RADIOWAVE PROPAGATION MEASUREMENTS AND PREDICTION IN BUSHFIRES

Thesis submitted by

Kgakgamatso Marvel MPHALE MSc (University of Botswana)

in May 2008

for the Degree of Doctor of Philosophy in the School of Mathematical and Physical Sciences James Cook University

STATEMENT OF ACCESS TO THESIS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that as unpublished work, a thesis has a significant amount of protection under the Copy Right and;

I do not wish to place any further restriction on access to this work

Kgakgamatso Mphale

<u>19-May-2008</u> Date

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university other institution of tertiary education. Information derived from the published or unpublished work of other has been acknowledged in the text and a list of references is given.

Kgakgamatso Mphale

<u>19-May-2008</u> Date

STATEMENT OF CONTRIBUTION OF OTHERS

Financial contributions toward this PhD thesis were from;

- University of Botswana Staff Development Office,
- Emergency Management Australia Funding Under Project 2001/6001, and
- James Cook University.

There were some general contributions towards this PhD thesis in form of:

- Access to use of Network Analyser equipment from James Cook University's Electrical and Electronic Engineering Department (Chapter 6).
- Access to take sugar cane fire radio wave propagation measurements at Burdekin Agricultural College in Clare (Chapter 5).
- Access to take radio wave propagation measurements in a controlled grass fire at plot B from James cook University fire officers (Chapter 4)

There was a continual normal supervision and guidance from Prof. Malcolm Lewis Heron and Dr Peter Ridd throughout this PhD thesis.

ACKNOWLEDGEMENTS

I thank my supervisors Prof. Malcolm. Heron and Dr. Peter Ridd for the guidance they have given me throughout this work. Many thanks to Prof. Mal Heron for his never-ending patience and guidance with enthusiasm he provided to the end of this work. My sincere thanks to friends Drs Jonathan Bathgate and Audi Susilo for the encouragement they gave me during the research project.

I sincerely extent my gratitude to the University of Botswana Staff Development Office and Emergency Management Australia (EMA) for the funding they provided for the research. Also, my sincere thanks go to members of the Physics and Electrical and Electronic Engineering Departments of the James Cook University for providing necessary equipment for the research, especially help provided by Drs Graham Woods and Mohan Jacobs and Mr. Ray Casey.

ABSTRACT

Australian vegetation is fire-prone. Every year, wet and dry sclerophyll forests of Western Australia, southeastern Australia and grassland ecosystems of the northern part of the continent are subject to high intensity fires. The sclerophyll vegetation contains up to 2.71 % of the element potassium. The element exists in plants' organic matrix: attached to the oxygen-containing and carboxyl functional groups; in aqueous form such as potassium (K⁺) ions surrounded by water; and as discrete particles in dried plant parts. Theoretically, temperature in the conflagrations can be as high as 2000°C. During the high intensity bushfires, potassium atoms and salts are released from the plant structure as it crumbles into the combustion zone where the species are ionized. Up to 20 % of the potassium present in plants is ionized in a bushfire environment.

During suppression of the threat, high frequency (HF) - ultra high frequency (UHF) radio communications systems are in constant use by suppression crews in firegrounds. Despite their use, HF and very high frequency (VHF) radio communications are reported to be failing in extreme bushfire conditions. The reports of radio communication failure tend to be anecdotal and therefore warrant an investigation. This study aims at carrying out field and laboratory radio wave attenuation and phase shift measurements at HF to X-band frequencies in moderate intensity fires. Very high intensity bushfires often spread very fast and change direction rapidly therefore it is unsafe to set up equipment for measuring attenuation and phase shift in the fires. Consequently, numerical experiments were used to study radio wave propagation in very high intensity fires.

