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The bound states of the fermionic *He(2 3S;) + *He(2 3F’_,-) system, where j = 0, 1, 2, are
investigated using the recently available ab initio short-range 1’3‘52; . and 1'3’5Hg,,, potentials
computed by Deguilhem et al. (J. Phys. B: At., Mol. Opt. Phys., 2009, 42, 015102). Single-channel
and multichannel calculations have been undertaken in order to investigate the effects of Coriolis
and non-adiabatic couplings. The possible experimental observability of the theoretical levels is
assessed using criteria based upon the short-range character of each level and their coupling to
metastable ground states. Purely long-range levels have been identified and 30 short-range levels

near five asymptotes are suggested for experimental investigation.

1 Introduction

Photoassociation (PA) of ultracold atoms, in which two
interacting ultracold atoms are resonantly excited by a laser
to bound states of the associated molecule, is a widely used
technique to study the dynamics of ultracold collisions in
dilute quantum gases. Of particular interest is PA in meta-
stable rare gases where novel experimental strategies based
upon their large internal energy can be implemented.
Photoassociation of ultracold bosonic metastable *He*
atoms, 4He(ls 2s 3S), to excited rovibrational bound states
that dissociate to the *He(1s 2s *S) + *He(ls 2p 3P_,-) limits,
where j = 0, 1, 2, has been observed by many groups. The
observations include over 40 states lying within 14 GHz of the
j = 2 asymptote,' six states within 0.6 GHz of the j = 1
asymptote® and some purely long-range bound states within
1.43 GHz of the j = 0 asymptote.* Theoretical analysis of the
j = 0 long-range states using single-channel® and multichannel®
calculations based upon long-range Born—-Oppenheimer
potentials constructed from retarded resonance dipole and
dispersion interactions gave excellent agreement with the
measured binding energies. Analysis of the other states had
to await the availability of short-range ab initio "3’52;_ .« and
3311, , molecular potentials”® and was initially restricted to
single-channel calculations’® which neglect non-adiabatic and
Coriolis couplings. Very recently a detailed theoretical analysis
of the entire *He(1s 2s *S) + “He(1s 2p 3P_,-) system has been
completed.® The role of these couplings was investigated using
single-channel and multichannel calculations with the input
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potentials constructed from the short-range ab initio potentials
of Deguilhem er al® matched onto long-range retarded
resonance dipole and dispersion potentials. The multichannel
calculations also permitted criteria to be established for the
assignment of the theoretical levels to experimental observa-
tions based upon the short-range spin character of each level
and their couplings to the metastable ground states. Excellent
agreement was obtained for the numbers of observed levels
and their binding energies after application of a 1% increase in
the slope of the 52; . and SHN potentials near their inner
classical turning point.

In contrast, PA of fermionic metastable He* atoms,
3He(1s 2s *S), is relatively unexplored although they have been
cooled and trapped'® with comparable densities and tempera-
tures to those of “He* atoms. The non-zero i = 1/2 nuclear
spin of He* gives rise to the hyperfine structure with splittings
comparable to the fine structure splittings of “He* which has
no nuclear spin. Consequently the patterns of energy levels are
expected to be quite different for the fermionic and bosonic
systems. A small number of long-range states in *He* has been
predicted by Dickinson!' but this was a single-channel
calculation, thereby neglecting Coriolis and non-adiabatic
couplings, using only long-range van der Waals and retarded
resonance dipole interactions. The availability of the short-
range potentials of Deguilhem ef al.® now permits a detailed
theoretical investigation of the fermionic *He(ls 2s 3S) +
SHe(ls 2p 3P_,») system similar to that undertaken by Cocks
et al® for the bosonic *He* system.

In the absence of any observations of bound states in this
excited *He* system, we present predictions as to which of our
calculated bound states may be experimentally observable. We
assume any experiment will use magnetic trapping of the *He*
atoms, requiring all atoms to be in the fully stretched low-field
seeking f = 3/2, my = 3/2 magnetic substate of the
metastable 2s S, level in order to strongly suppress loss
through Penning ionization. Consequently we assess the
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experimental observability of each excited level in terms of its
coupling to this state. In addition, we consider the likelihood
of ionization losses from these excited levels due to inelastic
collisions in the short-range region.

Atomic units are used, with lengths in Bohr radii ¢y =
0.0529177209 nm and energies in Hartree E;, = o’m.c* =
27.211384 eV.

2 Theory

2.1 Multichannel equations

The formalism for the excited *He* system requires modifica-
tion of that presented by Cocks et al.’ for the excited *He*
system in order to include the hyperfine structure.

The total Hamiltonian for a system of two interacting atoms
i = 1, 2 with reduced mass p, interatomic separation R and
relative angular momentum i, which possess both fine struc-
ture and hyperfine structure is

I‘} = f + I—}rot + ﬁel + Hfs + ﬁhfs (1)

where 7 is the kinetic energy operator

2
derd) o
and H,, the rotational operator
Hio = L : (3)
2uR?
The total electronic Hamiltonian is
Hy = Hy + H, + H, “)

where the unperturbed atoms have Hamiltonians H; and their
electrostatic interaction is specified by H,,. The terms Hy, and
Hu in eqn (1) describe the fine structure and hyperfine
structure, respectively, of the atoms.

