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Abstract

A time series method for the determination of combustion chamber resonant
frequencies is outlined. This technique employs the use of Markov-chain
Monte Carlo (MCMC) to infer parameters in a chosen model of the data.
The development of the model is included and the resonant frequency is
characterised as a function of time. Potential applications for cycle-by-cycle
analysis are discussed and the bulk temperature of the gas and the trapped
mass in the combustion chamber are evaluated as a function of time from
resonant frequency information.
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1. Introduction

Calculating the resonant frequency accurately in an engine combustion cham-
ber enables the characterisation of resonant frequencies that are associated
with the speed of sound, and hence temperature[3, 4, 5, 6, 7]. Therefore,
accurate isolation of resonant frequencies and their decay, as a function of
time, or crank-angle, will allow the bulk temperature of the gas in the com-
bustion chamber to be determined at any point within the region of interest.
Further, an investigation into these frequencies will allow for cycle-by-cycle
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Nomenclature

Posterior

Prior
Uninformative Prior
Markov-chain
Monte Carlo

Gibbs Sampler

DIC

Posterior Predictive
Mean
Precision

Top Dead Centre

A probability distribution that summarises
information about a random variable, or
parameter, after information from
empirical data is obtained[1].

Information known about a parameter
before empirical information is obtained.
A prior that assumes no information was
known about a particular parameter before
obtaining empirical information.

or MCMC is a set of computational
methods for sampling from probability
distributions.

A particular MCMC method to generate
predictive distributions.

The deviance information criterion, a
relative goodness of fit measure from the
posterior expectation of the deviance and
the effective number of parameters as a
measure of complexity [2].

The mean value of each modeled
observations posterior distribution.

A term applied to the likely spread of
estimates of a parameter in a statistical
model.

When the piston is at the highest possible
location in the cylinder. Often denoted by
a crank-angle of 0 or 360.




analysis to be conducted to investigate inter-cycle variability. The isolation
of resonant frequencies also has important implications in the detection of
knock[5, 8]. Moreover, instantaneous resonant frequency information is of
more practical use in the elimination of knock than more easily measured
factors, such as the rate of pressure rise[5].

Conventional spectral analyses, such as those carried out a by Fourier trans-
form, fail to accurately interpret the resonant frequencies precisely if the reso-
nance is non-stationary[5]. A common approach to get around non-stationary
frequencies is the use of the Wigner-Ville Spectrum[4, 5, 8, 9, 10, 11, 12].
We propose, however, the use of Bayesian statistical inference which allows
us to configure precisely a model for the observable information of interest.
Markov-chain Monte Carlo (MCMC) using Gibbs Sampling is a statistical
inference technique that can be used for parameter estimation in Bayesian
statistical models and is the method employed in this paper[13]. Using this
methodology has the advantage that it requires the user to state explicitly
any assumptions being made in the calculation[14]. Hence, the user always
knows exactly what problem is being solved. Our models are defined and
fitted using the WinBUGS software package[15].

Our technique for isolating resonant frequencies specifies an analytic form
for the signal, then uses MCMC to estimate each model parameter. In our
example of engine data, from in-cylinder pressure readings, we seek to obtain
frequency as a function of time, and hence observe it in terms of a crank-angle.

A further advantage of Bayesian statistical inference is that unlike other
techniques|[16] such as FFTs[17] or maximum entropy spectral analysis|18,
19], which require a battery of data, it works effectively on a single cycle.
This eliminates the need for ad hoc methods such as cycle averaging or spec-
trum averaging to extract useful information — not to speak of excessive
laboratory time collecting data. Variations from cycle-to-cycle can also be
explored by performing analysis on each cycle completely independently of
the others.

2. Experimental Configuration

Experiments were conducted on a naturally aspirated 4-cylinder Ford direct
injection diesel engine (2701C). The engine has a capacity of 4.152 1, a bore
of 108.2 mm, a stroke length of 115 mm, a compression ratio of 15.5 and max-



imum power of 48 kW at 2500 RPM. The engine was coupled to a Froude
DPX type Hydraulic Dynamometer with load applied by increasing the flow
rate of water inside the dynamometer housing. In-cylinder pressure was mea-
sured with a PCB 112B11 piezoelectric transducer with a Data Translation
(DT9832) simultaneous analogue to digital converter connected to a desktop
computer running National Instruments LabView. Data was collected at a
sample rate of 200,000 samples per second. During testing the engine was run
on diesel fuel at 2000 RPM on full load. For a more detailed overview of the
experimental setup, including emissions results, refer to the corresponding
paper by Surawski et al. [20].

