S-Plus for the Analysis of Biological Data

Rhondda Jones Robin Gilliver Simon Robson & Will Edwards

This manual was first produced in 2009. It was made possible by a Teaching and Learning Development Grant from James Cook University. The authors are grateful for the support provided by Dr Nick Szorenyi-Reischl, Director of Teaching and Learning Development.

© 2010

Contents

Preface xi Why S-Plus? xi How to use the manual xiii To the instructor xiii Acknowledgements xiv Typesetting conventions used in the manual xiv

- 1 Introduction to S-Plus 1
 - 1.1 Starting S-PLUS in Windows 2 Choosing or setting a working directory 2
 - 1.2 The S-Plus main program window 3 Getting help 3
 - 1.3 Import data to create a new S-Plus data set 4
 - 1.4 Create a new empty data set to enter sample data manually 6
 - 1.5 The Object Explorer 7

Changing the properties of an object 8

Examining the details of a Data object 8

- 1.6 Data types in S-Plus 9
- 1.7 Data transformation: creating and modifying data 10

Calculating a time interval in days 11

Calculating a time interval in weeks 12

Calculating a proportional weight gain 12

Calculating a mean weekly growth rate 12

Creating a logical variable 13

Single-function transforms 14

Other options provided by the Data menu 14

Special values and reserved words 14

- 1.8 Data Objects in S-Plus 14
- 1.9 Introduction to the Commands Window 15
 Using the commands window as a calculator 15
 Giving names to objects: assignment commands 16
 Creating vectors 17

	Working with vectors 19
	Using data frames on the command line 20
	Working with parts of a data frame 21
	Creating a data frame in the commands window 22
1.10	Using the Script Window 22
	Opening the script window 22
	Entering and running a script 22
	Writing functions 23
1.11	S-Plus language and functions 28
1.12 References and further reading 28	
	Test Your Skills 29
Displa	aying data 31
2.1	Displaying frequency distributions 31
	Bar graphs for categorical data 31
	Frequency tables and histograms for numerical data 34
2.2	Quantiles of a frequency distribution 36
	Plotting a cumulative frequency distribution 36
2.3	Associations between categorical variables 36
	Creating a grouped bar plot 37
	Creating a stacked bar plot 38
	Creating a mosaic plot 39
2.4	Comparing numerical variables between groups 40
	Using box plots 41
	Using trellis graphics to compare histograms 41
	Comparing cumulative frequencies for different groups 43
2.5	Displaying relationships between a pair of numerical variables 44
	Scatter plots 44
	Line graphs 45
	Putting several graphs on the same graph sheet 45
	Varying symbols between groups on the same plot 46
	Plotting fitted lines to scatter plots 47
	Test your skills 50
Descr	ibing data 55

3.1 Arithmetic mean and standard deviation 55
 Data as individual values 55
 Data as a frequency table 56

2.

3.

	3.2	Median and interquartile range 57
	3.3	How measures of location and spread compare 58
		Descriptive statistics with the GUI 58
	3.4	Proportions 61
		Calculating proportions using the GUI 61
		Calculating proportions using the commands window 61
		Test Your Skills 63
4.	Estin	nating with uncertainty 65
	4.1	The sampling distribution of an estimate 65
	4.2	Measuring the uncertainty of an estimate 68
		The standard error of the mean 69
	4.3	Standard errors and confidence intervals for the sample mean from the GUI 69
		Test your skills 71
5.	Prob	ability distributions 73
	5.1	Some terminology 73
	5.2	Probability 73
	5.3	What is a probability distribution? 74
	5.4	Using S-Plus to calculate probabilities for a binomial distribution 75
		Calculating binomial probabilities using the GUI 75
		Calculating binomial probabilities using the commands window 77
	5.5	What other information might you need from a probability distribution? 77
	5.6	Another common discrete probability distribution: the Poisson 78
	5.7	Continuous probability distributions in S-Plus: the normal distribution 79
	5.8	Other key continuous probability distributions 82
		The Chi-square distribution 83
		The t-distribution 84
		The F-distribution 85
		Test your skills 85
6.	Нурс	othesis testing In preparation
7.	Anal	yzing proportions 89
	7.1	The binomial distribution 89
		Calculating binomial probabilities using the commands window 90
		Properties of the sampling distribution for a proportion 91

