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Abstract
A theoretical analysis of photoassociation in ultracold metastable helium has been un-
dertaken for the 2 3S1 + 2 3S1 to 2 3S1 + 2 3P transition. A full multichannel calculation
is presented for two aspects of the system, a) the accurate calculation of energies for
the bound vibrational levels of the dimer; and b) the non-perturbative calculation of the
photoassociation line shapes allowing for abitrary laser intensity and detuning. A strong
emphasis is placed on the accuracy of the calculations, and the elimination of approx-
imations that have been used in previous investigations. The results indicate that full
multichannel calculations are required rather than approximate single-channel calculations
in some important situations, and are especially useful for making assignments between
experiment and theory.

Bound levels have been previously measured from the photoassociation of cold metastable
thermal gases to energies close to the three asymptotes j = 0, 1, 2 of the 2 3S1 → 2 3Pj

atomic transition. Previous analysis of these measurements was made using either ap-
proximate accumulated phase techniques based on long-range single-channel potentials, or
using multichannel calculations and long-range potentials. Because accurate short-range
electronic potentials have been calculated only recently, this thesis presents the first mul-
tichannel calculation for the levels near the j = 1, 2 asymptotes. The new short-range
potentials had previously been used in an approximate single-channel calculation, but this
type of calculation ignores the effects of non-adiabatic and Coriolis couplings. Presented
here are the binding energies calculated from a fully multichannel technique which includes
these couplings, and some differences of up to 10% from the single-channel calculations are
observed. The detailed knowledge of the bound wave functions is then exploited to deter-
mine a set of observability criteria that produce a near unique assignment of theoretical
levels to experimental observations. From these unique assignments, a 1% correction to
the short-range electronic potentials has been implemented that significantly improves the
agreement between theory and experiment.

Experimental measurements have previously been made of line shifts in the photoasso-
ciation spectra of vibrational levels in the 0+

u long-range potential that asymptotes to
2 3S1 + 2 3P0 and their variation with laser intensity. These results were previously anal-
ysed by performing an approximate second-order perturbative calculation of the line shift
that is valid only for low laser intensities. In this thesis a completely non-perturbative
calculation of the spectra and line shapes for abitrary laser intensity is presented for pho-
toassociation to the levels probed in experiment. The techniques of dressed state formalism
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and a modified radiative coupling are employed to properly treat the laser coupling for large
interatomic separations. These calculations produce resonance profiles superimposed on a
very significant background, a feature that is not seen in photoassociation calculations of
other atomic species. From the calculated line shapes, the line shifts and line widths were
determined for varying intensity and a small nonlinear intensity-dependence of up to 2.5%
was found for the line shift. The effects of invoking the dipole approximation for the laser
coupling for the long-range molecular system are analysed by solving the equations using
the complete laser coupling that does not assume the dipole approximation. Important
differences are obtained between the profiles with and without the dipole approximation,
and the photoassociation resonances are found to be more discernible at larger intensities
when the complete laser coupling is used.
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Chapter 1
Introduction

1.1 Ultracold atoms

Ultracold physics research has grown tremendously over recent decades to become a major
force in the field of atomic physics. The successful cooling of gases to temperatures in the
sub-mK regime has produced a wide range of unique diagnostic tools and unusual physical
phenomena such as Bose-Einstein condensation, atom lasers, atom interferometry and
atoms trapped in optical lattices. The success of ultracold physics research is due not only
to the incredibly precise nature of experimental measurements and theoretical calculations
but also to the controlled manipulations of atoms and their interactions that radiation
and magnetic fields provide at these temperatures. Ultracold research has applications
in condensed matter physics, as control over bulk behaviour in an ultracold system can
be used as a highly configurable model of a more complicated and inflexible condensed
matter system. Ultracold experiments also provide a pathway to study the possibilities
of quantum computing, atom lithography and high precision atomic clocks. The topics of
ultracold research discussed in this introduction provide a small sample of what research
has been performed in ultracold experiments and by no means represents the breadth of
current interest in the field. For a general review of ultracold physics, see in Weiner et al [1]
and references therein.

Cooling techniques

The attainment of ultracold temperatures has been made possible by the development of
advanced laser cooling techniques, for which Steven Chu, Claude Cohen-Tannoudji and
William Phillips were awarded the 1997 Nobel Prize in Physics. The principle of laser
cooling makes use of uni-directional photon absorption by an atom, followed by isotropic
spontaneous emission. Averaged over many incident photons, the absorption/emission pro-
cess creates a net momentum transfer directed along the incident laser beam. The Doppler
shift experienced by an atom moving in the presence of a laser field can be exploited by
red detuning the laser to orientate this momentum transfer to be in the opposite direction
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to the atom’s motion, such that photon absorption will cause the atom to slow down and
be cooled. The manipulation of the atom’s energy levels by Zeeman shifts and the trap-
ping of atoms using inhomogeneous magnetic fields are also vital to the cooling process.
The most commonly used cooling and trapping techniques are Zeeman slowing, magneto-
optical trapping, magnetic traps, optical molasses and evaporative cooling, see [1, 2, 3].
The methods used for the cooling of metastable helium will be described in more detail
later in this chapter.

Manipulation of collisions

The accurate nature of ultracold physics allows the fine control of interaction properties for
two-atom collisions, including those within many-body systems. Ultracold collisions are
dominated by long interaction times and by the lowest order (s-wave) rotational collision
terms which are characterised by the scattering length a. Knowledge of the value for a is
essential for quantifying molecular physics in the low temperature limit. For example, if
the scattering length is negative then the attractive forces between the atoms of a bosonic
gas do not allow the production of a stable Bose-Einstein condensate. Alternatively, if the
scattering length is large then the gas will have very large elastic cross sections, desirable
for efficient cooling. The scattering length can be modified by applying external fields to
invoke the magnetic tuning of Feshbach resonances [4], or the coupling to optical Feshbach
resonances [5], otherwise known as photoassociation resonances. Feshbach resonances occur
when a scattering state is energy shifted into resonance with a bound molecular level; see
Chin et al [6] for a general review. The changes induced by these methods can reverse the
sign of the scattering length and suppress inelastic loss rates, allowing condensation that
would otherwise be prohibited, such as in cesium-133 [7], rubidium-85 [8] and potassium-39
[9]. Recently, an experiment in ytterbium by Yamazaki et al [10] applied a pulsed optical
standing wave to spatially vary the scattering length by the use of an optical Feshbach
resonance, providing a control of collisional properties on a sub-micron scale. A general
review of ultracold collisions is presented by Julienne [11].

Quantum degenerate gases

The unique advantages of ultracold physics can be related to two important attributes
of ultracold ensembles that promote the quantum aspects of the gas over the classical
behaviour: extremely narrow thermal widths and very large de Broglie wavelengths. If
the gas is dense and the thermal motion suppressed, the de Broglie wavelength becomes
comparable to the distance between the atoms and a quantum degenerate gas is formed.
For bosonic species the degenerate gas condenses into a macroscopic coherent quantum
system known as a Bose-Einstein condensate (BEC). Much research has been undertaken
to understand and exploit the coherence features of these condensates for a range of dif-
ferent atomic species. A BEC can be used to trap light [12], create atom lasers [13] and
produce many other features that were previously thought to be restricted to the domain
of electromagnetic waves.
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Real-world materials are incredibly complicated systems that require significant effort to
manipulate their behaviour in order that desirable behaviour such as semiconductivity or
superconductivity can be generated. On the other hand, Bose condensates and quantum
degenerate Fermi gases provide unique oppourtunities to study the physical properties of
these many-body systems through the trapping of particles within optical lattices which
then mimic the Hamiltonian of the more complicated system [14, 15]. The overwhelming
benefit of these model condensed-matter systems, due to their highly configurable nature,
is the ability to investigate the entire parameter space of the Hamiltonian. Details such
as interaction strength, lattice spacing and hopping strength can be tuned by the use of
resonances, trap geometry or laser-coupled quantum states with techniques that are far
more precise, reliable and easier to implement than the manipulations required in solid-
state experiments, such as doping of a crystal or compression at high pressure. These
quantum degenerate gases demonstrate a rich variety of phases, that go well beyond stan-
dard textbook theory of analogous solid state systems. For example, due to the presence
of local interactions between particles at the same site, strongly-correlated phases can be
observed. In one case, this results in the Mott insulator phase transition [16] that arises
from repulsive interactions between particles and does not rely on a filled valence band to
provide insulating behaviour. Effects such as Anderson localisation that is caused by weak
to strong disorder, a structure that is always present in real-world systems, can also be
experimentally investigated through the use of random speckle potentials [17] or photonic
lattices [18]. Recent advances in experimental technique have even provided the ability for
single-site detection and preparation of bosonic condensates [19], and fermionic systems
[20]. Furthermore, model systems in optical lattices can simulate gauge fields [21, 22] that
are described by effective Hamiltonians with magnetic flux and spin-orbit coupling. These
systems can produce exotic phases such as topological insulators [23] that allow for a quan-
tum spin Hall effect in which the bulk of the material remains insulating yet the boundaries
allow for charge or spin currents that are insensitive to impurities. See Bloch et al [24] for
a general review of many-body physics in optical lattices.

Quantum degenerate Fermi gases have been investigated experimentally in a range of con-
finement geometries and theoretically with a large variety of different interactions. Due to
their similarity to electron behaviour within real-world materials, there is a great deal of
interest in the detailed understanding of degenerate Fermi gases. The fundamental differ-
ence between bosonic and fermionic systems lies with their symmetric and antisymmetric
natures, respectively. This manifests itself in the Pauli exclusion principle for fermions, in
which no two particles may be present in the same state. However, fermions may also join
to form bosonic composites in a process termed Bardeen-Cooper-Schrieffer (BCS) pairing,
which has shed much light upon the origin of superconductivity and even allows for a
BEC-like state that can even be formed using fermionic atoms [25]. Furthermore, bosonic
systems can be made to behave in a fermionic manner, by tuning their same-species inter-
action to become so large that an effective ‘hard-core’ constraint is effected that mimics
the Pauli exclusion principle. This permits the differences due to exchange interactions be-
tween particles to be investigated in great detail. The combination of Bose-Fermi mixtures
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also provide a unique insight into exotic phases such as supersolid behaviour [26].

Rubidium was the first species successfully used to form a Bose-Einstein condensate in
1995 by Anderson et al [27]. Condensates have since been created in several alkali metals:
lithium by Bradley et al [28], sodium by Davis et al [29] and potassium by Modugno et al
[30] as well as hydrogen by Fried et al [31]. Condensates have also been observed in alkali
earth metals such as calcium by Kraft [32] and strontium by Stellmer et al [33]. BECs
have also been formed in ytterbium by Takasu et al [34], chromium by Griesmaier et al
[35], cesium by Weber et al [7] and metastable helium, by two groups in close succession,
Robert et al [36] and Pereira Dos Santos et al [37]. The 2001 Nobel Prize in Physics was
awarded to Eric Cornell, Wolfgang Ketterle and Carl E. Wieman for their contributions
that lead to the creation of atomic BECs.

1.2 Photoassociation

Photoassociation (PA) is the process of resonant excitation of a pair of colliding atoms in
the presence of a radiation field to a molecular bound level via a free→bound transition
that creates a molecule in the excited state. Because the laser field shifts the excited state
into resonance with the scattering state, the process can be considered to be an optical
Feshbach resonance. The PA process was first suggested by Thorsheim et al [38] and
was first measured from an associative ionisation process by Gould et al [39] in a gas of
sodium at approximately 1 K. In experiment, PA spectroscopy scans a probe laser across
a range of detuning from the asymptotic excited state energy. This spectroscopy is very
precise because the thermal distribution is negligible compared to the line width of the
PA transition and measurements made from scattering collisions can reach even sub-kHz
precision. The initial scattering state of the PA process also makes possible the excitation
of purely long-range molecules [40] that may be described entirely by well known long-range
interactions. A general review of photoassociation research is presented by Jones et al [41]
and a review of the formation of cold molecules is presented by Dulieu and Gabbanini [42].

Experimental studies

Many different atomic species have been investigated using PA and other related processes.
The majority of these are ground state species, dominated by the alkali-metal species [41]
that possess a single active electron. Other species, such as the alkali-rare-earth series
[43, 44] and combinations of mixed species such as RbCs [45] have also been experimen-
tally investigated. PA is often used to perform precise measurements on atomic properties
such as radiative lifetimes, see Bouloufa et al [46] and references therein. Ultra-fast dy-
namics of the photoassociation system at femtosecond [47, 48] or attosecond [49] timescales
have also been investigated and detailed control of the photoassociation process has been
made possible, including techniques to limit the loss rates of the process. Two-colour PA
configurations allow even further manipulation of atomic ensembles and can access ground
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state molecules such as the association of Na2, performed by Jones et al [50], or allow for
high precision determination of the scattering length, as performed by Kitagawa et al [51].

Theoretical studies

Several theoretical formalisms have been developed for describing the dynamics of the
photoassociation process. The generalised PA problem with many resonant lasers has
been treated semi-analytically by Bohn and Julienne [52] by making use of the concepts
of quantum defect theory. Line shapes and scattering properties can be calculated from
their formulation, but a perturbative treatment was invoked for the laser coupling and
this coupling was assumed to vanish at large interatomic distance. Simoni et al [53] cal-
culated line shapes in rubidium for arbitrary laser intensity, but also assumed that the
laser coupling was negligible at asymptotic separations so that their asymptotic equations
became uncoupled. Napolitano [54] presented a theory for the semi-analytic calculation of
S-matrix elements and PA profiles in a sodium system which made use of dressed states to
correctly treat the asymptotic laser coupling. However, the detuning was assumed to be
large compared to the laser intensity and fine structure was not included in the formalism.
Montavão and Napolitano [55] then extended the formalism of [54] to allow for a fully three
dimensional collision process and then calculated line shapes of strontium for high laser
intensity.