Propagation measurement data at radio wave (HF-VHF) frequencies through fire are scarce and that which is available lacks precision. It is also the purpose of the study to produce attenuation and phase measurement data at these frequencies. The field and laboratory measurements were carried out using a Radio Wave Interferometer (RWI) and Vector Network Analyzer (VNA - HP 8277C). RWI uses the same principles as Microwave interferometer (MWI) except that RWI works at radio frequencies. Electron density and momentum transfer collision frequency in moderate intensity bushfire plumes were estimated from the attenuation and phase shift measurements.

Laboratory and field measurements using a VNA - HP 8277C and RWI respectively in moderate intensity fires (700-1000 K) have revealed that electron density in the plume could range from 10^{14} - 10^{16} m⁻³. Theoretical calculations based on local thermal equilibrium in grassfires flames with temperatures up to 1200 K suggest that electron density could be up to 10^{17} m⁻³ if up to 20 % of the inherent potassium atoms are ionized.

There are at least two possible mechanisms that could lead to a significant signal strength reduction (attenuation) in bushfire environments. They are signal refraction due to thermal bubble and ionization-induced signal absorption in the plume. Electrons, which result from thermal ionization of potassium in the fire, transfer energy from the incident radio wave to the fire plume through collision with inherent neutral particles. The transfer of energy can significantly attenuate and induce a phase shift on radio wave signals. Experimental work carried out in the project suggest that radio wave attenuation is significantly higher at UHF and X-Band frequencies than at HF. Field radio wave propagation measurements at 1.50 m above the seat of a moderate intensity grassfire revealed that 30 MHz signals can be attenuated by up to 0.03 dB/m while 151.3 MHz signals were attenuated by up to 0.05 dB/m. An intense cane fire attenuated 151.3 MHz signals by 0.05 dB/m. The attenuation effect was observed to increase when X-band (10.0 -12.5 GHz) signals were considered. Attenuation coefficients up to 4.45 dB/m were measured.

Phase shift induced on the signals was also observed to increase with the increase in frequency band (low for HF and high for X-band). A 30 MHz signal suffered a 3.08° phase shift in the moderate intensity grassfire whereas in the X-band frequencies, a phase shift of up to 29.31° was observed in a fire of about the same intensity.

Numerical experiments have shown that signal loss due to refraction is frequency dependent in very hot regions of bushfire plumes. X-band waves are more affected than VHF waves. Numerical experiments predicted maximum attenuation coefficients of 0.11 dBm⁻¹ for 150 MHz and 0.31 dBm⁻¹ for 3 GHz radio waves when they propagate about a meter above fuel-flame interface of a 90 MWm⁻¹ bushfire with fuel potassium content of 0.50 %. Theoretical studies also revealed that; for potassium content of about 0.20 %, a collimated beam of radio signals (10 cm wide) propagating at grazing angles to the fuel-flame interface of a very high intensity bushfire (1600 K) could suffer attenuation coefficients of about 1.45 dBm⁻¹. This effect is calculated to decrease with the increase in height above the combustion zone. For very high intensity bushfires in fuels with high potassium content (e.g., up to 3.00 %), attenuation by refraction is likely to be

the most significant form of radio wave energy loss for collimated beams propagating at grazing angles to the fuel-flame interface.

The Line-Of-Sight (LOS) radio wave propagation measurements in moderate intensity vegetation fires (700-1000 K) have shown that signal attenuation is plume temperature and frequency dependent. Transmission through hottest region of the fire (combustion zone) suffers significant signal strength loss whereas low attenuation has been observed at cooler regions of the plume. This could be explained by the fact that "collisional plasma effect" on radio waves is more pronounced at combustion zone than at the thermal plume region of the fire as the effect is temperature dependent.

Bcontinent with a potential combustion zone temperature of 2000°C. These bushfires have a potential to adversely affect LOS radio wave communications when transmission is through the hottest part of the fire. It must be noted that radio wave communication blackout could even occur at temperatures as low as 1300 K provided that the fire is sufficiently ionized.