3. Model Development

In this section we illustrate the process of model building for this problem
by introducing more complex model specifications in an orderly sequence.
At each step we compare an index of model fit, the deviance information
criterion (DIC)[21], to ensure that over-fitting has not occurred, and that an
increase in complexity results in a better predictive model. The DIC is a
relative measure of model fit; a decrease in DIC indicates an improvement in
fit from the previous model. We also compare observed data to the posterior
predictive mean to assess whether the model is capable of tracking important
changes in the observed data. Figure 1 shows the signal that is the subject
of this investigation.
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Figure 1: Pressure signal with the motoring frequency informa-
tion removed



Although it is not necessary to separate the analysis into the following steps it
is more convenient, and less time consuming, to fit simpler models. Starting
with a very simple model to observe what results can be obtained, a basic
three parameter model is tested:

p(t) ~ N(p(t), )
71 ~ Gamma(0.01,0.01)
p(t) = Asin(wt + ¢). (1)

The signal, p(¢), is modeled around a normally distributed time varying
mean, p, with a sinusoidal characteristic. Here, and subsequently, we pa-
rameterise the Normal density with a precision parameter, 7 where precision

= and give it an uninformative Gamma prior. This model attempts

to qﬁltm%msetatic amplitude and frequency to the signal. ¢ is given a uniform
prior between —7 and 7, A is given an uninformative Normal prior and w
is given a uniform prior between 5000 and 7500 Hz. The output from this
model gives a DIC of 9505, and a posterior expectation of w as 5960 Hz.
Visual inspection of the posterior predictive mean compared with the signal
(Figure 2) tells us that this model does not adequately explain the observed
changes.
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Figure 2: Model 1 plotted with the signal



Including a term to model the decay in the amplitude seems to be a logical
extension. Thus, we modify the model:

w(t) = Ae M sin(wt + ¢), (2)

giving A an uninformative Normal prior. As expected there is a significant
improvement in the model fit with a DIC now of 9362. Using this model the
posterior expectation for w is now 5994 Hz. This is nearing our estimate,
from a classical approach using FFTs (as shown later in Figures 8 and 9) of
6000 Hz. Figure 3 shows the model fit.
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Figure 3: Model 2 plotted with the signal

This model fails to capture significant observed behaviour. However, given
that it is known that resonant frequencies decay over time[5, 8, 22| it seems
intuitive to include a parameter that models the frequency decay. Hence, we
extend the model by defining:

p(t) = Ae™ sin(woe ™t + ¢), (3)

setting a to have an uninformative Normal prior. In this model, and there-
after, wp represents the initial first circumferential mode resonant frequency
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— from here out referred to as the resonant frequency. This model does not
have a large effect on the deviance but, from a physics perspective, it is an
important parameter — particularly from the aspect of what is desired from
the model. It also stops the model from under-predicting the resonant fre-
quency under the assumption that it is a stationary frequency. The minimal
gain in the DIC, 9360, can be attributed to the very small decay in the res-
onant frequency, therefore providing evidence that there is minimal change
in the resonant frequency as the crank-angle increases. Updated posterior
expectations of our parameters are now 6107 Hz for wy and 2.1962 x 1010
for a, with our estimate for the resonant frequency now:

w(t) = 61076_2-1962><10—10t‘
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Figure 4: Model 3 plotted with the signal

However, comparing the posterior predictive mean to the observed signal
(Figure 4) indicates multiple frequencies exist. Additional terms can be
added to this, making the next model:

3
p(t) = Z Aje N sin(Wiwge %' + ¢). (4)
i=1



This will fit three different frequencies to the observed data. In this partic-
ular model, W is set at 1 and W5 and W3 are given uniform priors between
1.5 and 2.5, and 2.5 and 3.5 respectively. These priors were chosen to repre-
sent further higher frequency information that is present in the signal. The
higher frequencies can be observed in an FFT (Figures 8 and 9). It is im-
portant that they do not overlap to avoid label switching and problems with
convergence. Running this model yields a DIC of 9114, showing a significant
improvement over the previous models. wy is now estimated to be 6097 Hz
with the exponential decay constant a estimated to be 2.073 x 1071, The
resonant frequency is then estimated to be:

w(t) = 6097 >0Tx107
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Figure 5: Model 4 plotted with the signal

