FOOD SAFETY AND SECURITY OF SAGO STARCH IN RURAL PAPUA NEW GUINEA

A Thesis submitted by Andrew Russell GREENHILL B.Sc. Hons (University of Tasmania) in November 2006

> for the degree of Doctor of Philosophy in the discipline of Microbiology and Immunology, School of Veterinary and Biomedical Sciences, James Cook University, Townsville.

Suaviter in modo, fortiter in re

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

STATEMENT ON ACCESS OF THESIS

I, the undersigned, the author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses Network, for use elsewhere.

I understand that, as unpublished work a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

A R Greenhill November 2006

STATEMENT OF SOURCES

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university of other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references given.

A R Greenhill November 2006

STATEMENT ON THE CONTRIBUTION OF OTHERS

Financial support for the duration of this project was obtained through a research grant from the Australian Centre for International Agricultural Research (ACIAR), and from a stipend provided by the School of Veterinary and Biomedical Sciences. Project costs were met through the ACIAR funding. The work was completed under the supervision of A/Prof Warren Shipton, Dr Jeffrey Warner, A/Prof Leigh Owens, and Barry Blaney. The ACIAR project was in collaboration with researchers at the Department of Primary Industries and Fisheries Animal Research Institute at Yeerongpilly, The University of Technology in Lae, and the University of Papua New Guinea in Port Moresby.

Statistical knowledge was gained through attendance at a generic skills program organised by the James Cook University Graduate Research School. Further statistical support was provided by A/Prof Leigh Owens.

Elizabeth Kopel from the University of Papua New Guinea helped develop the sociological survey. I acknowledge the research assistance of Ms Sarah Bidgood, Mr Andreas Kuptz and Ms Nicole Seleno in conducting some of the bench work investigating the storage and preservation methods of sago starch. Kathleen Buick assisted with proofreading.

A considerable portion of this work was conducted using the infrastructure of the Animal Research Institute in Yeerongpilly. Some work was also conducted at Griffith University. Approximately 15 fungal isolates were sent to the Centraalbureau voor Schimmelcultures in the Netherlands for identification. Six sago samples were sent to the Royal Perth Hospital for vitamin analysis, and three samples were analysed for metal content at the Advanced Analytical Centre at James Cook University

A R Greenhill November 2006

DECLARATION OF ETHICS

Relevant research reported in this thesis received approval of the Papua New Guinea Medical Research Advisory Council (MRAC number 05/25) and the James Cook University Ethics Review Committee (Human ethics number H2167).

A R Greenhill November 2006

ACKNOWLEDGEMENTS

The completion of this thesis is testament to what can be achieved in a supportive environment that values knowledge and education. Many people have contributed to the provision of this supportive environment, but none more than my principle supervisor, A/Prof Warren Shipton. Since well before this research began, Warren has dedicated considerable time to the project. Without Warren's knowledge, enthusiasm, scientific rigour, pearls of wisdom, encouragement and timely dry humour, one fears this thesis would never have seen the light of day. I am forever indebted to Warren for his support throughout the project.

No research project conducted in the Western Province of PNG could reach its full potential without the support of Dr Jeffrey Warner. Jeff's experience and obvious love for all things Western Province have been indispensable to this project. But Jeff's support has gone well beyond logistical knowledge. I thank Jeff for the initial opportunity to work in PNG, for imparting his enthusiasm for the beautiful country to me, for his ideas about the project, for his guidance, for his belief in my ability, and for his ongoing friendship. Thankyou also Linda Warner, particularly for her cultural assistance.

I am also very appreciative of the support of Barry Blaney at the Animal Research Institute in Yeerongpilly. Barry has invested considerable time and interest into this project. Without his patience, support and friendly amicable nature this project would be bereft of some of the most interesting and important work.

I am appreciative of the financial support I received in the form of a School of Veterinary and Biomedical Science scholarship for 18 months. Without that support completion of the thesis would have been considerably more difficult. Individually, there are many people, past and present, within the School of Veterinary and Biomedical Sciences that have helped throughout this project. Indeed, there is barely a person who hasn't helped in some way, ranging from entertaining (or otherwise, i.e. asinine) lunchtime conversations, to sourcing chemicals, to assistance with techniques. In particular, thankyou Leigh Owens for assistance with statistics, and Sarah Bidgood, Andreas Kuptz and Nicole Seleno for their assistance in the laboratory. The technical staff within the school have provided constant support, particularly the 'micro techies' and Juli. The office staff have been wonderfully helpful, patient, and understanding of my form filling-out ability (or lack thereof). Many thanks Scott for sheep blood, and Sharon for her wonderful phlebotomy skills. Thankyou Kathleen Buick for proof reading.