7.2 Testing a proportion: the binomial test 92

7.3 Estimating proportions 93 Estimating the standard error of a proportion 93 Estimating confidence limits for a proportion 93 Test your skills 95 8. Fitting probability models to frequency data 97 8.1 Example of a random model: the proportional model 97 8.2 x² goodness-of-fit test 98 Assumptions of the x² goodness-of-fit test 99 8.3 8.4 Goodness-of-fit tests when there are only two categories 100 8.5 Fitting the binomial distribution 101 Testing goodness of fit to a binomial using frequency data 101 Testing goodness of fit to a binomial distribution with individual values 102 8.6 Random in space or time: the Poisson distribution 103 Using the S-Plus GUI to test goodness-of-fit to a Poisson distribution 104 Using the commands window to test goodness-of-fit to a Poisson distribution 108 Test your skills 110 9. Contingency analysis: associations between categorical variables 113 9.1 Associating two categorical variables 113 Contingency tables, proportional plots, and a χ^2 contingency test on categorical data for individuals 113 Creating a mosaic or stacked bar plot 115 9.2 Estimating association in 2 x 2 tables: odds ratio 116 Using S-Plus to calculate odds and the odds ratio 116 9.3 The χ^2 contingency test for n x n tables 117 What if S-Plus warns that some expected values are too low? 119 9.4 Fisher's exact test 121 9.5 Log-linear models and G-tests 122 Two categorical variables: using log-linear modelling to execute a G-test 122 A more complex example 124 Test your skills 127 10. The normal distribution 129 10.1 Bell-shaped curves and the normal distribution 129

- 10.2 Exact probability estimates for normal distributions 130
- 10.3 Properties of the normal distribution 131

	10.4	The standard normal distribution 132
		Using normal distributions to answer questions about populations 133
	10.5	The normal distribution of sample means 134
	10.6	The Central Limit Theorem 135
	10.7	The normal approximation for the binomial distribution 135
		Using the normal approximation for the binomial 136
		Using the binomial probabilities 136
		Test Your Skills 138
11.	11. Inference for a normal population 139	
	11.1	The t-distribution for sample means 139
		Using S-Plus to find values of t from probability values 141
		Using S-Plus to find probabilities from the values of $t = 142$
	11.2	The confidence interval for the mean of a normal distribution 143
		Calculating confidence limits from the original data in the commands window 144
	11.3	The one-sample t-test 145
		The effects of larger sample size: body temperature revisited 147
	11.4	Confidence intervals for the standard deviation and variance of a normal population 148
		Test Your Skills 150
12.	Com	paring two means 153
	12.1	Paired samples versus independent samples 153
	12.2	Paired comparison of means 154
	12.3	Two-sample comparison of means 156
		A two-sample t-test where variances can be assumed to be equal 156
		A two-sample t-test where variances cannot be assumed equal 158
	12.4	Using the correct sampling units 159
	12.5	Avoid indirect comparisons 160
	12.6	Interpreting overlap of confidence intervals 161
	12.7	Comparing variances 161
		Test your skills 163
13.	Hand	lling violations of assumptions 165
	13.1	Detecting deviations from normality 165