Figure 5 shows that the model does not account for the sharp rise in the
signal around top dead centre. Examination of Figure 1 gives an indication
that the higher frequencies tend to occur somewhere around the peak. The
inclusion of a step function in the non-fundamental terms may be a possible
solution. Therefore, the following model is suggested:



fi(t) = Aje Ntsin(Wiwpe %t + ¢)
ult) = fi(t) + H(t = 8) 30, fi(), (5)

where H (t—J) is a step function where H(t—0) = 0 for¢t < § and H(t—¢) =1
for ¢t > 9.
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Figure 6: Model 5 plotted with the signal

Figure 6 shows that this method of compensating for the start of the non-
fundamental frequencies has returned a very significant improvement in model
fit (indicated by the improvement of the DIC to 8658). Now, wy is 6076 Hz
with the exponential decay constant a being 1.686 x 10710 estimating the
resonant frequency as a function of time:

w(t) = 6076e 0107 (6)
Further parameters to fit this data are unnecessary and could be counter to
the aim of the model; the DIC penalises the use of too many parameters as
there is the risk of over fitting the data. Also, with more parameters there

is increased concern that a lack of convergence leading to probability density
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functions (pdf) that are very multi-modal and hence a poor indicator of the
desired result. Multi-modal pdf’s can also occur as a result of label switch-
ing, especially with models where the parameters are heavily dependent on
each other, such as in this case. Computationally, it is also wise to avoid
over fitting the data with excessive parameters.

A posterior density plot of wy (Figure 7) and a plot of a fast Fourier transform
(FFT) (Figures 8 & 9) indicate the similarity. Note that the Bayesian method
not only accurately describes the resonant frequency and its decay, but also
it gives us the uncertainty in the parameter estimates, which is greatly im-
proved when compared to the traditional method. Further, the FFT method
assumes stationary frequency components, whereas our approach allows for
the inclusion of decaying frequency components, which physical knowledge
of the situation suggests are present.
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Figure 7: Posterior density of the initial resonant frequency
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Figure 8: Fast Fourier transform of the region of interest
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form of the region of interest
The original intention in developing this model was to determine the resonant

frequency as a function of time, or a crank-angle. This relationship is given
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in equation 6 and shown in Figure 10 along with the third circumferential
mode resonant frequency information that was also calculated. Our findings
support the results obtained in [22], which show using time-frequency analysis
that the decay in the resonant frequencies are marginal. The similarity of
the decay of both resonant frequencies is an indication that the model is
working well, from a theoretical stand-point the decay rates should be equal.
The difference is attributable to the start positions, the third circumferential
term is prefixed by a step function, and because the decay for both modes
are calculated independently.

1st Cirumferential Frequency
3rd Cirumferential Frequency |]

=
(o))

=
S

[umt
N

Frequency (kHz)
)

)]

S

360 365 370 375 380 385 390 395 400
Crank-angle (degrees)

Figure 10: Drop in resonant frequency as a function of crank-
angle. Taken from the final model (model 5)

4. Cycle-by-cycle Analysis

Applying model 5 across a range of cycles demonstrates the importance of
using such a powerful inferential technique in this type of data analysis.
Figure 11 shows the pdfs of many cycles taken from the same data set,
showing the range of inter-cycle differences. Also visible are some cycles
with lower resonant frequencies - these have been attributed to misfires and
ignition delay.

12



0.025

o
=)
)
=)

0.015

0.010

0.005

pdf(initial resonant frequency)

0.000—~=5555—5800 6000 6200 600 5600
Frequency (Hz)

Figure 11: Probability density functions of the initial resonant
frequency across a range of cycles

The cycle-to-cycle variation that can be seen highlights the reason that ad
hoc techniques such as cycle averaging or frequency spectrum averaging are
inappropriate for conducting frequency analysis with internal combustion en-
gines. The subtle information contained in these higher frequencies will be
skewed, or removed, by cycle averaging; hence, eliminating the point and use-
fulness of spectral analysis when applied to locating the resonant frequency
from the in-cylinder pressure.

If the assumption of homogeneous composition of the control volume is as-
sumed then the resonant frequency is related to the speed of sound and hence
the temperature:

T=(vR)" (fB/owmn)”, (7)

where T' is temperature, v is the ratio of the specific heat of the gas, R is
the characteristic gas constant, f is the resonant frequency, B is the bore
size and ay,, is the non-dimensional number. This relationship between the
resonant frequency and the temperature allows research into another facet
of combustion phenomena.
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Cycle-by-cycle analysis of the resonant frequency can yield interesting in-
sights into the consistency of the combustion process. The relationship be-
tween frequency and temperature (T oc f?) allows us to infer changes in
combustion temperature and subsequently draw conclusions — such as at-
tributing the lower frequency pdfs in Figure 11 to misfires and ignition delay.
Investigating the spread of the most likely estimate of these frequencies (the
modal point) can be used both as a method to make judgments on the simi-
larity of each combustion and as a vehicle for comparing operating conditions
of an engine. Applications for this could be on-going condition monitoring
or the evaluation of alternative fueling strategies.