The multichannel equations describing the interacting
atoms are obtained from the eigenvalue equation

HY) = E|¥) )

for the total system by expanding the eigenvector in terms of
an appropriate basis |®,) = |D,(R, ¢)) where a denotes the set
of approximate quantum numbers describing the electronic-
rotational states of the molecule and ¢ denotes the interatomic
polar coordinates (0, ¢) and electronic coordinates (r;, ry).
Using the expansion

) = 30 L GulR) |4} (©)

and forming the scalar product (CDar\I:I\‘P> yields the multi-
channel equations

Z {TaG’a(R) + [Va/u(R) - Eéa’a}Ga(R)} = ()7 (7)
where
> >
TaG’a(R) = _Z<¢u’ WG(;(R) (pa> (8)

and
Va’a(R) = <(pa"[Hrot + ﬁel + I-}fs + ﬁhfs]‘¢a>- (9)

We assume the R-dependence of the basis states is negligible so
that the radial kinetic energy term is diagonalized:

W d°G,

TuG,a(R) = —ﬂméua/. (10)

2.2 Basis states

For two colliding atoms with orbital L. spin é,- and nuclear 1;
angular momenta, the unsymmetrized body-fixed states in the
coupling scheme

A

b=l Shi=hrni=h+hT=F+1
are (see appendix for details)

Iy Das Gofaiaf2) s fo Qp T, my) (12)

where y; = {J;, L, S}, 7; representing any other relevant quantum
numbers, and (4, B) labels the two nuclei. The projections of an
angular momentum J onto the space-fixed Oz and inter-molecular
axis OZ with orientation (6, ¢) relative to the space-fixed frame
will be denoted m; and Q,, respectively.

In order to construct states symmetrized with respect to the
total parity P, we note that Py = P, PsP. Xy where P, Ps, P;
are the inversion operators on the orbital, electronic spin and
nuclear spin states associated, respectively, with

£:I:I+I:2,S:SI+S27§:§1+’§2 (13)

and Xy permutes the nuclei labels. The states of total parity
are then (see appendix)

‘(al)Aa (aZ)Ba f; d)a Ta mr; PT)
= NPT [‘(dl)Aa (062)3,](; ¢’ Ta mT>

+ PrPiPoA=1) " M), (@), /3 =, T, mp)]
(14)
where o; = {y;, Ji, i, f3}, P; = (—1)" is the parity of the atomic
state [Lim, ) and ¢ = |2, = |Q4]. The normalization constant

is Np, =1/4/2(1+64p). For ¢ = 0 eqn (14) gives the
selection rule PTPle(—l)/’ T=1.
The states symmetrized with respect to X are (see appendix)
loet, o0, f5 @, T, my; Pr, Xy)
= Ny, [0, (22)3, fs &, T, mz; Pr)
+ enl(@)a @)s f; &, T, mz; Pr)] (15)

where Py = (—1)*" indicates bosonic or fermionic nuclei
(where iy = i, is assumed), N, is the number of electrons on

atom i, the normalization constant Ny is 1/y/2(1 + 0y, 4,)
and the phase factor is
EN T PNPTP1P2(—1)/l +'/.27‘f+NINZ. (16)

For oy = o« eqn (15 gives the selection rule
PNPTP1P2(—1)/‘+/2*./+N|N2 - 1.

It is convenient to introduce the simplified notation

loet, 02, @) = Ny, [(@D)a, (22)5, 1, ¢, T, myr)
+ 8N‘(°‘2)Aa (al)BLf: ¢, T’ mT)] (17)
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so that the states (15) can then be written

‘“1: O‘Zafa (/)a Ta mr; PTa XN> = NP, [‘“la %2, 4))
+ PrPiPy(—1)" T, o1, = )] (18)
The elgenstates of Hel are the body fixed states arising from
the couplings I = Ll + L2, S = Sl + 82 and must be
symmetric under the action of PLPS.
Nl 4(72) 5, LSQ1Qs)
+ &l (12)4(y) s LSQQs)] (19)

where N, = 1/4/2(1 +0,,,,), w = 0(1) for gerade (ungerade)

symmetry and

17172, LSQ Qs w) =

&y = (_l)w-FL]+L2+Sl+Szfs+N1N3P1P2. (20)

The relationship between the two bases (17) and (19) is
obtained using (see appendix)
1,00, 8) = Ny Nl Tomr ) S 3" FIERO RIS,
790 LSQL Qs ‘
) 4 (1) 1120
(1)

x [(Ig) + ) +&(lg) —

/7/¢ Fn/z/Q

where the coupling coefficients F/ g, and Fygo " are given in
the appendix (the quantum numbers (L, S, ) have been
suppressed) and we have introduced the notation

lg) = Iy172, LSQLQs; g), [u) = y1y2, LSQ Qs u)  (22)

for the eigenstates of gerade and ungerade symmetry. The
rotational states are

RT+1 ..
|T7mT7¢>: A1 D)Z;T¢((p7070)7 (23)

where D,,T1 ¢(go707 0) is the Wigner rotation matrix, and the
phase factor is

& = PyPr(—1)""¥7, (24)