Graphical methods 165

Formal tests of normality 168

	13.2	When to ignore violations of assumptions 168
	13.3	Data transformations 168
	13.4	Nonparametric alternatives to one-sample and paired t-tests 170
		The sign test 171
	13.5	Comparing two groups: the Wilcoxon rank-sum test (Mann-Whitney U-test) 172
		Test your skills 175
14.	Desig	ning experiments In preparation
15	Com	and a manual fraction that the second s
15.	15. Comparing means of more than two groups 179	
	15.1	The analysis of variance 180
		Executing a one-way ANOVA in S-Plus 181
		Interpreting and reporting the results: the formula 182
		and mean squares 183
		Interpreting and reporting the results: the ANOVA table 184
		Interpreting and reporting the results: the R ² value 184
		Interpreting and reporting the results: summarizing the data values 185
		What you should report 185
		How sums of squares are calculated 185
	15.2	Assumptions and alternatives 187
	15.3	Planned comparisons 188
		Planned comparisons between two means 189
	15.4	Unplanned comparisons 190
		Testing all pairs of means 190
	15.5	Fixed and random effects 192
	15.6	ANOVA with randomly chosen groups 192
		Variance components and repeatability 194
		Test your skills 195
16	Corre	lation between numerical variables 107
10.	16.1	Estimating a linear correlation coefficient 197
	10.1	The correlation coefficient 198
		Standard error and confidence interval 199
	16.2	Testing the pull hypothesis of zero correlation 199
	10.2	Reporting the results of Pearson's correlation 200
	163	Assumptions 201
	16.4	The correlation coefficient depends on the range 201
	10.4	the conclution coefficient depends on the range 201

	16.5	Spearman's rank correlation 203
		Reporting the results of Spearman's rank correlation 204
		Assumptions of Spearman's rank correlation 205
	16.6	The effects of measurement error on correlation 205
		Test your skills 206
17.	Regre	ession 209
	17.1	Linear regression 210
		The method of least squares 211
		Executing a regression analysis through the Statistics menu 211
		Interpreting and reporting the output: the function call 213
		Interpreting and reporting the output: the residuals summary 213
		Interpreting and reporting the output: coefficients and their standard errors 214
	17.2	Confidence in predictions 214
		Interpreting and reporting the output: the prediction interval 215
		Interpreting and reporting the output: confidence bands 216
		Interpreting and reporting the output: the R ² value 217
		Interpreting and reporting the output: testing hypotheses about the regression line 217
	17.3	Doing the analysis in the commands window 218
	17.4	What you should report 218
	17.5	Assumptions of regression 219
		Outliers 219
		Detecting deviations from the assumptions: linearity 221
		Detecting variations from the assumptions: non-normality and unequal variance 223
	17.6	Transformations 224
	17.7	The effects of measurement error 225
	17.8	Non-linear regression 225
		A curve with an asymptote 225
		Quadratic and polynomial curves 227
		Formula-free curve fitting 228
		Logistic regression: fitting a binary response variable 229
		Test your skills 233
18.	Multi	iple explanatory variables 237
	18.1	Defining a model in S-Plus 238

18.2 Analyzing experiments with blocking: the randomized block design 239
 Analyzing data from a randomized block design 239

vii

	18.3	Analyzing factorial designs 242	
		Analysis of two fixed factors 242	
		Reporting the results of a factorial ANOVA 245	
		Handling unbalanced factorial ANOVA designs 246	
	18.4	Adjusting for the effects of a covariate 247	
	18.5	Nested analysis of variance 249	
		Executing a mixed-effects ANOVA via the Mixed Effects dialogue 25	1
		Analyzing a mixed-effects model by recalculating F-values and	
		probabilities from a fixed-effects analysis 253	
	18.6	Assumptions of linear models 254	
		Test your skills 256	
19.	Com	puter-intensive methods In preparation	
20	Likoli	ibaad In proparation	
20.	LIKEI	mood in preparation	
21.	Meta	-analysis: combining information from multiple studies	
	In pre	eparation	
App	endix	1: Working with the command line 265	
Cha	pter 1:	A beginning collection of useful functions 265	
		Functions to create data objects 265	
		Functions for basic descriptive statistics 266	
		Functions to test or change data type 267	
		Function to create or modify the ordering of factors 268	
		Functions to aggregate and group data 268	
		Functions to inspect variables 268	
		Functions associated with probability distributions 269	
		Basic mathematical functions 269	
Cha	oter 2:	Evenctions for plotting data 270	
Server.	2.1	Displaving frequency distributions 270	
	CT I	Bar graphs and dot plots for categorical data 270	
		Frequency histogram 271	
	2.2	Cumulative frequency distribution 272	
	2.3	Associations between categorical variables 272	
		Mosaic plot 272	
		Grouped bar plots 272	
		Stacked bar plot 272	
	2.4	Comparing numerical variables between groups 273	