5. Trapped Mass

Temperature of the gas in the combustion chamber, as a function of time,
gives an indicator of what is occurring during combustion and the thermo-
dynamic processes in the cylinder of the engine[3]. Equation 7 can be used
to calculate the bulk temperature of the gas in the combustion chamber as a
function of time, or crank-angle, using the resonance information found from
model 5. Thus, providing a method of determining this information from a
standard engine testing laboratory. Values for v and R are taken from AVL
Boost simulations and the non-dimensional number «,,,, can be calculated
by solving the equation:

Jr/n(WO‘mTJ =0, (8)

where J/, is the derivative of the Bessel function of the first kind of order
m[3, 23].

Q10 = 0.5861
Q30 = 1.3373

Temperature, which is relatively constant at 3200 K, can be used to estimate
the trapped mass in the cylinder using the ideal gas relationship PV = mRT),
hence:
PV (¢)
— 9

where P(t) and V(t) are the experimentally measured pressure and volume
time-series. Therefore, the trapped mass estimate as a function of crank-
angle is in Figure 12.
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Figure 12: Estimated trapped mass calculated from combustion
resonance and the ideal gas law

6. Limitations

The main limitation of this method is the problem of convergence. If the
model used does not fit the data well then it is possible that results will not
converge to any particular result. This makes model selection very applica-
tion dependent. In this instance, the desired application was to demonstrate
the use of this method to obtain very specific frequency information from a
cycle. Thus, the final model was very specific.

Having a very specific model also has a limitation in an application such
as this in that should the data present itself in a manner that deviates from
the expected, the model may no longer fit the data well and useful informa-
tion may no longer be gained from it. Therefore, if the goal is to analyse
every cycle across a period of time to investigate true cyclic variability it sug-
gested that simpler models be used that still find the desired information. In
this instance, the use of model 3 would be a reasonable choice. The model is
simple and hence more likely to converge with subtle changes in data, while
still capturing the desired information well. Figure 13 shows the pdfs for the
initial resonant frequency predicted by each model.
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It can be seen that models 1 and 2 give significantly different pdfs compared
to the later models. This is to be expected as neither model allows the
frequency to decay, and hence will return a result similar to that of the FF'T
which makes the same assumption. However, models 3 and 5 return similar
information, with the difference being that model 5 has less uncertainty due
to better model fit. This makes model 3 an ideal choice for model selection
if many cycles in sequence are to be analysed and there are problems with
cyclic changes that cause non-convergence.

7. Further Work

Further work will focus on a modern Cummins 5.9 [ turbo-charged diesel
engine running on neat diesel fuel and also with diesel ethanol combinations
(blended and fumigated) and other alternative fuels, such as LPG. It is pro-
posed that, under various fueling strategies the engine will exhibit different
cyclic behaviour, with respect to the resonant frequency, which will aid in
the evaluation of alternative fuels and help us to further understand the phe-
nomena of combustion of diesel engines in dual-fuel operation.

Applications of this method of analysis extend further than being able to
identify resonant frequency information. With more sophisticated models
that capture the initial rise in temperature at the onset of combustion inves-
tigations involving trapped mass could be done to experimentally determine
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blow-by on a cycle-by-cycle basis. This type of analysis is relevant to signals
taken from accelerometers to quantify knock in a manner that would allow
comparisons between operating conditions. A further application could be
the extraction of resonant frequency information directly from an accelerom-
eter signal. Careful filtering would be required in this case.

8. Conclusion

This paper has introduced a powerful inference technique for the determi-
nation of resonant frequencies in a DI diesel engine which explicitly model
the time dependence of the resonant frequency. This leads to a superior
characterisation of important frequency behavior over FF'T methods, which
assume frequency components are time invariant, without introducing the
complexities of other time-frequency analyses. Compared to results obtained
from FFTs our method provides superior resolution and information about
the time dependence of the resonant frequency. Our results provide a solid
reason for the use of Bayesian inference as a method of analysing in-cylinder
pressure data.
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