γ12M̃1 ⊗

(
C−1 − M̃1

)

− 2βIC−1

+ 2 (β1 − β) ∂CM̃1 (D.5)

This expression is now formulated invariant to the unknown eigenvalue bases and their

respective unknown derivatives and so can be directly numerically implemented.

D.2 Expansion of C̄ for triple coalescence of eigenvalues

Expansion of the reduced form of expression (3.39), due to (3.46), enables definition of

the deviatoric tangential modulus, invariant to the unknown principal stretch derivative.

Expressing the differential terms in eigenvalue form as per (C.18), then

C̄ = γ11

(
Λ−1

1

∂Λ1

∂C

)
⊗

(
Λ−1

1

∂Λ1

∂C

)
+ γ12

(
Λ−1

1

∂Λ1
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∂Λ2

∂C

)
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∂C

)
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∂Λ2

∂C

)
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1

∂Λ1

∂C

)
+ γ22

(
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2

∂Λ2

∂C

)
⊗

(
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2

∂Λ2
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)
+ γ23
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)
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)

+ γ31

(
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)
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(D.6)
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Again exploiting the eigenvalue equality Λ1 = Λ2 = Λ3 = Λ, from direct development

of (3.38) it can be shown that

γ11 = γ22 = γ33 = γ − 1
3γ, γ12 = γ13 = γ21 = γ23 = γ31 = γ32 = −1

3γ (D.7)

where the scalar term, γ, is introduced for convenience. It follows that now

C̄ = γ
[
Λ−2 (∂CΛ1 ⊗ ∂CΛ1 + ∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3)

]

−1
3γ

[
Λ−2 (∂CΛ1 ⊗ ∂CΛ1 + ∂CΛ1 ⊗ ∂CΛ2 + ∂CΛ1 ⊗ ∂CΛ3

∂CΛ2 ⊗ ∂CΛ1 + ∂CΛ2 ⊗ ∂CΛ2 + ∂CΛ2 ⊗ ∂CΛ3

∂CΛ3 ⊗ ∂CΛ1 + ∂CΛ3 ⊗ ∂CΛ2 + ∂CΛ3 ⊗ ∂CΛ3)] (D.8)

The term in the second round brackets can be factored to ∂C (Λ1 + Λ2 + Λ3)⊗∂C (Λ1 + Λ2 + Λ3)

so, with substitution of equations (C.21) and (C.53), the modulus term becomes

C̄ = γ
(
IC−1 − 1

3C−1 ⊗C−1
)

(D.9)

which is again invariant to the unknown eigenvalue bases and their respective unknown

derivatives as required.


	Title page, statements and acknowledgements
	Title page
	Statement of access
	Statement of sources
	Electronic copy statement
	Statement on the contribution of others
	Acknowledgements

	List of publications
	Abstract
	Contents
	List of tables
	List of figures
	Chapter 1.Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	Chapter 2. Constitutive model formulation
	2.1 Background
	2.2 Review of literature
	2.2.1 Direction from micromechanics
	2.2.2 Macroscopic constitutive theories
	2.2.3 Model selection

	2.3 Suitability of the selected rheological form to polymers
	2.3.1 Static loading
	2.3.2 Constant strain rate loading
	2.3.3 Other phenomena

	2.4 Formulation of constitutive mathematics
	2.4.1 Kinematics and thermodynamics
	2.4.2 Stress
	2.4.3 Viscoelastic evolution equations
	2.4.4 Viscoplastic evolution equations

	2.5 Summary

	Chapter 3. Numerical implementation and verification
	3.1 Generalized elasticity
	3.1.1 Volumetric-deviatoric strain separation
	3.1.2 Thermodynamics in tensor space
	3.1.3 Spectral decomposition of strain
	3.1.4 Stress expression in principal stretches

	3.2 Extension for generalized inelasticity
	3.2.1 Alternate treatment of the deformation gradient
	3.2.2 Implications for tensor space thermodynamics
	3.2.3 Spectral decomposition of elastic strain
	3.2.4 Stress expression in principal stretches
	3.2.5 Closed-form tangential modulus expression in principal stretches

	3.3 Principal space algorithmic development of the threespeci¯c cases
	3.3.1 Elastic element
	3.3.2 Viscoelastic element
	3.3.3 Viscoplastic element

	3.4 Numerical verification
	3.4.1 Single element normal tests
	3.4.2 Simple shear tests
	3.4.3 Simply supported beam: Creep
	3.4.4 Simply supported beam: Relaxation

	3.5 Summary

	Chapter 4. Development of testing methodology
	4.1 3D results from uniaxial testing
	4.2 Isolation of viscoelastic component stress
	4.3 Separation of elastic and viscoplastic component stresses
	4.3.1 Initial elastic stress estimate
	4.3.2 Testing regime
	4.3.3 The viscoplastic element modulus
	4.3.4 Elastic and viscoplastic stress and strain components

	4.4 Measurement of subset viscoplastic viscous, yield andhardening stresses
	4.5 Summary

	Chapter 5. Parameter estimation
	5.1 Levenberg-Marquardt optimization for hyperelasticity
	5.2 A modified Levenberg-Marquardt technique for nonlinear viscoelasticity
	5.3 Estimation of viscoplastic element parameters
	5.4 Generalization of the modified Levenberg-Marquardt method
	5.5 Summary

	Chapter 6. Conclusions
	6.1 Discussions on the proposed theories
	6.2 Critiques and limitations
	6.3 Future directions
	6.4 Conclusion

	Bibliography
	Appendices
	Appendix A. Derivation of the dissipation requirement
	Appendix B. Viscoplastic constitutive equations in 1D
	Appendix C. Principal space differentials
	Appendix D. Expansions of ¹C