Trellis graphics 273
Comparing frequency histograms 274
Boxplots 275
2.5 Displaying relationships between a pair of numerical variables 275
Scatter plots 275
, Line graphs 275
Varying symbols between groups on the same plot 276
Plotting fitted lines to scatter plots 276
Chapter 3: Functions for describing data 278
3.1 Examining the whole data frame 278
3.2 Descriptive statistics for individual vectors 279
Measures of location 280
Measures of dispersion 280
Measures of distribution shape 281
To calculate descriptive statistics for subsets of an individual vector 281
Chapter 4: Estimating with uncertainty – functions for calculating standard
errors and confidence limits 282
4.1 Standard error of the mean 282
4.2 Confidence limits of the mean for normally distributed data 283
4.3 Confidence limits for the variance and standard deviation for normally distributed data 284
4.4 Confidence limits for descriptive statistics which do not require the assumption of normality 284
Appendix 2: Scripts used in each chapter 286
Chapter 1:
plot.summarize()
Generates a set of descriptive plots and returns summary statisitics for a numeric vector 286
growth.rate()
Calculates and returns growth rate per time unit given start and end sizes, and times 286
Chapter 4:
sample.means()

Calculates and returns the means of a set of random samples taken from a numerical vector x 287

Chapter 7:

Cl.p.agresti()

Calculates and returns a proportion and its confidence limits using the Agresti-Coull approximation for confidence limits 287

Cl.p.exact()

Calculates proportion and its confidence interval with a specified tolerance 288

Chapter 8:

chisquare.gof()

Executes a chi-square goodness of fit for any specified set of observed counts, expected proportions, and degrees of freedom 289

Chapter 9:

contingency.expected()

Calculates expected values for a contingency table provided as an array or data frame 289

oddsratio()

Calculates an odds ratio and its confidence interval given the numbers of 'successes' and 'failures' in two samples 290

Chapter 10:

p.outside()

Calculates the area of a normal curve outside the interval upper - lower 290

Chapter 11:

Cl.var()

Calculates sample variances & standard deviation, and a confidence interval for each, from a numeric vector 291

levene.test()

Executes a Levene test for homogeneity of variances given a numerical vector and a grouping variable of the same length 291

onesample.t()

Executes a 1-sample *t*-test from previously-calculated descriptive statistics: arguments are a hypothesized mean, a sample mean, a sample standard deviation, and a sample size 292

Chapter 12:

twosample.t()

Executes a 2-sample *t*-test (assuming homogeneous variances) from previously-calculated descriptive statistics: arguments the mean, standard deviation, and sample size from two samples 292

Chapter 13:

sign.test ()

Executes a sign test to test whether the median of x could equal some specified value 293

Chapter 16:

Cl.r())

Calculates confidence limits for a previously-calculated Pearson correlation coefficient, given values for r and the sample size. Uses the Fisher approximation 294

Preface

This manual is designed to to teach people to use the statistical software S-Plus and to support the process of learning statistical concepts and methods. It is most useful as a workbook to accompany Whitlock and Schluter's *The Analysis of Biological Data*, published by Roberts & Company, Colorado. Although we include enough statistical background to put the procedures being demonstrated in context, we assume that readers will be acquiring most of their understanding of statistical concepts elsewhere.

Several of the authors of this manual have been teaching introductory biostatistics to undergraduate and postgraduate students on two campuses in Australia for more than a decade (in fact one of us, who would prefer not to be identified, taught a biostatistics course for the first time more than three decades ago). In 2008 we discovered the textbook *The Analysis of Biological Data* (referred to in this manual as ABD). We liked everything about the book: its explanations were beautifully clear and aimed at students much like our own; it used a wide variety of real biological examples; it emphasized concepts and procedures important to biologists and explained how they worked; and it introduced some newer computer-intensive techniques that almost all beginning researchers find themselves needing sooner rather than later. We immediately adopted the book as a text for our own introductory biostatistics course. But this adoption acted as a trigger for making some other changes to our teaching—and in particular, to the way we introduced students to statistical software.