I would like to acknowledge the positive influence of two past staff members, namely A/Prof. Robert Hirst and the late A/ Prof. Bruce Copeman. I thank Robert for his encouragement and support, particularly in my early days at JCU. And I thank Bruce for being a wonderful role model (the standards of whom I will never attain, but it is good to have goals).

I am grateful for the assistance provided by Cathy and fellow staff at the Townsville Hospital in identification of selected bacterial isolates.

There are many people in Brisbane that have helped make my time there more productive and more enjoyable. I would like to thank the staff members at the ARI who have assisted me, in particular Mary Fletcher, Sam Murray and Ian Brock. Thankyou also to Brian, Alan, Keith, Madeline, Lisa, Adam, Peter, Stephen and Patrick. The assistance of Renee at Griffith University is also much appreciated. Many thanks to Paul, Nomes, Mia (and now Xavier) for their hospitality, and also Beck, Glen and Lucy for their friendship.

Many friendships have been forged throughout the duration of this project. Thanks to all the fellow students within the school for their support and camaraderie. In particular, thanks to office mates past and present for valued friendship.

Many people in PNG have helped facilitate this project. In particular, I am appreciative of the help and friendship of Daniel Pelowa, who has made me welcome, and assisted in communication and logistics throughout the Western Province. I acknowledge the input into the broader ACIAR project by our collaborators at UNPG (Elizabeth) and UniTech (Aisak, Betty and Dele). Their input was essential to the project's success. Thankyou also to ACIAR for funding the project, and specifically Greg Johnson, who was instrumental in ensuring the project was funded.

It is difficult to complete such a monumental task without assistance from family and friends. Thankyou to my family for a lifetime of great support. To a large degree, it was their guidance through life that put me in a position to embark on the project. In particular, I would like to pass on my gratitude to my mother, who in her admirably unassuming way has been such a positive influence on my life, and played a very important role in the education of her children. In addition to family, there are a number of friends that deserve special mention, but I will resist listing names for fear of accidentally excluding someone. But to all those people who have expressed interest in the project (if you are reading this you have presumably expressed some interest), provided me with an enjoyable social outlet, and been understanding of my at times antisocial behaviour due to work commitments, I am very grateful.

As is traditional, I have saved the best for last. And Suzie, you are the best! I am eternally grateful for the love and support you have given me throughout the project. There is no doubt that without your support this thesis would have taken considerably longer to complete, and been nowhere near as tolerable. I am appreciative of the personal sacrifice you have made to help me. I know at the time it hasn't always been fun, but I hope we can look back on the past three and a half years as a time of great achievement for both of us. Thankyou.

ABSTRACT

Sago starch is an important source of dietary carbohydrate in lowland and coastal areas of Papua New Guinea (PNG). There have been sporadic reports of severe haemolytic illness resulting from sago starch consumption, termed sago haemolytic disease (SHD), with most reports coming from the Western Province. Despite the occurrence of SHD, and a high likelihood of less severe foodborne illness resulting from consumption of indigenous foods in general in PNG, there have been no detailed studies of the microbiology of sago starch. The aim of this study was to establish a broad basal knowledge of the microbiology of traditionally prepared sago starch in PNG.

Sago starch samples and sociological information were collected in two of the main sago eating regions of PNG, the East Sepik Province and the Western Province. Sago starch samples were collected predominantly from the houses of sago starch producers in rural areas of the two provinces, and to a lesser degree from markets in some villages in the East Sepik Province. In addition to these samples considered 'fit for consumption', two samples of sago starch that had been associated with outbreaks of SHD were also analysed.

Analysis of the sago starch for common bacterial pathogens was done using accepted methods, and where possible was based on the relevant Australian Standards. The findings suggest that faecal contamination of sago starch is widespread, with over three-quarters of all samples tested for faecal coliforms at the upper limit of detection. The human pathogen *Salmonella* spp. was isolated from approximately 7% of samples tested. The presence of emerging human pathogens such as *Citrobacter freundii* and *Enterobacter sakazakii* was tested, with the former being present in a low percentage of samples tested. Other important bacterial food pathogens such as *Staphylococcus aureus* and *Bacillus cereus* were also detected in sago starch, but none of the 57 samples tested for *Listeria monocytogenes* was positive.