For the *He(1s 25 °S) + *He(ls 2p °P)) system, o; = (7,0, 1,
1, 1/2, fi)y and an, = (35, 1, 1, b, 1/2, f>) and (21) reduces to

|OC|,0627¢> = |T7mT7 Z Z l /7 Uflfzslﬂ
ijQiQ; SQ Qg
L pn
. 1L 1T p
X CplosCaand 1/2 1/2 i
o o 1 j S
N L f
1 i
x5 [(Ig) +1u)) + Pr(=1)(lg) — |u)]
x [(i1) 4 (1) , 1)
(25)
where Cfllflf , is a Clebsch—Gordan coefficient, {a b C}
mynm d e f
a b c
and ¢ d e f p are Wigner 6 — j and 9 — j symbols,
g h i

respectively, and [ab...] = 2a + 1) x 2b + 1)x---

2.3 Matrix elements

The multichannel equations (7) require the matrix elements of
H,oi, Ha, Hys and Hyg in the basis (17). Using the notation
la)y = | R, q)) where a = {oy, o, f, ¢, T, my, Py, Xy} then
the rotation terms are
(@ |Pla)y = 120, ,{[T(T + 1) + Aif + 1) — 2010414
— KiypOpr .1 — Kiggdoy g3 (26)

where the Coriolis coupling terms are

Kip = [T(T + 1) — ¢( £ DEAS + 1) — ¢(¢p £ DI
27)

and p denotes the set of quantum numbers {1, o, f, T, mz, Pr}.

The electronic matrix elements can be expressed in terms of
the Born-Oppenheimer (BO) molecular potentials >+ ' A%(R),
where A = |Q;| and ¢ is the symmetry of the electronic wave
function with respect to reflection through a plane containing
the internuclear axis, using

Haly172, LSQQs; w) = P ALR) + Efslp1y2, LSQ,Qs: w)
(28)

where Efs is the asymptotic energy of the state. The result is
(see appendix)

(d|Hala) =Sy > >

Ji'iS QrQ;

(i IS
x [Sijf']
Q QG —9/\Q & —¢
1 s j 1S 7
X
(QL Qg Qi_¢><QL Qg Qi—¢)

(=1

L p L p
x {12 172 @ w12 172
noo L f)VH B S

11 pY (1 1 4
X

1 j sl ;s
1

x5 S AL (R) + AL (R) + 255

+ Pr(=1) UL (R) = VAL (R)]}

(29)
a b ¢
d e f

¢ — Q; — Q; and #5 denotes the set of quantum numbers

where < ) is a Wigner 3 — j coefficient, Qg =

{y1, y2, ¢, T, my, P7}. This equation differs from that given by
Dickinson'! by an overall phase factor (—1)'7"% and the
phase of the A, — 4, term.

The matrix elements of the fine structure and hyperfine
structure are best expressed in the basis

|ai7m// Z Z )/1/:,//1;1, my; zﬁiljﬁgim,i ‘Vi7mLi7n1>9i>‘ii7n1ii>'

mj;mj; mp;ms;

(30)
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For convenience we omit the label m,, from these states as the
matrix elements of Hy and Hpg are independent of my. due to
rotational invariance. We assume that the fine structure is
independent of R and exclude couplings to the singlet atomic
state S; = 0 so that its contribution is

<OC;|I:[fS|OC,‘> = 5oc,goc;.AE~,fv?jl~ (31)

The fine structure splitting AEf,fjl for the 2s S, level vanishes
and the splittings AE}f;i2 for the 2p *Py and 2p P states relative
to the 2p P, level are 31.9088 GHz and 2.2922 GHz,
respectively.'?

Matrix elements for the hyperfine structure have been
obtained by Hinds e al.'? and Wu and Drake.!*> We choose
to use the expression of Wu and Drake but exclude couplings
to the S; = 0 atomic states. The matrix elements are therefore

. . , S; ji L
(0| His|ow) = 8, Wi CS,-\/E(—I)L’*”'XS,{ l }
b Jio Si 1
) L ji S
_ DS,-(_l),i+Si+M
Jio Li 1
LU L\
X +E5i_(_l) o Xs,
M 0 M V5
L L 2
L 2 L\
X S,' S,‘ 1
-M 0 M
Jiogio 1

where these expressions are to be evaluated with M = L,,

. . . N |
Wilfi _ (_l)i;+i,’+f}l-_[]~i]-{]1/2 fi i J; I L g
i} ! 1 ji i —i; 0 i
(33)

and

XS[:—(ZS;+1){1§? 52 1{2}. (34)

The hyperfine structure parameters (in MHz) are'’

C) = —4283.85, D, = —28.145, E; = 7.126. (35)

The inclusion of hyperfine structure using (32) couples states
with the same L;, S; and f; but different j; and for the He 2p *P
manifold the states (j, /) = (0, 1/2) and (1, 1/2) are significantly
coupled as are the pair (j, /) = (1, 3/2) and (2, 3/2). The
eigenvalues of Hps + Hugs give the following energies for the
hyperfine levels expressed relative to the state j = 2, f = 5/2: 0,
1780.851, 6292.906, 6961.065 and 34385.941 MHz. The eigen-
vectors give the mixing coefficients which are then used to
modify the purely algebraic transformation to the hyperfine
case given by eqn (30). For the hyperfine structure of the 2s *S
level we adopt the splitting of 6739.701177 MHz as measured
by Zhao et al'* These data then give the ten asymptotic
energies Ex of the separated pairs of atoms as 0, 1780.851,

6292.906, 6739.701, 6961.065, 8520.552, 13032.607, 13700.766,
34385.941 and 41125.642 MHz.