To statistical novices, no statistical software is 'user-friendly', and its use needs to be introduced in a structured way which runs in parallel with their acquisition of statistical understanding. At the same time, teaching effort needs to stay focused on statistics rather than software, so that students do not come to see learning to use the software as their primary goal. This manual is intended to allow users to learn to use the software on their own, while keeping a focus on the concepts and procedures which it supports.

We have followed the ABD approach and layout very closely—indeed, we started out with the intention of simply demonstrating in S-Plus every example used in the body of that text. In the end, because everyone has a slightly different view of what should be included in a first statistics course, we added a number of other examples, mostly using our own data, to demonstrate software capabilities that would not otherwise have been covered.

Why S-Plus?

There are a lot of statistical software options, and most of them will execute all the procedures needed in an introductory course. In choosing a software package, we had four criteria beyond its ability to execute procedures taught in the course:

It should have little or no cost to students, and should run on
operating systems that students are likely to use on their own
machines. Some of us (OK, one of us) remembered teaching statistics
in the days when the only computing aid available to students was
a hand calculator (the rest of us at least remember being taught that
way). While we did not wish to return to those days, they had one huge
advantage—students could work on the material anywhere and any
time—not just in computer laboratories provided by the university.

Many of our students are part-time, and some are in remote locations. While we can now reasonably expect that students will have access to a computer at home, we cannot reasonably expect them to buy expensive software for themselves. That meant that if we wanted students to work off-campus, we needed to choose software which was either free or very cheap, or which gave students access on their own machines as part of the university's site licence.

- It should be useful beyond the course. We wanted students to use professional-quality software that they would not 'grow out of': providing access to all or most of the techniques they were likely to use throughout their careers; and able to import and export data in a wide range of formats (including text files, databases, spreadsheets, and other statistical software).
- It should have a very strong graphics capability. We wanted students to realize as quickly as possible that nothing substitutes for an intimate familiarity with the data they are analysing—and easily-usable graphics allow the data to be explored more quickly and thoroughly than anything else. We wanted the graphics capability to cover the whole range from quick-and-dirty exploratory plots to presentation and publication-quality graphs.
- It should reinforce the statistical concepts we wanted students to grasp, and not get in the way of learning them. We wanted to avoid both excessive or inappropriate output, and too much difficulty in using the software itself. Excessive output is often a problem with menu-driven software, which may be relatively easy to use¹, but often provides pages of output that users neither asked for nor know what to do with. Especially for novices, our preference was for software that gives users exactly what they request and offers warnings (or refuses to perform) when what they request is questionable. We believe that someone learning to use statistical procedures should also learn to think about what they are doing and work out exactly what it is they want, rather than making guesses about what button to click in the hope that something useful will happen. On the other hand, if software is too difficult to use, students will inevitably concentrate on learning the mechanics of how to use it rather than developing more fundamental understanding.

In the end we chose S-Plus as the best fit to our needs. That choice committed us to producing this manual: there are some excellent introductory books available for S-Plus, but none that we investigated is targeted at undergraduates who begin as complete statistical novices. S-Plus is very powerful and flexible, has superb editable graphics, and its site licence for universities gave enrolled students permission to use the software on their own computers. It had the additional advantage that it provides both a professional-quality graphical user interface (GUI), and an easily-accessible command language which is very similar to that used by the free open-source software R. Mostly we use the GUI, but we also decided to provide a parallel introduction to the command line and to writing basic scripts. Because the command language of S-Plus and R is so similar, students who use this manual should be able to move fairly painlessly to R by the end of it, if they need to do so.

¹ Ease of use is relative. We previously used software whose main selling feature was ease of use. But unless we spent considerable time teaching students to use it, they did not cope well. In our experience, the use of any statistical software needs to be introduced to beginners in a structured way in parallel with their statistical understanding.

How to use the manual

If you are a student using ABD as a text, and you have access to S-Plus, you can use S-Plus to work through each chapter of the manual independently. Every example is demonstrated in enough detail for you to carry it out on your own after reading the ABD chapter and/or covering the statistical concepts in class. You should execute every example yourself to make sure that you can carry out the procedures correctly and get to the right result. A set of exercises is provided at the end of each chapter for you to test your skills. You should make sure that you can do them all—you may require some assistance from your instructor to complete some of them successfully. All the data and scripts required for each chapter are available on the CD provided with the manual.