Mycological analysis of sago starch revealed a variety of fungal contaminants. Commonly occurring genera of filamentous fungi included *Penicillium, Scytalidium, Aspergillus,* and *Acremonium.* Mycotoxin analysis of sago starch revealed that the common mycotoxins such as aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, zearalenone and citrinin were not present. Selected fungal isolates were tested for the presence of mycotoxin production in pure culture, with two-thirds found to be capable of citrinin production and one isolate capable of sterigmatocystin synthesis.

In an attempt to determine the aetiological agent of SHD, bacterial and fungal isolates were screened for haemolytic activity on blood agar. A suitable semiquantitative assay was developed, and extracts from bacterial and fungal cultures were tested. Particular attention was paid to the haemolytic activity of fungal extracts, given the long speculated role of mycotoxins in the aetiology of SHD. The haemolytic activity of numerous fungal species has been demonstrated for the first time, and steps in the optimised extraction and purification of the haemolytic component of some isolates has been completed. Further work was conducted on extracts from *Penicillium steckii*, a common contaminant of sago starch. The chemical properties of the extract suggest that a novel fungal metabolite is responsible for haemolytic activity.

Detailed studies on the microbial ecology of stored sago starch have been conducted, primarily to garner a greater understanding of factors that contribute to the microbial safety of the food. The study has established that sago starch is a naturally fermented product, and this fermentation process contributes greatly to the food safety of the product. Bacterial pathogens such as *B. cereus, L. monocytogenes, S. aureus* and *Salmonella* sp. do not survive well in actively fermenting sago starch, primarily due to the production of weak acids. Furthermore, numbers of filamentous fungi are low in actively fermenting sago starch, presumably due to the reduced oxygen availability.

On the basis of the sociological data and microbial studies, a hazard analysis and critical control point (HACCP) plan was devised that was considered appropriate for application in village based production of sago starch in rural PNG. Through a greater understanding of the microbiology of sago starch, together with the development of an appropriate HACCP plan, this research will lead to increased food safety and food security for sago consumers in rural and remote lowland areas of

PNG. Moreover, studies of the haemolytic metabolites of fungi isolated from sago starch pave the way for further research to determine the aetiology of SHD.

TABLE OF CONTENTS

STATEMEN	NT ON ACCESS OF THESIS	iii
STATEMEN	NT OF SOURCES	iii
STATEMEN	T ON THE CONTRIBUTION OF OTHERS	iv
DECLARA	FION OF ETHICS	iv
ACKNOWL	EDGEMENTS	V
ABSTRACT	7	vii
LIST OF TA	BLES	xvi
LIST OF FI	GURES	xix
COMMONI	LY USED ABBREVIATIONS	xxiii
CHAPTER	I: GENERAL INTRODUCTION	1
1.1 Ba	ckground	1
1.2 Th	e Purpose of the Study	2
1.3 Th	e Study	
CHAPTER 2	2: LITERATURE REVIEW	6
2.1 Sa	go	6
2.1.1	The sago palm	6
2.1.2	Uses of the sago palm	9
2.1.3	Production of sago starch	
2.2 He	ealth and Nutrition in Papua New Guinea	
2.2.1	Overview	
2.2.2	Nutrition	
2.2.3	The impact of infectious disease on health	
2.2.4	The relationship between nutrition and immunity	
2.3 Sa	go Haemolytic Disease	
2.3.1	Symptoms	
2.3.2	Epidemiology	
2.3.3	Aetiological studies	
2.4 Ba	cterial Food Pathogens	
2.4.1	Introduction	
2.4.2	Bacillus cereus	
2.4.3	Clostridium spp. food poisoning	
2.4.4	Escherichia coli	