We assume that the fine- and hyperfine-structure of the
individual atoms is not affected by their participation within
the dimer, so that we may write

(d'|Hps 4 Hyga)

= 0uq(AES, + AED,

V11 7272

)+ 0o () [ Hhso1)0,,0, (36)
+ (0| Hgs|02) 0 )

where ¢ denotes the set of quantum numbers {f, ¢, T, my, Py}.

The total matrix element V,,(R) is therefore diagonal in
{T, Py} and independent of my. The my-degenerate discrete
multichannel eigenenergies of (7) are then Ezp, ., where v
labels the rovibrational levels.

2.4 Single-channel approximation

The single-channel approximation involves the neglect of the
Coriolis couplings in (26) and non-adiabatic couplings in the
kinetic energy term. At each value of R the single-channel
potential is formed by diagonalizing the matrix:

L2
(d|l'a),

Vd) = <a/|I:]el‘a> + <[1/‘(I'}fs +I:Ihf5)|a> +W,

da

(37)

where (a’\lz\a)(,, is the part of (26) diagonal in ¢. The corres-
ponding R-dependent eigenvectors are

n) = Z Can(R)|a) (38)

and the adiabatic potential is given by Vi(R)=
> wa Ci V9 Cun. Each channel |n) can be labelled with the
notation {¢, T, my, Pr}.

The adiabatic eigenvalue equation for the rovibrational
eigenstates |if,,) = R”GH,V(R)\Z'), where n = {¢,T.my,Pr},
is then obtained by neglecting the off-diagonal (non-adiabatic)
couplings between different single-channel states in the kinetic
energy term so that

g

The radial eigenvalue equation for the rovibrational states
is then

wd?

{_ZW

.1
T_Gnv R
7 Gr(R)

&Gy,
") T T2uR dR

S (39)

+ Vi(R) — E} Gnr(R) = 0. (40)

2.5 Input potentials

The required Born—-Oppenheimer potentials 1’3’52; , and
l’3’51'[&,,,, were constructed as in the study of Cocks er al.? by
matching the ab initio short-range potentials of Deguilhem
et al® onto the long-range dipole-dipole plus dispersion
potentials

) = P RICWR ~CufR
_ Cs:LA/R8 — C9/1/R9 — CIO/I/RIO’
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where f3,4 is an R- and A-dependent retardation correction,'®

A= A/(2n) = 3258.12ap where A is the wavelength for the
s *S—2p P transition and the parameters C,, were taken
from Zhang et al."®
Motivated by our study of the *He* system,” we choose to
vary the quintet potentials through a modification of the slope
of the potential at the inner classical turning point by introdu-
cing a multiplicative factor ¢ through the smoothing function

V(R)(1+ 2c) R <R
VI(R)={ V(R)[l +c(1+cosa(R—Ry))] RI<R< Ry,
V(R) R>R,
(42)
where R; = 5ay, R, = 10ag and @ = n/(R, — R;). The value

= 0.005 represents a 1% variation which is quickly turned
on through the region 5ag < R < 10ay. Its effect is to deepen
the minimum of the attractive SHg potential at R = 5.387qa, by
0.985% and move it to a smaller interatomic separation by
0.003ay. The depth of the minimum in the %, potential at

= 6.268qy is increased by 0.851% and is moved towards a
smaller separation by 0.010ao. The other quintet potentials
52; and °T1, are not significantly affected as they are repulsive.

3 Results

3.1 Calculations

The coupled-channel equations (7) and the single-channel
equation (40) are of the form

d2
[IW 4 Q(R)} G(R) =0, 43)

where for the case of coupled-channels, G is the matrix of
solutions with the second subscript labelling the linearly
independent solutions. These equations were solved using
the renormalized Numerov method!” with the eigenvalues of
the purely bound states determined by counting the nodes of
the determinant |G(R)| and the energies of resonances
lying within open channels by using a search procedure based
on Cauchy S argument principle apphed to the determinant
D(E) = R,,' 1| where R,, and Rmﬂ are ratio matrices
for the outward and inward integrations, respectively, of the
renormalized Numerov method. Further numerical details are
given by Cocks et al.’

