Systematic Conservation Assessments for Marine Protected Areas in New South Wales, Australia

Thesis Submitted by
Daniel Andrew Breen

For the degree of Doctor of Philosophy
In the School of Marine and Tropical Biology,
Faculty of Science, Engineering and Information Technology
James Cook University

February 2007
ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

Daniel Andrew Breen

(Date)
STATEMENT OF ACCESS

I, the undersigned, the author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Thesis Network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restrictions on access to this work.

Daniel Andrew Breen

15.1.2008

(Date)
STATEMENT OF SOURCES

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Daniel Andrew Breen 15.1.2008

Daniel Andrew Breen (Date)
Statement of the Contribution of Others

Ron Avery provided a foundation for this work through his previous assessment of the Tweed-Moreton marine bioregion. Ron was also an equal partner and author on the biodiversity assessment for the Manning Shelf. Ron helped develop, refine and map the broad scale environmental classification, researched literature and data sets to support the assessment and helped develop options for marine protected areas. Ron also mapped near-shore reef, sand and intertidal habitats and other data for most of NSW.

Nick Otway developed the project proposal, funding, supervision and scientific foundation for the bioregional assessments. Andrew Read and Bob Creese assisted with financial, scientific and management support for the projects.

Research for the assessments in NSW was undertaken with Natural Heritage Trust funding from Environment Australia (now the Australian Government Department of Environment and Heritage) for the Marine Protected Areas Program at NSW Fisheries and the NSW Marine Parks Authority.

Staff at the NSW National Parks and Wildlife Service Conservation Assessment Unit provided the C-Plan conservation planning software, while Bob Pressey, Mal Ridges and Matthew Watts provided technical support, guidance and license codes. Chris Margules, Paul Walker (CSIRO) and Dan Faith (Australian Museum) assisted through discussions and demonstrations of approaches to reserve selection. Andrew Taplin introduced me to Spexan while its authors Ian Ball and Hugh Possingham provided the Marxan simulated annealing software adapted for the Great Barrier Reef Marine Park Authority.

For Cape Byron Marine Park:

Andrew Page, Nicola Johnston and other Cape Byron Marine Park staff organised project planning, logistics, data collection, consultation and wrote draft and final plans for the park. Vanessa Mansbridge provided maps of the draft and final zone plans and other data. Andrew Bickers and Katrina Baxter carried out the sidescan and video surveys of the marine park and provided the fine scale classification and GIS data for subtidal habitats and benthic assemblages. Simon Banks and David Scotts provided the classification of intertidal habitats. Greg West and Danielle Morrison provided maps of estuarine vegetation and expert advice and support on GIS throughout all projects.

Kellie Lobb entered, modelled and mapped data for the recreational surveys. Nick Brown entered, modelled and mapped data for the commercial fishing surveys. The late Doug Chapman analysed commercial fisheries catch returns data and estimated the costs of buying out commercial fishing endorsements. The NSW Marine Parks Authority provided a professional facilitator for the community workshops. Matthew Watts ran the initial Marxan simulations for the Cape Byron ecological and social data twice in one night. The Cape Byron Advisory Committee and other participants at the draft zone plan workshops provided local knowledge and advice.
I also wish to acknowledge the contributions of the following individuals and organisations:

The Great Barrier Reef Marine Park Authority, NSW Marine Park Authority, NSW Fisheries, NSW National Parks and Wildlife Service and the Marine Protected Areas Program of Commonwealth Department of Environment and Heritage for the provision of funding, infrastructure and project guidance.

Jon Day, David Lloyd, Jamie Oliver, Leanne Fernandes and Richard Kenchington for the management, development and support of the Representative Areas Program at the Great Barrier Reef Marine Park Authority during the classification phase of the project.

Francis Pantus, Joan Phillips, David Wachenfeld, Ken Melchert, Alan Williams, Barbara Breen, Guy Lane, Malcolm Cullen, Donna Auden, Rob Magill and Jeff Shearer for their work in the initial planning, data collection and GIS modelling for the Representative Areas Program at the Great Barrier Reef Marine Park Authority.

Renae Partridge, Brigid Kerrigan, Laura Rowe, Suzie Davies and Leanne Fernandes for organisation and support of the literature review and database, survey of research scientists and the expert workshops on biodiversity in the Great Barrier Reef World Heritage Area.

Glen De’Ath provided the Multivariate Classification and Regression Tree analyses that provided a basis for the bioregionalisations developed at the expert workshops and Trevor Ward provided advice on systematic protected area assessments.

The physical and biological scientists who provided guidance through the Representative Areas Program Steering Committee and expert workshops, and the many other scientists who supplied data sets, knowledge and advice through interviews and surveys.

The multiple criteria analysis software ‘Criteria Decision Plus’ was purchased from InfoHarvest, Seattle WA, USA (www.infoharvest.com) by NSW Fisheries. The GIS software ArcView and ARCInfo was licensed to NSW Fisheries from ESRI.
Acknowledgments

For their comments, advice and assistance I gratefully acknowledge:

My supervisors Dr. Geoffrey Jones, James Cook University and Dr. Nicholas Otway, NSW Fisheries.

Andrew Read, Bob Creese, Greg West, Francis Dorman, Danielle Morrison, Natalie Morrison, Michelle Belcher, Kellie Lobb, Allan Genders, Melissa Walker, Brett Louden, Natalie Taffs, Bruce Pease, Jane Frances, Rob Williams, Steve Kennelly, Paul O’Connor, Wendy Stamp, Steve Dunn and Rob Buck from NSW Fisheries (now NSW Department of Primary Industry).

Helen Muldoon from the NSW Marine Parks Authority.

