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The bound states of the fermionic 3He(2 3S1) +
3He(2 3Pj) system, where j = 0, 1, 2, are

investigated using the recently available ab initio short-range 1,3,5S+
g,u and

1,3,5Pg,u potentials

computed by Deguilhem et al. (J. Phys. B: At., Mol. Opt. Phys., 2009, 42, 015102). Single-channel

and multichannel calculations have been undertaken in order to investigate the effects of Coriolis

and non-adiabatic couplings. The possible experimental observability of the theoretical levels is

assessed using criteria based upon the short-range character of each level and their coupling to

metastable ground states. Purely long-range levels have been identified and 30 short-range levels

near five asymptotes are suggested for experimental investigation.

1 Introduction

Photoassociation (PA) of ultracold atoms, in which two

interacting ultracold atoms are resonantly excited by a laser

to bound states of the associated molecule, is a widely used

technique to study the dynamics of ultracold collisions in

dilute quantum gases. Of particular interest is PA in meta-

stable rare gases where novel experimental strategies based

upon their large internal energy can be implemented.

Photoassociation of ultracold bosonic metastable 4He*

atoms, 4He(1s 2s 3S), to excited rovibrational bound states

that dissociate to the 4He(1s 2s 3S) + 4He(1s 2p 3Pj) limits,

where j = 0, 1, 2, has been observed by many groups. The

observations include over 40 states lying within 14 GHz of the

j = 2 asymptote,1–3 six states within 0.6 GHz of the j = 1

asymptote3 and some purely long-range bound states within

1.43 GHz of the j = 0 asymptote.4 Theoretical analysis of the

j= 0 long-range states using single-channel5 and multichannel6

calculations based upon long-range Born–Oppenheimer

potentials constructed from retarded resonance dipole and

dispersion interactions gave excellent agreement with the

measured binding energies. Analysis of the other states had

to await the availability of short-range ab initio 1,3,5S+
g,u and

1,3,5Pg,u molecular potentials7,8 and was initially restricted to

single-channel calculations7,8 which neglect non-adiabatic and

Coriolis couplings. Very recently a detailed theoretical analysis

of the entire 4He(1s 2s 3S) + 4He(1s 2p 3Pj) system has been

completed.9 The role of these couplings was investigated using

single-channel and multichannel calculations with the input

potentials constructed from the short-range ab initio potentials

of Deguilhem et al.8 matched onto long-range retarded

resonance dipole and dispersion potentials. The multichannel

calculations also permitted criteria to be established for the

assignment of the theoretical levels to experimental observa-

tions based upon the short-range spin character of each level

and their couplings to the metastable ground states. Excellent

agreement was obtained for the numbers of observed levels

and their binding energies after application of a 1% increase in

the slope of the 5S+
g,u and 5Pg,u potentials near their inner

classical turning point.

In contrast, PA of fermionic metastable 3He* atoms,
3He(1s 2s 3S), is relatively unexplored although they have been

cooled and trapped10 with comparable densities and tempera-

tures to those of 4He* atoms. The non-zero i = 1/2 nuclear

spin of 3He* gives rise to the hyperfine structure with splittings

comparable to the fine structure splittings of 4He* which has

no nuclear spin. Consequently the patterns of energy levels are

expected to be quite different for the fermionic and bosonic

systems. A small number of long-range states in 3He* has been

predicted by Dickinson11 but this was a single-channel

calculation, thereby neglecting Coriolis and non-adiabatic

couplings, using only long-range van der Waals and retarded

resonance dipole interactions. The availability of the short-

range potentials of Deguilhem et al.8 now permits a detailed

theoretical investigation of the fermionic 3He(1s 2s 3S) +
3He(1s 2p 3Pj) system similar to that undertaken by Cocks

et al.9 for the bosonic 4He* system.

In the absence of any observations of bound states in this

excited 3He* system, we present predictions as to which of our

calculated bound states may be experimentally observable. We

assume any experiment will use magnetic trapping of the 3He*

atoms, requiring all atoms to be in the fully stretched low-field

seeking f = 3/2, mf = 3/2 magnetic substate of the

metastable 2s 3S1 level in order to strongly suppress loss

through Penning ionization. Consequently we assess the
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experimental observability of each excited level in terms of its

coupling to this state. In addition, we consider the likelihood

of ionization losses from these excited levels due to inelastic

collisions in the short-range region.

Atomic units are used, with lengths in Bohr radii a0 =

0.0529177209 nm and energies in Hartree Eh = a2mec
2 =

27.211384 eV.

2 Theory

2.1 Multichannel equations

The formalism for the excited 3He* system requires modifica-

tion of that presented by Cocks et al.9 for the excited 4He*

system in order to include the hyperfine structure.

The total Hamiltonian for a system of two interacting atoms

i = 1, 2 with reduced mass m, interatomic separation R and

relative angular momentum l̂, which possess both fine struc-

ture and hyperfine structure is

Ĥ = T̂ + Ĥrot + Ĥel + Ĥfs + Ĥhfs (1)

where T̂ is the kinetic energy operator

T̂ ¼ � �h2

2mR2

@

@R
R2 @

@R

� �
ð2Þ

and Ĥrot the rotational operator

Ĥrot ¼
l̂
2

2mR2
: ð3Þ

The total electronic Hamiltonian is

Ĥel = Ĥ1 + Ĥ2 + Ĥ12, (4)

where the unperturbed atoms have Hamiltonians Ĥi and their

electrostatic interaction is specified by Ĥ12. The terms Ĥfs and

Ĥhfs in eqn (1) describe the fine structure and hyperfine

structure, respectively, of the atoms.

The multichannel equations describing the interacting

atoms are obtained from the eigenvalue equation

Ĥ|Ci = E|Ci (5)

for the total system by expanding the eigenvector in terms of

an appropriate basis |Fai= |Fa(R, q)i where a denotes the set

of approximate quantum numbers describing the electronic-

rotational states of the molecule and q denotes the interatomic

polar coordinates (y, j) and electronic coordinates (r1, r2).