TABLE OF CONTENTS

Statement on Access	ii
Declaration	iii
Statement on contributions	iv
Acknowledgments	v
Abstract	vi
Table of contents	ix
List of tables xv	/iii
List of figures	xix
Chapter 1: Introduction	1
1.1. High intensity bushfires in Australia	1
1.1.1. Fire prone vegetation	1
1.1.2. Antecedent climatic and prevalent synoptic weather conditions during high intensity catastrophic bushfires	2
1.1.2.1. ENSO related rain deficiency	2
1.1.2.2. Heat waves	4
1.1.2.3. Synoptic weather conditions and bushfire danger index	5
1.2. Radio communication failure during high intensity bushfires	6
1.3. Motivation and aims	8
1.4. Layout of the thesis	10

Chapter 2: Mechanisms of alkali emissions from vegetation during very high Intensity bushfires	15
2.1. Introduction	15
2.2. Very high intensity bushfires in regions of Australia	17
 2.2.1. Very high intensity bushfires in southwest Western Australia 2.2.2. Very high intensity bushfires in northern Australian savannas 	18 19
2.2.3. Very high intensity bushfires in southeastern Australia forests	21
2.2.4. Very high intensity bushfires in southern Australian heath and shrub lands	23
2.3. Alkali content in Australian fire- prone vegetation	24
2.3.1. Chemical composition of plant matter	24
2.3.2. Alkalis content in plants	26
2.3.2.1. Avaliability of alkalis elements to plants	26
2.3.2.2. Functions of alkali and alkaline earth elements in plants	27
2.3.3. Alkali and alkaline earth elements content in Australian fire-prone vegetation	28
2.3.3.1. Alkali and alkaline earth element content in eucalyptus forests of southwest Western Australia	29
2.3.3.2. Alkali content in eucalyptus forest of southeastern Australia	30
2.3.3.3. Alkali content in pine species of southeastern Australia	31
2.3.3.4. Alkali content in understorey vegetation of Australian tropical savannas	32
2.4. Mode of existence of alkali and alkaline-earth elements in plants	33

2.5. Mechanisms of alkali release during bushfires	34
2.5.1. Chemistry of bushfires	36
2.5.2. Phases of plant combustion	36
2.5.2.1. Alkali emissions during devolatilization of vegetation fuel	37
2.5.2.2. Alkali emissions during flaming and char combustion phase	39
2.6. Qualitative analysis of the alkali release during vegetation combustion	40
2.7. Observation of alkali release during bushfires	42
2.8. Radio wave propagation in fire	43
2.9. Summary of major points from literature	45
Chapter 3: Numerical prediction of very high frequency radio wave propagation	
Characteristics in a grassfire	48
Characteristics in a grassfire	48 48
Characteristics in a grassfire	48 48 49
Characteristics in a grassfire	48 48 49 50
Characteristics in a grassfire	 48 48 49 50 50
Characteristics in a grassfire 3.1. Introduction. 3.2. Thermal equilibrium in grassfire flames. 3.3. Ionisation in a grassfire. 3.3.1. Thermal ionization. 3.3.1.1. Dissociation.	 48 48 49 50 50 50
Characteristics in a grassfire 3.1. Introduction. 3.2. Thermal equilibrium in grassfire flames. 3.3. Ionisation in a grassfire. 3.3.1. Thermal ionization. 3.3.1.1. Dissociation. 3.3.1.2. Ionisation.	 48 48 49 50 50 50 50 51
Characteristics in a grassfire	 48 48 49 50 50 50 50 51 53
Characteristics in a grassfire 3.1. Introduction. 3.2. Thermal equilibrium in grassfire flames. 3.3. Ionisation in a grassfire. 3.3.1. Thermal ionization. 3.3.1.1. Dissociation. 3.3.1.2. Ionisation 3.3.2. Internal partition function. 3.3.2.1. Single atoms.	 48 48 49 50 50 50 51 53 53
Characteristics in a grassfire 3.1. Introduction. 3.2. Thermal equilibrium in grassfire flames. 3.3. Ionisation in a grassfire. 3.3.1. Thermal ionization. 3.3.1.1. Dissociation. 3.3.1.2. Ionisation. 3.3.2. Internal partition function. 3.3.2.1. Single atoms. 3.3.2.2. Diatomic molecules and ions.	 48 48 49 50 50 50 51 53 53 53
Characteristics in a grassfire 3.1. Introduction. 3.2. Thermal equilibrium in grassfire flames. 3.3. Ionisation in a grassfire. 3.3. Ionisation in a grassfire. 3.3.1. Thermal ionization. 3.3.1.1. Dissociation. 3.3.1.2. Ionisation 3.3.2.1. Single atoms. 3.3.2.2. Diatomic molecules and ions. 3.3.2.3. Poly-atomic molecules and ions.	 48 49 50 50 50 51 53 53 53 54