Rodney James, Simon Banks, Kevin Shanahan, Kelly Waples, Michael Wright, Bob Pressey, Matthew Watts and Mal Ridges from the NSW National Parks and Wildlife Service (now NSW Department of Environment and Conservation).

Rob Magill, Nina Morrisette, Josh Gibson, Andrew Page, Russell Hoare, Phil Laycock, Andrew Dunstan, Douglas Baird and staff at Reef Biosearch and Quicksilver Connections.

All other individuals and organisations who assisted by providing data, information and advice.

My wife Barbara Anne (Bollard) Breen and children, Cassandra Rose and Jack Gordon for their patience with constant neglect, complaints and crankiness and John and Eve Bollard for their love and support.

My father (Gordon) who never got to see me finish this and my mum (Shirley) who just might.
Abstract

Science and planning for marine conservation is a complex, cross-disciplinary task. Marine conservation involves many objectives and there is much uncertainty in how ecosystems and their human populations behave. It is therefore important for environmental managers to access the best available information and expertise and to support research that improves conservation outcomes.

This thesis demonstrates through several case studies, how the systematic use of information, decision support tools and consultation can be used to identify sites for marine protected areas (MPAs) and plan for future research. The studies differ in their immediate goals and the information available. All however, benefit from linking explicit objectives to spatial databases and tools that allow scientists, managers and communities to explore and evaluate management scenarios using realistic data.

C-Plan, Marxan, Multiple Criteria Analysis and a Geographic Information System (GIS) atlas of 35 data sets are used to identify comprehensive, adequate and representative systems of MPAs throughout the state of New South Wales (NSW), Australia. The studies identify many potential locations for MPAs in the Manning, Hawkesbury, Batemans and Twofold Shelf marine bioregions and provide information and tools to implement these options. Two of these options have now been established and zoned as large, multiple use marine parks near Port Stephens and Batemans Bay. Decisions have yet to be made on options for a third large marine park in the Hawkesbury Shelf bioregion.

Potential locations for MPAs were identified from a review of MPA network design theory and criteria derived from national identification and selection guidelines. The proposed options for multiple use marine parks aimed to include representative and complementary examples of biodiversity surrogates defined for ‘ecosystems’ (five estuary types and three ocean depth zones) and ‘habitat’ types (mangrove, saltmarsh, seagrass, rocky shore, beach, reef and island). MPAs were also selected to include important sites for threatened Grey Nurse Shark (*Carcharias taurus*), fishes, birds, mammals, wetlands and other values. Criteria with unique conservation values had a greater influence in identifying specific locations for MPAs. However, almost all options scored highly for a wide range of different criteria and contributed features to complement the overall value of the MPA network.

Options for large marine parks were selected to include the highest complementary conservation values in continuous sections of coast, estuary and ocean. However, many other smaller sites outside of these parks were identified for their high conservation values. These could be included within smaller local MPAs, within other marine parks or at least be targeted by other conservation strategies.

Where possible, locations were chosen that adjoined sections of coast and catchment with a high degree of protection in terrestrial protected areas and low levels of urban, industrial and agricultural land use. However, in the more populated regions, many distinctive areas of high conservation value were found near urban and industrial developments. Management for these areas is therefore all the more urgent and still requires attention.
Once a marine park in NSW is declared, a zone plan is required to allocate various levels of protection. These include highly protected ‘no-take’ sanctuary zones, habitat protection zones where recreational fishing is permitted and general use zones that allow some forms of commercial fishing. Broad scale bioregional assessments helped identify the general location of the Cape Byron Marine Park and assisted in initial planning. However, additional finer scale ecological, social and economic data were required to zone different levels of protection within the park. Detailed sidescan sonar, underwater video, aerial photography, field studies and community surveys were therefore commissioned and used to map ecological, social, and economic values.

C-Plan, Marxan and interactive GIS were then used with community workshops to develop plans that addressed conservation goals while minimising impacts on commercial, recreational and cultural interests. While a consensus among community representatives was not achieved for all areas, a plan for the park was developed that represented a range of conservation values in different zones while allowing for different human activities. This two stage approach combines broad and fine scale assessments in a cost effective way to quickly obtain reliable data for large areas of coast and ocean.

The assessments also demonstrate the value of uniting information and expertise from scientists, managers and communities in practical, science based approaches to ecosystem management. Initial proposals for NSW and previously for the Great Barrier Reef Marine Park, indicated that very little data would be available for these systematic marine conservation assessments. However, in both cases the number of useful data sets was greater than expected and provided convincing support for decision making. Many sites scored strongly for many different important values and while there was some duplication among similar data sets, this corroboration provided additional checks against uncertainty.

Collating, formatting and analysing many data sets is a specialised, labour intensive task. However, this cost is only a small fraction of the time and effort that goes into consultation and administration. Therefore, despite the effort involved, systematic assessments that provide a solid foundation of evidence are likely to reduce the overall time required in negotiations to establish MPAs. The MPAs established after the assessments in this thesis were substantial, and were implemented within a relatively short time span. This suggests that a systematic, information based approach is cost effective when compared to the more ad hoc approaches used previously in these regions and elsewhere.

The hierarchical approach used to map marine ecosystems and their components was applied at several different spatial scales and at varying levels of complexity. This environmental classification provided a comprehensive and cost effective way to describe large areas where only basic information was available. However, it also provided a nested framework to accommodate more detailed information and targeted research without necessarily biasing decisions towards only well studied locations. The hierarchical exploration of goals, criteria and measures through multiple criteria analyses encouraged a more thorough exploration of objectives and highlighted where more research was required. These gaps included offshore subtidal habitats, variation in species assemblages, the nature of ecological processes among marine and adjacent terrestrial ecosystems, and the impacts and values of human activities.
The level of knowledge in these fields is encouraging at a theoretical level and for specific, well studied sites. However, it is still difficult to generalise this information to the scale of whole ecosystems and regions. While techniques to map and model large ecological systems are increasingly available and affordable, better support and coordination for this work would benefit all aspects of marine research and management.