Using the expansion

jCi ¼
X
a

1

R
GaðRÞjFai ð6Þ

and forming the scalar product hFa0|Ĥ|Ci yields the multi-

channel equationsX
a

fTG
a0aðRÞ þ ½Va0aðRÞ � Eda0a�GaðRÞg ¼ 0; ð7Þ

where

TG
a0aðRÞ ¼ �

�h2

2m
Fa0

@2

@R2
GaðRÞ

����
����Fa

� �
ð8Þ

and

Va0a(R) = hFa0|[Ĥrot + Ĥel + Ĥfs + Ĥhfs]|Fai. (9)

We assume the R-dependence of the basis states is negligible so

that the radial kinetic energy term is diagonalized:

TG
a0aðRÞ ¼ �

�h2

2m
d2Ga

dR2
daa0 : ð10Þ

2.2 Basis states

For two colliding atoms with orbital L̂i, spin Ŝi and nuclear ı̂i
angular momenta, the unsymmetrized body-fixed states in the

coupling scheme

ĵi = L̂i + Ŝi, f̂i = ĵi + ı̂i, f̂ = f̂1 + f̂2, T̂ = f̂ + l̂ (11)

are (see appendix for details)

|(g1j1i1f1)A, (g2j2i2f2)B, f, Of, T, mTi (12)

where gi � {�gi, Li, Si}, �gi representing any other relevant quantum
numbers, and (A, B) labels the two nuclei. The projections of an

angular momentum Ĵ onto the space-fixedOz and inter-molecular

axis OZ with orientation (y, j) relative to the space-fixed frame

will be denoted mJ and OJ, respectively.

In order to construct states symmetrized with respect to the

total parity P̂T we note that P̂T = P̂LP̂SP̂iX̂N where P̂L, P̂S, P̂i

are the inversion operators on the orbital, electronic spin and

nuclear spin states associated, respectively, with

L̂ = L̂1 + L̂2, Ŝ = Ŝ1 + Ŝ2, î = î1 + î2 (13)

and X̂N permutes the nuclei labels. The states of total parity

are then (see appendix)

|(a1)A, (a2)B, f, f, T, mT; PTi
= NPT

[|(a1)A, (a2)B, f, f, T, mTi
+ PTP1P2(�1)f � T|(a1)A, (a2)B, f, �f, T, mTi]

(14)

where ai � {gi, ji, ii, fi}, Pi = (�1)Li is the parity of the atomic

state |LimLi
i and f= |Of| = |OT|. The normalization constant

is NPT
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ df;0Þ

p
. For f = 0 eqn (14) gives the

selection rule PTP1P2(�1)f – T = 1.

The states symmetrized with respect to X̂N are (see appendix)

|a1, a2, f, f, T, mT; PT, XNi
= NXN

[|(a1)A, (a2)B, f, f, T, mT; PTi
+ eN|(a2)A, (a1)B, f, f, T, mT; PTi] (15)

where PN = (�1)2i1 indicates bosonic or fermionic nuclei

(where i1 = i2 is assumed), Ni is the number of electrons on

atom i, the normalization constant NXN
is 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ da1;a2Þ

p
and the phase factor is

eN = PNPTP1P2(�1)f1+f2�f+N1N2. (16)

For a1 = a2, eqn (15) gives the selection rule

PNPTP1P2(�1)f1+f2�f+N1N2 = 1.

It is convenient to introduce the simplified notation

|a1, a2, fi = NXN
[|(a1)A, (a2)B, f, f, T, mTi

+ eN|(a2)A, (a1)B, f, f, T, mTi] (17)
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so that the states (15) can then be written

|a1, a2, f, f, T, mT; PT, XNi = NPT
[|a1, a2, fi

+ PTP1P2(�1)f� T|a2, a1, �fi]. (18)

The eigenstates of Ĥel are the body-fixed states arising from

the couplings L̂ = L̂1 + L̂2, Ŝ = Ŝ1 + Ŝ2 and must be

symmetric under the action of P̂LP̂S:

|g1g2, LSOLOS; wi = Nw[|(g1)A(g2)B, LSOLOSi
+ ew|(g2)A(g1)B, LSOLOSi] (19)

where Nw ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ dg1 ;g2Þ

p
, w = 0(1) for gerade (ungerade)

symmetry and

ew = (�1)w+L1+L2+S1+S2�S+N1N2P1P2. (20)

The relationship between the two bases (17) and (19) is

obtained using (see appendix)

ja1; a2;fi ¼ NXN
NwjT ;mT ;fi

X
ijOiOj

X
LSOLOS

F
f1f2ff
jiOiOj

F
j1j2jOj

LSOLOS

� ½ðjgi þ juiÞ þ eðjgi � juiÞ�jði1ÞAði1ÞB; iOii
ð21Þ

where the coupling coefficients F
f1f2ff
jiOiOj

and F
j1j2jOj

LSOLOS
are given in

the appendix (the quantum numbers (Li, Si, ii) have been

suppressed) and we have introduced the notation

|gi = |g1g2, LSOLOS; gi, |ui = |g1g2, LSOLOS; ui (22)

for the eigenstates of gerade and ungerade symmetry. The

rotational states are

jT ;mT ;fi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

4p

r
DT�

mT ;fðj; y; 0Þ; ð23Þ

where DT�
mT ;f
ðj; y; 0Þ is the Wigner rotation matrix, and the

phase factor is

e = PNPT(�1)2i1+2f+i�2S. (24)

For the 3He(1s 2s 3S) + 3He(1s 2p 3Pj) system, a1 = (�g1, 0, 1,
1, 1/2, f1) and a2 = (�g2, 1, 1, j2, 1/2, f2) and (21) reduces to

ja1; a2;fi ¼ jT ;mT ;fi
X
ijOiOj

X
SOLOS

ð�1Þ1�j2 ½ijf1f2Sj2�1=2

� C
jif
OjOif

C1Sj
OLOSOj

1 j2 j

1=2 1=2 i

f1 f2 f

8>>><
>>>:

9>>>=
>>>;

1 1 j2

1 j S

( )

� 1

2
½ðjgi þ juiÞ þ PT ð�1Þiðjgi � juiÞ�

� jði1ÞAði1ÞB; iOii
ð25Þ

where Cj1j2j
m1m2m

is a Clebsch–Gordan coefficient,
a b c
d e f

� 	

and
a b c
d e f
g h i

8<
:

9=
; are Wigner 6 � j and 9 � j symbols,

respectively, and [ab. . .] = (2a + 1) � (2b + 1)�� � �.