The dynamics of PA has also been investigated in Bose-Einstein condensates where the
many body interactions can be highly influenced by the laser coupling [56, 57]. Trapping
effects also play a significant role in modifying PA spectra, as shown by the calculations of
Deb and You [58] and Grishkevich et al [59]. Finally, theoretical studies of photoassociation
involving mixed species, such as LiCs [60] and KRb [61], have been performed.

1.3 Metastable Helium

This thesis focuses on the metastable form of the atomic species of helium, often written
as He*. Metastable helium is unique amongst all other atomic species that have been
condensed as it is in an excited state, the 1s2s atomic state. The natural lifetime of He*
is nearly two hours [62], which is the longest of any excited atomic state. The interactions
of He* are similar to that of alkali species, as He* has only one valence electron, but
there are many distinct features for which He* provides significant advantages. The ease
of detection of the atom and its related processes is due to the large 19.82 eV internal
electronic energy of the 2s electron. For example, an individual He* atom colliding with a
surface will invariably release a high energy electron in the process which can be captured
by a detector such as an electron multiplier with near 100% probability. As well, He* can
autoionise via the processes of Penning and associative ionisation:

He∗ + He∗ → He + He+ + e− Penning ionisation

He∗ + He∗ → He+
2 + e− Associative ionisation (1.1)
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These processes provide very useful mechanisms to probe the behaviour of the gas. On
the negative side, these ionisation processes are inelastic processes that can be regarded
as undesirable aspects that introduce loss from the system. Fortunately, the resultant
high energy products of the ionisation are not trapped under the same conditions as the
metastable helium atoms, so there is minimal contamination of the trapped gas. Of the
two common isotopes of helium, this thesis analyses the behaviour of helium-4 which has
no net nuclear spin. This is of enormous benefit when compared to other atomic species,
as it means the complicated interactions arising from hyperfine structure are avoided. Un-
fortunately, fewer opportunities are available for magnetic tuning of Feshbach resonances.
A detailed discussion of the advantages of studying metastable helium in ultracold physics
is presented by Baldwin [63].

Metastable helium is cooled in a multi-step process. Initially, a gas of ground state helium
is cooled to temperatures below 100 K by thermalisation with liquid nitrogen or a similar
technique. An electric discharge is then used to impart energy to the atoms and those
which undergo a transition to the metastable state are sent through a Zeeman slower. The
Zeeman slower exploits the momentum of photons to slow the beam of atoms and does this
optimally by using the magnetic Zeeman shift to counteract the Doppler shift of the photon
that the helium atom sees from its rest frame of reference. After exiting the Zeeman slower,
at a speed of approximately 40 m/s and temperature of < 1 K, the atoms are trapped in
a magneto-optical trap (MOT) that makes use of three pairs of counter-propagating lasers
detuned from an appropriate transition. The spatial variation of the magnetic field in the
MOT then promotes absorption from one particular laser of each pair depending on the
position of the atom in the trap. This trap not only contains the atoms, but further cools
them to mK temperatures. MOT cooling below this temperature, however, is not possible
because of the Doppler recoil limit. Further cooling takes place using an optical molasses
[3], and then to reach the temperatures required for Bose-Einstein condensation requires
the gas to be transferred into a purely magnetic trap. The atoms are cooled evaporatively
in this trap by regularly lowering the trapping potential so that the most energetic atoms
escape, thus decreasing the average temperature of the gas. High elastic collision rates
are important in this process as the gas must quickly thermalise after the trap potential
has been re-raised. To achieve a high density of atoms confined in the gas, inelastic loss
rates must be small throughout the entire cooling process. The largest contributions to
inelastic losses are the ionisation processes described above and these can be suppressed
by five orders of magnitude [64] by spin-polarising the gas. The polarisation of the gas is
performed by using a magnetic field gradient that only traps those atoms whose spin is
aligned in a particular direction. Every atom in the gas will then have spins aligned and so
can only collide in the ‘spin stretched’ state: the molecular state with maximal combined
spin. For ionisation to occur in this stretched state, a spin flip is required due to the Pauli
exclusion principle and so the process is heavily suppressed. Further details of cooling and
slowing processes for metastable helium may be found in [65, 66, 67].
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1.4 Experimental studies of metastable helium

Photoassociation

Photoassociation experiments of metastable helium-4 have observed a number of reso-
nance peaks near the three asymptotes j = 0, 1, 2 of the excited state 2 3S1 + 2 3Pj . Her-
schbach et al [68] first found peaks near the j = 2 dissociation limit and, more recently,
Kim et al [67] and van Rijnbach [66] have added to the observations such that over 40
peaks with binding energies ≤ 14 GHz are known near this limit. In addition, van Rijn-
bach observed six levels near the j = 1 dissociation limit and Kim et al observed five purely
long-range levels near the j = 0 dissociation limit. These observations to the different dis-
sociation limits were first analysed approximately by the experimental groups themselves
using the accumulated phase method [69], in the absence of short-range electronic poten-
tials. The accuracy of these approximate assignments requires further investigation and
validation using detailed multichannel calculations. Kim et al [70] also studied the effect
of laser intensity on the PA resonance line shapes of long-range levels near the j = 0

asymptote. From their theoretical analysis, bounds could be placed on the value of the
scattering length by the linear dependence of the line shift on intensity.

Precision measurements

Many experiments in He* seek to accurately determine the value of the scattering length.
Seidelin et al [71] were able to make an estimate based upon the variation of ionisation
rates as a gas is condensed during evaporative cooling and Tol et al [72] performed a
measurement using a similar technique. The most accurate determination to date is that
of Moal et al [73] who used a two-photon experiment and calculated the scattering length
to be a = 7.512 ± 0.005 nm from the position of a dark resonance in their spectra. Of
interest to photoassociation experiments are the decay rates of the excited states, and
a series of precise measurements has been performed for the 2 3P1—1 1S0 transition by
Dall et al [74], the 2 3Pj—2 3S1 transitions by Hodgman et al [75] and the 2 3S1—1 1S0

transition that governs the metastable lifetime by Hodgman et al [62].

Ionisation rates

Knowledge of ionisation rates is crucial to ultracold He* experiments because the ionisa-
tion processes (1.1) can dominate He* experiments. Stas et al [76] have made detailed
measurements of the ionisation rates in both helium-3 and helium-4 gases. Koelemeij et al
[77] observed the strength of ionisation in excited 2s2p and 2s3p levels of He*, which are
used for optical manipulation. Ionisation also limits the lifetime of the weakly bound He∗2
molecules but the observations by Moal et al [78] are in disagreement with the theory
of Beams et al [79]. The loss rates in helium-4 condensates can be almost totally at-
tributed to the ionisation rates and Sirjean et al [80] have determined two- and three-body
contributions to the loss rate.
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Fermi-Bose combinations

The use of two-colour laser traps makes possible the containment of both fermionic helium-3
and bosonic helium-4 in a degenerate Bose-Fermi mixture, as performed by McNamara et al
[81]. The group has measured ionisation rates resulting from hetero-nuclear collisions in
the dual condensate system [82]. Goosen et al [83] have performed a theoretical calculation
that predicts the existence of a large exploitable Feshbach resonance between the hetero-
nuclear pairs which they aim to experimentally investigate in the coming years. The
measurement of correlations between thermal fermionic helium-3 and bosonic helium-4
gases by Jeltes et al [84] has demonstrated the Hanbury Brown-Twiss effect that was
originally observed in chaotic light sources for atomic ensembles. The experiment revealed
a bunching and anti-bunching effect for bosonic and fermionic gases respectively due to
the quantum statistics of the gases.

1.5 Theoretical studies of metastable helium

Photoassociation

Theoretical calculations of photoassociation of metastable helium have mostly been lim-
ited to approximate perturbative techniques. Dickinson et al [85] computed ab initio
short-range potentials for the 2s2p system and were able to make initial assignments to
three quarters of the peaks observed in experiment by [66, 67, 68]. Deguilhem et al [86]
then revisited these potentials by optimising the basis set to achieve convergence at smaller
interatomic regions and were able to improve upon the assignments to the observed peaks.
However, their assignments were based on approximate single-channel methods that omit-
ted the effects of non-adiabatic and Coriolis couplings in the system. The purely long-range
levels that have been observed by Kim et al [67] have been analysed by Leonard et al [87] to
determine the binding energies and experimental uncertainties, and their theoretical values
were calculated using approximate adiabatic potentials. The measurements of line shifts
at different laser intensities made by Kim et al [70] have been analysed using second-order
perturbation theory by Portier et al [88] and, from these results, bounds were placed upon
the scattering length of the metastable system. Koelemeij et al [89] have considered the
use of photoassociation in manipulating scattering lengths by expanding upon the model
described by Bohn and Julienne [52].

Only two multichannel calculations exist of PA in metastable helium. Venturi et al [90]
performed a detailed multichannel theoretical calculation that showed that the adiabatic
approximation is very good for the calculation of binding energies of purely long-range
levels and van der Zwan et al [91] have modelled ionisation in the photoassociation process
of metastable helium by calculating line shapes over a range of parameters in a simplified
model system and have successfully compared their results to experimental measurements.
Neither of these calculations describe the photoassociation dynamics under arbitrary laser
intensity and both calculations were performed before the accurate short-range potentials
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Figure 1.1: Born-Oppenheimer potentials of the 2s2s molecular level of helium. Units of
THz (1 THz = 33.36 cm−1) are used so as to conform with the majority of results presented
in this thesis.

of [86] were available.

Although successful predictions have been made using the above approximate theories, a
complete theoretical analysis of all the observed levels requires inclusion of all interaction
terms in the system, the use of potentials accurate over the entire range of interatomic
separation, and a full multichannel calculation which includes non-adiabatic and Coriolis
couplings. This calculation forms a major part of this thesis.

Ab initio calculations

To perform calculations in metastable helium and its accessible excited states, several inter-
action potentials are required. For the He* interactions, the singlet and triplet potentials
of Müeller [92] and the quintet potential of Przybytek and Jeziorski [93], which include
relativistic and QED corrections, are available. These are shown in figure 1.1. The focus
of this thesis is investigation of the levels belonging to the 2s2p system and the interac-
tion potentials for this system have recently been calculated by Deguilhem et al [86]. The
long-range interactions of the 2s2p system can be described by dipole-dipole and dispersion
interactions that arise from well known atomic properties. In this thesis, the short-range
potentials of [86] are matched to these long-range forms and are shown in figure 1.2.

Several theoretical studies have determined the scattering lengths of He* by purely ab
initio processes. The works of Gadéa et al [94] and Dickinson et al [95] have calculated
scattering lengths of spin-polarised He* in helium-3 and helium-4 combinations. The pre-
cise potentials calculated by Przybytek and Jeziorski [93] allowed them to make a very
accurate determination of the least-bound quintet level and their potentials were used by
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Figure 1.2: Potentials of the 2s2p molecular level of helium. The potentials consist of
short-range ab initio potentials matched onto long-range dipole and dispersion potentials.
The colour coding is as follows, blue: 2S+1Σ+

g , green: 2S+1Σ+
u , red: 2S+1Πg, black: 2S+1Πu.

Lines marked with a solid line have S = 0, those with a dashed line S = 1 and those with
a dash-dot line S = 2. Units of THz (1 THz = 33.36 cm−1) are used so as to conform with
the majority of results presented in this thesis.

Moal et al [73] to obtain the most accurate experimental value for the scattering length
from their two-photon dark-resonance experiments.

Ionisation

Ionisation rates play a very important role in He* experiments and a large body of work
has been devoted to calculating inelastic cross sections and methods to enhance or sup-
press these rates. Fedichev et al [96] used perturbation theory to calculate ionisation rates
of spin-polarised helium for a range of temperatures and magnetic fields. Venturi et al
calculated rates in field-free [97] and magnetostatically trapped [98] collisions using a mul-
tichannel calculation and varied the input potentials in order to place bounds on the
ionisation rates. Beams et al [99] modelled very tightly trapped collisions to determine
trap lifetimes due to ionisation losses using a perturbative theory [100] based upon their
earlier quantum defect theory [101]. More recently Dickinson [102] used a quantum re-
flection model to determine ionisation rate coefficients for a range of temperatures and for
different combinations of helium-3 and helium-4.

Combinations of spin states

The theoretical analysis of Leo et al [103] of metastable atoms colliding in different com-
binations of spin states predicted very different elastic and inelastic cross sections for
particular spin combinations. These predictions have been confirmed by the experiments
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of Partridge et al [104] who observed characteristic combinations that persist in a thermal
gas after a radio frequency sweep was made. The unequal scattering lengths for different
spin combinations allowed Dall et al [105] to observe four-wave mixing in a He* condensate
by paired atoms formed from collisions of the out-coupled atoms with the bulk condensate.

1.6 Aims and objectives of project

This thesis focuses on the calculation of the bound states and line shapes relevant to
photoassociation of metastable helium to the 2 3S1 + 2 3Pj level. As discussed above, a
large body of work is available to assist with analysis of the system, but there exists no
non-perturbative, non-approximate general treatment of PA resonance profiles for arbitrary
laser intensity that may be applied to the helium system. As well, numerical calculations
of bound states in metastable helium are mostly limited to single-channel perturbative
approaches. The multichannel calculations that exist have not been performed using the
recently calculated accurate short-range potentials of [86]. Hence, there is a need for a
precise multichannel calculation to be performed for the metastable helium system.

The objectives of this thesis are:

• Perform a multichannel calculation which includes non-adiabatic and Coriolis cou-
plings for photoassociation in metastable helium to the 2 3S1 + 2 3Pj excited state.