The different GIS based decision support tools used to integrate complex data sets and assess alternative MPA networks were all highly effective. All provided similar results, indeed data input, goal selection, reserve design and planning unit size and shape appeared to have a greater influence on results than the particular tool used. As these readily available and easily used tools tend to have different complementary strengths, it may, therefore, be more important to use at least one or preferably more than one tool, rather than dwelling on whether one particular approach is superior.

C-Plan was useful in providing a rapid statistical assessment of irreplaceability under changing scenarios of different targets, data and the selection or exclusion of planning units. This made it a useful ‘hands on’ tool for participatory conservation planning. Marxan provided a flexible and powerful tool for goal oriented reserve design with the ability to include criteria for reserve size, spatial aggregation, replication and other aspects of reserve configuration. Both were able to incorporate costs specified as areas or percentages of ocean occupied by MPAs or as more complex, customised estimates of social and economic impacts on fishing and other competing activities.

Unlike C-Plan and Marxan, the multiple criteria models built in Criterium Decision Plus did not inherently take into account the complementarity of sites in contributing towards conservation targets. However, this method was able to integrate previously calculated estimates of irreplaceability from C-Plan with over 60 other quantitative and qualitative measures for alternative sites in a hierarchically structured tree of MPA goals, priorities and scores. This tool also provided a way to assess sites according to varying priorities provided by different individual users.

These decision support tools employ relatively sophisticated techniques which continue to undergo development. The assessments explore only part of this potential but the information presented here can be easily re-analysed with new data, priorities and issues in marine research and management. The key element enabling these possibilities is the use of GIS to spatially integrate, manipulate and display this information.

MPAs are not the only way to manage and understand marine ecosystems. However, multiple use MPAs, in particular, are ideal venues to test and refine realistic hypotheses about marine ecosystems and their management. The geographic models and methods described in this thesis provide the spatial foundation on which to develop and design tests for such hypotheses. They are powerful tools to integrate diverse information and to model the potential effects of management interventions under varying scenarios. They therefore represent an important opportunity to channel the results of individual research projects into an wider, systematic and adaptive approach to ecosystem science and management.
Table of Contents

Statement of the Contribution of Others ... iii
Acknowledgments ... v
Abstract ... vi

1 Introduction .. 1
 1.1 Objectives of the thesis ... 1
 1.2 Human impacts on marine ecosystems .. 2
 1.3 Marine Protected Areas ... 3
 1.4 Science and management ... 8
 1.5 Ecosystem management ... 11
 1.6 Ecosystem science ... 12
 1.7 Systematic assessments to identify MPAs .. 16
 1.8 Structure of the thesis ... 19

2 Goals and criteria for marine protected areas ... 22
 2.1 National and NSW goals and criteria for MPAs .. 24
 2.2 Conceptual multiple criteria goals for MPAs .. 28
 2.3 Protection of biodiversity and ecosystem viability ... 31
 2.3.1 Comprehensiveness ... 31
 2.3.2 Representativeness ... 32
 2.3.3 Adequacy ... 33
 2.4 Managing and providing for human activities ... 37

3 Methods to identify Marine Protected Areas .. 39
 3.1 Ad hoc and systematic selection of reserves ... 39
 3.2 Representing spatial patterns in biodiversity .. 40
 3.2.1 Mapping of physical and biogenic features .. 41
 3.2.2 Biological surveys sampling organism distribution and abundance 42
 3.2.3 Modelling from biological, physical and spatial predictors 43
 3.2.4 Delphic consensus of experts ... 45
 3.3 Decision support tools for MPA planning .. 45
 3.3.1 Geographical Information Systems and databases 46
 3.3.2 Planning units ... 48
 3.3.3 Simple scoring and graphic techniques ... 49
 3.3.4 Selection algorithms, complementarity and irreplaceability 51
7 MPA assessment of the Hawkesbury Shelf bioregion .. 194