2.4.5	Listeria monocytogenes	
2.4.6	Salmonella species	
2.4.7	Staphylococcus aureus	
2.5 My	cotoxins and Mycotoxicosis	
2.5.1	Introduction	
2.5.2	The main mycotoxins and their producers	
2.6 Bio	logical Toxins with a Demonstrated Haemolytic Activity	
2.6.1	Introduction	
2.6.2	Bacterial haemolysins	
2.6.3	Fungal haemolysins	50
2.6.4	Haemolytic anaemia associated with protozoan infections	55
2.6.5	Haemolysins of plant and animal origin	56
2.6.6	Justification and summary	58
CHAPTER 3	SOCIOLOGICAL ASPECTS OF SAGO USE AND THE	
EPIDEMIOL	OGY OF SAGO HAEMOLYTIC DISEASE	60
3.1 Intr	oduction	60
3.2 Ma	terials and Methods	61
3.2.1	Sociological survey of sago consumers in the Western and East	st Sepik
Province	2S	61
3.2.2.	Review of hospital records at the Balimo Health Centre	
3.2.3	Outbreaks of sago haemolytic disease during course of this stu	ıdy 62
3.3 Res	sults	
3.3.1	Sociological survey of sago consumers in the Western and East	st Sepik
Province	2S	
3.3.2	Review of hospital records at the Balimo Health Centre	74
3.3.3	Outbreaks of sago haemolytic disease during the course of this	s study
		80
3.3.4	Case definition and incidence of sago haemolytic disease	
3.4 Dis	cussion	
CHAPTER 4	THE PREVALENCE OF FOODBORNE BACTERIAL	
PATHOGEN	S IN SAGO STARCH	
4.1 Intr	oduction	
4.2 Ma	terials and Methods	
4.2.1	Sample collection and general procedures	

4.2.	2 Enumeration of <i>Bacillus cereus</i>	92
4.2.	3 Enumeration of <i>Clostridium perfringens</i> and detection of	
sacc	charolytic clostridia	92
4.2.	4 Isolation of various species of potential pathogens from family	
Ente	erobacteriaceae	93
4.2.	5 Isolation of <i>Listeria monocytogenes</i>	96
4.2.	6 Enumeration of coagulase positive staphylococci	97
4.2.	7 Enumeration of total culturable aerobic bacteria	97
4.2.	8 Statistical analysis	98
4.3	Results	99
4.3.	1 Sample information	99
4.3.	2 Bacillus cereus enumeration	99
4.3.	3 Enumeration of <i>Clostridium perfringens</i> and detection of	
sacc	charolytic clostridia	100
4.3.	4 Isolation and enumeration of various species of potential pathoge	ns
from	n family <i>Enterobacteriaceae</i>	100
4.3.	5 Isolation of <i>Listeria monocytogenes</i> from sago starch	102
4.3.	6 Enumeration of coagulase positive staphylococci	102
4.3.	7 Enumeration of total culturable aerobic bacteria	103
4.4	Discussion	103
CHAPTI	ER 5: THE PREVALENCE AND DETERMINANTS OF FUNGI AND)
ACTINC	OMYCETES IN SAGO STARCH	111
5.1	Introduction	111
5.2	Materials and Methods	112
5.2.	1 Enumeration and identification of yeasts and moulds	112
5.2.	2 Enumeration of mucoraceous moulds	114
5.2.	3 Enumeration of <i>Geotrichum</i> species	114
5.2.	4 Isolation of actinomycetes from sago starch	115
5.2.	5 Additional techniques used for sago samples implicated in SHD.	115
5.2.	6 Ergosterol analysis of sago starch	116
5.2.	7 Statistical analysis	117
5.3	Results	118
5.3.	1 Enumeration of yeasts and moulds and prevalence of fungal gene	ra
		118

5.3.2	Enumeration of mucoraceous moulds	
5.3.3	Enumeration of Geotrichum species	
5.3.4	Enumeration of actinomycetes	
5.3.5	Mycoflora of implicated sago samples	
5.3.6	Ergosterol analysis of sago starch	
5.4 Dis	cussion	
CHAPTER 6	THE PRESENCE OF COMMON MYCOTOXINS AND	
MYCOTOXI	GENIC FUNGI IN SAGO STARCH	
6.1 Intr	oduction	
6.2 Ma	terials and Methods	
6.2.1	Sample Collection	
6.2.2	Screening sago starch for mycotoxins	
6.2.3	Screening pure cultures of fungi isolated from sago starch	for
mycotox	ins	136
6.3 Res	sults	
6.3.1	Sample collection	
6.3.2	Presence of mycotoxins in sago starch	
6.3.3	Production of mycotoxins by fungi in pure culture isolated	from sago
starch		
6.4 Dis	cussion	140
CHAPTER 7	HAEMOLYTIC ACTIVITY OF MICROORGANISMS IS	OLATED
FROM SAG	O STARCH AND METHODS FOR DETECTING SUCH A	CTIVITY
		146
7.1 Intr	oduction	146
7.2 Ma	terials and Methods	147
7.2.1	Initial screening using blood agar	147
7.2.2	Development of a haemolytic assay for quantitative testing	of
microor	ganisms for haemolytic activity	
7.2.3	Application of assay to crude microbial extracts	154
7.3 Res	sults	
7.3.1	Initial screening using blood agar	
7.3.2	Development of haemolytic assay	
7.3.3	Application of assay	
7.4 Dis	cussion	