The first chapter of the manual is a basic introduction to S-Plus, and is one of a few chapters whose content is not linked to ABD. The second chapter introduces you to S-Plus graphics. The remaining chapters can be covered in several different orders, but you need to work through these two first. Not all the material in later chapters will necessarily be included in an introductory course.

In most chapters, we show how to execute statistical procedures using both the GUI and the command line. A few procedures require the use of scripts (short programs written in the S language). Where this is the case, we provide the scripts on the CD—and we show you how to load and use them (but we also encourage you to learn to write your own). In many cases, there are more efficient or elegant ways to write scripts than we have used here—in general, we have tried to produce scripts whose logic can be easily understood by beginners, rather than trying for maximum computational efficiency. Appendix 1 provides a more extensive summary of the S language and S-Plus functions relevant to each chapter of the manual.

To the instructor

We believe that learning statistics is like learning to play the piano—there is no substitute for practice. Consequently, in our own teaching, we provide a lot of incentives for students to practice.

In the introductory course that we teach, we expect students to have worked through the appropriate chapter(s) in the manual and attempted the exercises *before* they arrive at the relevant practical class or tutorial—and the first 20 minutes of each 2-hour practical class includes a simple open-book practical test, marked in class, which requires them to analyse some new data using techniques covered in the chapter. (By the end of the course, most students score full marks on most of these tests.) We also run formal (but also openbook) practical exams twice during the course, where the emphasis is on demonstrating that students can make sensible decisions about what to do as well as demonstrating that they can do it. These are also graded immediately. Because students can take this manual—or anything else—into practical tests and exams, we are explicitly *not* testing how well they remember what buttons to press.

When we first changed to this very assessment-oriented approach to the acquisition of practical skills, one unexpected result was that the average grade on the theory exam at the end of the course (which was in the same format and covered the same material as previously) was significantly higher than that achieved by any previous class). Perhaps the development of practical skills really does improve theoretical understanding.

You will notice a scattering of these shaded boxes throughout the manual. In general they contain material we think you will need around that point, but which is not immediately essential to the procedure being demonstrated. This is a practical manual, so where there are no shaded boxes, there are wide margins where you should not hesitate to add your own notes.

Acknowledgements

As noted above, the structure and content of this manual owes a huge debt to Whitlock and Schluter's text, which provides the best introduction we know of to statistical methods for biology students. We are also very grateful to the students in our 2009 biometrics class, and especially to the practical class tutors (Clwedd Burns, Gavin Coombes, Rie Hagihara, and Philip Newey) whose combined input and feedback improved the manual immensely. Finally, for all his help our thanks to Kris Angelovski of SolutionMetrics Pty Ltd, the Australian distributor of S Plus.

Typesetting conventions used in the manual

To make it easier to use the manual, there are several conventions you should note.

Navigating – The instructions about how to navigate around S-Plus are always given in a particular typeface. For example, the way to navigate from the drop-down menus looks like:

Statistics > Regression > Log-linear (Poisson)...

Similarly, this typeface is used to indicate the parts of a dialogue box you need to change.

Entering new information – Where you are required to enter a name or value in a dialogue box or change an existing name, such as perhaps the name of a column (vector) in a data set, the instruction might look like:

Right click at the top of the No.deaths column, select Properties, and enter Number of cases (Frequency) in the Description box.

This typeface represents a name or value that you can either enter or change, whereas the navigation typeface cannot be altered.

Coding – You learn in Chapter 1 the significance of single lines of code. When programming, pressing the Enter key always means something. Where we have reproduced lines of code that you will see on your computer screen, it has often been necessary to spread them over more than one line because the printed page is narrower than your screen. Where this has happened, the subsequent lines of that instruction have been indented. The following example shows two separate instructions (in a lighter shade) and the screen output.

Quotation marks when used in code should be straight ("") and not curly (""), sometimes called "smart" quotes. In S-Plus code, curly quotes will generate an error message.

These conventions will become clear as you work through the chapters.