3.4. Theory of radio wave propagation in a grassfire plume		
3.4.1. Average drift velocity of flame gases	56	
3.4.2. Collision frequency and conductivity of a weakly ionized plasma for different electron – neutral interactions	59	
3.4.3. Complex radio relative permitivity of a grassfire	61	
3.4.4. Phase and attenuation coefficients for radio waves	62	
3.4.5. Transmission and reflection coefficient	65	
3.4.6. Transmission and reflection power fraction	68	
3.5. Numerical simulation of attenuation of radio waves in a moderate intensity grassfire	69	
3.5.1. Temperature of the grassfire flame	69	
3.5.2. Step function approximation of temperature at 1.5m above ground	71	
3.5.3. Number of alkali atoms in a grassfire flame	71	
3.5.4. Dissociation and ionization in the elementary volume at 1.5m aboveground	72	
3.5.5. Grassfire flame as a composite of dielectric slabs	73	
3.5.6. Transmission and reflection power fractions	75	
3.6. Numerical results and discussions	76	
3.6.1. Total transmitted, reflected and absorbed power fractions	76	
3.6.2. Total attenuation and phase shift due to the grassfire flames	79	
3.7. Conclusions	83	

Chapter 4: Radio wave propagation measurement in a prescribed grassfire	84
4.1. Introduction	84
4.2. Study site and vegetation structure	86
4.3. VHF Radio wave interferometer	87
4.3.1. Microwave interferometer	87
4.3.2. Theory	88
4.3.3. Radio Interferometer units	89
4.3.3.1. Master Oscillator and transmitter units	90
4.3.3.2. LOG and receiver units	93
4.3.3.3. Comparators	93
4.3.3.4. Antennae	93
4.3.4. Phase change tests	94
4.4. Electron density, phase change and radio wave attenuation	95
4.5. Experimental methods	96
4.5.1. Fuel characteristics	96
4.5.2. Grassfire behavior	96
4.5.3. Temperature measurements	98
4.5.4. Radio wave propagation measurement	99
4.5.4.1. Propagation and phase measurement path	99
4.5.4.2. Signal amplitude measurement	100
4.6. Experimental results and discussions	100
4.6.1. Grassfire temperature	100

4.6.1.1. Errors in temperature measurements	101
4.6.2. Attenuation of 151.3 MHz signal	102
4.6.3. Attenuation of 30MHz signal	105
4.6.4. 30MHz Signal phase change	107
4.6.5. Fuel characteristics and grassfire behavior	109
4.7. Conclusions	110
Chapter 5: Radio wave propagation measurement in a cane fire	111
5.1. Introduction	111
5.2. The study area	113
5.3. Experimental methods	113
5.3.1. Fuel characteristics	113
5.3.2. Sugar cane fire behavior	114
5.3.3. Temperature measurements	116
5.3.4. Radio wave propagation measurement	117
5.3.4.1. Propagation path	117
5.3.4.2. Signal amplitude measurement	118
5.4. Experimental results and discussions	118
5.4.1. Sugar cane fire temperature	118
5.4.2. Attenuation of 151.3 MHz signal	119
5.5. Conclusions	121
Chapter 6: Microwave attenuation in forest fuel flames	122
6.1. Introduction	122
6.2. Microwave propagation constant for weakly ionized fire	123
6.2.1. Microwave attenuation coefficient	123
6.2.2. Determination of propagation constant from S-Parameters	124