СНАРТЕ	ER 8: FURTHER STUDIES ON THE HAEMOLYTIC ACTIVITY	OF
SELECT	TED FUNGAL EXTRACTS AND SAGO STARCH SAMPLES	175
8.1	Introduction	175
8.2	Materials and Methods	176
8.2.1	1 Extraction of the haemolytic component produced by filamen	tous
fung	gi	176
8.2.2	2 Separation of haemolytic components of fungal culture extrac	ts using
prep	parative layer chromatography	178
8.2.3	3 Further separation of haemolytic component from <i>Penicilliun</i>	ı steckii
W1-	-1301	179
8.2.4	4 Testing for the presence of haemolytic activity in sago starch	using
hexa	ane extraction and quantitative assay	181
8.3	Results	181
8.3.1	1 Extraction of the haemolytic component produced by filamen	tous
fung	gi	181
8.3.2	2 Separation of haemolytic components of fungal culture extract	ts using
prep	parative layer chromatography	188
8.3.3	3 Further separation of haemolytic component(s) of <i>Penicillium</i>	ı steckii
W1-	-1301	194
8.3.4	4 Testing for the presence of haemolytic activity in sago starch	using
hexa	ane extraction and quantitative assay	198
8.4	Discussion	199
СНАРТЕ	ER 9: MICROBIAL ECOLOGY OF SAGO STARCH	206
9.1	Introduction	206
9.2	Materials and Methods	207
9.2.1	1 Nitrogen fixation	207
9.2.2	2 Determination of nitrogen levels in sago starch	
9.2.3	3 Analysis of sago starch for vitamin B ₁₂	
9.2.4	4 Comparison of the effect of selected traditional storage techni	iques on
micr	robial communities	
9.2.5	5 Survival of bacterial pathogens in sago starch	
9.2.6	6 The fermentation of sago starch	
9.2.7	-	
9.3	Results	

9.3.1	Isolation of nitrogen fixing bacteria from sago palms	
9.3.2	Determination of nitrogen levels in sago starch	220
9.3.3	Analysis of sago starch for vitamin B_{12} and isolation of B_{12}	
synthesis	ers	221
9.3.4	Comparison of the effect of selected traditional storage technic	jues on
microbia	l communities	221
9.3.5	Survival of bacterial pathogens in sago starch	224
9.3.6	The fermentation of sago starch	226
9.3.7	The role of lactic acid bacteria in the preservation of sago stard	h229
9.4 Dis	cussion	230
CHAPTER 10): HACCP ANALYSIS OF SAGO STARCH AS A FOOD	242
10.1 Intr	oduction	242
10.2 Mat	erials and Methods	243
10.3 Res	ults	244
10.3.1	Preliminary steps prior to HACCP analysis	244
10.3.2	Application of HACCP	246
10.4 E	Discussion	249
CHAPTER 1	I: GENERAL DISCUSSION	257
REFERENCE	ES	262
APPENDIX 1	: SOCIOLOGICAL SURVEY	303
APPENDIX 2	2: MEDIA AND REAGENTS	315
APPENDIX 3	: ISOLATION AND ENUMERATION OF BACTERIA OF PU	JBLIC
HEALTH SIC	GNIFICANCE FROM SAGO STARCH	335
APPENDIX 4	: ENUMERATION, IDENTIFICATION AND HAEMOLYTIC	2
ACTIVITY C	F FILAMENTOUS FUNGI FROM SAGO STARCH	343
APPENDIX 5	S: MYCOTOXIN ANALYSIS	358
APPENDIX 6	: HAEMOLTYIC ACTIVITY OF BACTERIA ISOLATED FR	OM
SAGO STAR	CH AND SAGO STARCH <i>PER SE</i>	360
APPENDIX 7	: MICROBIAL ECOLOGY OF SAGO STARCH	363