3.2 Observability criteria

In order to predict the likelihood that calculated bound levels
may appear in future experiments, several properties are
determined for each bound level or resonance that we isolate.
The simplest of these is the proportion Py, of wave function
present at close interatomic distances, defined as R < 20a, and
henceforth referred to as the short-range region. This property
is extremely useful in classifying results since ionization losses,
which arise from the inelastic collisions

He* + He* > He + He' + e~

He* + He* —» He, + ¢, (44)

only occur in the short-range region. As has been observed in
bosonic metastable helium, there exist indications of purely
long-range states in the fermionic dimers investigated here,
and we define these by Pgore < 10710,

If the level extends into the short-range region then an
indication of its propensity for ionization is obtained from
the proportion Py, of wave function that is in the spin-
stretched S = 2, i = 1 configuration:

> ap 95201 Pap

Py = 45
' Za.b P“b ( )
where
20ay
Pa=ab) [ Gu(RIR (46)

0

and |b) = [y172, LSQQsw)|(i1) 4(i2) 5, iQ;) is the complete LS
basis state. The transformation between the bases used here
can be found from eqn (21). As in the “He* case, the ionization
rate of the dimers is significantly reduced in the spin-stretched
state.'® Hence, a large proportion of wave function in the spin-
stretched state is essential for the level to have a lifetime long
enough to be observed in experiment.

Finally, for a resonance to be observed in PA experiments, it
must be strongly coupled by a laser pulse to the metastable
manifold *He(ls 2s 3S;) + *He(ls 2s *S;). For radiation of
circular polarization ¢; the coupling between a metastable
dimer state and the excited dimer state is due to the interaction
Hine ~ ¢,-d where d is the molecular dipole moment and is
given by

{e/|1:11m|g)

|1
1)/ —
) &nC

DIDIRC

i 0,050,

!
< oS oS bhn
Q2,0 P25y~ Qs Qich AR

14 /Y(1 1S

2T +1 T CTIT’Nde
2T/+1 mT/JHT (/)/}(b at

NSRS

x{1/2 172 i $12 12 i
6 r h AL f

where |g) and |e) are basis states corresponding to the
*He(ls 2s 3S;) + >He(ls 2s 3S;) and *He(ls 2s %S)) +
SHe(1s 2s 3P,~) manifolds, respectively, § = ¢’ — ¢ and only
those matrix elements with P.Pr = —1 and |f| < 1 are non-
zero. The atomic dipole moment is given by d,.. Note that the
metastable spin-stretched state has Py = +1 symmetry
and can therefore only be coupled to excited dimers of
Py = —1 symmetry.
Finally, we define the quantities

A str =

S (alHimlg) / Gy (R)Guy(RNR, (48

gga
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where g’ enumerates all of the N, spin-stretched metastable
dimer states with S = 2 and i = 1, and

A :Ni2<a\ﬁim|g> / G¢(R)G,,(R)dR (49)

8 ga

where g enumerates all of the N, metastable dimer states. The
true metastable radial wave functions G,(R) depend upon
temperature, but in order to extract a single parameter for
the observability criteria, we take Go(R) = 1 as was done in
the *He* case. This is valid up to a constant factor when the
metastable wave functions do not change significantly with
temperature. Although we focus on predicting resonances
observable from experiments prepared with spin-stretched
states in this paper, due to the overwhelming benefits from
reduced trap loss, whenever it is convenient we also include the

likelihood for couplings from other metastable states. Spin-
stretched experiments are best described by the criterion o7,
whereas experiments that do not polarize the metastable gas
are best described by the criterion o).

3.3 Single-channel

The binding energies of long-range states obtained using a
single-channel calculation are listed in Tables 1 and 2. The
single-channel levels are labelled in terms of {7, ¢ ™).

Levels which are strongly coupled to the spin-stretched
metastable dimer states are indicated by a superscript 1. In
the absence of existing experimental data, we use the same
criterion to that obtained for the *He* case, that is 7, > 0.9 Ej,.
As these are long-range levels, there is no possibility of
ionization and we can ignore the Py, condition. Furthermore,

Table 1 Single-channel rovibrational binding energies, in units of MHz, of long-range 0+ and 17 states in *He(2 *S;) + *He(2 3P‘,-). Energies given
are relative to the energy of the specified asymptote. The superscripts 1 and 2 indicate those states which satisfy the strong coupling conditions

Ay > 0.9 E, and Ly > 0.9 Ey, respectively

Symmetry State no. Asymp. no. v/T 0 1 2 3 4
0" 5 3 0 904.113 823.629 639.703
1 183.326 127.625 9.53314
6 4 0 347.642 262.537> 75.71382
1 10.8473
10 6 0 1422.19 1278.29
1 467.747 366.810
2 62.6480 11.3740
11 8 16 52.8477° 27.0296
17 11.6235
12 9 0 202.645> 52.08622
1 13.4273
0~ 7 5 0 6.10337
10 7 0 374.065 1425.59 296.578> 1271.97* 126.120?
1 40.4103 579.160 8.45110 449.478
2 173.330 99.6096
3 37.9230
11 8 16 940.315% 815.427>
17 503.466> 417.433
18 227.478% 172.257
19 86.2920> 55.4097
20 24.2101% 9.30074
12 9 16 500.709> 319.1842
17 131.414 47.6889
18 19.7607
13 10 0 741.860% 547.258>
1 233.251 130.685%
2 51.1549 11.7006
3 5.72522
1" 17 7 0 1269.28 1214.50? 1132.90 1025.19
1 405.296 366.915 310.695> 238.337
2 74.8580 55.8199 29.9220 1.87478
3 6.48198
18 8 0 918.791% 869.335> 796.261% 701.007
1 432.677% 401.217 355.166° 295.970
2 180.375> 160.938 133.0432 98.3456
3 62.5650? 52.0562 37.18002 20.8902
4 15.6929 10.8815
20 9 0 438.234% 366.110° 264.239? 141.524?
1 106.356 73.1955> 31.0864
2 14.2935 5.04058
22 10 5 91.4710? 58.1199° 16.2073>
6 8.96832 1.27172
1~ 11 4 0 526.589! 465.051"2 374.249'2 256.239
1 31.3952 6.28362"2
12 5 0 30.9200"2
17 7 0 342.560° 290.731"2 214.234'2 114.816>
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Table 2 Single-channel rovibrational binding energies, in units of MHz, of long-range 2* and 3% states in *He(2 *S;) + *He(2 3P_,-). Energies given
are relative to the energy of the specified asymptote. The superscripts 1 and 2 indicate those states which satisfy the strong coupling conditions