7.1 Introduction .. 194

7.2 Geographic extent .. 194

7.3 MPAs in the Hawkesbury Shelf bioregion ... 196

7.4 Systematic assessment .. 200

7.4.1 Estuarine ecosystems .. 200

7.4.2 NSW Fisheries assessment of wave dominated and intermittent estuaries 205

7.4.3 Oceanography - East Australian Current ... 211

7.4.4 Seagrass, mangrove and saltmarsh habitats .. 214

7.4.5 Shallow subtidal reef ... 221

7.4.6 Islands ... 223

7.4.7 Shallow subtidal sand ... 225

7.4.8 Intertidal beach ... 225

7.4.9 Intertidal rocky shore .. 226

7.4.10 NSW Fisheries assessment of rocky intertidal communities 228

7.4.11 Coastal rock platforms (Total Environment Centre) 230

7.4.12 Irreplaceability analysis for ecosystem and habitat units 231

7.4.13 Estuarine juvenile fish and invertebrate biodiversity 235

7.4.14 NSW Fisheries commercial catch data ... 237

7.4.15 NSW Fisheries threatened species database ... 240

7.4.16 Threatened Grey Nurse Shark (Carcharias taurus) 242

7.4.17 Threatened Birds - National Parks and Wildlife Service 244

7.4.18 Significant areas for shore birds and sea bird islands 252

7.4.19 Marine mammals and reptiles .. 255

7.4.20 RAMSAR sites - Nationally and Internationally important wetlands 256

7.4.21 Directory of important wetlands in Australia ... 257

7.4.22 Independent inquiry into coastal lakes ... 259

7.4.23 Environmental inventory of estuaries and coastal lagoons 261

7.4.24 Australian Estuaries and the OzEstuaries database 263

7.4.25 Wilderness ... 265

7.4.26 SEPP 14 wetlands .. 266

7.4.27 State forest ... 267

7.4.28 Land capability ... 270

7.4.29 Built-up areas .. 273

7.4.30 Acid sulphate soils .. 274

7.4.31 Australian river and catchment condition database (ARCCD) 277

7.4.32 Multiple criteria decision analysis ... 277

6.5 Discussion – Manning Shelf Assessment .. 187

6.5.1 MPA options in the Manning Shelf bioregion ... 188

6.6 Conclusion .. 191
7.4.31 Acid Sulphate Soils ... 274
7.4.32 ARCCD – Australian river and catchment condition database 275

7.5 Discussion .. 281
7.5.1 MPA options in the Hawkesbury Shelf bioregion .. 282

7.6 Conclusion .. 285

8 MPA assessment of the Batemans and Twofold Shelf bioregions 287

8.1 Introduction ... 287

8.2 Geographic extent ... 288

8.3 MPAs in the Batemans and Twofold Shelf bioregions 289

8.4 Systematic assessment ... 291
8.4.1 Estuarine ecosystems ... 291
8.4.2 NSW Fisheries assessment of wave dominated and intermittent estuaries 302
8.4.3 Ocean ecosystems .. 307
8.4.4 Oceanography - East Australian Current 310
8.4.5 Seagrass, mangrove and saltmarsh habitats 313
8.4.6 Shallow subtidal reef and shoal .. 322
8.4.7 Islands ... 324
8.4.8 Shallow subtidal sediments .. 324
8.4.9 Exposed intertidal beach ... 327
8.4.10 Intertidal rocky shore ... 328
8.4.11 NSW Fisheries assessment of rocky intertidal communities 330
8.4.12 Coastal rock platforms (Total Environment Centre) 332
8.4.13 Irreplaceability analysis for ecosystem and habitat units 333
8.4.14 Estuarine juvenile fish and invertebrate biodiversity 341
8.4.15 NSW Fisheries commercial catch data 343
8.4.16 Threatened fish species sightings database 348
8.4.17 Threatened Grey Nurse Shark ... 350
8.4.18 Threatened Birds .. 352
8.4.19 Significant areas for shore birds and sea bird islands – Department of Environment and Heritage ... 359
8.4.20 Marine mammals and reptiles .. 362
8.4.21 Directory of important wetlands in Australia 363
8.4.22 Independent inquiry into coastal lakes ... 365
8.4.23 Environmental inventory of estuaries and coastal lagoons 368
8.4.24 Australian Estuaries and the OzEstuaries database 371
8.4.25 Adjacent national parks and nature reserves 373
8.4.26 Wilderness .. 375
8.4.27 State forest .. 375
8.4.28 State Environmental Planning Policy – Wetlands (SEPP 14) 376
8.4.29 Land capability .. 380
8.4.30 Built-up areas .. 383
8.4.31 Acid Sulphate Soils .. 383
8.4.32 Australian river and catchment condition database 384
8.4.33 MPAs in the Victorian and Tasmanian sections of the Twofold Shelf bioregion ... 390

8.5 Discussion .. 394
8.5.1 MPA options for the Batemans and Twofold Shelf bioregions 395

8.6 Conclusion .. 405
11 General Discussion

11.1 What is out there? What is happening to it? What are we doing? Is it working? 488
11.2 Awareness, education and motivation ... 489
11.3 Institutions, individuals and political support ... 490
11.4 Processes to engage scientists and communities .. 491
11.5 Objectives, criteria and performance assessment ... 494
11.6 Comprehensive, relevant and useful data ... 494
11.7 Integrated data management .. 500
11.8 A scientific approach to develop and test marine management hypotheses 501
11.9 Real world applications of systematic marine planning and decision support tools 504
11.9.1 Systematic conservation assessments and decision support tools in NSW 506
11.10 Application of decision support tools for other MPAs .. 508
11.11 Systematic marine conservation planning and decision support tools 509
11.12 Conclusion ... 511

References .. 514
Appendices

Appendix 1.
Ecological reserve guidelines to identify MPAs in NSW

Appendix 2.
Options for MPAs in the Manning Shelf Marine Bioregion
2.1 A multiple use marine park in the Manning Shelf Bioregion
2.2 Khappinghat Creek
2.3 Lakes Innes & Cathie
2.4 Camden Haven River, Queens Lake, Watson Taylors Lake and Gogleys Lagoon
2.5 Korogoro Creek
2.6 South West Rocks Creek
2.7 Saltwater Creek and Saltwater Lagoon
2.8 Killick Creek
2.9 Unamed Creek (Big Hill Point)
2.10 Limeburners Creek and Saltwater Lake – Hastings River
2.11 Kooraangang Island and Fullerton Cove
2.12 Macleay River Delta and Macleay Arm
2.13 Warrell Creek – Nambucca River
2.14 Manning River (Harrington) and Manning River (Farquhar Inlet)
2.15 Intertidal rocky shores and inshore reefs
2.16 Offshore reefs, islands, and aggregations of Grey Nurse Sharks

Appendix 3.
Options for MPAs in the Hawkesbury Shelf Marine Bioregion
3.1 Option A. Hunter River to Avoca Lake
3.2 Option B. Lake Munmorah (Wybung Point) to Narrabeen Lakes
3.3 Option C. Avoca Lake to Port Hacking
3.4 Option D. Cape Banks to Shellharbour