2.3 Matrix elements

The multichannel equations (7) require the matrix elements of

Ĥrot, Ĥel, Ĥfs and Ĥhfs in the basis (17). Using the notation

|ai = |Fa(R, q)i where a � {a1, a2, f, f, T, mT, PT, XN} then

the rotation terms are

ha0|l2̂|ai = �h2dr,r0{[T(T + 1) + f(f + 1) � 2f2]df0f

� K�Tffdf0,f�1 � K+
Tffdf0,f+1}, (26)

where the Coriolis coupling terms are

K�Tff = [T(T + 1) � f(f � 1)]
1
2 [f(f + 1) � f(f � 1)]

1
2

(27)

and r denotes the set of quantum numbers {a1, a2, f, T,mT, PT}.

The electronic matrix elements can be expressed in terms of

the Born–Oppenheimer (BO) molecular potentials 2S+1Ls
w(R),

where L = |OL| and s is the symmetry of the electronic wave

function with respect to reflection through a plane containing

the internuclear axis, using

Ĥel|g1g2, LSOLOS; wi= [2S+1Ls
w(R) + EN

LS]|g1g2, LSOLOS; wi
(28)

where EN

LS is the asymptotic energy of the state. The result is

(see appendix)

ha0jĤeljai ¼ dZ;Z0
X
jj0iS

X
OLOi

ð�1Þj2þj
0
2
þjþj0 ½f1f 01f2f 02j2j02ff 0�

1=2

� ½Sijj0�
j i f

Oj Oi �f

 !
j0 i f 0

Oj Oi �f

 !

�
1 S j

OL OS Oi � f

 !
1 S j0

OL OS Oi � f

 !

�

1 j2 j

1=2 1=2 i

f1 f2 f

8>>><
>>>:

9>>>=
>>>;

1 j2 j

1=2 1=2 i

f 01 f 02 f

8>>><
>>>:

9>>>=
>>>;

�
1 1 j2

1 j S

( )
1 1 j02

1 j0 S

( )

� 1

2
f2Sþ1Lþg ðRÞ þ 2Sþ1Lþu ðRÞ þ 2E1LS

þ PT ð�1Þi½2Sþ1Lþg ðRÞ � 2Sþ1Lþu ðRÞ�g
ð29Þ

where
a b c
d e f

� �
is a Wigner 3 � j coefficient, OS =

f � Oi � OL and Z denotes the set of quantum numbers

{g1, g2, f, T, mT, PT}. This equation differs from that given by

Dickinson11 by an overall phase factor (�1)1�i�Oi and the

phase of the Lg � Lu term.

The matrix elements of the fine structure and hyperfine

structure are best expressed in the basis

jai;mfi i ¼
X
mji

mii

X
mLi

mSi

Cji ii fi
mji

mii
mfi

CLiSiji
mLi

mSi
mji
jgi;mLi

;mSi ijii;mii i:

ð30Þ
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For convenience we omit the label mfi
from these states as the

matrix elements of Ĥfs and Ĥhfs are independent of mfi
due to

rotational invariance. We assume that the fine structure is

independent of R and exclude couplings to the singlet atomic

state Si = 0 so that its contribution is

ha0ijĤfsjaii ¼ dai ;a0iDE
fs
gi ji
: ð31Þ

The fine structure splitting DEfs
g1j1

for the 2s 3S1 level vanishes

and the splittings DEfs
g2j2

for the 2p 3P0 and 2p 3P1 states relative

to the 2p 3P2 level are 31.9088 GHz and 2.2922 GHz,

respectively.13

Matrix elements for the hyperfine structure have been

obtained by Hinds et al.12 and Wu and Drake.13 We choose

to use the expression of Wu and Drake but exclude couplings

to the Si = 0 atomic states. The matrix elements are therefore

ha0ijĤhfsjaii ¼ dgi ;g0iW
iifi
ji j
0
i
CSi

ffiffiffi
6
p
ð�1ÞLiþj0i XSi

S0i j0i Li

ji Si 1

( )"

�DSi ð�1Þ
jiþSiþM

Li j0i Si

ji Li 1

( )

�
Li 1 Li

�M 0 M

 !�1
þESi

12ffiffiffi
5
p ð�1ÞSi�LiþMXSi

�

Li Li 2

Si Si 1

j0i ji 1

8>>><
>>>:

9>>>=
>>>;

Li 2 Li

�M 0 M

 !�137775
ð32Þ

where these expressions are to be evaluated with M = Li,

W
iifi
ji j
0
i
¼ ð�1Þjiþiiþfi ii½jij0i �

1=2 fi ii j0i
1 ji ii

� 	
ii 1 ii
�ii 0 ii

� ��1
ð33Þ

and

XSi ¼ �ð2Si þ 1Þ 1=2 Si 1=2
Si 1=2 1

� 	
: ð34Þ

The hyperfine structure parameters (in MHz) are13

C1 = �4283.85, D1 = �28.145, E1 = 7.126. (35)

The inclusion of hyperfine structure using (32) couples states

with the same Li, Si and fi but different ji and for the He 2p 3P

manifold the states (j, f) = (0, 1/2) and (1, 1/2) are significantly

coupled as are the pair (j, f) = (1, 3/2) and (2, 3/2). The

eigenvalues of Ĥfs + Ĥhfs give the following energies for the

hyperfine levels expressed relative to the state j= 2, f= 5/2: 0,

1780.851, 6292.906, 6961.065 and 34385.941 MHz. The eigen-

vectors give the mixing coefficients which are then used to

modify the purely algebraic transformation to the hyperfine

case given by eqn (30). For the hyperfine structure of the 2s 3S

level we adopt the splitting of 6739.701177 MHz as measured

by Zhao et al.14 These data then give the ten asymptotic

energies EN

N of the separated pairs of atoms as 0, 1780.851,

6292.906, 6739.701, 6961.065, 8520.552, 13032.607, 13700.766,

34385.941 and 41125.642 MHz.