• Undertake a comparison between these results and those of an approximate single-
channel calculation to determine the accuracy of the various approximations.

• Use the detailed information available from the multichannel bound wave functions
to make definite assignments to experimental data by developing unambiguous ob-
servability criteria.

• Perform a multichannel scattering calculation to determine the line shapes of the
photoassociation resonances to purely long-range bound levels in the 0+

u potential
near the 2 3S1 + 2 3P0 asymptote. The formalism is to be valid for arbitrary laser
intensities thus requiring a non-perturbative treatment of the laser coupling and its
correct incorporation at asymptotic separation. Two procedures will be employed: a
dressed-state formalism and a modified radiation coupling method.

• Test the validity of the dipole approximation to the laser coupling, especially for the
case of long-range bound levels, by calculating photoassociation spectra using the
full laser coupling without approximation.

1.7 Structure of thesis

This thesis comprises three major sections. Chapter 2 presents the formalism needed
to describe metastable helium and the 2s2p system, and carefully considers the coupling
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schemes and Hamiltonian matrix elements that are required for the calculations reported
in the remaining chapters of the thesis. The molecular basis to be used in the calculations
must be chosen wisely, as a naive choice may lead to nearly intractable numerical problems
further on in the calculations.

Chapter 3 discusses the calculation and identification of bound levels present in the
2 3S1 + 2 3Pj system with focus upon those near the j = 0, 1, 2 asymptotes. Several calcu-
lations are presented, commencing with the most approximate and simplest method and
layers of approximation are gradually removed until a complete multichannel calculation
is achieved. This allows the evaluation of the effects from different interaction terms and
tests the validity of the approximations. The results are then compared with experimental
observations, and a set of criteria is formulated to allow a unique assignment of theoretical
levels to those measured in experiment.

In chapter 4, the detailed dynamics of the photoassociation process is investigated for
colliding metastable atoms to a particular set of purely long-range bound levels in the 2s2p

state and the spectroscopic profiles for the configurations determined. An approximate
calculation is first presented, followed by an accurate multichannel calculation valid for
arbitrary laser intensities. The effects at high laser intensity are specifically investigated.
Finally, the validity of the dipole approximation for the laser-matter coupling is analysed
for shallow potentials, especially for photoassociation involving ultra-long range bound
levels.

Several appendices present the more technical aspects of the symmetrisation of the molec-
ular bases and the evaluation of matrix elements of the system Hamiltonian, detail some
of the numerical methods and procedures used to perform the calculations, and provide a
more complete tabulation of results.



Chapter 2
Formulation of basis states and matrix

elements

2.1 Hamiltonian

A precise definition of the Hamiltonian is required to perform calculations on the quantum
mechanical system of two atoms, whether they are in a scattering state or are bound to one
another. The two-body system is described by the coordinates of the nuclei rNA,B, where A
and B label the nuclei, and the electronic coordinates ri. For the electronic configurations
investigated in this thesis i = 1, 2 labels the outermost electrons (in either the 2s or 2p

orbitals) and i = 3, 4 labels the innermost 1s electrons. For convenience, the origin of the
coordinate system is placed at the centre of mass of the system which is also the centre of
charge for the two helium-4 atoms. The equations of motion are reduced to an equivalent
single body problem by separating the centre of mass motion, which is unaffected by
molecular interactions, from the relative motion that describes the vibration of the nuclei.
In the single body problem the reduced mass of the system µ = m1m2/(m1 +m2) is m/2
for helium-4, where both bodies have identical mass m1 = m2 = m = 4.002603 amu. In
this description, the radial variable, R = |rNB − rNA |, is the interatomic separation of the
two atoms.

The Hamiltonian that describes the two atom helium-4 system is given by

Ĥmol = T̂n + Ĥel + Ĥfs

= T̂R + Ĥrot + Ĥel + Ĥfs, (2.1)

where T̂n = p̂2(R)/2µ is the kinetic energy associated with the nuclear vibrational and
rotational motion of the reduced system, which can be further decomposed into a radial
component T̂R and a rotational component Ĥrot = −l̂2/2µR2 where l̂ is the rotational
angular momentum operator of the nuclei. The electronic Hamiltonian, Ĥel = ĤA + ĤB +

ĤAB includes the atomic Hamiltonians Ĥk, k = A,B, and the electrostatic interaction ĤAB

between the atoms. The relativistic corrections to the metastable helium system require
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the introduction of the fine-structure Hamiltonian Ĥfs which contains couplings between
the orbital and spin angular momenta of the individual atoms. No hyperfine structure is
present in helium-4 as there is no net nuclear spin.

When the molecular system is also coupled to a laser field, the inclusion of the radiation
field Hamiltonian, Ĥrad, and the interaction term, Ĥint, are required. This enlarges the
total Hamiltonian so that it becomes

Ĥ = Ĥmol + Ĥrad + Ĥint. (2.2)

To apply the Hamiltonians Ĥmol or Ĥ in calculations, matrix elements must be formed from
the inner product of Ĥmol between two molecular basis states. However, different bases
cause matrix elements of different terms of the Hamiltonian to become diagonal, so the
choice of which molecular basis to be used to describe the system must be made carefully.
The molecular basis must also be able to accommodate the couplings introduced by the
laser interaction term. Each term of the complete Hamiltonian of the system containing
the two atoms and laser is described in more detail below.

2.1.1 Electronic Hamiltonian

The electronic Hamiltonian, Ĥel = ĤA + ĤB + ĤAB, represents the electronic motion
and all of the electrostatic interactions between the electrons and nuclei of each atom.
Explicitly, the atomic Hamiltonians are given by

Ĥk =
∑
i∈k

 p̂2(ri)

2me
− Ze2

4πε0|ri − rNk |
+
∑
j>i

e2

4πε0|ri − rj |

 (2.3)

where the notation i ∈ k indicates the sum is over the two electrons that are orbiting
nucleus k, and the electrostatic interaction is

ĤAB =
Z2e2

4πε0|rNA − rNB |
+

∑
k={A,B}
i/∈k

−Ze2

4πε0|ri − rNk |
+
∑
i∈A
j∈B

e2

4πε0|ri − rj |
(2.4)

where i /∈ k ensures the sum is over the two electrons that are not orbiting nucleus k
and Z = 2 is the proton number of the helium nucleus. The action of Ĥel is difficult to
deal with exactly, so the Born-Oppenheimer (BO) approximation [106] is imposed which
decouples the nuclear motion from the electronic motion. In the BO approximation, the
electrostatic interactions of the dimer are calculated by considering the nuclei to be fixed
at an interatomic distance R and the electronic wave function determined without consid-
eration of the nuclear motion. The interatomic separation is then varied as a parameter
of the electronic interaction to build up the electronic potential as a function of R. This
allows the basis states of the molecular system to be represented in the form F (R)|a〉 where
F (R) is the vibrational wave function and |a〉 is the electronic and rotational state which
may be treated as independent of R (but may still depend upon the orientation of R̂).
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The BO approximation is only valid if the nuclear motion is much slower than the motion
of the electrons such that the electronic distribution can be considered able to instanta-
neously adapt to the varying interatomic distance. At room temperatures, this validity
criterion is normally expressed using the mass ratio between the electron and the nucleus,
which is small even for the light-weight nucleus of helium-4. Furthermore, the ultracold
temperatures of the system under investigation in this thesis suggest that the nuclear mo-
tion is many magnitudes smaller than the electronic motion. In the BO approximation,
Ĥel satisfies an eigenvalue equation of the form

Ĥel|ΛσSw〉 =
[
E∞ + 2S+1Λσw(R)

]
|ΛσSw〉 (2.5)

where 2S+1Λσw(R) are known as the BO potentials and E∞ is the asymptotic energy of
the state. The states |ΛσSw〉, also known as Hund’s case (a) states [106], are labelled
by the absolute value of the projection of the total orbital angular momentum along the
intermolecular axis Λ, the total spin S, the symmetry w under electronic inversion through
the centre of charge, and the symmetry σ under reflection of the electronic wave function
through a plane containing the intermolecular axis which only exists for Λ = 0. The basis
states best used to describe Ĥel must then combine the atomic orbital angular momenta L1,
L2 and spin angular momenta S1, S2 to form L = L1 +L2 and S = S1 +S2 respectively.

In this thesis, the BO equations that result from the action of operators (2.3) and (2.4)
are not solved. Instead, input data for the BO potentials is obtained from several sources.
The three metastable 2s2s potentials are taken from Müeller et al [92] for the 1Σ+

g (R) and
3Σ+

u (R) potentials and the 5Σ+
g (R) potential is taken from the calculation of Przybytek and

Jeziorski [93] which includes adiabatic, relativistic, and QED corrections. The 2s2p man-
ifold is described by the recently available short range multi-configuration self-consistent
field (MCSCF) 1,3Σ+

g,u and 1,3Πg,u potentials and short-range multi-reference configuration
interaction (MRCI) 5Σ+

g,u and 5Πg,u potentials of Deguilhem et al [86], matched onto long-
range retarded dipole-dipole and dispersion potentials using parameters supplied by either
Marinescu [90] or Zhang et al [107]. These long-range potentials have the form

− f
(
R

λ–

)
C3

R3
− C6

R6
− C8

R8
(2.6)

for the parameters of Marinescu, and

− f
(
R

λ–

)
C3

R3
− C6

R6
− C8

R8
− C9

R9
− C10

R10
(2.7)

for the parameters of Zhang et al, where

f(x) =

cosx+ x sinx for Λ = Σ

cosx+ x sinx− x2 cosx for Λ = Π
(2.8)

is a retardation correction factor [108] and λ– = λ/(2π) = 3258.17 a0 where λ is the 2s→ 2p

transition wavelength [109]. Because long-range molecules are investigated in this thesis,
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Table 2.1: The parameters for the 2s2p long-range retarded dipole and dispersion inter-
actions taken from Marinescu [110], where C3Π = 6.41022 Eha

3
0. S is the total spin and

w = 0, 1 is the even or odd inversion symmetry of the dimer.

Λ C6 (Eha6
0) (−1)S+w C3 C8 (Eha8

0)

Σ 2620.76 +1 −2C3Π 1.515383× 106

−1 2C3Π 2.972159× 105

Π 1846.60 +1 C3Π 9.724475× 104

−1 −C3Π 1.627638× 105

Table 2.2: The parameters for the 2s2p long-range retarded dipole and dispersion interac-
tions taken from Zhang et al [107] where C3Π = 6.4090875603 Eha

3
0. S is the total spin

and w = g, u = 0, 1 is the even or odd inversion symmetry of the dimer.

Λ C6 (Eha6
0) w C8 (Eha8

0) C9 (Eha9
0) C10 (Eha10

0 ) Λ (−1)S+w C3

Σ 2641.5083 g 311955.4 512572.343 2.922304× 107 Σ +1 −2C3Π

u 1542352 −512572.343 1.8574503× 108 −1 2C3Π

Π 1863.4726 g 168921.6 −117199.211 1.611325× 107 Π +1 C3Π

u 103039.5 117199.211 2.40608× 106 −1 −C3Π

the effects of retardation can be significant. The Marinescu parameters for Cn are listed in
table 2.1 and the Zhang et al coefficients in table 2.2. Although the Zhang et al coefficients
represent the latest and most accurate calculations, the coefficients of Marinescu will be
used in most of the calculations undertaken in this thesis so that the results can be validated
against existing values that have been calculated using the Marinescu coefficients.

The short-range 2s2p 1,3Σ+
g,u and 1,3Πg,u potentials are tabulated out to an interatomic

distance of 30 a0 and the 5Σ+
g,u and 5Πg,u potentials to 100 a0. The matching to the

long-range potentials occurs at this outer tabulated point, Rm, by vertically shifting the
short-range potentials so that they equal the long-range potential energy. Although the
derivatives are well connected between the short-range and long-range forms at this point,
a spline fit to the shifted short-range potentials was performed for R ≤ Rm + 3 a0 using
additional points Rm + na0, where n = 1, 2, 3, from the long-range potentials to obtain a
smoother matching. The long-range analytical form (2.6) was used for R > Rm + 3 a0.

The short-range potentials are tabulated into the classically forbidden region for small
interatomic distances but some variation of binding energies is observed with different
forms of extrapolation to R = 0. An extrapolation of the form

1

R
+A+BR2 (2.9)

is used [111], to emulate the expected behaviour for small interatomic distances [112]. The
constants A and B are determined by matching to the first two tabulated values of the
MCSCF and MRCI potentials and are shown in table 2.3.
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Table 2.3: Values for A and B coefficients of the extrapolation of the BO potentials for
the 2s2p manifold towards the origin using equation (2.9).

Case (a) Label A (Eh) B (×10−3 Eh/a
2
0)

1Σ+
g -0.227 1.51

1Σ+
u -0.210 25.2

1Πg -0.339 8.14
1Πu -0.350 0.116
3Σ+

g -0.207 64.2
3Σ+

u -0.323 8.40
3Πg -0.334 6.63
3Πu -0.397 0.108
5Σ+

g -0.194 92.9
5Σ+

u -0.174 -5.00
5Πg -0.373 6.29
5Πu -0.305 7.09

2.1.2 Relativistic correction Hamiltonian

The only relativistic corrections relevant to helium-4 are the fine-structure terms; no hy-
perfine structure is present as helium-4 has no net nuclear spin. The atomic fine-structure
Hamiltonian can be calculated to a very high degree of accuracy by using explicit QED
forms, however here it shall be represented simply by the operator Ĥfs,α and its action
by the observed splittings from experiment. The fine-structure corrections are dependent
upon the orbital (Lα), spin (Sα) and total (jα) angular momenta of each atom, where
α = 1, 2. Provided these momenta remain approximately good quantum numbers (i.e.
they are conserved for all intermolecular distances R between the atoms) then the opera-
tor may simply be considered the sum of the fine-structure terms for the individual atoms,
Ĥfs = Ĥfs,1 + Ĥfs,2. The eigenvalues of Ĥfs are therefore ∆Efs

γ1j1
+ ∆Efs

γ2j2
where the atomic

fine-structure splittings are given by ∆Efs
γαjα

.