LIST OF TABLES

Table 2.01:	Common mycotoxins and associated human diseases	6
Table 3.01:	Division of labour between men (M) and women (W) for main tasks	
involved	in sago palm cultivation and starch production	4
Table 3.02:	Transfer of sago cultivation and extraction knowledge from one	
generatio	on to the next in the East Sepik Province and the Western Province 6	4
Table 3.03:	Percentage of respondents who wash extraction equipment following	
the mace	eration of sago palms	5
Table 3.04:	Methods of human faecal waste disposal, and the distance of disposal	
from site	of sago extraction	7
Table 3.05:	Preferred methods of sago starch storage in the East Sepik Province	
and the V	Western Province	8
Table 3.06:	Use of stale sago starch in the East Sepik and Western Provinces, and	l
character	ristics used to determine suitability for consumption7	0
Table 3.07:	Primary and secondary methods of sago preparation in the East Sepik	-
Province	and the Western Province7	0
Table 3.08:	The significance of sago starch as a food source and changes in	
depender	ncy in recent years7	1
Table 3.09:	Selected responses from survey participants pertaining to cultural	
aspects of	of sago use	2
Table 3.10:	Problems associated with sago palm cultivation and starch extraction	
in the Ea	st Sepik Province and the Western Province7	3
Table 3.11:	Previously unreported illnesses with similar symptoms and	
epidemic	plogies to SHD in the Western Province7	4
Table 4.01:	Parameters that might affect microbial growth in sago starch and their	r
categoris	ation for statistical analysis9	8
Table 4.02:	Statistical analysis (using analysis of variance) of the influence of	
storage c	luration, storage technique and pH on numbers of B. cereus isolated	
from sag	o starch	0
Table 4.03:	Significance levels using Fisher's exact test of the relationship	
between	presence/absence of total coliforms, faecal coliforms, E. coli and	
Salmone	<i>lla</i> spp. with province of origin for sago starch, the age of the sample a	t

time of c	ollection, the pH of the sample, and the water activity of the sample
Table 4.04:	Statistical analysis of the influence of pH and storage duration on
numbers	of total culturable bacteria isolated from sago starch103
Table 5.01:	Prevalence of individual mould genera from sago samples collected
from the	East Sepik Province (S1 and S2) and the Western Province (W1,W2
and W3).	
Table 5.02:	Results of fungal enumeration of sago samples implicated in SHD
(cfu/g).	
Table 6.01:	The $R_{\rm f}$ and detection limits for mycotoxin screening in sago starch
Table 6.02:	Citrinin and sterigmatocystin concentrations produced in pure culture
by fungi	isolated from sago starch
Table 7.01:	Categories of haemolytic intensity for organisms isolated from sago
starch.	
Table 7.02:	Comparison of haemolytic activity of selected fungal isolates using
sheep blo	ood agar (SBA-chlor) and human blood agar (HBA-chlor)
Table 9.01:	Estimated number of nitrogen fixing bacteria isolated from sago
palms us	ing the MPN technique and confirmation using GC
Table 9.02:	Rate of nitrogen fixation (nM of ethylene production) in sago starch
and enun	neration of presumptive nitrogen fixing bacteria from selected sago
samples.	No distinction was made between aerobic and anaerobic nitrogen
fixation.	
Table 9.03:	Vitamin B ₁₂ levels in five samples of sago starch
Table 9.04:	Estimated bacterial counts per gram of sago for various bacterial
pathogen	s in sago starch over three weeks. Sago starch was seeded with
approxin	nately 1.0×10^4 cfu/g of each pathogen on day 0
Table 9.05:	Enumeration of LAB, pH values and detection of various acids in
sago star	ch
Table 9.06:	Faecal coliforms, E. coli and filamentous fungi isolated from triplicate
samples	of fermenting sago starch over 30 days
Table 9.07:	Production of various acids by selected LAB isolated from sago starch
grown in	pure culture

Tabl	e 10.01:	Initial steps of HACCP application: identification of steps invol-	ved
	in the proce	ess, the associated hazards, appropriate control measures and	
	correspondi	ng CCPs	247
Tabl	e 10.02:	Critical limits, monitoring procedures and corrective actions for	
	practicable	CCPs of the sago production and storage process	248