We assume that the fine- and hyperfine-structure of the

individual atoms is not affected by their participation within

the dimer, so that we may write

ha0jĤfs þ Ĥhfsjai

¼ da0aðDEfs
g1 j1
þ DEfs

g2j2
Þ þ ds0;sðha01jĤhfsja1ida0

2
;a2

þ ha02jĤhfsja2ida0
1
;a1Þ

ð36Þ

where s denotes the set of quantum numbers {f, f, T, mT, PT}.

The total matrix element Va0a(R) is therefore diagonal in

{T, PT} and independent of mT. The mT-degenerate discrete

multichannel eigenenergies of (7) are then ET,PT ;v where v

labels the rovibrational levels.

2.4 Single-channel approximation

The single-channel approximation involves the neglect of the

Coriolis couplings in (26) and non-adiabatic couplings in the

kinetic energy term. At each value of R the single-channel

potential is formed by diagonalizing the matrix:

V
f
a0a ¼ ha

0jĤeljai þ ha0jðĤfs þ ĤhfsÞjai þ
ha0jl̂2jaif
2mR2

; ð37Þ

where ha0|l2̂|aif is the part of (26) diagonal in f. The corres-

ponding R-dependent eigenvectors are

jni ¼
X
a

CanðRÞjai ð38Þ

and the adiabatic potential is given by Vadi
n ðRÞ ¼P

a0a C
�1
a0nV

f
a0aCan. Each channel |ni can be labelled with the

notation {f, T, mT, PT}.

The adiabatic eigenvalue equation for the rovibrational

eigenstates |cn,vi = R�1Gn,v(R)|ii, where n = {f,T,mT,PT},

is then obtained by neglecting the off-diagonal (non-adiabatic)

couplings between different single-channel states in the kinetic

energy term so that

n0 T̂
1

R
Gn;vðRÞ

����
����n

� �
¼ � �h2

2mR
d2Gn;v

dR2
dn;n0 : ð39Þ

The radial eigenvalue equation for the rovibrational states

is then

� �h2

2m
d2

dR2
þ Vadi

n ðRÞ � En;v


 �
Gn;vðRÞ ¼ 0: ð40Þ

2.5 Input potentials

The required Born–Oppenheimer potentials 1,3,5S+
g,u and

1,3,5Pg,u were constructed as in the study of Cocks et al.9 by

matching the ab initio short-range potentials of Deguilhem

et al.8 onto the long-range dipole–dipole plus dispersion

potentials

V
long
L ðRÞ ¼ � f3LðR=�lÞC3L=R

3 � C6L=R
6

� C�8L=R
8 � C9L=R

9 � C10L=R
10;

ð41Þ

D
ow

nl
oa

de
d 

by
 J

A
M

E
S 

C
O

O
K

 U
N

IV
E

R
SI

T
Y

 o
n 

21
 N

ov
em

be
r 

20
11

Pu
bl

is
he

d 
on

 0
5 

A
ug

us
t 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1C

P2
11

77
C

View Online

http://dx.doi.org/10.1039/c1cp21177c


18728 Phys. Chem. Chem. Phys., 2011, 13, 18724–18733 This journal is c the Owner Societies 2011

where f3L is an R- and L-dependent retardation correction,16

�l ¼ l=ð2pÞ ¼ 3258:12a0 where l is the wavelength for the

2s 3S–2p 3P transition and the parameters CnL were taken

from Zhang et al.15

Motivated by our study of the 4He* system,9 we choose to

vary the quintet potentials through a modification of the slope

of the potential at the inner classical turning point by introdu-

cing a multiplicative factor c through the smoothing function

V 0ðRÞ ¼
VðRÞð1þ 2cÞ R 	 R1

VðRÞ½1þ cð1þ cos aðR� R1ÞÞ� R1oR 	 R2

VðRÞ R4R2

8<
: ;

ð42Þ

where R1 = 5a0, R2 = 10a0 and a = p/(R2 � R1). The value

c = 0.005 represents a 1% variation which is quickly turned

on through the region 5a0 o R o 10a0. Its effect is to deepen

the minimum of the attractive 5Pg potential at R= 5.387a0 by

0.985% and move it to a smaller interatomic separation by

0.003a0. The depth of the minimum in the 5S+
u potential at

R = 6.268a0 is increased by 0.851% and is moved towards a

smaller separation by 0.010a0. The other quintet potentials
5S+

g and 5Pu are not significantly affected as they are repulsive.

3 Results

3.1 Calculations

The coupled-channel equations (7) and the single-channel

equation (40) are of the form

I
d2

dR2
þQðRÞ


 �
GðRÞ ¼ 0; ð43Þ

where for the case of coupled-channels, G is the matrix of

solutions with the second subscript labelling the linearly

independent solutions. These equations were solved using

the renormalized Numerov method17 with the eigenvalues of

the purely bound states determined by counting the nodes of

the determinant |G(R)| and the energies of resonances

lying within open channels by using a search procedure based

on Cauchy’s argument principle applied to the determinant

D(E) = |Rm � R̂�1m+1| where Rm and R̂m+1 are ratio matrices

for the outward and inward integrations, respectively, of the

renormalized Numerov method. Further numerical details are

given by Cocks et al.9

3.2 Observability criteria

In order to predict the likelihood that calculated bound levels

may appear in future experiments, several properties are

determined for each bound level or resonance that we isolate.