For the metastable state, which has orbital angular momenta of zero, there is no fine-
structure splitting and this term vanishes. For the excited 1s2p triplet level under investi-
gation in this thesis however, the splittings are present and inverted with the jα = 1 level
lying 29.6169 GHz below the jα = 0 level and the jα = 2 level lying 31.9081 GHz below
the jα = 0 level [109].

2.1.3 Kinetic term

The kinetic term represents the vibrational and rotational motion of the nuclei and is
T̂n = p̂2(R)/2µ, where p̂(R) = −i~∇(R). This term can be separated into a radial part

T̂R = − ~2

2µR

∂2

∂R2
R (2.10)

and a rotational part Ĥrot = l̂2/2µR2, where l̂ is the rotational angular momentum of the
molecule. In order to simplify the action of T̂R upon the basis F (R)|a〉 described in section
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2.1.1, the radial function will be written F (R) = R−1G(R). The radial kinetic term has
the action

T̂R
1

R
Ga(R)|a〉 = − ~2

2µR

(
d2Ga
dR2

|a〉+ 2
dGa
dR

d|a〉
dR

+Ga
d2|a〉
dR2

)
. (2.11)

If the angular momentum basis states are assumed to have negligible variation with respect
to R, a valid assumption for the large interatomic distances considered in this thesis, then
this expression simplifies to

T̂R
1

R
Ga(R)|a〉 = − ~2

2µR

d2Ga
dR2

|a〉, (2.12)

and the matrix element 〈a′|T̂RR−1Ga|a〉 is diagonal. The use of approximate single-channel
basis states, however, does not permit the reduction to (2.12), due to the R-dependence
of the adiabatic behaviour. The action of T̂R upon these states will be discussed later in
section 3.2.2.

The rotational part of the kinetic term contains l̂ and so forms diagonal matrix elements in
bases with the quantum number l. Only small values of l are relevant in ultracold collisions
because atoms with small kinetic energies cannot overcome the relatively large centrifugal
barriers. Hence, most of the dynamics occurs in the s- and p-wave collisional channels.

2.1.4 Laser field Hamiltonian

The energy of the radiation field is represented by the Hamiltonian Ĥrad =
∑

ξ ~ωξâ
†
ξâξ

where â†ξ and âξ are the creation and annihilation operators for a photon of frequency ωξ
and polarisation εξ. The basis states for a polarised laser field of nξ photons are

|nξ, ωξ, εξ〉 =
1

n!
(a†ξ)

nξ |vac〉 (2.13)

and so the action of Ĥrad upon these states is

Ĥrad|nξ, ωξ, εξ〉 = nξ~ωξ|nξ, ωξ, εξ〉. (2.14)

2.1.5 Laser interaction term

The coupling between the molecular states and the laser field is given by

Ĥint = −
( e
m

) ∑
i=1,2

p̂i · Â(ri) (2.15)

where p̂i = −i~∇(ri) and the vector potential Â(ri) is

Â(ri) =
∑
ξ

[
Eξ(ri)âξ + E∗ξ (ri)â

†
ξ

]
. (2.16)
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Here,

Eξ(ri) =

√
~

2ωξε0V
eik·riεξ, (2.17)

where the wave vector k of the laser field has magnitude ωξ/c and V is the normalisation
volume. Note that only the outer electrons, i = 1, 2 are considered in the interaction and it
is assumed that the inner electrons, i = 3, 4 remain unaffected by transitions of the outer
electrons to excited states.

The dipole approximation, exp(ik · ri) ≈ 1, allows the action of Ĥint to be expressed
more simply. The validity of the dipole approximation is discussed in depth in chapter 4.
In section 4.3 it will be shown that in this approximation the angular momenta of the
molecular system must satisfy the selection rules |J − 1| ≤ J ′ ≤ |J + 1| and mJ ′ −mJ = q

where the dashed quantities represent the state of highest excitation and q = 0,±1 for π
and σ± polarisation respectively. This suggests that the total angular momentum J and
its projection along the space-fixed axis mJ are required in the basis set to most effectively
describe the laser interaction.

2.2 Angular momentum basis states

2.2.1 Coupling of angular momenta

Based on the discussion of the components of the molecular Hamiltonian and the coupling
of the molecular system to the radiation field, an informed choice can be made for the
molecular basis states to be used in the calculations of the system. The two well known
coupling schemes of the jj basis and the LS basis provide the initial coupling description of
the molecular system. The jj basis couples each atom’s individual orbital and spin angular
momenta together to form its total angular momentum jα = Lα+Sα where α = 1, 2. These
are then coupled together to form the total electronic angular momenta j = j1 + j2. The
alternative LS basis couples each atom’s orbital angular momenta and each atom’s spin
angular momenta separately to form L = L1+L2 and S = S1+S2, so that j = L+S. The
jj basis diagonalises the matrix elements of the fine-structure Hamiltonian and hence is
best suited for large interatomic distances where the fine-structure is much larger than the
electronic splittings. On the other hand, the LS basis diagonalises the matrix elements of
the electronic interactions and is best suited for small interatomic distances. Because the
investigations throughout this thesis look at long-range molecules and make use of entrance
channels that must be, by definition, uncoupled in the asymptotic interatomic region, the
jj basis is chosen for the calculations and is described in further detail below. The LS
basis is required for the evaluation of the electronic matrix elements and is described in
detail in appendix B.2.

In the space-fixed frame, the atomic states of the separated atom basis are given by

|γ̄αLαmLαSαmSα〉A,B (2.18)
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where α = 1, 2 indicates the atomic state which is centred on either nuclei A or B, and γ̄α
denotes the quantum numbers necessary to specify the 1s2s metastable state or the 1s2p

excited state. For convenience, the label A or B will be dropped when it is not required.
Labels mx indicate quantities projected along the space-fixed axis Oz. The states of total
angular momentum of the atom are

|γαjαmjα〉 =
∑

mLαmSα

CLαSαjαmLαmSαmjα
|γ̄αLαmLαSαmSα〉 (2.19)

where Cj1j2jmj1mj2mj
is a Clebsch-Gordan coefficient and γα = {γ̄α, Lα, Sα}. The two atomic

states are coupled together by j1 + j2 = j to form the total electronic angular momentum
of the dimer:

|γj1j2jmj〉 =
∑

mj1mj2

Cj1j2jmj1mj2mj
|γ1j1mj1〉|γ2j2mj2〉 (2.20)

where γ = {γ1, γ2}.

For molecular interactions it is preferable to express the bases in the molecular-fixed frame.
Equations (2.18), (2.19) and (2.20) have the same form in the molecular frame, with all
labels mx replaced with Ωx, the projection of quantity x along the intermolecular axis
OZ. The transformation between the two frames of reference is found by applying Wigner
rotation matrices, Dj

mjΩj
(α, β, γ), such that

|γj1j2jΩj〉 =
∑
mj

Dj
mjΩj

(φ, θ, 0)|γj1j2jmj〉, (2.21)

where (α, β, γ) = (φ, θ, 0) are the Euler angles, given by the Z-Y -Z convention of rotation,
required to rotate the space-fixed Oz axis onto the intermolecular axis. Here the convention
of Brink and Satchler [113] is used.

The electronic state (2.21) does not include nuclear spin or rotation. Helium-4 has no nu-
clear spin but the nuclear rotation, represented by states of the relative angular momentum
l of the nuclei, is required:

|lml〉 ≡ Yl,ml(θ, φ) =

√
2l + 1

4π
Dl∗
ml0

(φ, θ, 0), (2.22)

where θ and φ specify the rotation of the intermolecular axis relative to the space-fixed
Oz-axis. These states can be combined with the electronic basis states in the space-fixed
frame by forming J = j + l, the total angular momentum of the dimer:

|γj1j2jlJmJ〉 =
∑
mjml

CjlJmjmlmJ |γj1j2jmj〉|lml〉. (2.23)

The states (2.23), despite generating a matrix of Ĥrot which is diagonal, do not describe
the molecular dynamics very well as they do not incorporate any projections along the
intermolecular axis. As the nature of ultracold collisions allows colliding atoms to only
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approach one another for small values of l, there is no great benefit in diagonalising the
rotational part of the Hamiltonian. It is desirable however, to keep the quantity mJ in the
basis because of the laser coupling selection rules described in section 2.1.5.

In light of these considerations, the coupling (2.23) is rewritten by making use of the
inversion of (2.21), so that

|γj1j2jlJmJ〉 =
∑
mjml

CjlJmjmlmJ

√
2l + 1

4π
Dl∗
ml0

(φ, θ, 0)
∑
Ωj

Dj∗
mjΩj

(φ, θ, 0)|γj1j2jΩj〉. (2.24)

After combining the Wigner rotation matrices and summing over the resultant Clebsch-
Gordan coefficients [113], equation (2.24) becomes

|γj1j2jlJmJ〉 =
∑
Ωj

(−1)j−ΩjCjJlΩj−Ωj0
NJ
mJΩj (θ, φ)|γj1j2jΩj〉, (2.25)

where Ωl = 0 by definition and NJ
mJΩj

is the symmetric top function defined as

NJ
mJΩj (θ, φ) ≡

√
2J + 1

4π
DJ∗
mJΩj (φ, θ, 0). (2.26)

Equation (2.25) can be interpreted as a coupling of j = j1 + j2 and J to form l and hence
naturally introduces the basis states

|γj1j2jΩjJmJ〉 ≡ NJ
mJΩj (θ, φ)|γj1j2Ωj〉. (2.27)

This basis generates a diagonal set of matrix elements of Ĥfs and is well suited to the
dynamics introduced by the laser interaction Ĥint. It will be used throughout the remainder
of this thesis and be referred to as the hybrid jj basis, or simply as the jj basis when the
context is unambiguous. It separates manifolds of differing values of Ωj which are coupled
by the rotational Hamiltonian but are often negligible in molecular calculations. Of the
Hund’s cases [106], this basis represents Hund’s case (c) where the fine-structure is larger
than the electronic interactions, which are in turn larger than the rotational terms.

2.2.2 Molecular symmetries

The hybrid jj basis (2.27) includes all the quantum numbers of the molecular system in the
coupling scheme, yet it does not incorporate the symmetries of the molecular Hamiltonian.
These symmetries for a homonuclear dimer without nuclear spin include [114, 115]:

• î; the inversion symmetry of the total wave function through the centre of charge of
the diatom, with eigenvalue (−1)w, where w = 0 and w = 1 for gerade (even) and
ungerade (odd) symmetry respectively.

• X̂n; the permutation of the nuclei. For helium-4 the nuclei are bosons and so the
eigenstates of this operator are required to be symmetric.
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• P̂T ; the total parity of the wave function acting in the space-fixed frame. This can
be factored into the nuclear parity P̂n and the electronic parity î. Because the nuclei
are bosonic and have no net nuclear spin, P̂n = X̂n and P̂T = P̂nî = î when acting
on states of bosonic nuclear symmetry.

• σ̂e; the operator that reflects the electronic wave function through a plane containing
the intermolecular axis, with eigenvalue (−1)σ. This symmetry only exists if Ω =

|Ωj | = 0. This operator can easily be confused with the reflection of the total system,
σ̂v, including the electronic, nuclear spin and nuclear rotation wave functions in the
molecule-fixed frame. The operator σ̂v can be shown [106] to have an identical
symmetry to P̂T and must be considered when heteronuclear systems or systems
with nuclear spin are considered.

These symmetries are often designated by the Hund’s case (c) notation Ωw when Ω > 0

and 0σw when Ω = 0.

The details of these symmetries applied to the jj basis states and the LS basis states are
presented in appendix 2. The resultant jj states that are eigenvectors of î are

|γj1j2jΩjwJmJ〉 ≡ Njj,w

[
|(γ1j1)A(γ2j2)BjΩjJmJ〉

+ (−1)w+L1+L2+j1+j2−j |(γ2j2)A(γ1j1)BjΩjJmJ〉
]
, (2.28)

where the normalisation constant Njj,w = 1/2 for γ1j1 = γ2j2 and Njj,w = 1/
√

2 otherwise.
For metastable states that have γ1j1 = γ2j2, this places a restriction of (−1)w−j = 1 on
the allowed states.

Once the nuclear permutation is included, the jj states that transform correctly under X̂n

and î are

|γj1j2jJmJ ; Ωw〉 ≡ Njj,Ω

[
|γj1j2jΩwJmJ〉

+ (−1)w+L1+L2−j+J |γj1j2j,−Ω, wJmJ〉
]
, (2.29)

where Ω = |Ωj | ≥ 0 and the normalisation constant Njj,Ω = 1/2 for Ω = 0 and Njj,Ω =

1/
√

2 otherwise. The states (2.29) are also eigenvectors of the reflection operator σ̂e with
the eigenvalue of (−1)L1+L2−j .

2.3 Matrix elements of the Molecular Hamiltonian

The matrix elements of the full molecular Hamiltonian, Ĥmol = T̂n + Ĥel + Ĥfs, can be cal-
culated in the extended hybrid jj basis R−1Ga(R)|a〉 where Ga(R) are the radial functions
describing the vibrational states and |a〉 ≡ |γj1j2jJmJ ; Ωw〉.
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The action of the radial kinetic term T̂R is described in section 2.1.3 and the relevant inner
products are

TGaa′ ≡ 〈a′|T̂R
1

R
Ga(R)|a〉

= − ~2

2µR

d2Ga
dR2

δaa′ , (2.30)

where the superscript G in the notation TGaa′ implies that the pseudo matrix element only
includes the radial function R−1G(R) associated with the ket |a〉.