Appendix 4.
Options in the Batemans and Twofold Shelf Bioregions
4.1 Option A. Shellharbour to Jervis Bay Marine Park
4.2 Option B. Termeil Lake to the Moruya River
4.3 Option C. Durras Lake to Wallaga Lake
4.4 Option D. Middle Lagoon to Twofold Bay
4.5 Option E. Twofold Bay to Nadgee

Appendix 5.
Steering and expert committee for the Great Barrier Reef Representative Areas Project

Appendix 6.
Survey of marine scientists for the GBRMPA Representative Areas project

Appendix 7.
IUCN protected area categories

Appendix 8.
Electronic copy of thesis and data files
List of Figures

Chapters 1-5

Figure 1.1 Goals and criteria to identify marine protected areas .. 2
Figure 1.2 Schematic representation of a 7-step operational framework... 17
Figure 2.1 Primary and secondary goals for a system of marine protected areas .. 29
Figure 2.2 Criteria for comprehensiveness .. 29
Figure 2.3 Criteria for representativeness ... 29
Figure 2.4 Criteria for adequacy ... 30
Figure 3.1 Conceptual diagram of relationships among physical environments and biodiversity 41
Figure 3.2 Screen view of the prototype MARES GIS based decision support tool 50
Figure 3.4 IMCRA (marine) and IBRA (terrestrial) bioregionalisations for Queensland 64
Figure 3.5 Gridded bathymetry (30 arc second) for the Great Barrier Reef region 65
Figure 3.6 Average slope derived from the 30 arc second gridded bathymetry data 66
Figure 3.7 Aspect (degrees from north) derived from the 30 arc second gridded bathymetry 67
Figure 3.8 Exposure of coast, islands, midshelf and outer reefs modelled from aspect 68
Figure 3.9 Ten year mean monthly isotherms for the Great Barrier Reef ... 69
Figure 3.10 Selected depth and sediment categories in the previous GBRMPA zone plan 70
Figure 3.11 Morphological reef types of the Great Barrier Reef .. 71
Figure 3.12 Regionalisation of reef morphologies for the Great Barrier Reef ... 72
Figure 3.13 Numerical classification of reef morphologies for the Great Barrier Reef 73
Figure 3.14 Scientists defining bioregions on an image of ArcView GIS projected onto a whiteboard 76
Figure 3.15 Draft reef regionalisation from the reef expert workshop for the GBRMPA 78
Figure 3.16 Draft inter-reef regionalisation from the expert workshop for the GBRMPA 79
Figure 3.17 Distribution of no-take zones (green) in the Great Barrier Reef Marine Park 80
Figure 4.1 Marine protected areas in NSW before 2006 ... 86
Chapter 7

Figure 7.1 Hawkesbury Shelf marine bioregion .. 195
Figure 7.2 Marine protected areas in the Hawkesbury Shelf bioregion 198
Figure 7.3 Intertidal protected areas in the Sydney region .. 199
Figure 7.4 Large scale planning units of whole estuaries and sections of exposed coast 202
Figure 7.5a-d Area (km²) of open water for different types of estuaries 203
Figure 7.6a-s Oblique aerial photographs of major estuaries in the Hawkesbury Shelf bioregion 204
Figure 7.7 Previous candidate aquatic reserves in estuaries 207
Figure 7.8 Previous candidate aquatic reserves in estuaries (continued) 207
Figure 7.9a-c Area (km²) of ocean depth zones in marine protected areas 209
Figure 7.10a-c Area (km²) of ocean depth zones (outside of 3 nm) 210
Figure 7.11 Mean sea surface temperature off NSW coast ... 212
Figure 7.12 Broad scale oceanographic processes off the NSW continental shelf 213
Figure 7.13a-c Area (km²) of seagrass, mangrove and saltmarsh habitat 216
Figure 7.14 Mapped habitat types between the Hunter River and Tuggerah Lakes 217
Figure 7.15 Mapped habitat types between Tuggerah Lakes and Sydney Harbour 218
Figure 7.16 Mapped habitat types between Sydney Harbour and Port Hacking 219
Figure 7.17 Mapped habitat types between Port Hacking and Shellharbour 220
Figure 7.18 Area of mapped shallow reef for sections of ocean coast 222
Figure 7.19a-c Area (km²) of total, inshore and offshore islands 224
Figure 7.20a-c Area (km²) of mapped (inshore) sub-tidal sand, intertidal beach, and rocky shore 227
Figure 7.21 Towoon Bay candidate rocky intertidal aquatic reserve 229
Figure 7.22 Tudibaring Head candidate rocky intertidal aquatic reserve 229
Figure 7.23 Brickyard Point candidate rocky intertidal aquatic reserve 229
Figure 7.24 Summed irreplaceability of fine scale (4 km²) planning units 232
Figure 7.25 Summed irreplaceability scores for estuaries .. 233
Figure 7.26 Summed irreplaceability scores for sections of coast 234
Figure 7.27 a-h Summed irreplaceability for representation of juvenile fish and invertebrates 236
Figure 7.29 Summed irreplaceability, number of species and weight of commercial catch 239
Figure 7.30 Maximum numbers of Grey Nurse Shark (Carcharias taurus) observed at dive sites 243
Figure 7.31 Critical habitat for the Little Penguin in North Sydney Harbour 249
Figure 7.32 Number of threatened bird species sighted, number of sightings and irreplaceability 250
Figure 7.33 Number of threatened bird species sighted, number of sightings and irreplaceability (cont.) 251
Figure 7.34 Area, number of species, number of birds and summed irreplaceability 253
Figure 7.35 Area, number of species, number of birds and summed irreplaceability (continued) ... 254
Figure 7.36 Percentage area of lands within 1 km of estuaries within national parks or nature reserves, wilderness areas, State Environmental Planning Policy 14 (wetland) areas and State Forest 268
Figure 7.37 Percentage area of land within 1 km of coast in national park or nature reserve, SEPP 14 areas, built up areas and disturbed or high risk acid sulphate soil areas 269
Figure 7.38 Percentage area of lands within 1 km of estuaries suited to different land uses and within built up areas ... 271
Figure 7.39 Percentage area of land within 1 km of coast in areas suitable for cultivation, grazing and timber or natural vegetation ... 272
Figure 7.40 Percentage area of lands within 1 km of estuaries with disturbed or high risk acid sulphate soils and mean Australian river and catchment condition indices for estuaries 277
Figure 7.41 Mean Australian river and catchment condition indices (continued) for estuaries 278
Figure 7.42 Mean Australian river and catchment condition indices within 5 km of coast 279
Figure 7.43 Mean Australian river and catchment condition indices within 5 km of coast for land use, extractive industries and pollution, and infrastructure 280
Chapter 8