6.3. Simulation of microwave propagation characteristics in	127
	127
6.4. Experimental methods	128
6.4.1. Natural forest fuel samples	128
6.4.2. Forest fuel flame temperature measurement	128
6.4.3. Determination of Alkali /alkaline metal content in fuels	129
6.4.4. S-parameter measurement	129
6.5. Results and Discussions	132
6.5.1. Thermocouple temperature correction	132
6.5.2. Fire temperatures	134
6.5.3. Microwave attenuation	137
6.5.4. Measured phase shift	141
6.5.5. Alkali and alkaline metal content in fuel samples	143
6.5.6. Electron density and collision frequency during flaming	144
6.5.7. Errors in electron density and collision frequency estimates	149
6.7. Conclusions	149
Chapter 7: Radio wave refraction in bushfire plumes	151
7.1. Introduction	151
7.2. Physical characteristics of circular and line bushfires	153
7.2.1. Line bushfire plume	153
7.2.1.1. Continuous flame region	153
7.2.1.2. Thermal plume above line bushfires	156
7.2.2. Circular fire plumes	159
7.2.2.1. Continuous flame region	159
7.2.2.2. Thermal plume above circular fires	160

7.2.3. Thermal bubbles and roll vortices in very high intensity bushfires	161
7.2.3.1. Occurrences of roll vortices in bushfire environments	164
7.2.3.2. Conditions for the existence of HRV	164
7.3. Radio refractivity in bushfire plumes	166
7.3.1. Contribution of polarization and density gradients to radio refractivity of bushfire plume	166
7.3.2. Contribution of ionization to radio refractivity of bushfire plume	170
7.3.3. Thin biconcave thermal lens model for radio wave refraction	174
7.3.3.1. Temperature-height variation in a crown fire	174
7.3.4. 2-D ray-tracing scheme for radio wave propagation In a bushfire plume	175
7.3.4.1. Graphical ray tracing method	176
7.3.4.2. A 2-D ray tracing procedure	176
7.3.4.3. Validation of the 2-D Ray Tracing Scheme	178
7.4. Numerical results and discussion	180
7.4.1. Thermal biconcave lens model	180
7.4.1.1. Application of the thermal lens model to Mack Lake crown fire	180
7.4.2. Radio ray tracing through a typical eucalyptus crown bushfire	181
7.4.2.1. Crown bushfire behavior in the ray tracing scheme	183
7.4.2.2. Physical properties of the plume area considered for ray tracing	184

7.4.3. Ray refraction in a bushfire plume	192
7.4.3.1. A weakly ionized plasma model	192
7.4.3.2. Ray refraction due to nria and altitude correction term	193
7.4.3.3. Ray refraction due to nria and ionization combined	196
7.4.3.4. Attenuation due to refraction	198
7.5. A case study	200
7.5.1. Euroka Operation and Flambeau project	200
7.6. Conclusions	204
Chapter 8: General discussions and conclusions	205
Appendix	212
Bibliography	213