The matrix elements of the relativistic Hamiltonian V fs
aa′ = 〈a′|Ĥfs|a〉, described in section

2.1.2, are

V fs
aa′ = ∆Efs

γ1j1 + ∆Efs
γ2j2 . (2.31)

For the 1s2p atomic configuration, the reference energy is taken to be zero at the energy
of the jα = 0 asymptote which gives the explicit values ∆Efs

γα1 = −29.6169 GHz and
∆Efs

γα2 = −31.9081 GHz. The metastable levels have no fine-structure, i.e. V fs
aa′ = 0.

The matrix elements of the electronic Hamiltonian Ĥel require the transformation of the
eigenvalue equation (2.5) in the LS basis to the jj basis, as described in appendix B.4,
and are given by

V el
aa′ = 〈a′|Ĥel|a〉

= E∞a δa′a + δηη′
∑

LΩLSΩS

2S+1Λσw(R)F j1j2jΩLSΩLΩS
F
j′1j
′
2j
′Ω

LSΩLΩS
, (2.32)

where E∞a is the sum of the asymptotic energies of the separated atoms, Λ = |ΩL| and the
BO potential 2S+1Λσw(R)→ 0 for R→∞. The details of the BO potentials are presented
in section 2.1.1 and the label η represents the set of quantum numbers {γ,Ω, w, J,mJ}.
The F j1j2jΩLSΩLΩS

coefficients are given by

F
j1j2jΩj
LSΩLΩS

=
√

(2S + 1)(2L+ 1)(2j1 + 1)(2j2 + 1)


L1 L2 L

S1 S2 S

j1 j2 j

CLSjΩLΩSΩj
, (2.33)

where the term {· · · } is a Wigner 9-j symbol and the implicit set of quantum numbers
{γ1, γ2} has been suppressed in the labelling of F j1j2jΩjLSΩLΩS

.

The matrix elements of the rotational Hamiltonian, Ĥrot, require the evaluation of l̂2. This
operator is expanded in terms of the ladder operators, ĵ± = ĵX ± iĵY and Ĵ± = ĴX ± iĴY :

l̂2 = (Ĵ − ĵ)2 = Ĵ2 + ĵ2 − (2ĴZ ĵZ + Ĵ+ĵ− + Ĵ−ĵ+) (2.34)

where the subscripts X,Y, Z refer to the molecule-fixed axes. The action of the ladder
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operators on the jj basis components is

ĵ±|jΩj〉 = ~
√
j(j + 1)− Ωj(Ωj ± 1)|jΩj ± 1〉 (2.35)

Ĵ±N
J
mJΩj = ~

√
J(J + 1)− Ωj(Ωj ∓ 1)NJ

mJΩj∓1. (2.36)

The irregular action of Ĵ± arises from the rotation of the intermolecular axis with respect
to J [116]. The matrix elements in the hybrid jj basis without symmetrisation (2.27) are
therefore

〈γ′j′1j′2j′Ω′jJ ′m′J |
l̂2

2µR2
|γj1j2jΩjJmJ〉

=
~2

2µR2
δρρ′

[[
J(J + 1) + j(j + 1)− 2Ω2

j

]
δΩjΩj ′

− (δΩj−1,Ωj ′ + δΩj+1,Ωj ′)

√[
J(J + 1)− ΩjΩ′j

] [
j(j + 1)− ΩjΩ′j

]]
(2.37)

where ρ represents the quantum numbers {γ, j1j2, j, J,mj}. The second term represents
the off-diagonal Coriolis couplings between states of differing Ω. In the symmetrised basis,
the normalisation constants must be considered and the resultant matrix elements are

V rot
aa′ = 〈a′| l̂2

2µR2
|a〉

=
~2

2µR2
δρρ′δww′

[[
J(J + 1) + j(j + 1)− 2Ω2

]
δΩΩ′

−N rot
ΩΩ′(δΩ−1,Ω′ + δΩ+1,Ω′)

√
[J(J + 1)− ΩΩ′] [j(j + 1)− ΩΩ′]

]
(2.38)

where N rot
ΩΩ′ = N rot

Ω′Ω =
√

2 if Ω = 0 and Ω′ > 0, and N rot
ΩΩ′ = 1 otherwise.

2.4 Spontaneous loss from the 2s2p manifold

In the multi-channel photoassociation calculations of chapter 4, spontaneous emission from
the excited state provides one mechanism for observing the resonances of excited bound
levels. This can be included in the Hamiltonian by introducing a loss term iΓ/2 where
Γ is the emission width. It is common to take a constant width for Γ but, for the large
distances involved in the photoassociation processes studied in this thesis, a more complete
description of spontaneous emission is required. The constant atomic spontaneous emission
width, derived from fundamental properties of the excited state and transition line involved
is Γa = 4d2

at/3λ–3 [117] where dat is the atomic dipole moment and λ– = λ/2π, where λ is
the wavelength of the atomic transition. The molecular emission width [108] for a basis
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state |a〉 in the LS basis is

Γ(x) = Γa − (−1)w3Γa

−(x cosx− sinx)/x3 for Λ = Σ

(x2 sinx+ x cosx− sinx)/2x3 for Λ = Π,
(2.39)

where x = R/λ–. When R� λ– the molecule is much smaller than the wavelength of the light
and Γ(R/λ–) ≈ 2Γa for ungerade states and Γ(R/λ–) ≈ 0 for gerade states. Spontaneous
emission from the atomic triplet 2p state is dominated by the 2s→ 2p transition, for which
the atomic width is Γa = 1.6246 MHz.

This R-dependent emission width can be written as the action of an operator, Ĥspon, such
that

Ĥspon|a〉 =
i

2
Γ

(
R

λ–

)
|a〉. (2.40)

This enables Ĥmol to be written as

Ĥmol = T̂R + Ĥrot + Ĥel + Ĥfs + Ĥspon (2.41)

to completely describe the helium system including loss.

2.5 Summary

This chapter has described the determination of the essential properties of the helium
system required for the investigations in the following chapters. The Hamiltonian for
the metastable and 2s2p systems have been analysed, and the individual contributions to
the molecular interactions for the radial kinetic term T̂R, the rotational term Ĥrot, the
electronic term Ĥel and the relativistic term Ĥfs described in detail. The laser field and
its coupling to the molecular system has been described and the process of spontaneous
loss from the excited state included through the operator Ĥspon. Various properties of
relevant basis states have been discussed, including the incorporation of all symmetry
requirements. Finally, matrix elements of all the contributions to the total Hamiltonian
have been obtained using these basis states.

In the following chapters these results will be used to investigate the bound states and
photoassociation resonances in the helium-4 system.
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Chapter 3
Bound levels of the 2s2p manifold

3.1 Introduction

Interatomic interactions play a significant role in ultracold gases and condensates, creating
a rich diversity of features to be explored. However, these interatomic forces can induce
inelastic loss processes and, to be able to exploit the interactions to make useful measure-
ments or to provide fine control over scattering properties, a detailed understanding of
these interactions is required. One method to examine these interactions is to investigate
the scattering collisions or the molecular bound states of the two-body systems of interest.

The investigations in this chapter examine the bound levels of the 2s 3S1 + 2p 3Pj helium
system to determine their properties that are relevant to experiment and to predict which
levels are accessible in the laboratory. For short interatomic distances, bound levels are
formed because of the competing electronic interactions between the atoms and these types
of molecules have been substantially investigated in chemical physics research. Ultracold
photoassociation experiments can also create bound levels that exist only at long range
separations, and arise from asymptotic couplings between the different electronic states.

A number of experimental investigations in ultracold gases have taken place using pho-
toassociation as the diagnostic tool. A large body of work has been performed using alkali
metal species of which a comprehensive review is given by Jones et al [41]. Of particular
interest to the present study are the observations of transitions from metastable helium
levels to levels near the 2s 3S1 + 2p 3Pj , j = 0, 1, 2 asymptotes which have been performed
by several groups [65, 66, 67], who have recorded over 40 peaks near the j = 0, 1, 2 asymp-
totes. The measurements of van Rijnbach [66] were obtained using ion detection from a
metastable gas in a magneto-optical trap (MOT) at approximately 2 mK. Due to a large
background in the ion signal present in the trapped gas, the measurements were obtained
in brief ‘trap-off’ periods. Near the j = 2 asymptote 36 peaks were detected and of these
15 were classified as ‘weak’. The weak levels were observed at a very low intensity but
were recorded in multiple trials on different days. Near the j = 1 asymptote, six additional
levels were observed, but no levels were observed near the j = 0 asymptote.
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The measurements of Tol [65] were performed in a similar manner to the van Rijnbach
experiments. Two sets of observations consisting of 25 peaks were made of levels near
the j = 2 asymptote by experimental groups in both Amsterdam and Utrecht, of which
the former focused upon smaller laser detunings of less than 2 GHz and observed only 9
peaks. The Utrecht values of [65] unfortunately suffered from a calibration error that was
corrected post-experiment by comparison with other experimental results and therefore
will not be considered in this thesis.

Kim et al [67] performed PA measurements near the asymptotes j = 2 and j = 0 using
a different technique to detect trap loss. In their experiment the metastable atoms were
cooled to temperatures in the range 2 − 30 µK in a magnetic trap, placing the gas just
outside of the typical conditions for Bose-Einstein condensation. The atoms were also
spin-polarised so that a large density could be achieved. The PA profile was observed
after pulsing the PA laser using three different mechanisms: the number of atoms, the
optical density and the final temperature of the gas after deactivating the trap following
a brief period of thermalisation. Because a reduction of atom number and optical density
and an increase in temperature will occur for any decay process from the excited 2s2p

state, all decay channels were detected, including spontaneous emission. Near the j =

2 asymptote detunings of up to 6 GHz were methodically scanned and 23 peaks were
observed. From initial analysis of these peaks, a further four levels were predicted to exist
with detunings larger than 6 GHz and these were found in narrow scans in those regions.
Near the j = 0 asymptote five peaks were observed that correspond to levels which exist
entirely at large interatomic ranges, R > 100 a0. Known as purely long-range levels, their
interaction may be described completely by retarded dipole and dispersion potentials,
which are well understood and depend only upon accurately known atomic parameters,
allowing calculation of their properties to a very high degree of accuracy.

The experimental groups associated the observed peaks to particular Hund’s case (c) con-
figurations by using the accumulated phase (AP) method (first described by [118]) that
makes use of long-range forms of the interaction potentials and does not require the de-
tailed short-range forms of the potentials. The AP method groups observations into series
belonging to separate adiabatic potentials such that each level in a particular series pos-
sesses a very similar accumulated phase in its associated potential at some inner distance
which is deemed to be the short-range limit of the long-range potentials. The method is
very successful in assigning observations to potentials, as will be shown in later sections.

Theoretical analyses of the ultra-long range levels that asymptote to j = 0 have been
completed using single-channel adiabatic calculations [87] and full multichannel calcula-
tions [90] using long-range potentials, and give excellent agreement with measured binding
energies. For the short-range levels of all asymptotes, Dickinson et al [85] were able to
calculate the first ab initio hybrid short-range potentials for the quintet potentials in the
2s2p configuration by performing multi-reference configuration interaction (MRCI) and
multi-configuration self-consistent field (MCSCF) calculations. From these, single-channel
adiabatic binding energies were determined that were assigned to many observations from
experiments performed using spin-polarised atoms. Recently, Deguilhem et al revisited
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these calculations [86], optimising the atomic basis set and were able to achieve convergence
for separations shorter than 6.25 a0 in a multi-reference configuration interaction (MRCI)
calculation for the 5Σ+

g,u and 5Πg,u potentials. They also calculated multi-configuration
self-consistent field (MCSCF) 1,3Σ+

g,u and 1,3Πg,u potentials and were able to determine
adiabatic binding energies that could be matched to all of the experimental results. The
nature of the single-channel calculation however, meant that non-adiabatic and Corio-
lis couplings (off-diagonal rotational terms in the Hund’s case (c) coupling scheme) were
neglected.

This chapter investigates the influence of non-adiabatic and Coriolis effects upon the bind-
ing energies and seeks to improve the agreement between experimental measurement and
theoretical prediction by using a fully multichannel method. Although earlier multichannel
calculations for purely long-range bound levels indicate that the Coriolis couplings are of
negligible influence, there is no guarantee that they can be neglected for levels that exist
entirely in the short-range region or that partially extend into this region, especially if
significant coupling between the adiabatic potentials is present.

In order to assess the benefits of the multichannel calculation, a single-channel calculation
will also be performed so that results may be compared and the validity of using the more
easily calculable single-channel results determined. The single-channel calculation is also
useful in associating Hund’s case (c) labels to the multichannel results.