The simplest of these is the proportion Pshort of wave function

present at close interatomic distances, defined as Ro 20a0 and

henceforth referred to as the short-range region. This property

is extremely useful in classifying results since ionization losses,

which arise from the inelastic collisions

He* + He* - He + He+ + e�

He* + He* - He+2 + e�, (44)

only occur in the short-range region. As has been observed in

bosonic metastable helium, there exist indications of purely

long-range states in the fermionic dimers investigated here,

and we define these by Pshort o 10�10.

If the level extends into the short-range region then an

indication of its propensity for ionization is obtained from

the proportion Pstr of wave function that is in the spin-

stretched S = 2, i = 1 configuration:

Pstr ¼
P

a;b dS;2di;1PabP
a;b Pab

ð45Þ

where

Pab ¼ hajbi
Z20a0
0

GaðRÞdR ð46Þ

and |bi � |g1g2, LSOLOSwi|(i1)A(i2)B, iOii is the complete LS

basis state. The transformation between the bases used here

can be found from eqn (21). As in the 4He* case, the ionization

rate of the dimers is significantly reduced in the spin-stretched

state.18 Hence, a large proportion of wave function in the spin-

stretched state is essential for the level to have a lifetime long

enough to be observed in experiment.

Finally, for a resonance to be observed in PA experiments, it

must be strongly coupled by a laser pulse to the metastable

manifold 3He(1s 2s 3S1) +
3He(1s 2s 3S1). For radiation of

circular polarization el the coupling between a metastable

dimer state and the excited dimer state is due to the interaction

Ĥint B el�d̂ where d̂ is the molecular dipole moment and is

given by

he0jĤ intjgi

¼ �ið�1Þl
ffiffiffiffiffiffi
I

e0c

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

2T 0 þ 1

r
CT1T 0

mT lmT
CT1T 0

fbf0
NXN

2
dat

�
X
iSj0

X
OiOSO0j

ð�1Þ1�j
0
2 ½iS�½j0f 01f 02j02f1f2�

1=2

� C
j0if 0

Oj0OiOf 0
C1Sj0

bOSOj0
C

Sif
OSOif

1 1 j02

1 j0 S

( )

�

1 j02 j0

1=2 1=2 i

f 01 f 02 f 0

8>>><
>>>:

9>>>=
>>>;

1 1 S

1=2 1=2 i

f1 f2 f

8>>><
>>>:

9>>>=
>>>;

ð47Þ

where |gi and |ei are basis states corresponding to the
3He(1s 2s 3S1) + 3He(1s 2s 3S1) and 3He(1s 2s 3S1) +
3He(1s 2s 3Pj) manifolds, respectively, b = f0 � f and only

those matrix elements with P0TPT ¼ �1 and |b| o 1 are non-

zero. The atomic dipole moment is given by dat. Note that the

metastable spin-stretched state has PT = +1 symmetry

and can therefore only be coupled to excited dimers of

PT = �1 symmetry.

Finally, we define the quantities

Astr ¼
1

Ng0

X
g0a

hajĤ intjg0i
Z

Gg0 ðRÞGa;vðRÞdR; ð48Þ
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where g0 enumerates all of the Ng0 spin-stretched metastable

dimer states with S = 2 and i = 1, and

Afull ¼
1

Ng

X
ga

hajĤ intjgi
Z

GgðRÞGa;vðRÞdR ð49Þ

where g enumerates all of the Ng metastable dimer states. The

true metastable radial wave functions Gg(R) depend upon

temperature, but in order to extract a single parameter for

the observability criteria, we take Gg(R) = 1 as was done in

the 4He* case. This is valid up to a constant factor when the

metastable wave functions do not change significantly with

temperature. Although we focus on predicting resonances

observable from experiments prepared with spin-stretched

states in this paper, due to the overwhelming benefits from

reduced trap loss, whenever it is convenient we also include the

likelihood for couplings from other metastable states. Spin-

stretched experiments are best described by the criterion Astr,

whereas experiments that do not polarize the metastable gas

are best described by the criterion Afull.

3.3 Single-channel

The binding energies of long-range states obtained using a

single-channel calculation are listed in Tables 1 and 2. The

single-channel levels are labelled in terms of {T, f PT}.

Levels which are strongly coupled to the spin-stretched

metastable dimer states are indicated by a superscript 1. In

the absence of existing experimental data, we use the same

criterion to that obtained for the 4He* case, that isAstr > 0.9 Eh.

As these are long-range levels, there is no possibility of

ionization and we can ignore the Pstr condition. Furthermore,

Table 1 Single-channel rovibrational binding energies, in units of MHz, of long-range 0� and 1� states in 3He(2 3S1) +
3He(2 3Pj). Energies given

are relative to the energy of the specified asymptote. The superscripts 1 and 2 indicate those states which satisfy the strong coupling conditions
Astr > 0.9 Eh and Afull > 0.9 Eh, respectively

Symmetry State no. Asymp. no. v/T 0 1 2 3 4

0+ 5 3 0 904.113 823.629 639.703
1 183.326 127.625 9.53314

6 4 0 347.642 262.5372 75.71382

1 10.8473
10 6 0 1422.19 1278.29

1 467.747 366.810
2 62.6480 11.3740

11 8 16 52.84772 27.0296
17 11.6235

12 9 0 202.6452 52.08622

1 13.4273
0� 7 5 0 6.10337

10 7 0 374.065 1425.59 296.5782 1271.972 126.1202

1 40.4103 579.160 8.45110 449.478
2 173.330 99.6096
3 37.9230

11 8 16 940.3152 815.4272

17 503.4662 417.433
18 227.4782 172.257
19 86.29202 55.4097
20 24.21012 9.30074

12 9 16 500.7092 319.1842

17 131.414 47.6889
18 19.7607

13 10 0 741.8602 547.2582

1 233.251 130.6852

2 51.1549 11.7006
3 5.72522

1+ 17 7 0 1269.28 1214.502 1132.90 1025.19
1 405.296 366.915 310.6952 238.337
2 74.8580 55.8199 29.9220 1.87478
3 6.48198

18 8 0 918.7912 869.3352 796.2612 701.007
1 432.6772 401.217 355.1662 295.970
2 180.3752 160.938 133.0432 98.3456
3 62.56502 52.0562 37.18002 20.8902
4 15.6929 10.8815

20 9 0 438.2342 366.1102 264.2392 141.5242

1 106.356 73.19552 31.0864
2 14.2935 5.04058

22 10 5 91.47102 58.11992 16.20732

6 8.96832 1.27172
1� 11 4 0 526.5891 465.0511,2 374.2491,2 256.239

1 31.3952 6.283621,2

12 5 0 30.92001,2

17 7 0 342.5602 290.7311,2 214.2341,2 114.8162
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levels that are strongly coupled to the unpolarized metastable

dimer states are indicated by a superscript 2, where the

criterion is Afull > 0.9 Eh.