LIST OF TABLES

Table	2.1.	Summary of fuel characteristics, potassium content and fire-line intensity in Australian fire prone vegetation	47
Table	3.1.	Fire depth at 1.5m above ground for maximum temperatures from 900 – 1200K.	76
Table	4.1.	Fuel characteristics and fire behavior at Plot B	109
Table	6.1.	Combustion behavior of samples in a hexagonal burner	137
Table	6.2.	Alkali content in forest fuels used in the burner (ICP-AES method)	144
Table	6.3.	Electron density in forest fuel flames	148
Table	6.4.	Collision frequency in forest fuel flames	148
Table	7.1.	Mack lake crown fire behavior and horizontal roll vortex properties	180
Table	7.2.	Crown bushfire behavior for the radio ray tracing experiment	184
Table	7.3.	Dipole moments and polarizabilities of plume gases.	186
Table	7.4.	A comparison of refractive index (<i>n</i>) derived from density and dipole moments	186
Table	7.5.	Plume properties at different heights above ground level	189
Table	A1.	Plume properties at different heights above ground level	212

LIST OF FIGURES

Figure	1.1. High intensity bushfire consuming understorey vegetation and ground fuel-litter and logs	3
Figure	1.2. Pub destroyed during the Canberra 2003 bushfires	3
Figure	2.1. A very high intensity bushfire-crown fire	16
Figure	2.2. Devastated vegetation after a very intense bushfire	16
Figure	2.3. Mode of alkali existence in a herbaceous plant tissue	35
Figure	2.4. Alkali attached to a functional group on the surface of a charcoal	35
Figure	2.5(a) -(c). Alkali emissions from burning vegetation	38
Figure	2.6(a). Distribution of potassium during the combustion of Salix	40
Figure	2.6(b). Distribution of sodium during combusting of Salix	40
Figure	2.7. Distribution of potassium species during the combustion of straw	41
Figure	2.8. The spectra produced from a bushfire and KCl solution correlate	42
Figure	2.9. Green to near infrared spectra produced from a bushfire and grass	43
Figure	3.1. Physical dimensions of the grassfire considered in the simulation experiment	69
Figure	3.2. Variation of temperature with height above ground of the grassfire plume	70
Figure	3.3. Temperature variation across the grassfire depth at 1.5m above ground	70

Figure	3.4. \$	Step function approximation of temperature across grassfire flame depth	73
Figure	3.5.	Dissociation and ionization volatiles in the grassfire flame combustion zone	74
Figure	3.6. V	Variation of electron density, temperature (Max.temp = 1000K) with fire depth	74
Figure	3.7.	Variation of electron density, temperature with fire depth	75
Figure	3.8.	Variation of total transmitted power coefficient with fire depth for 2%K content	77
Figure	3.9.	Variation of total transmitted power coefficient with fire depth for 10%K content	78
Figure	3.10.	Variation of total absorbed power coefficient with fire depth for 2%K content	78
Figure	3.11.	Variation of total absorbed power coefficient with fire depth for 10%K content	79
Figure	3.12.	Variation of total attenuation with fire depth for various K content at 900K	80
Figure	3.13.	Variation of total attenuation with fire depth for various K content at 1000K	80
Figure	3.14.	Variation of total attenuation with fire depth for various K content at 1100K	81
Figure	3.15.	Variation of total attenuation with fire depth for various K content at 1200K	81
Figure	3.16.	Variation of phaseshift with fire depth for various K content at 900K	82
Figure	3.17.	Variation of phaseshift with fire depth for various K content at 1100K	82
Figure	3.18.	Variation of phaseshift with fire depth for various K content at 1200K	83
Figure	4.1.	An area where the control burn was carried out (Plot B)	85
Figure	4.2.	Vegetation structure at the study area (Plot B)	87
Figure	4.3.	A block diagram for a VHF Radio Wave Interferometer	90