3.2 Single-channel calculation

3.2.1 Potentials

The bound levels of a molecular system exist at discrete energies that are beneath the
dissociation limit of the atoms and are solutions of the eigenvalue equation of the Hamil-
tonian:

Ĥmol|Ψ〉 = E|Ψ〉. (3.1)

To solve this equation exactly, a multichannel calculation is required that includes all of
the couplings of the molecular system. This is often difficult to perform and requires
a sophisticated set of numerical tools to calculate and analyse the results. Although a
complete multichannel calculation will be presented later in this chapter, a simpler single-
channel calculation is first performed to aid in the comparison of results. The calculation
isolates parts of the molecular system such that only uncoupled differential equations of
the form [

1

2µ

d2

dR2
+ V (R)− E

]
ψ(R) = 0 (3.2)

need be solved. One possible choice for the single-channel potentials V (R) are the adiabatic
potentials, V adi

i (R). These are formed by diagonalising at each value of R the extended
Movre-Pichler model matrix that includes rotation [119]

V Ω
a′a = V el

a′a + V fs
a′a + V rot

a′a δΩ′Ω (3.3)
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where the terms V x
a′a are the matrix elements of x in the basis |a〉 and are described in

chapter 2. It is assumed that |a〉 is the hybrid jj basis |γj1j2jJmJ ; Ωw〉 given by (2.29).
Only the diagonal terms of V rot

a′a are kept and the neglected off-diagonal terms are referred
to as the Coriolis couplings. The adiabatic eigenstates are R-dependent and are designated
by

|i〉 ≡ |i, R, adi〉 =
∑
a

Cai(R)|a〉 (3.4)

where Cai(R) are the eigenvectors of the V Ω
a′a matrix and the adiabatic potentials V adi

i (R) =∑
a′aC

−1
a′i V

Ω
a′aCai are the eigenvalues. Each adiabatic state |i〉 can be uniquely specified

by a Hund’s case (c) label {J,Ωσ
w}, the electronic angular momentum j = 0, 1, 2 of the

asymptotic 2s 3S1 +2p 3Pj limit and, to distinguish any remaining multiplicity, the minima
of the potentials.

For an allowed crossing to occur between two adiabatic potentials, the associated basis
states must be uncoupled from one another. If a coupling is present or introduced via an
interaction, the allowed crossing will become an avoided crossing in the adiabatic potentials
regardless of the strength of the coupling. Hence, assuming that all the basis states |a〉
are somewhat coupled, the adiabatic potentials cannot cross one another and only possess
avoided crossings. The most accurate single-channel approximation however, must allow
crossings to occur in regions of significant diabatic behaviour to more closely emulate
the dynamics of the interacting system. These hybrid adiabatic/diabatic potentials may
be formed by following the smoothest connections between potentials when crossings do
occur. That is, sharply crossing potential curves which are only weakly interacting should
exhibit diabatic behaviour, whereas near degenerate potential curves which are strongly
interacting should exhibit avoided crossings.

To programmatically perform the smoothing, two similar methods were developed. The
first method diagonalises the adiabatic potentials on a coarse mesh grid ∆R and reorders
the potentials at each value of Rn to minimise∣∣∣∣∣∣

(
dV adi

kn+1

dR

)
Rn+1

−

(
dV adi

kn

dR

)
Rn

∣∣∣∣∣∣ (3.5)

where kn enumerates the potentials analogously to i, except that the order of the enumer-
ation may differ at adjacent distances Rn and Rn+1. The resultant potentials, V SC

k (Rn) ≡
V adi
kn

(Rn) are then the result of the action of Ĥel + Ĥfs + Ĥrot on the R-dependent basis

|k〉 ≡ |k,Rn, SC〉 = |kn, R, adi〉 =
∑
a

Dak(Rn)|a〉, (3.6)

where Dak(R) is the unitary transformation from the hybrid jj basis to the single-channel
basis. The choice of mesh grid ∆R significantly influences the behaviour of the potentials
and as ∆R→ 0 the potentials V SC

k become identical to V adi
i .

The second method [120], isolates each crossing between two potentials and computes the
ratio between the minimum spacing of the potentials and the spacing of the adjacent grid
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points, again on a finite mesh grid ∆R. To do this, the function

Y (Rn) =
2X(Rn)

X(Rn−1) +X(Rn+1)
, (3.7)

where X(Rn) = |V adi
a (Rn)−V adi

b (Rn)|, is applied to each pair of adiabatic potentials {a, b}
and the condition Y (Rn) ≤ 1 is used to isolate all of the crossings. Each crossing is then
treated as an avoided crossing for Y (Rn) > α and a true crossing for Y (Rn) ≤ α, where
the parameter α can be adapted to produce the best behaviour in each set of potentials.
This method again produces an index kn that is applied in the same manner of equation
(3.6).

It was found that the second smoothing method more closely matches the results of the
multichannel calculation and as such will be used in the following single-channel calcula-
tions.

3.2.2 Differential equations

For each single-channel basis state, solutions to the equation

〈k|
[
T̂R + V SC

k (R)− Ev
] Gk,v(R)

R
|k〉 = 0 (3.8)

are found, where Ev enumerates the binding energies of valid bound levels and Gk,v(R) is
the vibrational wave function for level v of state |k〉. Because the basis |k〉 is R-dependent,
equation (2.12) is only an approximation to the complete radial kinetic term (2.11). The
second term of (2.11), utilised to evaluate the inner product 〈k|T̂RR−1Gk,v(R)|k〉 is

2
dGk,v
dR
〈k|d|k〉

dR
= 2

dGk,v
dR

∑
a

D∗ak
dDak

dR
. (3.9)

This term is real because Dak is real as it is comprised of the eigenvectors of V Ω
a′a, which

is a real symmetric matrix in the hybrid jj basis. Thus,

2
dGk,v
dR
〈k|d|k〉

dR
=
dGk,v
dR

d〈k|k〉
dR

= 0 (3.10)

because 〈k|k〉 = 1 by definition. The third term of (2.11) is nonzero and is often called the
kinetic correction term, V KC

k (R). It can easily be calculated because

V KC
k (R) = 〈k|d

2|k〉
dR2

=
∑
aa′

Da′k(R)
d2Dak(R)

dR2
〈a′|a〉

=
∑
a

Dak(R)
d2Dak(R)

dR2
. (3.11)

Note that the radial kinetic term also couples different single-channel potentials to one
another, however these non-adiabatic couplings are ignored in the single-channel approx-
imation. For most single channel potentials the kinetic correction is problematic as the
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derivative d2Dak/dR
2 can be significantly affected near sharp adiabatic crossings by the

choice of the smoothing. To avoid any arbitrariness in the single-channel results the kinetic
correction term is ignored in this chapter and the simple form of (2.12) is used to generate
the differential equation [

− ~2

2µ

d2

dR2
+ V SC

k (R)− Ev
]
Gk,v(R) = 0. (3.12)

The differential equations (3.12) have been solved using two numerical methods. The first,
the renormalised Numerov method [121], is used to count nodes of the wave function as it
is integrated outwards from the origin and is described in more depth in appendix C. The
second, the discrete variable representation (DVR) method, is a boundary value matrix
method that is more efficient because it is able to generate all eigenvalues for the potential
simultaneously and is described in appendix D. Although the DVR method is the quickest
to run due to its parallel nature (it need not be run for each individual eigenvalue) it
also requires a large amount of computer memory to perform its calculations. On the
other hand, the memory usage of the Numerov method scales linearly with mesh grid size
but can require significantly more time to calculate as it must iteratively place upper and
lower bounds on each individual eigenvalue. As such, the Numerov method was chosen
to calculate to the precision required and the DVR method used to validate the Numerov
method results. For the results presented in this chapter, the calculations of the Numerov
method used a set of regions with different step sizes, as described in C.3, of

∆R =



10−4 a0 for 1 a0 < R < 5 a0

10−3 a0 for 5 a0 < R < 50 a0

10−2 a0 for 50 a0 < R < 500 a0

0.1 a0 for 500 a0 < R < 1000 a0

0.2 a0 for 1000 a0 < R < 2000 a0.

(3.13)

3.2.3 Comparison with Deguilhem et al

The single-channel results calculated in this thesis have been compared with the single-
channel results of Deguilhem et al [86] that were calculated in a similar manner. Good
agreement (to within 0.2%) is obtained for the majority of levels shown in tables 2, 3 and
4 in [86]. A maximum absolute difference of 20 MHz is observed which is comparable to
experimental accuracy. Sample comparisons of some series are presented in table 3.1 and
a comparison of all of the values is shown in table E.1. Note that the only data of [86] that
has not been compared is that for 0+

u , J = 0 in table 4 of [86], as symmetry considerations
do not allow even values of J in the 0+

u electronic configuration.

The only significant differences found in this comparison are for the series 0+
u , J = 1, 3 of

table 2 in [86]. It was found that the origin of these differences was in the creation of the
smoothed single-channel potentials from the diagonalised adiabatic potentials as described



3.3: Multichannel calculation 33

Table 3.1: Comparison of single-channel results with that of Deguilhem et al [86] for the
1u, J = 1 and 2u, J = 2 sets. Excellent agreement is obtained, and similar agreement
is obtained for most other series tabulated in [86]. Binding energies are in GHz from the
j = 2 asymptote.

1u, J = 1 2u, J = 2

v This work Deguilhem et al v This work Deguilhem et al

70 11.319 11.301 70 13.666 13.647
71 7.167 7.154 71 9.020 9.006
72 4.316 4.307 72 5.703 5.692
73 2.432 2.426 73 3.414 3.407
74 1.250 1.246 74 1.913 1.908
75 0.566 0.564 75 0.996 0.992
76 0.216 0.215 76 0.478 0.476

77 0.208 0.207
78 0.079 0.079
79 0.025 0.025

in section 3.2.1. In fact, three different methods of smoothing yielded different numbers of
levels in the two 0+

u adiabatic potentials that asymptote to j = 2. These differences are
due to the near degeneracies of the potentials in the region 17 a0 < R < 17.5 a0 as shown
in figure 3.1. These results are listed in table 3.2. The three smoothing methods were:
(a) the smoothing method of equation (3.5) applied to a ∆R = 0.1 a0 mesh grid; (b) the
smoothing method of (3.5) applied to a ∆R = 0.01 a0 mesh grid; and (c) the method of
(3.7) applied to a mesh grid of ∆R = 0.01 a0 with α = 0.5. From the results it is apparent
that the Deguilhem et al values most closely match the smoothing method of (3.5) with
∆R = 0.1 a0 but do not match very well with the multichannel results.

It is important to note that the extrapolation of the Born-Oppenheimer potentials into
the classically forbidden region towards the origin can subtly but noticeably modify the
binding energies of even very-long bound states [111]. This occurs because the data of
the BO potentials is tabulated only to distances of 3 a0 or 4.75 a0, which lie just within
the classically forbidden region. Modification of the potentials inwards of these innermost
tabulated points can cause up to 0.25% variation in the binding energies.

3.3 Multichannel calculation

3.3.1 Differential equations

In order to investigate the approximations introduced by ignoring the non-adiabatic and
Coriolis couplings, respectively the off-diagonal kinetic and rotational terms, a complete
multichannel calculation must be performed which includes all interactions. Although
this makes both the numerical integration and interpretation of the results more diffi-
cult, the advantages gained from the increased accuracy and the detailed knowledge of
the vibrational wave functions makes the multichannel approach more than worthwhile.
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Figure 3.1: Single-channel potentials of the 0+
u , J = 1 set. The short-range case (a)

assignments are indicated on the plot. The near degeneracies in the 1,5Σ+
u potentials

over the region 17 a0 < R < 17.5 a0 cause difficulties in forming accurate single-channel
potentials.

Table 3.2: Comparison of the binding energies, in GHz from the j = 2 asymptote, predicted
from the hybrid adiabatic/diabatic single channel potentials. I and II denote smoothing
using equations (3.5) and (3.7) respectively. The two potentials are of the 0+

u , J = 1
set, asymptoting to j = 2 and the double degeneracy of this specification is indicated by
the labels A and B. The results of Deguilhem et al [86] are included in the final column
and most closely resemble the values calculated using smoothing I with a grid spacing of
∆R = 0.1 a0.

I (∆R = 0.1 a0) I (∆R = 0.01 a0) II (∆R = 0.01 a0)

v A B A B A B Deguilhem et al [86]

70 13.600 0.456 9.979 1.316 14.583 0.380 13.658
71 8.987 0.137 6.227 0.693 9.699 0.109 9.029
72 5.706 0.029 3.668 0.338 6.205 0.021 5.735
73 3.462 1.970 0.150 3.796 3.481
74 2.003 0.909 0.059 2.215 2.015
75 1.101 0.335 0.019 1.229 1.108
76 0.568 0.092 0.642 0.572
77 0.271 0.017 0.311 0.273
78 0.116 0.136 0.117
79 0.044 0.052 0.044
80 0.013 0.016
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Additionally, situations involving resonances, as opposed to purely bound levels, arise in
the multichannel calculation for energies above the j = 2 asymptote since these levels are
able to predissociate via the presence of open channels.

The multichannel calculation solves differential equations that are generated from the inner
product

〈a′|
∑
a

[
Ĥmol − Ev

] 1

R
Ga,v(R)|a〉 = 0 (3.14)

which, in the hybrid jj basis (2.29), becomes

d2Ga′,v(R)

dR2
δa′a +

∑
a

[
V el
a′a + V fs

a′a + V rot
a′a − Evδa′a

]
Ga,v(R) = 0. (3.15)

To investigate the Coriolis couplings, the non-diagonal terms of V rot
a′a may be turned off,

which causes the Hund’s case (c) subsets of differing Ω to decouple. These calculations
without Coriolis couplings will be referred to as the MC1 calculations and are identified by
the quantum numbers {J,Ωσ

w, v}. The calculations that involve the complete Hamiltonian,
and include the Coriolis couplings, are referred to as the MC2 calculations and are identified
by the quantum numbers {J,w, v}.