Of the 159 long-range levels found, 15 have a strong spin-

stretched coupling, and 69 have a strong unpolarized coupling.

In addition, there are 151 levels that possess some short-range

character, and also satisfy the observability criteria. Some of

these are very strongly coupled to the spin-stretched meta-

stable state. However, we do not observe these levels once

non-adiabatic and Coriolis couplings are turned on and so

conclude that these levels are unlikely to be observed in

experiment.

3.4 Multichannel

With all couplings included in the calculation, only those levels

beneath the lowest asymptote are true bound states. In con-

trast to the situation in 4He*, most of the levels lie above the

lowest asymptote and, due to couplings to open channels,

these higher lying levels almost always acquire a finite lifetime

due to predissociation. These resonances possess complex

energies, where the imaginary component represents the

resonance width, and are more difficult to isolate. As our

search routine based on Cauchy’s argument principle requires

many solutions of the differential equations (7), we restrict the

predissociation width to be less than 100 MHz and only search

within 2 GHz of the asymptotic energies that result from

diagonalization of the hyperfine structure. Additionally, we

match only at two points, 100 and 300 a0, which may exclude a

few levels from our search, although it can be argued on the

basis of spin-conservation of the laser coupling that reso-

nances which exist solely inside this distance will very likely

ionize and hence will not be observed in experiment.

Beneath the lowest asymptote we find bound levels with

only very weak coupling strengths. We therefore focus on the

resonances that were successfully isolated. As these levels are

not purely long-range, we must also consider the effect of

ionization which reduces the level’s lifetime and hence obser-

vability. In our previous investigation of 4He* we imposed a

criterion of Pstr > 87.5%. However, although a large number

of resonances were found in 3He* using the above method,

very few satisfy the same observability criteria as 4He*. In

Table 3 we instead list the 30 resonances that are most likely to

be observed in experiment, grouped by the nearest fine-

structure asymptote.

In contrast to the purely long-range levels in the 0+u , J = 1

potentials of 4He*, we do not find any single-channel long-

range bound levels in the 3He* potentials that remain bound

after the inclusion of couplings to all accessible states, nor do

we find any multichannel levels that can be described purely in

terms of single-channel potentials. Again we must emphasize

that the relative coarseness of the approach here, necessitated

by the large basis sets, may result in some important levels not

being detected. Additionally, for the remaining resonances

with short-range character, very few possess strong coupling

strengths to the metastable manifold. We do note that there

are some particular resonances which stand out in that their

short-range spin-stretch character is high with Pstr > 80%. It

is these levels that we believe will be the most likely to be

observed in experiment. We also note that the majority of

resonances appear to be dominated both by T = 1 and by a

projection of f = 1.

4 Conclusions

The bound states of the fermionic 3He(2 3S1) + 3He(2 3Pj)

system, where j = 0, 1, 2, have been investigated using the

recently available ab initio short-range 1,3,5S+
g,u and 1,3,5Pg,u

potentials computed by Deguilhem et al.8 Single-channel and

multichannel calculations have been undertaken in order to

investigate the effects of Coriolis and non-adiabatic couplings.

In contrast to the situation for the 4He* system9 where the

effect of these couplings on the large number of bound levels

Table 2 Single-channel rovibrational binding energies, in units of MHz, of long-range 2� and 3� states in 3He(2 3S1) +
3He(2 3Pj). Energies given

are relative to the energy of the specified asymptote. The superscripts 1 and 2 indicate those states which satisfy the strong coupling conditions
Astr > 0.9 Eh and Afull > 0.9 Eh, respectively

Symmetry State no. Asymp. no. v/T 0 1 2 3 4

2+ 6 3 0 1263.59 1167.37 1041.69
1 483.739 400.3232 292.5992

2 24.8937
7 4 0 1119.792 1013.792 875.2392

1 436.4592 376.8912 301.1062

2 143.028 105.268 58.72792

3 10.5484
8 4 0 524.8322 441.5852 332.2712

2� 12 8 0 932.9472 853.8111,2 749.8641,2

1 325.8822 278.2832 217.4741,2

2 95.8030 71.0373 41.37691,2

3 19.9633 10.0466
13 9 0 87.87311,2 35.22471,2

1 5.25868
3+ 4 4 0 1623.55 1470.74

1 568.235 468.826
2 137.420 81.9036
3 0.85611

3� 4 4 16 643.9921,2 551.4671,2

17 150.1161 97.8055
18 1.20481
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below the lowest asymptote (j = 2) could be studied, most of

the levels for the 3He* lie above the lowest asymptote and

become resonances due to couplings to open channels.

The single-channel long-range levels obtained in the present

investigation differ significantly from those found by

Dickinson,11 both in their patterns and energies. Dickinson

reports nine levels for the 0+ symmetry, 16 for 0�, six for 3+

and four for 3� whereas we find 22 levels for 0+, 35 for 0�,

seven for 3+ and five for 3�. We also find numerous levels for

the 1� and 2� symmetries for which Dickinson could not find

any states. These differences are not unexpected as our

expression (29) for the matrix elements of Ĥel differs from

that of Dickinson by an overall phase factor and the phase of

the Lg � Lu term. By using the expressions given by Dickinson

and with some modification of the values for the hyperfine

structure, our single-channel calculations were able to repro-

duce the results of Dickinson to within 5%.