Figure	4.4. 30 and 50MHz transmitter circuits in protective casing	91
Figure	4.5. Local Oscillator Frequency Generator	91
Figure	4.6. 30MHz receiver circuit in protective casing	92
Figure	4.7. 30MHz Phase Comparator circuit in protective casing	92
Figure	4.8. 150MHz Yagi antenna	93
Figure	4.9. Quarter-wavelength whip antenna	93
Figure	4.10. Phase change due to moving the antenna: (a) phase at starting position and (b) antenna moved 2.9m away from starting position	94
Figure	4.11. Phase change due to moving the antenna: (a) phase at starting position (PsA) and (b) antenna moved 5.0m away from starting position	94
Figure	4.12. Observed grassfire direction during the prescribed burn	97
Figure	4.13. Thermocouple tower set up	99
Figure	4.14. Propagation paths and the shape of the study area plot	100
Figure	4.15. Grassfire flame temperatures as they intercepted the propagation path	101
Figure	4.16. 151.3MHz signal amplitude versus time	102
Figure	4.17. Smoothed Signal amplitude vs. time graph	103
Figure	4.18. Expanded signal amplitude vs. time graph	104
Figure	4.19. 30MHz Signal amplitude versus time	106
Figure	4.20. 30MHz Smoothed signal amplitude versus time	106
Figure	4.21. Expanded signal amplitude vs. time graph	107
Figure	4.22. 30MHz signal phase vs. time graph	108
Figure	4.23. Smoothed signal phase vs. time graph	108
Figure	5.1 Massive sugar cane fire	112

Figure	5.2. The location of the study area	112
Figure	5.3. Sugar cane paddock before burning	114
Figure	5.4. Set up of the transmitter and receiver units at the study site	115
Figure	5.5. Sugar cane flames 5-10m tall	115
Figure	5.6. Flame height from which we estimate a decrease in heat intensity from the sugar cane canopy	116
Figure	5.7. Set up for temperature measurement tower, logger, transmitter and receiver units	117
Figure	5.8. Sugar cane fire flame temperatures as the flame front temperature tower	119
Figure	5.9. Signal strength response to crew and cane fire interception of the propagation path	120
Figure	6. 1. Illustration of S-parameter measurement using a two-port network analyser	125
Figure	6.2. Attenuation coefficient versus microwave frequency for collision frequency $1 \times 10^{10} \text{s}^{-1}$ and electron densities in the range $1.1-3.2 \times 10^{16} \text{m}^{-3}$	127
Figure	6.3. Phase shift versus microwave frequency for collision frequency $1 \times 10^{10} \text{s}^{-1}$ and electron densities in the range $1.1-3.2 \times 10^{16} \text{m}^{-3}$	127
Figure	6.4. Thermocouple tree used for temperature measurement	129
Figure	6.5. Hexagonal burner used in the experiment	130
Figure	 6. 6. Network Analyzer set up for S₂₁ ans S₁₁ parameter measurements. 	131
Figure	6.7. An example of selected burns used for S-parameter measurements	132
Figure	6.8. A typical thermocouple measured temperature correction	134
Figure	6.9. Vegetation litter temperature (corrected) in the first 80 s after ignition	135

Figure 6.10. Vegetation litter temperature (corrected) in the first 111 s after ignition	136
Figure 6.11. Vegetation litter temperature (corrected) in the first 178 s after ignition	136
Figure 6.12. Variation of attenuation per meter with microwave frequency for a burner cavity during without flame	. 138
Figure 6.13. Variation of attenuation per meter with microwave frequency during flaming of three vegetation litter after 60 s	. 139
Figure 6.14. Variation of attenuation per meter with microwave frequency during flaming of three vegetation litter after 111 s	140
Figure 6.15. Variation of attenuation per meter with microwave frequency during flaming of three vegetation litter after 178 s	140
Figure 6.16. Variation of phase shift with microwave frequency during flaming of three vegetation litter after 60 s	. 141
Figure 6.17. Variation of phase shift with microwave frequency during flaming of three vegetation litter after 111 s	142
Figure 6.18. Variation of phase shift with microwave frequency during flaming of eucaly litter after 178 s	ptus 143
Figure 6.19. Variation of 1/attenuation with cyclic frequency squared during flaming of three vegetation litter after 60 s	145
Figure 6.20. Variation of 1/attenuation with cyclic frequency squared during flaming of three vegetation litter after 111 s	146
Figure 6.21. Variation of 1/attenuation with cyclic frequency squared during flaming of eucalyptus litter after 178 s	146
Figure 7.1. Bushfire's continuous, intermittent flame and thermal plume regions	152
Figure 7.2. A Rayleigh distribution fit of temperature – time variation in a line-fire front	154
Figure 7.3. Example of temperature variation with height in a bushfire plume	. 154