The association of levels from the single-channel and the multichannel calculations is pos-
sible by minimising the difference of their binding energies. A better association may
be obtained from the multichannel results by analysing the resultant bound vibrational
wave functions. Using the transformation matrix, Dka(R) of (3.6), the amount that the
single-channel basis |k〉 contributes to each multichannel bound level can be calculated
from

CSC
k,v =

∑
a

ˆ
Dka(R)Ga,v(R) dR (3.16)

where it is assumed that the vibrational wave functions of the bound level, Ga,v(R), are
normalised. For states that are not very much different to their single-channel counterparts,
the contribution for the corresponding value of k will be nearly 100%. When comparing
the results between the MC1 and MC2 calculations, it is of more interest to analyse the
contributions from an entire Ωσ

w manifold which may be calculated by

CMC1
Ω,v =

∑
k∈Ω

CSC
k,v (3.17)

where k ∈ Ω indicates the sum should take place over single-channels |k〉 that have that
value of Ω.

To determine bound levels of the multichannel system, the allowed energies Ev of equations
(3.15) must be found. This may be performed numerically by using the same procedures
as for the single-channel calculations. For levels beneath the j = 2 asymptote, all channels
of the multichannel problem are closed and the allowed energies correspond to binding
energies of the system. Above the j = 2 asymptote, yet below the j = 1 or j = 0
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asymptotes, the multichannel problem consists of coupled closed and open channels and
the allowed energies of the system will often correspond to continuum scattering states
which have been discretised by the enforcement of the zero value boundary conditions at
the outer numerical limit of integration. These continuum solutions are not of interest here
and careful analysis and selection procedures must be used to discard them from the set
of solutions. The considerations of bound levels and resonances that exist above the j = 2

asymptote will be discussed in further detail in section 3.3.4.

3.3.2 Non-adiabatic effects

The single-channel results and the MC1 results differ only through the inclusion of non-
adiabatic couplings in MC1. The results show that the majority of sets of levels agree to
better than 0.1% for all but the least bound levels where, although the relative differences
can be up to ∼ 1%, the absolute differences are relatively small (< 10 MHz). These
differences are comparable to the uncertainty in the potentials and are smaller than the
uncertainties of experimental measurements. The 2u sets shown in table 3.3 are also in good
agreement, except that they differ by up to 5% for the least bound levels. The agreement
between the SC and MC1 results can also be seen in the dominance of the contribution
from one particular SC potential for each MC1 level, shown in the final columns of table
3.3.

The only results that do differ markedly between the single-channel and MC1 methods are
those of the 0+

u and 1g sets as shown in tables 3.4 and 3.5 respectively. In section 3.2.3,
it was mentioned that there can be a large variation in the formation of the SC potentials
and so the differences for this set are presumably due to the arbitrary choice in forming
the single-channel potentials, resulting from near degeneracies in the Born-Oppenheimer
potentials. The difference is even more apparent when comparing the contributions of the
single-channel states as the largest contribution can be as low as 50%, as opposed to the
near 100% contribution from one basis state that is observed in table 3.3.

3.3.3 Coriolis effects

The complete coupling scheme includes the Coriolis couplings between states of differing Ω.
Within this scheme, the set of basis states may be broken into several uncoupled manifolds
that are designated by the quantum numbers {J,w}. These are referred to as the MC2
manifolds. Although the Coriolis couplings vary as R−2 and may be expected to play a
major role for small R, the results indicate that it is the levels which span both short and
large interatomic ranges that are most influenced by the Coriolis couplings.

The majority of levels that belong to the J = 1, 2 ungerade (w = 1) MC2 manifolds
show small differences of less than 0.1% between the MC1 and MC2 results. A sample
of the ungerade J = 2 set is given in table 3.6. For deeply bound levels with binding
energies greater than 7 GHz, almost all the J = 1, 2 ungerade levels agree between the
MC1 and MC2 calculations to within 0.5%. Similar behaviour is observed in the J = 3
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Table 3.3: Comparison of the multichannel results MC1, that include non-adiabatic couplings but ignore Coriolis couplings, and the single-channel
results for the 2u, J = 2 set. The sixth column indicates the percentage difference between the results and shows that near perfect agreement is
obtained for deeply bound levels. Weakly bound levels show some larger differences but remain within reasonably good agreement. The final columns
list the fractions of the MC1 vibrational wave function from each single-channel basis as described by equation (3.16).

Single-channel Binding Energies Single-channel Contribution

v MC1 j = 2, A j = 2, B Diff. (%) j = 2, A j = 2, B

8 179.4 THz 179.4 THz 0.0 1.0
9 175.2 THz 175.2 THz 0.0 1.0
10 170.9 THz 170.9 THz 0.0 1.0
11 165.2 THz 165.2 THz 0.0 1.0
12 162.7 THz 162.67 THz 0.0 1.0

115 125.5 GHz 125.5 GHz 0.0 1.0
116 96.14 GHz 96.14 GHz 0.0 1.0
117 95.86 GHz 95.86 GHz 0.0 1.0
118 72.68 GHz 72.68 GHz 0.0 1.0
119 67.30 GHz 67.30 GHz 0.0 1.0
120 54.15 GHz 54.15 GHz 0.0 1.0

134 1.925 GHz 1.913 GHz 0.6 0.97 0.03
135 1.807 GHz 1.823 GHz 0.9 0.02 0.98
136 1.005 GHz 0.996 GHz 0.9 0.99 0.01
137 0.5395 GHz 0.5566 GHz 3.1 0.05 0.95
138 0.4824 GHz 0.4776 GHz 1.0 0.96 0.04
139 0.2113 GHz 0.2076 GHz 1.8 1.0
140 0.0809 GHz 0.0791 GHz 2.3 1.0
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u , J = 1 set. Larger differences are present between the results which can be isolated to the two j = 2
single-channel potentials. The separation into the single-channel basis calculated from (3.16) highlights this as most levels possess contributions from
both single-channel bases.

Single-channel Binding Energies Single-channel Contribution

v MC1 j = 2, A j = 2, B j = 1 Diff. (%) j = 2, A j = 2, B j = 1

10 170.9 THz 170.9 THz 0.0 1.0
11 165.2 THz 165.2 THz 0.0 1.0
12 162.6 THz 162.6 THz 0.0 1.0
13 161.0 THz 161.0 THz 0.0 1.0

40 93.31 THz 93.31 THz 0.0 1.0
41 91.34 THz 92.49 THz 1.3 0.56 0.44
42 87.80 THz 86.69 THz 1.3 0.46 0.54
43 85.44 THz 85.43 THz 0.0 1.0
44 85.37 THz 86.50 THz 1.3 0.55 0.45
45 82.13 THz 81.08 THz 1.3 0.51 0.49
46 79.63 THz 80.70 THz 1.3 0.50 0.50
47 77.88 THz 77.88 THz 0.0 1.0

180 57.51 GHz 56.86 GHz 1.1 0.85 0.15
181 56.19 GHz 56.21 GHz 0.0 1.0
182 48.10 GHz 48.60 GHz 1.0 0.17 0.83
183 42.15 GHz 41.77 GHz 0.9 0.84 0.16
184 34.93 GHz 34.97 GHz 0.1 1.0

200 2.086 GHz 2.125 GHz 1.9 0.16 0.84
201 1.813 GHz 1.862 GHz 2.7 1.0
202 1.262 GHz 1.229 GHz 2.6 0.91 0.09
203 0.9663 GHz 1.001 GHz 3.5 0.09 0.91
204 0.6638 GHz 0.6420 GHz 3.3 0.95 0.05
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Table 3.5: As per table 3.3 but for the 1g, J = 1 set. Larger differences are present between the results which can be isolated to two of the j = 2
single-channel potentials and one of the j = 1 potentials. The separation into the single-channel basis calculated from (3.16) highlights this as most
levels possess contributions from these single-channel bases.

Single-channel Binding Energies Single-channel Contribution

v MC1 j = 2, A j = 2, B j = 2, C j = 1 Diff. (%) j = 2, A j = 2, B j = 2, C j = 1

10 269.8 THz 269.8 THz 0.0 1.0
11 269.7 THz 269.7THz 0.0 1.0
12 258.6 THz 258.6 THz 0.0 1.0
13 258.4 THz 258.4 THz 0.0 1.0

159 7.083 THz 6.717 THz 5.3 0.04 0.14 0.02 0.80
160 6.705 THz 6.987 THz 4.1 0.98 0.02
161 6.533 THz 6.532 THz 0.0 0.60 0.31 0.09
162 6.516 THz 6.528 THz 0.2 0.12 0.65 0.22
163 6.007 THz 5.668 THz 5.8 0.03 0.40 0.02 0.55
164 5.877 THz 6.133 THz 4.3 0.99 0.01
165 5.438 THz 5.454 THz 0.3 0.41 0.54 0.05
166 5.422 THz 5.434 THz 0.2 0.07 0.51 0.42

234 119.9 GHz 131.5 GHz 2.5 1.0
235 113.5 GHz 113.76 GHz 2.4 0.09 0.91
236 113.1 GHz 116.29 GHz 0.6 0.90 0.07 0.02
237 99.59 GHz 83.85 GHz 0.8 0.03 0.01 0.96
238 91.13 GHz 100.41 GHz 8.3 1.0

265 2.916 GHz 3.495 GHz 18.1 1.0
266 2.170 GHz 2.353 GHz 8.1 0.84 0.16
267 2.121 GHz 2.084 GHz 1.7 0.15 0.72 0.12
268 1.838 GHz 2.029 GHz 9.9 0.03 0.11 0.86
269 1.663 GHz 1.114 GHz 39.6 1.0
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ungerade manifold, except that the agreement to within 0.5% occurs only for binding
energies greater than 5000 GHz. Larger differences in the J = 3 ungerade manifold of up
to 2% occur for the smaller binding energies greater than 15 GHz. Manifolds with J > 3

were not investigated because selection rules forbid excitation to these states from the s-
wave metastable collisions that dominate the entrance channels in ultracold experiments.

The greatest variation caused by the Coriolis couplings can be observed in the more weakly
bound levels in the ungerade sets and most of the experimental observations lie within this
range. For the J = 1, 2 manifolds, approximately a third of the levels with detunings less
than 7 GHz show differences ranging from 1 − 5%, and are larger than the experimental
uncertainties. The J = 3 differences are even larger, with up to 10% difference noticeable
for some levels with binding energies less than 15 GHz. Obviously these differences are quite
significant and of much greater importance than the difference caused by the introduction
of the non-adiabatic couplings.

The gerade (w = 0) manifolds exhibit similar behaviour albeit with slightly larger variation
between the MC1 and MC2 methods. In summary, the J = 1, 2, 3 gerade manifolds differ
between their MC1 and MC2 values by less than 0.5% for detunings larger than 800, 3600
and 5000 GHz respectively. For smaller detunings, differences of up to 10% do occur,
although most levels agree to within 0.5%. A sample comparison of the gerade MC1 and
MC2 results is given in table 3.7.

An additional comparison between the MC1 and MC2 results can be performed by calcu-
lating the contribution of each MC1 set to the MC2 states, using equation (3.17). These
contributions are listed in the final columns of tables 3.6 and 3.7. When the contributions
from each MC1 set are compared, there does not appear to be a correlation between large
differences in the binding energies and significant contributions from separate MC1 sets.
In fact, the more deeply bound states which occupy purely short interatomic distances
have very large contributions from two or more manifolds but with minimal modification
of binding energy. Conversely, the bound levels that exist at large interatomic distances
possess dominant contributions of greater than 90% from one MC1 set but can have large
percentage differences in binding energies.

The results reported in [120] were based upon the use of the basis states (2.28) rather than
the correct states (2.29) which include symmetry with respect to nuclear permutation.
However, this does not affect the values for the binding energies. The only difference
between the results here and the results in [120], is that each level which corresponds to
Ω > 0 was given as a doublet in [120]. One member of each doublet does not obey the
nuclear statistics of helium-4 and corresponds to an artificial fermionic helium-4 system.
If these levels are ignored, the calculations are identical.

3.3.4 Bound levels above the j = 2 asymptotic limit

Levels that lie above the j = 2 asymptote include basis states that asymptote to scattering
solutions, thus requiring open channel solutions to the differential equations (3.15). These
levels introduce two important aspects into the calculation:
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Table 3.6: Comparison of the multichannel results including (MC2) and excluding (MC1) Coriolis couplings for the ungerade, J = 2 manifold.
Larger differences are observed than those that result from the inclusion of non-adiabatic couplings as shown in table 3.3. Significant mixing of
the contributions from each MC1 set, calculated using equation (3.17), is apparent for the more deeply bound levels, despite the small difference in
binding energies. Conversely, the weakly bound levels that possess large differences in binding energies are mostly comprised of a single MC1 set.

MC1 Binding Energies MC1 Contribution

v MC2 0−u 1u 2u Diff. (%) 0−u 1u 2u

15 195.31 THz 195.41 THz 0.1 0.39 0.54 0.07
16 188.13 THz 188.08 THz 0.0 0.19 0.81
17 187.91 THz 187.95 THz 0.0 0.81 0.19
18 185.29 THz 185.24 THz 0.0 0.10 0.29 0.62
19 185.19 THz 185.14 THz 0.0 0.51 0.17 0.32

114 45.506 THz 45.472 THz 0.1 0.52 0.17 0.31
115 45.401 THz 45.468 THz 0.1 0.39 0.55 0.07
116 41.836 THz 41.813 THz 0.1 0.19 0.81
117 41.716 THz 41.739 THz 0.1 0.81 0.19
118 40.292 THz 40.261 THz 0.1 0.09 0.28 0.62
119 40.227 THz 40.195 THz 0.1 0.52 0.17 0.31

286 183.98 GHz 183.49 GHz 0.3 0.02 0.06 0.92
287 180.58 GHz 179.75 GHz 0.5 0.84 0.12 0.05
288 174.35 GHz 175.64 GHz 0.7 0.14 0.82 0.03
289 162.24 GHz 161.88 GHz 0.2 0.06 0.94
290 154.82 GHz 155.17 GHz 0.2 0.95 0.05

344 0.741 GHz 0.727 GHz 2.0 0.96 0.04
345 0.543 GHz 0.539 GHz 0.6 0.02 0.98
346 0.508 GHz 0.515 GHz 1.1 0.92 0.08
347 0.487 GHz 0.482 GHz 1.0 0.07 0.93
348 0.215 GHz 0.211 GHz 1.6 0.01 0.99
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Table 3.7: As per table 3.6 but for the gerade, J = 2 set. While most results are reasonably close in binding energy, some are significantly (and
measurably) different. This does not appear to be reflected in the contribution of the constituent MC1 subsets.