Ay > 0.9 Ey and oAy > 0.9 Ey, respectively

Symmetry State no. Asymp. no. v/ T 0 1 2 3 4
27 6 3 0 1263.59 1167.37 1041.69
1 483.739 400.323> 292.599?
2 24.8937
7 4 0 1119.79% 1013.79% 875.239°
1 436.459* 376.8912 301.106°
2 143.028 105.268 58.7279°
3 10.5484
8 4 0 524.8322 441.585> 3322717
2- 12 8 0 932.947> 853.811"2 7498642
1 325.8822 278.2832 217.474"2
2 95.8030 71.0373 41.376912
3 19.9633 10.0466
13 9 0 87.8731"2 35.2247"2
1 5.25868
3" 4 4 0 1623.55 1470.74
1 568.235 468.826
2 137.420 81.9036
3 0.85611
3~ 4 4 16 643.99212 551.467"2
17 150.116" 97.8055
18 1.20481

levels that are strongly coupled to the unpolarized metastable
dimer states are indicated by a superscript 2, where the
criterion is JZ/fun > 0.9 Eh.

Of the 159 long-range levels found, 15 have a strong spin-
stretched coupling, and 69 have a strong unpolarized coupling.
In addition, there are 151 levels that possess some short-range
character, and also satisfy the observability criteria. Some of
these are very strongly coupled to the spin-stretched meta-
stable state. However, we do not observe these levels once
non-adiabatic and Coriolis couplings are turned on and so
conclude that these levels are unlikely to be observed in
experiment.

3.4 Multichannel

With all couplings included in the calculation, only those levels
beneath the lowest asymptote are true bound states. In con-
trast to the situation in *He*, most of the levels lie above the
lowest asymptote and, due to couplings to open channels,
these higher lying levels almost always acquire a finite lifetime
due to predissociation. These resonances possess complex
energies, where the imaginary component represents the
resonance width, and are more difficult to isolate. As our
search routine based on Cauchy’s argument principle requires
many solutions of the differential equations (7), we restrict the
predissociation width to be less than 100 MHz and only search
within 2 GHz of the asymptotic energies that result from
diagonalization of the hyperfine structure. Additionally, we
match only at two points, 100 and 300 ay, which may exclude a
few levels from our search, although it can be argued on the
basis of spin-conservation of the laser coupling that reso-
nances which exist solely inside this distance will very likely
ionize and hence will not be observed in experiment.

Beneath the lowest asymptote we find bound levels with
only very weak coupling strengths. We therefore focus on the
resonances that were successfully isolated. As these levels are
not purely long-range, we must also consider the effect of

ionization which reduces the level’s lifetime and hence obser-
vability. In our previous investigation of *He* we imposed a
criterion of Py, > 87.5%. However, although a large number
of resonances were found in *He* using the above method,
very few satisfy the same observability criteria as *He*. In
Table 3 we instead list the 30 resonances that are most likely to
be observed in experiment, grouped by the nearest fine-
structure asymptote.

In contrast to the purely long-range levels in the 0,, , J = 1
potentials of “He*, we do not find any single-channel long-
range bound levels in the *He* potentials that remain bound
after the inclusion of couplings to all accessible states, nor do
we find any multichannel levels that can be described purely in
terms of single-channel potentials. Again we must emphasize
that the relative coarseness of the approach here, necessitated
by the large basis sets, may result in some important levels not
being detected. Additionally, for the remaining resonances
with short-range character, very few possess strong coupling
strengths to the metastable manifold. We do note that there
are some particular resonances which stand out in that their
short-range spin-stretch character is high with Py, > 80%. It
is these levels that we believe will be the most likely to be
observed in experiment. We also note that the majority of
resonances appear to be dominated both by 7 = 1 and by a
projection of ¢ = 1.