Figure 8.1 Batemans Shelf and Twofold Shelf marine bioregions .. 288
Figure 8.2 Marine protected areas in the Batemans Shelf and Twofold Shelf bioregions 291
Figure 8.3 Broad scale planning units of whole estuaries and sections of exposed coast with mapped estuarine and ocean ecosystem types – Shellharbour to Burrill Lake ... 293
Figure 8.4 Broad scale planning units of whole estuaries and sections of exposed coast with mapped estuarine and ocean ecosystem types – Burrill Lake to Tuross Lake .. 294
Figure 8.5 Broad scale planning units of whole estuaries and sections of exposed coast with mapped estuarine and ocean ecosystem types – Wallagoot Lake to the Victorian border .. 296
Figure 8.7a-c Area (km²) of open water within and outside MPAs for estuary types 297
Figure 8.8 Area of open water (km²) within MPAs for intermittent lagoons and creeks 298
Figure 8.9a-v Oblique aerial photographs of estuaries in the Batemans Shelf bioregion 299
Figure 8.10a-c Oblique aerial photographs of estuaries in the Batemans Shelf bioregion (continued) 300
Figure 8.11a-c Oblique aerial photographs of estuaries in the Batemans and Twofold Shelf 301
Figure 8.12 Previous candidate aquatic reserve at Wallaga Lake ... 306
Figure 8.13 Previous candidate aquatic reserve at Nelson Lagoon .. 306
Figure 8.14 Previous candidate aquatic reserve at Durras Lake ... 306
Figure 8.15a-c Area (km²) of ocean depth zones in marine protected areas .. 308
Figure 8.16a-c Area (km²) of ocean depth zones in marine protected areas outside of 3nm 309
Figure 8.17 Mean sea surface temperature off NSW coast .. 311
Figure 8.18 Broad scale oceanographic processes off the NSW continental shelf .. 312
Figure 8.19 Area (km²) of seagrass habitat in marine protected areas ... 315
Figure 8.20 Area (km²) of mangrove habitat in marine protected areas .. 316
Figure 8.21 Area (km²) of saltmarsh habitat in marine protected areas ... 317
Figure 8.22 Mapped marine habitat types between Shellharbour and Burrill Lake 318
Figure 8.23 Mapped marine habitat types between Burrill Lake and Tuross Lake 319
Figure 8.24 Mapped marine habitat types between Tuross Lake and Wallagoot Lake 320
Figure 8.25 Mapped marine habitat types between Wallagoot Lake and the Victorian border 321
Figure 8.26 Area of mapped shallow reef for sections of ocean coast .. 323
Figure 8.27a-c Area (km²) of total, inshore and offshore islands ... 326
Figure 8.28a-c Area (km²) of mapped (inshore) sub-tidal sand, intertidal beach, and rocky shore 329
Figure 8.29 Bass Point and Bombo Head, previous candidate rocky intertidal aquatic reserves 331
Figure 8.30 Inyadda Point and Preservation Point, previous candidate intertidal aquatic reserves 331
Figure 8.31 Warden Head and Wagonga Head, previous candidate intertidal aquatic reserves 331
Figure 8.32 Summed irreplaceabilities of fine scale (4 km²) planning units in the Batemans Shelf 335
Figure 8.33 Summed irreplaceabilities of fine scale (4 km²) planning units in the Twofold Shelf 336
Figure 8.34 Summed irreplaceabilities of estuaries, ignoring existing MPAs .. 337
Figure 8.35 Summed irreplaceabilities of estuaries, including marine parks and aquatic reserves 338
Figure 8.36 Summed irreplaceabilities of estuaries, including all MPAs .. 339
Figure 8.37 Summed irreplaceabilities of ocean planning units ... 340
Figure 8.38a-h Summed irreplaceability for representation of at least one of each species of juvenile fish and invertebrates sampled by seine net ... 342
Figure 8.39 Summed irreplaceability for representation of at least one of each species in the commercial catch for estuaries .. 344
Figure 8.40 Number of species in commercial catch for estuaries .. 345
Figure 8.41 Weight of commercial catch (kg) for estuaries ... 346
Figure 8.42 Summed irreplaceability, number of species and weight of commercial catch for ocean ports in the Batemans and Twofold Shelf bioregions ... 347
Figure 8.43 Maximum numbers of Grey Nurse Shark (Carcharias taurus) observed at dive sites in the Hawkesbury, Batemans and Twofold Shelf bioregions during eight survey seasons .. 351
Figure 8.44 Number of threatened bird species sighted near estuaries ... 355
Figure 8.45 Number of sightings of threatened bird species near estuaries ... 356
Figure 8.46 Summed irreplaceability for representation of at least one sighting of each threatened bird species for estuaries .. 357
Figure 8.47 Number of threatened bird species sighted, number of sightings and summed irreplaceability for representation of each species at least once for sections of ocean .. 358
Figure 8.65 Final zone plan for the Batemans Marine Park 406
Figure 8.64 The Kent Group Marine Reserve.................. 393
Figure 8.62 The Cape Howe Marine National Park 392
Figure 8.61 The Point Hicks Marine National Park 392
Figure 9.18 Multiple criteria scores weighted only for compre hensiveness... 441
Figure 9.5 Curves showing the final stages of improvement in Ma rxan simulated annealing 425
Figure 9.4 Site irreplaceability for large scale plan un its in southern NSW state marine waters............. 423
Figure 9.13 A multiple criteria model to assess the ‘representativeness’ of nine MPA options 436
Figure 9.21 Multiple criteria scores weighted only for cost 442
Figure 9.12 A multiple criteria model to assess the ‘comprehe nsiveness’ of nine MPA options 435
Figure 9.14 A multiple criteria model to assess the ‘adequacy’ of nine MPA options......................... 437
Figure 9.15 Interactive priority weighting for the four main MPA selection criteria 362
Figure 9.16 Seagrass modelled as a linear value function 439
Figure 9.17 Multiple criteria scores for marine parks with all sub-criteria weighted equally 441
Figure 9.18 Multiple criteria scores weighted only for comprehensiveness... 441
Figure 9.9 Irreplaceability for northern NSW marine waters including marine protected areas 431
Figure 9.14 A multiple criteria model to assess the ‘adequacy’ of nine MPA options 437
Figure 9.10 Irreplaceability for southern NSW marine waters ignoring marine protected areas 432
Figure 9.11 Irreplaceability for southern NSW marine waters including marine protected areas 433
Figure 8.49 Area, number of species, number of birds and summed irreplaceability for representation of each species at least once for sea bird breeding islands ... 362
Figure 8.50 Percentage area of lands within 1 km of estuaries within national parks or nature reserves, wilderness areas, state forest and State Environmental Planning Policy 14... 377
Figure 8.51 Percentage area of land within 1 km of coast in national park or nature reserve, wilderness or State Forest 378
Figure 8.52 Percentage area of land within 1 km of coast in SEPP 14 areas, built up areas and with high risk or disturbed acid sulphate soils 379
Figure 8.53 Percentage area of lands within 1 km of estuaries suited to different land uses and within built up areas.. 381
Figure 8.54 Percentage area of land within 1 km of coast in areas suitable for cultivation, grazing and timber or natural vegetation... 382
Figure 8.55 Percentage area of lands within 1 km of estuaries with disturbed or high risk acid sulphate soils and mean Australian river and catchment condition indices for estuaries ... 386
Figure 8.56 Mean Australian river and catchment condition indices (continued) for estuaries 387
Figure 8.57 Mean Australian river and catchment condition indices within 5 km of coast for overall river disturbance, catchment disturbance and settlement 388
Figure 8.58 Mean Australian river and catchment condition indices within 5 km of coast for land use, extractive industries and pollution, and infrastructure ... 389
Figure 8.59 Victorian Marine National Parks .. 391
Figure 8.60 The Ninety Mile Beach Marine National Park .. 391
Figure 8.61 The Point Hicks Marine National Park .. 392
Figure 8.62 The Cape Howe Marine National Park .. 392
Figure 8.63 The Beware Reef Marine Sanctuary .. 393
Figure 8.64 The Kent Group Marine Reserve ... 393
Figure 8.65 Final zone plan for the Batemans Marine Park 406