Figure	7.4. A thermal plume rising from a bushfire	158
Figure	7.5. Typical variation of velocity with height above a circular bushfire plume	158
Figure	7.6. Gaussian distribution of plume velocity over a circular fire	163
Figure	7.7. Concentric vortex rings above circular fire	163
Figure	7.8. Formation of crown streets by HRV pair	165
Figure	7.9. Thermal biconcave lens formed by horizontal roll vortices	172
Figure	7.10. Temperature variation with height for a crown fire	173
Figure	7.11. Refractive index variations with height for a crown fire	173
Figure	7.12. Ray trace through a non-homogeneous plume	177
Figure	7.13. Rays (excluding rays at edges) refraction in a dielectric pothole	178
Figure	7.14a. Rays (excluding rays at edges) refraction in a dielectric pothole	179
Figure	7.14b. Rays (excluding ray at center) refraction in a dielectric pothole	179
Figure	7.15. Variation of ray divergence with height at 0.5 and 2%K	181
Figure	7.16. A 30m high flame in Crown fire burning through a	
	15-year-old jarrah forest in Western Australia	183
Figure	7.17. Physical dimensions of the crown fire to used in the ray tracing simulation	184
Figure	7.18. Temperature variation in the region considered for ray tracing	185
Figure	7.19. Refractive indices (n) derived from plume density and polarisation	187

Figure	7.20. Influence of K-content on the refractivity due to ionization only at centerline	189
Figure	7.21. Influence of distance away from centerline on the refractivity due to ionization	190
Figure	7.22. Influence of plume gases on the radio refractivity at 2.0%K and nria	190
Figure	7.23. Influence of plume gases on the radio refractivity at 2.0% K and nrib	191
Figure	7.24. Influence of plume gases on the radio refractivity at 2.0%K and nric	191
Figure	7.25(a). Radio ray deflection at 13.8 due to ionization at 0.1%K	192
Figure	7.25(b). Radio ray deflection at 20.8 due to ionization at 0.1%K	193
Figure	7.26. Radio ray deflection at 13.8 due to (nria+ alti. correction)	194
Figure	7.27. Radio ray deflection at 19.8 due to (nria+ alti. correction)	194
Figure	7.28. Radio ray deflection at 29.8 due to (nria+ alti. Correction)	195
Figure	7.29. Radio ray deflection at 49.8 due to (nria+ alti. Correction)	195
Figure	7.30. Radio ray deflection at 13.8m due to (nria+ alti. Correction) and 0.1%K	196
Figure	7.31. Radio ray deflection at 19.8m due to (nria+ alti. Correction) and 0.1% K	197
Figure	7.32. Radio ray deflection at 29.8m due to (nria+ alti. Correction) and 0.1%K	197
Figure	7.33. Radio ray deflection at 49.8m due to (nria+ alti. Correction) and 0.1%K	199
Figure	7.34. Radio ray attenuation at 13.8m versus potassium	
	concentration	199
Figure	7.35. Radio ray attenuation versus potassium content at heights: 19.8 - 49.8m	200

Figure	7.36.	Fuel arrangement in the Operation Euroka Mass fire	201
Figure	7.37.	Estimated variation of temperature with height over a brigalow fuel pile	202
Figure	7.38.	Variation of temperature with height flame depth at 2.5m	203
Figure	7.39.	Deflection versus potassium content at different heights above the flame	203