4 Conclusions

The bound states of the fermionic *He(2 °S;) + *He(2 3P,«)
system, where j = 0, 1, 2, have been investigated using the
recently available ab initio short-range 1’3’52; « and 1’3’51'15,‘,,
potentials computed by Deguilhem ez al.® Single-channel and
multichannel calculations have been undertaken in order to
investigate the effects of Coriolis and non-adiabatic couplings.
In contrast to the situation for the *He* system’ where the
effect of these couplings on the large number of bound levels
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Table 3 Energies, in units of MHz, of resonances in 3He(2 3S]) +
SHe(2 3P,») that are most likely to be observable in experiment. Energies
given are relative to the specified asymptotic energy Ex’. The predis-
sociation width I',., short-range spin-stretched character Py,
coupling strength o7, and largest contributing basis of ¢ are listed
for each level

T PT E/MHZ rpre/MHZ Pstr (OA)) J%str (Eh) ¢
E5 = 1780.85 MHz

2 —1 —1283.40 15.32 49.6 0.372 0
1 -1 —705.27 71.56 82.0 0.177 1
1 —1 —301.47 33.13 90.2 0.267 1
2 -1 —110.16 19.02 44.5 0.375 0
1 -1 —71.68 5.15 64.4 0.280 1
E3® = 629291 MHz

2 -1 —1951.86 69.9 473 0.278 0
1 -1 —1808.40 60.4 49.1 0.313 1
1 —1 —1179.49 59.8 S51.8 0.259 1
1 -1 —958.79 60.9 76.1 0.234 1
1 —1 —848.05 46.9 70.8 0.234 1
1 -1 —812.01 44.2 62.2 0.268 1
1 -1 —779.20 44.9 76.9 0.320 1
1 -1 —601.37 55.7 49.1 0.285 1
2 -1 —499.02 86.6 58.0 0.337 0
1 -1 —324.32 54.4 68.1 0.281 1
1 —1 —313.77 58.0 75.2 0.312 1
E;° =6739.70 MHz

2 -1 —193.32 58.1 51.3 0.301 1
2 -1 —186.29 36.0 55.1 0.372 1
1 -1 —38.44 64.7 59.7 0.290 1
1 —1 —11.52 76.6 58.0 0.269 1
E¢® = 8520.55 MHz

1 —1 —1029.50 20.1 76.5 0.204 1
1 -1 —840.44 24.9 83.8 0.212 1
1 -1 —513.78 423 84.8 0.204 1
1 -1 —380.48 53.7 84.0 0.190 1
1 -1 —245.71 55.3 73.0 0.213 1
E7 = 13032.61 MHz

1 —1 —1996.78 91.1 76.6 0.157 0
1 -1 —680.18 86.2 80.5 0.182 1
1 —1 —552.73 76.3 74.2 0.172 1
1 -1 —508.69 92.0 76.1 0.190 1

below the lowest asymptote (j = 2) could be studied, most of
the levels for the *He* lie above the lowest asymptote and
become resonances due to couplings to open channels.

The single-channel long-range levels obtained in the present
investigation differ significantly from those found by
Dickinson,'" both in their patterns and energies. Dickinson
reports nine levels for the 0" symmetry, 16 for 07, six for 3"
and four for 3~ whereas we find 22 levels for 0", 35 for 07,
seven for 3¥ and five for 37. We also find numerous levels for
the 1* and 2* symmetries for which Dickinson could not find
any states. These differences are not unexpected as our
expression (29) for the matrix elements of Hy differs from
that of Dickinson by an overall phase factor and the phase of
the A, — A, term. By using the expressions given by Dickinson
and with some modification of the values for the hyperfine
structure, our single-channel calculations were able to repro-
duce the results of Dickinson to within 5%.

The possible experimental observability of the theoretical
levels has been assessed using criteria based upon the short-
range character of each level and their coupling to metastable
ground states. Although the bound states below the lowest
asymptote and most of the large number of resonances above
this asymptote do not satisfy our observability criteria we are

able to identify some 30 resonances which are promising
candidates to be observed in experiment. Unfortunately, the
levels that were found in the single-channel calculations were
not able to be linked to any of the predicted multichannel
resonances. This is because we only have information regard-
ing resonances that have small predissociation rates, instead of
for the complete set of states. Hence it is very difficult to
observe the change of behaviour of a single-channel bound
level after the non-adiabatic and Coriolis terms are included.
In contrast, the “He" calculation focused on multichannel
bound levels which allowed a comparison between the
complete set of single-channel and multichannel levels. For
the short-range levels, this lack of connection implies that the
non-adiabatic and Coriolis couplings modify the character of
the levels such that they are no longer observable in experi-
ment. However, because the resonance search is costly to
perform, we cannot make the same statement for the purely
long-range single-channel levels. Hence, we also recommend
that future experiments also search for the levels that are
marked in Tables 1 and 2 as observable.

Appendix: basis states and matrix elements

The unsymmetrized body-fixed (molecular) states in the
coupling scheme (11) are

(’yljll'lf‘l)/N (ijziZfz)Ba.fa 9/7 T7 mT>

=\Tmr, Q) Y > > >N

Q@ Q) Qi) iy Q1 L1, Qs sy

C/lfz/ Cflilfl

% L1 Sij)
99,2 49,9, 9,

i/
& Qr, 25,9,

2, 2,

LSy |, .
X CQizg;zQ,-z |/IQL1951>A‘11‘QI'1>A

X [7291,9Qs,) pli2 Qi) (50)

where the transformation between the molecular and space-
fixed states is, for example,

72)) = 37 iy (0,0,0)lim). 51
m;

The states of the dimer system must be constructed to
correctly include the symmetries present in the system.
Importantly, they must be eigenstates of the total parity and
nuclear permutation. The total parity operator Pr is equi-
valent to the action of P,PsP.Xy where the action of the
inversion operators P;, Ps and P; on the orbital, electronic
spin and nuclear spin space-fixed states, respectively, is