LIST OF FIGURES

Figure 1.01:	Map of PNG showing provincial borders. Areas of sample collection
are mark	ed with red4
Figure 2.01:	Distribution of <i>Metroxylon</i> spp. in the Asia–Pacific region7
Figure 2.02:	A map of PNG showing areas suitable for growth of the sago palm,
M. sagu,	in green. Small patches of palms also grow on many of the coastal
fringes of	f islands off the coast of mainland PNG
Figure 2.03:	Sago palms growing in waterlogged conditions in the Western
Province	, PNG
Figure 2.04:	A young boy stands in front of thatch made from the leaves of the
sago palr	n, <i>M. sagu</i>
Figure 2.05:	Macerating the pith of a sago palm using traditional tools15
Figure 2.06:	Extraction of sago starch15
Figure 2.07:	Two commonly used methods of sago storage: (a) wrapped in leaves;
(b) place	d in a woven bag
Figure 3.01:	Example of a well dug in a sago swamp to access water for starch
extraction	n
Figure 3.02:	Picture of two toilets (circled in red) that drain directly into the Sepik
River in o	close proximity to where sago starch was being extracted
Figure 6.01:	Thin layer chromatography plate of sample W0303-12 and CPA
standards	s after treatment with Ehrlich's solution
Figure 7.01:	Observations of the screening of sago starch for haemolytic activity
on HBA.	
Figure 7.02:	Percentage of isolates showing haemolytic activity on SBA-chlor for
the most	commonly occurring mould genera. Genera are listed in order of
frequency	y of isolation from sago starch157
Figure 7.03:	Haemolytic activity of selected <i>Bacillus</i> isolates over 4 hours using a
semi-qua	ntitative assay. Each tube contained the equivalent of 1,050 μ l of liquid
culture.	
Figure7.04:	Haemolytic activity of selected P. aeruginosa isolates over 8 hours
using a q	uantitative assay. Each tube contained the equivalent of 1,050 μ l of
liquid cu	Iture

Figure 7.05:	Haemolytic activity of selected yeast extracts (TDS) over eight hours.
Each tub	e contained the equivalent of 1,050 µl of liquid culture
Figure 7.06:	Haemolytic activity of uninoculated wheat, S. chartarum ATCC 9182,
T. reesei	ATCC 26921 (extracted in TDS), and a negative control. Each tube
containe	d the equivalent of 0.175 g of culture material
Figure 7.07:	Haemolytic activity of fungi isolated from sago starch, extracted using
TDS: (a)	Three strains of <i>P. steckii</i> ; (b) <i>P. brevicompactum</i> , <i>A. flavipes</i> , and <i>F.</i>
semitecti	um. Each tube contained the equivalent of 0.175 g of culture material
Figure 8.01:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of sterile	wheat, and extraction solvents alone (negative controls)
Figure 8.02:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of S. cha	rtarum ATCC 9182 culture (positive control organism)
Figure 8.03:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of T. ree	sei ATCC 26921 culture (positive control organism)
Figure 8.04:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of P. stee	<i>ckii</i> W1-1101
Figure 8.05:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of P. stee	<i>ckii</i> W1-1301
Figure 8.06:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of P. stee	<i>ckii</i> S2-1305
Figure 8.07:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of P. bre	vicompactum S1-0201
Figure 8.08:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of A. flav	<i>pipes</i> S2-0207
Figure 8.09:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of F. sen	<i>nitectum</i> S2-0207
Figure 8.10:	Haemolytic activity of hexane-rich and dichloromethane-rich extracts
of T. vire	ens W4-0119, from implicated sago
Figure 8.11:	Haemolytic activity in the hexane extract of uninoculated wheat after
separatio	on into two fractions on a PLC plate
Figure 8.12:	Haemolytic activity in the hexane extract of S. chartarum ATCC 9182
after sep	aration into two fractions on a PLC plate189