Chapter 9

Figure 9.1 Four options identified for a marine park in the Hawkesbury Shelf bioregion 418
Figure 9.2 Three options identified for a marine park in the Batemans Shelf bioregion 419
Figure 9.3 Site irreplaceability for large scale plan units in northern NSW state marine waters 422
Figure 9.4 Site irreplaceability for large scale plan units in southern NSW state marine waters 423
Figure 9.5 Curves showing the final stages of improvement in Marxan simulated annealing 425
Figure 9.6 Areas and boundary lengths of MPAs selected by Marxan ignoring existing MPAs 426
Figure 9.7 Areas and boundary lengths of MPAs selected by Marxan including existing MPAs 427
Figure 9.8 Irreplaceability for northern NSW marine waters ignoring marine protected areas 430
Figure 9.9 Irreplaceability for northern NSW marine waters including marine protected areas 431
Figure 9.10 Irreplaceability for southern NSW marine waters ignoring marine protected areas 432
Figure 9.11 Irreplaceability for southern NSW marine waters including marine protected areas 433
Figure 9.12 A multiple criteria model to assess the ‘comprehensiveness’ of nine MPA options 435
Figure 9.13 A multiple criteria model to assess the ‘representativeness’ of nine MPA options 436
Figure 9.14 A multiple criteria model to assess the ‘adequacy’ of nine MPA options 437
Figure 9.15 Interactive priority weighting for the four main MPA selection criteria 438
Figure 9.16 Seagrass modelled as a linear value function 439
Figure 9.17 Multiple criteria scores for marine parks with all sub-criteria weighted equally 441
Figure 9.18 Multiple criteria scores weighted only for comprehensiveness 441
Figure 9.19 Multiple criteria scores weighted only for representativeness 442
Figure 9.20 Multiple criteria scores weighted only for adequacy .. 442
Figure 9.21 Multiple criteria scores weighted only for cost 442
Chapter 10