PL\LimL, Ya = Pi\LimL, ) Bs

ISS\SimS, Ya = \Sims, ) B
I;f\iimi, Ya = lim; )p (52)

where P; is the parity of the atomic state. The nuclear
permutation operator X, reverses the molecular axis which
is equivalent to 4 < B and (0, ¢) —» (n — O,p + n).
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Noting that

XND{n,-,Q,(QDaH,O) =D (p+m,m—0,0)

m;,Q;
o (53)
= (_])]D{'n/,—ﬂ/((p7 07 0)
then
PyIT, my, Q) = (=D)"|T, my, —Qy) (54)
and

Pri(o)as (02)m, fo Q5 T, my)
= PiPy(—1Y ~ T4y (02)3, £ —Qp T, my) (55)

where we have introduced the notation o; = {y;, j, i;, f;}. The
eigenstates of Py are therefore given by (14).
Since Xy is equivalent to P7P; PsP; where
PrPsP\(o) 4, ()3, [, Qp T, my)
= (—l)fl +frfPle\(sz)A, ()5 /. Qn T, mr) (56)

then the action of X on the states (14) is

XN‘(al)Aa (a2)B74f5 d)a Ta mr; PT>

= PrPPo(—1)" 2NN (00) o () g, fo . T, mys Pr)
(57)

so that the eigenstates of Xy are (15).
The relationship (21) between the bases (17) and (19) is
obtained by first using

" _ LiLy)L S15,S
11920, 2s,) 417221,925,) 5 = E : CQLIQLZQLCQSI Qs, Qg
LSO Qs -

X |(71)4(72) g, LSRLQs),
(58)

and expressing sums over Clebsch—Gordan coefficients as 9 — j
symbols to give

|(a1)A7 (az)viv ¢a Tv mr; PT>

=|T,mr,¢) Y > >

Qi Qiy 129 LS Qs

LA i

v J L L, L

X Corpso,d i1 B i S1 S S
f L f o
X [(71) 4(v2) g, LSQLOs)|1121)) 4|12923,) - (59)

Introducing the coupling coefficients, for example,

- .
Fetn. = [QL+1)(2S + 1)(2j1 + 1)(2 + 1)]2

L L, L
X Chihol SIS S (60)
o2

and using, from (19),

(0402 LSQQs) = Nu(1g) + [u)) (61)

then

|(051)A7 (O‘Z)B7f> (/)7 T>mT§ PT>

=|T.mr,¢) Y > > Ciloo

Qi Q) i19iQ; LSQL Qs

X ER Fly0,(18) + 10)0120) (|220) 5. (62)

The state with 4 <> Bis obtained by reordering the angular
momenta subscripted with 1 and 2 in all Clebsch-Gordan and
9 — j symbols and using

((72)4(11)5 LSQLQs) = N, PPy~ 1) T EFSITRS0y )
(63)

to give

|(a2)A7 (al)37.f7 4)7 T7’/nT; PT>

T ) Y Y (s

Qi, Qiy 19iQ; LSQLQs

iyigi S1of ¢ 12792
CQ,-I Q, Q,-Fﬁg,g,- Frso, 06

x (lg) = [))[12920) 4|11, ) - (64)

Forming the combination (16) then yields (21).
The matrix elements of H, are diagonal in ¢. Using the
explicit states (25) then

<OC/1 ; 06/27 ¢,|ﬁel|al7 02, ¢>

= (T, mly, §'| T, mr, d) Z Z Z Z (_1)/'§+jz

1j/ Qi 12 '} Qg S Qs
x [ 1138 friifif2Si) 2
"i’f’ jif 1S’ 1Sj
% Coay 00,0 Cayor0 Co,040,
[ A 1 b
x<1/2 12 12 1/2 i
VA A B O
11 f L1 p
X
17 s)l1 j s
x L8|+ el (0 ) Hal(chrlg) -+ i)
(1) 45 (1) o 7 QN (00) 5 (01) o, 25) (65)
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where ¢§ = 1 + (=1))Py and ¢ = 1 — (=1)'Py. The
orthogonality of states reduces this to

<(xl170(/27¢/|1:]€l|0(170(27¢>

T D) D I GV e (A A RN

Jiji Qi SQLQs

v s o .
' if vif IV 18j
x G ;Qi‘bcg/gi‘bCQLQSQ_; CQLQSQ/'

Lo (L R
11
x{$1/2 172 i $81/2 1/2 i { }
1j S

"L N L f

L1 Yy

2 (o o] U 2 1 o0

x {1 ) S}E[‘é{r( S+1A;(R)+ )+ T (R) + EXY)]
J

(66)
where n = {y1, y2, ¢, T, my, P7}. Similarly we can show

<OC/1 706/2, _d)/‘l:lclhxhab_(b) = (—1)f.7f/<O(/1,OC/2,¢/‘I:ICI|O(1’O(2,¢>.
(67)

The phase factor (—1)" =7 is cancelled by the factor arising
from (18), thus ensuring the two contributions (66) and (67)
interfere constructively. Conversion of the Clebsch—-Gordan
coefficients into 3 — j symbols finally yields (29).
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