The possible experimental observability of the theoretical

levels has been assessed using criteria based upon the short-

range character of each level and their coupling to metastable

ground states. Although the bound states below the lowest

asymptote and most of the large number of resonances above

this asymptote do not satisfy our observability criteria we are

able to identify some 30 resonances which are promising

candidates to be observed in experiment. Unfortunately, the

levels that were found in the single-channel calculations were

not able to be linked to any of the predicted multichannel

resonances. This is because we only have information regard-

ing resonances that have small predissociation rates, instead of

for the complete set of states. Hence it is very difficult to

observe the change of behaviour of a single-channel bound

level after the non-adiabatic and Coriolis terms are included.

In contrast, the 4He* calculation focused on multichannel

bound levels which allowed a comparison between the

complete set of single-channel and multichannel levels. For

the short-range levels, this lack of connection implies that the

non-adiabatic and Coriolis couplings modify the character of

the levels such that they are no longer observable in experi-

ment. However, because the resonance search is costly to

perform, we cannot make the same statement for the purely

long-range single-channel levels. Hence, we also recommend

that future experiments also search for the levels that are

marked in Tables 1 and 2 as observable.

Appendix: basis states and matrix elements

The unsymmetrized body-fixed (molecular) states in the

coupling scheme (11) are

jðg1j1i1f1ÞA; ðg2j2i2f2ÞB; f ;Of ;T ;mT i

¼ jT ;mT ;Of i
X

Of1
Of2

X
Oj1

Oj2

X
Oi1

Oi2

X
OL1

OL2

X
OS1

OS2

� C
f1f2f
Of1

Of2
Of
C

j1i1f1
Oj1

Oi1
Of1

C
j2 i2f2
Oj2

Oi2
Of2

C
L1S1j1
OL1

OS1
Oj1

� C
L2S2 j2
OL2

OS2
Oj2
jg1OL1

OS1iAji1Oi1iA

� jg2OL2
OS2iBji2Oi2iB ð50Þ

where the transformation between the molecular and space-

fixed states is, for example,

jjOji ¼
X
mj

D
j
mjOj
ðj; y; 0Þjjmji: ð51Þ

The states of the dimer system must be constructed to

correctly include the symmetries present in the system.

Importantly, they must be eigenstates of the total parity and

nuclear permutation. The total parity operator P̂T is equi-

valent to the action of P̂LP̂SP̂iX̂N where the action of the

inversion operators P̂L, P̂S and P̂i on the orbital, electronic

spin and nuclear spin space-fixed states, respectively, is

P̂L|LimLi
iA = Pi|LimLi

iB,

P̂S|SimSi
iA = |SimSi

iB,

P̂i|iimii
iA = |iimii

iB (52)

where Pi is the parity of the atomic state. The nuclear

permutation operator X̂N reverses the molecular axis which

is equivalent to A 2 B and (y, j) - (p � y,j + p).

Table 3 Energies, in units of MHz, of resonances in 3He(2 3S1) +
3He(2 3Pj) that are most likely to be observable in experiment. Energies
given are relative to the specified asymptotic energy EN

N . The predis-
sociation width Gpre, short-range spin-stretched character Pstr,
coupling strength Astr and largest contributing basis of f are listed
for each level

T PT E/MHz Gpre/MHz Pstr (%) Astr (Eh) f

EN

2 = 1780.85 MHz

2 �1 �1283.40 15.32 49.6 0.372 0
1 �1 �705.27 71.56 82.0 0.177 1
1 �1 �301.47 33.13 90.2 0.267 1
2 �1 �110.16 19.02 44.5 0.375 0
1 �1 �71.68 5.15 64.4 0.280 1
EN

3 = 6292.91 MHz

2 �1 �1951.86 69.9 47.3 0.278 0
1 �1 �1808.40 60.4 49.1 0.313 1
1 �1 �1179.49 59.8 51.8 0.259 1
1 �1 �958.79 60.9 76.1 0.234 1
1 �1 �848.05 46.9 70.8 0.234 1
1 �1 �812.01 44.2 62.2 0.268 1
1 �1 �779.20 44.9 76.9 0.320 1
1 �1 �601.37 55.7 49.1 0.285 1
2 �1 �499.02 86.6 58.0 0.337 0
1 �1 �324.32 54.4 68.1 0.281 1
1 �1 �313.77 58.0 75.2 0.312 1
EN

4 =6739.70 MHz

2 �1 �193.32 58.1 51.3 0.301 1
2 �1 �186.29 36.0 55.1 0.372 1
1 �1 �38.44 64.7 59.7 0.290 1
1 �1 �11.52 76.6 58.0 0.269 1
EN

6 = 8520.55 MHz

1 �1 �1029.50 20.1 76.5 0.204 1
1 �1 �840.44 24.9 83.8 0.212 1
1 �1 �513.78 42.3 84.8 0.204 1
1 �1 �380.48 53.7 84.0 0.190 1
1 �1 �245.71 55.3 73.0 0.213 1
EN

7 = 13032.61 MHz

1 �1 �1996.78 91.1 76.6 0.157 0
1 �1 �680.18 86.2 80.5 0.182 1
1 �1 �552.73 76.3 74.2 0.172 1
1 �1 �508.69 92.0 76.1 0.190 1D
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Noting that

X̂ND
j
mj ;Oj
ðj; y; 0Þ ¼ Dj

mj ;Oj
ðjþ p; p� y; 0Þ

¼ ð�1ÞjDj
mj ;�Oj

ðj; y; 0Þ
ð53Þ

then

P̂T|T, mT, Ofi = (�1)T|T, mT, �Ofi (54)

and

P̂T|(a1)A, (a2)B, f, Of, T, mTi
= P1P2(�1)f � T|(a1)A, (a2)B, f, �Of, T, mTi (55)

where we have introduced the notation ai = {gi, ji, ii, fi}. The
eigenstates of P̂T are therefore given by (14).