Figure 10.1 Broad scale marine environmental classes in Cape Byron Marine Park.............................. 455
Figure 10.2 Fine scale marine environmental classes in Cape Byron Marine Park 456
Figure 10.3 Percentage of respondents using the Cape Byron Marine Park for activities 457
Figure 10.4 Number of respondents reporting use of the Marine Park for swimming 458
Figure 10.5 Number of respondents reporting use of the Marine Park for SCUBA diving 459
Figure 10.6 Number of respondents reporting use of the Marine Park for recreational fishing 460
Figure 10.7 Areas of reserve systems aiming to represent between 10 and 50% of all habitats 463
Figure 10.8 Relative impact on commercial fishing grounds for 10 and 50% of all habitats 464
Figure 10.9a Site irreplaceability for representation of 30% of each environmental class 467
Figure 10.10a Number of prawn trawl licenses and number of times a planning unit is selected 468
Figure 10.11a Number of spanner crab licenses and number of times a planning unit is selected 469
Figure 10.12a Number of purse seine licenses and number of times a planning unit is selected 470
Figure 10.13a Number of line fishing licenses and number of times a planning unit is selected 471
Figure 10.14a Number of hauling licenses and number of times a planning unit is selected 472
Figure 10.15a Total commercial fishing licenses and number of times a planning unit is selected 473
Figure 10.16 Draft zone plans for Cape Byron Marine Park .. 476
Figure 10.17 The ‘no-take’ Sanctuary zone (pink) offshore of Byron Bay and around Julian Rocks and Wide Wilsons Reef .. 477
Figure 10.18 The ‘no-take’ Sanctuary zone (pink) extending north from Cape Byron to the northern wall of the Brunswick River mouth ... 478
Figure 10.19 A ‘no-take’ Sanctuary zone (pink) offshore of Broken Head .. 479
Figure 10.20 ‘No-take’ Sanctuary zones (pink) offshore of Lennox Head .. 480

Chapter 11

Figure 11.1 The support required for systematic conservation tools to be effective 487
Figure 11.2 Increasing area (km²) of MPAs in New South Wales ... 507
List of Tables

Chapters 1-3
Table 1.1 Summary of conservation planning procedures ... 8
Table 1.2 Contrasting perspectives between scientists and policy makers 9
Table 1.3 Increasing complexity and decreasing understanding of natural systems 12
Table 1.4 Comparing the two cultures of biological ecology ... 13
Table 2.1 Objectives of marine protected areas .. 23
Table 2.2 Desirable characteristics of ecosystem management goals .. 24
Table 2.3 National goals for Australian marine protected areas .. 25
Table 2.4 National identification criteria for marine protected areas ... 26
Table 2.5 National selection criteria for marine protected areas .. 27
Table 3.1 Proposed classification scheme ... 61
Table 3.2 Physical and biological data sets for the GBRMPA Representative Areas Program 75

Chapter 6
Table 6.1 MPAs in the Manning Shelf bioregion before 2005 .. 99
Table 6.2 Threatened intertidal waders and sea birds recorded in the Manning Shelf bioregion 138
Table 6.3 Important wetlands in the Manning Shelf bioregion .. 148
Table 6.4 Classification of coastal lakes in the Manning Shelf bioregion (Healthy Rivers 2002) 149
Table 6.5 Summary of measures for estuaries of comprehensiveness and representativeness 178
Table 6.6 Summary of measures assessing estuaries for adequacy ... 179
Table 6.7 Summary of measures for ocean of comprehensiveness and representativeness 180
Table 6.8 Summary of measures assessing ocean for adequacy .. 181

Chapter 7
Table 7.1 MPAs in the Hawkesbury Shelf bioregion ... 197
Table 7.2 Delphic ranking and priorities for estuarine aquatic reserve candidates 206
Table 7.3 Sightings of threatened fish species in the Hawkesbury Shelf bioregion 241
Table 7.4 Threatened intertidal waders and sea birds ... 244
Table 7.5 Nesting sites of Little Tern in the Hawkesbury Shelf (NPWS 2000d) 246
Table 7.6 Important Wetlands in the Hawkesbury Shelf bioregion (ANCA 1996) 258
Table 7.7 Classification of coastal lakes in the Hawkesbury Shelf bioregion 260
Table 7.8 Disturbance scores for estuaries in the Hawkesbury Shelf bioregion 261
Table 7.9 Condition of estuaries listed in the OzEstuaries database ... 264
Table 7.10 Area (km²) and percentage of ecosystems and habitats in the Hawkesbury Shelf 286

Chapter 8.
Table 8.1 MPAs in Batemans Shelf and Twofold Shelf marine bioregions 289
Table 8.2 Ratings for youthful wave dominated and intermittent estuaries 303
Table 8.3 Ratings for mature wave dominated estuaries ... 304
Table 8.4 Ratings mature intermittent estuaries .. 305
Table 8.5 Sightings of threatened fish species in the Batemans and Twofold Shelf bioregions 349
Table 8.6 Threatened intertidal waders and sea birds ... 352
Table 8.7 Nesting sites of Little Tern in the Batemans and Twofold Shelf bioregions 353
Table 8.8 Important wetlands in the Batemans and Twofold Shelf bioregions 364
Table 8.9 Classification of coastal lakes in the Batemans and Twofold Shelf bioregions 367
Table 8.10 Disturbance scores for estuaries in the Batemans and Twofold Shelf bioregions 369
Table 8.11 Condition of estuaries listed in the OzEstuaries database ... 372
Table 8.12 Area (km²) and percentage of ecosystems and habitats in the Batemans Shelf 397
Table 8.13 Area (km²) and percentage of ecosystems and habitats in the Twofold Shelf 398

Chapters 9-11
Table 9.1 Data sets used to define the extent of marine areas .. 414
Table 11.1 Similarities and differences between MPA and experimental designs 503