Figure 8.13:	Haemolytic activity in the hexane extract of <i>T. reesei</i> ATCC 26921
after sepa	aration into two fractions on a PLC plate
Figure 8.14:	Haemolytic activity in the hexane extract of <i>P. steckii</i> W1-1101 after
separatio	n into two fractions on a PLC plate
Figure 8.15:	Haemolytic activity in the hexane extract of <i>P. steckii</i> W1-1301 after
separatio	n into two fractions on a PLC plate
Figure 8.16:	Haemolytic activity in the hexane extract of <i>P. steckii</i> S2-1305 after
separatio	n into two fractions on a PLC plate
Figure 8.17:	Haemolytic activity in the hexane extract of <i>P. brevicompactum</i>
S1-1201	after separation into two fractions on a PLC plate
Figure 8.18	Haemolytic activity in the hexane extract of A. flavipes S2-0207 after
separatio	n into two fractions on a PLC plate
Figure 8.19:	Haemolytic activity in the hexane extract of <i>F. semitectum</i> S1-0406
after sepa	aration into two fractions on a PLC plate
Figure 8.20:	Haemolytic activity in the hexane extract of <i>T. virens</i> W4-0119 after
separatio	n into two fractions on a PLC plate
Figure 8.21:	Preparatory layer chromatography plate of P. steckii W1-1301 hexane
fraction j	photographed under long wave UV light
Figure 8.22:	Graphs showing the haemolytic activity of the three segments from
the PLC	plate of <i>P. steckii</i> W1-1301196
Figure 8.23:	P. steckii W1-1301 TLC plate exposed to iodine
Figure 8.24:	Haemolytic activity of hexane-rich extracts of sago starch (1.0 g
equivale	nt)
Figure 9.01:	Number of total viable bacteria (cfu/g) over 6 weeks in sago stored
wrapped	in sago leaves (sago bundle), smoked sago and sago stored in an
earthenw	vare pot covered with water
Figure 9.02:	Number of LAB (cfu/g) over 6 weeks in sago stored wrapped in sago
leaves (s	ago bundle), smoked sago and sago stored in an earthenware pot
covered	with water
Figure 9.03:	Number of yeasts (cfu/g) over 6 weeks in sago stored wrapped in sago
leaves (s	ago bundle), smoked sago and sago stored in an earthenware pot
covered	with water

Figure	9.04:	Number of moulds (cfu/g) over 6 weeks in sago stored wrapped in	
sa	go leav	es (sago bundle), smoked sago and sago stored in an earthenware pot	
co	overed w	vith water	
Figure	9.05:	Colony forming units of LAB and yeasts in actively fermenting sago	
sta	arch.		
Figure	9.06:	Levels of acetic acid, n-butyric acid and lactic acid in fermenting sage	
sta	arch.		
Figure	10.01:	Flow diagram illustrating the major steps in the sago extraction and	
storage process in rural PNG			

COMMONLY USED ABBREVIATIONS

ANOVA	Analysis of variance
ATCC	American type culture collection
	Water activity
a _w BHC	Balimo Health Centre
BHIB	Brain heart infusion broth
BPW	Buffered peptone water
BSA	Bismuth sulphite agar
CAST	Council for Agricultural Science and Technology
CCP	Critical control point
cfu	Colony forming unit
CPA	Cyclopiazonic acid
Da	Dalton
DRBC	Dichloran rose Bengal chloramphenicol agar
EHEC	Enterohaemorrhagic Escherichia coli
g	gram
8	gravity
HACCP	Hazard Analysis and Critical Control Point
Hb	Haemoglobin
HBA	Human blood agar
HBA-chlor	Human blood agar with chloramphenicol
HPLC	High performance liquid chromatography
HUS	Haemolytic uraemic syndrome
JCU	James Cook University
kDa	kilo Dalton
kg	kilogram
1	litre
LD50	50% lethal dose
М	molar
ml	millilitre
min	minute
MPN	Most probable number
NACMCF	National Advisory Committee on Microbiological Criteria for
	Foods
nm	nanometre
PBS	Phosphate buffered saline
PLC	Preparatory layer chromatography
PMGH	Port Moresby General Hospital
PNG	Papua New Guinea
ppm	parts per million
ppb	parts per billion (10^9)
Rh	Rhesus factor
rpm	revolutions per minute
RR	Reference range
RTX	Repeat in toxin
SBA	Sheep blood agar
SBA-chlor	Sheep blood agar with chloramphenicol
SBA-gluc	Sheep blood agar with glucose
SDri Siuc	Sheep stood ugur with Brucose

SHD	Sago haemolytic disease
SMA	Synthetic Mucor agar
STEC	Shiga-toxigenic Escherichia coli
stx	Shiga toxin
TDS	Toxin diluent solution
TEF	Toluene: ethyl acetate: formic acid
TLC	Thin layer chromatography
UV	Ultraviolet
VFA	Volatile fatty acid
WBC	White blood cell
WHO	World Health Organisation
×	Multiplication
°C	degrees Celsius
μl	microlitre
μg	microgram