Since X̂N is equivalent to P̂TP̂LP̂SP̂i where

P̂LP̂SP̂i|(a1)A, (a2)B, f, Of, T, mTi
= (�1)f1+f2�f P1P2|(a2)A, (a1)B, f, Of, T, mTi (56)

then the action of X̂N on the states (14) is

X̂N|(a1)A, (a2)B, f, f, T, mT; PTi
= PTP1P2(�1)f1+f2�f+N1N2|(a2)A, (a1)B, f, f, T, mT; PTi

(57)

so that the eigenstates of X̂N are (15).

The relationship (21) between the bases (17) and (19) is

obtained by first using

jg1OL1
OS1iAjg2OL2

OS2iB ¼
X

LSOLOS

CL1L2L
OL1

OL2
OL
CS1S2S

OS1
OS2

OS

� jðg1ÞAðg2ÞB;LSOLOSi;
ð58Þ

and expressing sums over Clebsch–Gordan coefficients as 9 � j

symbols to give

jða1ÞA; ða2ÞB; f ;f;T ;mT ;PT i

¼ jT ;mT ;fi
X
Oi1

Oi2

X
ijOiOj

X
LSOLOS

� ½ijLSj1j2f1f2�1=2Cjif
OjOif

Ci1i2i
Oi1

Oi2
Oi

� CLSj
OLOSOj

j1 j2 j

i1 i2 i

f1 f2 f

8>>><
>>>:

9>>>=
>>>;

L1 L2 L

S1 S2 S

j1 j2 j

8>>><
>>>:

9>>>=
>>>;

� jðg1ÞAðg2ÞB;LSOLOSiji1Oi1iAji2Oi2iB: ð59Þ

Introducing the coupling coefficients, for example,

F
j1j2jOj

LSOLOS
¼ ½ð2Lþ 1Þð2S þ 1Þð2j1 þ 1Þð2j2 þ 1Þ�

1
2

� C
LSj
OLOSOj

L1 L2 L

S1 S2 S

j1 j2 j

8>>><
>>>:

9>>>=
>>>;

ð60Þ

and using, from (19),

|(g1)A(g2)B, LSOLOSi = Nw(|gi + |ui) (61)

then

jða1ÞA; ða2ÞB; f ;f;T ;mT ;PT i

¼ jT ;mT ;fi
X
Oi1

Oi2

X
ijOiOj

X
LSOLOS

C
i1 i2i
Oi1

Oi2
Oi

� F
f1f2ff
jiOjOi

F
j1j2jOj

LSOLOS
ðjgi þ juiÞji1Oi1iAji2Oi2iB: ð62Þ

The state with A2 B is obtained by reordering the angular

momenta subscripted with 1 and 2 in all Clebsch–Gordan and

9 � j symbols and using

|(g2)A(g1)B, LSOLOSi= NwP1P2(�1)L1+L2�L+S1+S2�S(|gi � |ui)
(63)

to give

jða2ÞA; ða1ÞB; f ;f;T ;mT ;PT i

¼ jT ;mT ;fi
X
Oi1

Oi2

X
ijOiOj

X
LSOLOS

ð�1Þf1þf2þfþ2i

� Ci1i2i
Oi1

Oi2
Oi
F
f1f2ff
jiOjOi

F
j1j2jOj

LSOLOS

� ðjgi � juiÞji2Oi2iAji1Oi1iB: ð64Þ

Forming the combination (16) then yields (21).

The matrix elements of Ĥel are diagonal in f. Using the

explicit states (25) then

ha01; a02;f0jĤelja1; a2;fi

¼ hT 0;m0T ;f0jT ;mT ;fi
X

i0j0O0iO
0
j

X
ijOiOj

X
S0O0LO

0
S

X
SOLOS

ð�1Þj
0
2
þj2

� ½i0j0f 01f 02S0j02ijf1f2Sj2�
1=2

� C
j0i0f 0

O0jO
0
if
0C

jif
OjOif

C1S0j0

O0LO
0
SO
0
j
C1Sj

OLOSOj

�

1 j02 j0

1=2 1=2 i0

f 01 f 02 f 0

8>>><
>>>:

9>>>=
>>>;

1 j2 j

1=2 1=2 i

f1 f2 f

8>>><
>>>:

9>>>=
>>>;

�
1 1 j02

1 j0 S0

( )
1 1 j2

1 j S

( )

� 1

4
½ðcg

0

iT hg0j þ cu
0
iT hu0jÞjĤeljðcgiT jgi þ cuiT juiÞ�

� hði01ÞA; ði01ÞB; i0;O0ijði1ÞA; ði1ÞB; i;Oii ð65Þ
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where cgiT = 1 + (�1)iPT and cuiT = 1 � (�1)iPT. The

orthogonality of states reduces this to

ha01;a02;f0jĤelja1;a2;fi

¼ dZ;Z0
X
j0 ij

X
OiOj

X
SOLOS

ð�1Þj
0
2
þj2 ½j0f 01f 02j02jf1f2j2�

1=2½Si�

�C
j0if 0

O0jOif
C

jif
OjOif

C
1Sj0

OLOSO0j
C

1Sj
OLOSOj

�

1 j02 j0

1=2 1=2 i

f 01 f 02 f 0

8>>><
>>>:

9>>>=
>>>;

1 j2 j

1=2 1=2 i

f1 f2 f

8>>><
>>>:

9>>>=
>>>;

1 1 j02

1 j0 S

( )

�
1 1 j2

1 j S

( )
1

2
½cgiT ð

2Sþ1Lþg ðRÞþE1LSÞþ cuiT ð
2Sþ1Lþu ðRÞþE1LSÞ�

ð66Þ

where Z = {g1, g2, f, T, mT, PT}. Similarly we can show

ha01;a02;�f0jĤelja1;a2;�fi ¼ ð�1Þf�f
0
ha01;a02;f0jĤelja1;a2;fi:

ð67Þ

The phase factor (�1)f � f0 is cancelled by the factor arising

from (18), thus ensuring the two contributions (66) and (67)

interfere constructively. Conversion of the Clebsch–Gordan

coefficients into 3 � j symbols finally yields (29).
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