MC1 Binding Energies MC1 Contribution

v MC2 0+
g 1g 2g Diff. (%) 0+

g 1g 2g

10 304.50 THz 304.49 THz 0.0 0.19 0.51 0.30
11 304.25 THz 292.80 THz 0.1 0.44 0.49 0.07
12 292.98 THz 292.79 THz 0.1 0.29 0.49 0.23
13 292.86 THz 292.68 THz 0.0 0.09 0.51 0.40
14 292.68 THz 292.67 THz 0.0 0.19 0.51 0.30

131 88.371 THz 88.546 THz 0.2 0.44 0.49 0.06
132 87.716 THz 87.716 THz 0.0 1.0
133 85.234 THz 85.234 THz 0.0 1.0
134 83.991 THz 83.947 THz 0.1 0.08 0.28 0.63
135 83.895 THz 83.850 THz 0.1 0.50 0.19 0.31

363 789.29 GHz 753.01 GHz 4.7 0.08 0.28 0.64
364 726.58 GHz 726.57 GHz 0.0 1.0
365 707.99 GHz 670.14 GHz 5.5 0.49 0.20 0.30
366 648.98 GHz 664.81 GHz 2.4 0.05 0.67 0.29
367 639.13 GHz 643.66 GHz 0.7 0.19 0.80 0.01

450 2.789 GHz 2.788 GHz 0.0 1.0
451 2.552 GHz 2.426 GHz 5.0 0.85 0.13
452 1.933 GHz 1.971 GHz 2.0 0.04 0.90 0.06
453 1.893 GHz 1.905 GHz 0.6 0.01 0.98 0.01
454 1.575 GHz 1.574 GHz 0.0 1.0
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a) Utilising a numerical boundary value method which imposes zero value boundary con-
ditions does not only find solutions that are bound levels of the system, but also finds
solutions that include incoming and outgoing waves in the open channels having a node
at the outer boundary. These artificial levels, often called box states, may be recognised
and separated from the true bound levels by observing a shift of their eigenvalues with
a variation of the position of the outer boundary, or by the proportion of the wave func-
tion that exists in the asymptotic region. The asymptotic region is defined as a region
of large interatomic spacing where no bound levels are expected to be found, for example
R > 1500 a0.

b) Pure bound levels are unlikely to exist when couplings to open channels are present
because of the possibility of predissociation. In their place exist resonance states that have
finite lifetimes. Resonances which possess very large lifetimes are most likely to produce
the observed peaks in experimental measurements as short lifetimes lead to broad and
weak resonances. To find resonances numerically, the binding energies must be allowed to
become complex, Eres

v = Ev − iΓpre
v /2, where the imaginary part represents the lifetime

of the resonance τv = ~/Γpre
v due to predissociation. The asymptotic boundary conditions

placed on the open channels differ from those for the closed channels in that they represent
outgoing solutions, that is

Ga,v(R) ∼
R→∞

eik
r
aRek

i
aR (3.18)

where ka = kra− ikia =
√

2µEres
v and kra and kia are real. Note that this boundary condition

produces wave functions whose magnitude increases in the positive R direction. This is to
be expected in a time-independent calculation because (a) the asymptotic region represents
only the predissociated part of the wave function and (b) larger values of R represent
predissociation that has occurred further in the past. Because the resonance population
decreases with time, the time-independent wave function must increase as R→∞. The
outgoing boundary conditions were unable to be modelled using the DVR method so only
the renormalised Numerov method was used to determine the resonance energies. However,
the node counting method mentioned in section 3.2.2 that is used for levels beneath the
j = 2 asymptote cannot be applied because the energies lie in the complex plane and not
along the real axis.

Several alternative techniques to replace the node counting procedure were formulated to
isolate the complex resonance energies. The first, a search for the complex energies using a
gradient descent method as described in appendix C, was trialled by using each real energy
that corresponded to artificial box states from the node counting method as a starting point
for the descent procedure. This method proved unsatisfactory, however, as several known
observations of resonances near the j = 1 and j = 0 asymptotes were not obtained in
the calculations. To remedy the deficiency, an intermediate stage was introduced in which
Cauchy’s argument principle was applied to isolate all possible resonances throughout
the energy domain under investigation. This can be successfully done because Cauchy’s
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argument principle states that

1

2πi

˛
C

f ′(z)

f(z)
dz = N − P (3.19)

where f(z) is a meromorphic function, that is, f(z) is analytic for all z except for a set of
points that are poles. Here C is a bounded contour which contains N zeros and P poles.
By assuming that the matching condition for the outward and inward integrations of the
renormalised Numerov method, D(E) = 0 (see appendix C), is a meromorphic function,
the argument principle may be applied. However, if the integration region contains both
zeros and poles then the poles will ‘mask’ the presence of the zeros, whereas if the poles and
zeros are well separated, a series of small contours will each find either a single pole, a single
zero or nothing. Hence, the calculation makes use of an adjacent series of box contours of
real width 5 MHz and imaginary dimension ranging from 1 MHz to −100 MHz. The series
of contours spanned two ranges of real energies from −600 MHz to −5 MHz detuning from
the j = 1 asymptote and −1500 MHz to −5 MHz detuning from the j = 0 asymptote.
The imaginary boundaries of the regions were chosen so that (a) pure bound states with
no imaginary component could be identified and (b) the maximum predissociation width
is less than 100 MHz. The integration around each of these contours indicates whether a
resonance is present in each range and, if present, the contour is narrowed in a manner
similar to the bisection method. Unfortunately, the integral of the argument principle
is numerically costly to evaluate so the narrowing of the contours occurs only until a
energy tolerance is achieved, which was set to be 0.1 MHz. At this point, the gradient
descent search is used to determine the resonance energy exactly. Note that no ‘artificial’
resonances, which are analogous to artificial box states, were observed because these cannot
exist when outgoing boundary conditions are specified.

By scanning the range of binding energies with matching points placed at distances from
100 a0 up to 600 a0, a total of 18 gerade and 16 ungerade levels were found near the j = 1

asymptote (shown in table 3.8) and a total of 6 gerade and 9 ungerade levels were found
near the j = 0 asymptote (shown in table 3.9). All of the resonances near the j = 0

asymptote and some ungerade resonances near the j = 1 asymptote can be classified as
purely long-range by calculating the proportion of wave function that is present at a short
interatomic distance of R < 20 a0. This is shown in tables 3.8 and 3.9 as the parameter
fR<20, which is defined as

fR<20 =

∑
a

´ 20 a0

0 |Ga,v(R)|2 dR∑
a

´∞
0 |Ga,v(R)|2 dR

. (3.20)

Equation (3.20) includes any part of the wave function associated with the predissociated
pair of atoms and so may not accurately represent the proportion of the resonance at
short interatomic range. However, only the relative magnitude of fR<20 is important:
resonances with a proportion less than 10−8 are purely long-range (for example the entire
j = 0 manifold) whereas resonances with proportions greater than 10−5 possess significant
short-range character. The values in between these bounds are difficult to classify and could
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fall into either category. For example, a purely long-range resonance could be strongly
predissociating and hence possess a large fR<20, or a resonance could be weakly present
at short interatomic distances with no predissociation.

The purely long-range resonances have been previously analysed by Venturi et al [90]
using only long-range potentials and their results are also shown in the final column of
tables 3.8 and 3.9 for comparison. The agreement between the results is very good as can
be expected because the long-range levels are not affected by the choice of short-range
potential. Also mentioned in [90] are several resonances of the J = 1, g configuration near
the j = 1 asymptote that were believed to possess significant predissociation, although
precise calculations could not be made without the detail of the short-range interactions.
These are the resonances that are observed here at −164.426, −62.573 and −27.739 MHz
and it can be seen that they do not significantly predissociate as they have widths of
0.259, 1.156 and 0.057 MHz respectively, which are smaller than the radiative width of
∼ 3.2 MHz.

3.4 Experimental assignments

3.4.1 Single-channel assignments

Before the first calculation of ab initio short-range potentials by Dickinson et al [85], as-
signments of experimental observations were made by using only the long-range dispersion
and resonant dipole-dipole interaction potentials. To be able to accommodate the unknown
details of the short range part of the potential the accumulated phase (AP) method was
used (see [69] and references therein), which makes use of the observed binding energy to
predict the phase at some inner cut-off point of the long-range potentials. Each observation
can be assigned an accumulated phase for every potential so it is not possible to make an
assignment to a single isolated level. However, when a group of observations all possess
a similar phase in one particular potential, it is highly likely that the measurements form
a series corresponding to that potential’s molecular configuration. While the AP method
does not guarantee the correct assignment of levels, it has shown great success despite the
lack of information available about the short-range form of the interaction.

With the calculation of precise ab initio potentials [86], it is possible to theoretically
calculate the binding energies as has been shown in the previous sections. The simplest
method of assignment using a single-channel calculation is to compare the observed energies
to the theoretical levels in each single-channel potential and to associate levels based upon
the closeness of their binding energies. Further details, such as the likelihood of Penning
ionisation, may be used to aid the selection process and discard unlikely sets of theoretical
levels. Penning ionisation acts as both a level broadening mechanism and a detection
method for many experiments and occurs in metastable 2s2s helium and 2s2p helium
systems when the bound level possesses singlet or triplet character in its Hund’s case (a)
basis for R < 20 a0 [92]. Deguilhem et al [86] have made assignments to many experimental
observations in this manner.
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Table 3.8: Resonances that are present within 600 MHz of detuning from the j = 1
asymptote. The detuning and predissociation width Γpre

v are given in MHz. The fifth
column lists the proportion of the wave function at short range and the final column lists
the calculations of Venturi et al [90].

j = 1 asymptote

J,w Detuning Γpre
v Case (c) fR<20 Venturi et al

J = 1, g −282.55 6.51 0−g 1× 10−4

−164.43 0.26 1g 6× 10−5

−116.70 3.28 0−g 6× 10−5

−62.57 1.16 1g 2× 10−4

−40.46 1.31 0−g 3× 10−5

−27.74 0.06 1g 1× 10−5

−15.90 0.68 1g 1× 10−4

−9.98 0.47 0−g 1× 10−5

J = 2, g −130.22 0.36 1g 7× 10−6

−30.23 0.37 1g 9× 10−6

−19.07 0.04 1g 1× 10−6

J = 3, g −427.21 70.19 0−g 2× 10−5

−181.80 35.99 0−g 5× 10−5

−87.66 0.22 1g 1× 10−6

−64.68 16.15 0−g 5× 10−5

−17.34 5.85 0−g 3× 10−5

−11.69 0.05 1g 5× 10−7

−5.66 0.03 1g 4× 10−7

J = 0, u −18.28 0.00 0−u 1× 10−9 −18.27
J = 1, u −418.24 0.42 0+

u 1× 10−4

−204.73 0.28 0+
u 8× 10−5

−82.01 0.15 0+
u 4× 10−5

−25.65 0.06 0+
u 2× 10−5

J = 2, u −191.50 0.02 2u 4× 10−8 −191
−72.25 0.02 2u 4× 10−8 −72
−21.43 0.01 2u 2× 10−8 −21.5

J = 3, u −478.14 5.30 0+
u 3× 10−4

−282.48 3.21 0+
u 2× 10−4

−166.78 0.06 2u 4× 10−8 −167
−121.64 1.61 0+

u 8× 10−5

−57.56 0.04 2u 3× 10−8 −57
−38.41 0.67 0+

u 3× 10−5

−14.29 0.02 2u 1× 10−8 −14.4
−7.02 0.22 0+

u 2× 10−5
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Table 3.9: Resonances present within 1500 MHz of detuning from the j = 0 asymptote.
The detuning and predissociation width Γpre

v are given in MHz. The fifth column lists the
proportion of the wave function at short range and the final column lists the calculations
of Venturi et al [90].

j = 0 asymptote

J,w Detuning Γpre
v Case (c) fR<20 Venturi et al

J = 1, g −207.68 0.002 1g 4× 10−13 −207.66
−43.80 0.002 1g 1× 10−13 −43.80

J = 2, g −170.93 0.002 1g 1× 10−10 −170.92
−28.52 0.002 1g 7× 10−11 −28.52

J = 3, g −115.74 0.000 1g 3× 10−11 −115.73
−7.96 0.002 1g 4× 10−14 −7.97

J = 1, u −1418.05 0.008 0+
u 1× 10−9 −1418.1

−648.49 0.008 0+
u 3× 10−10 −649

−253.12 0.008 0+
u 1× 10−11 −253.12

−79.65 0.002 0+
u 6× 10−11 −79.65

−18.29 0.002 0+
u 2× 10−11 −18.30

J = 3, u −1212.67 0.045 0+
u 9× 10−10 −1212.7

−513.07 0.045 0+
u 4× 10−10 −513

−174.56 0.026 0+
u 3× 10−9 −174.5

−41.64 0.008 0+
u 2× 10−9 −41.6

The absence of measurements to associate with theoretically predicted levels can also be
used as a means to predict the coupling between differing manifolds. Léonard et al [122]
have used the absence or presence of levels between two experimental setups that differ by
their detection mechanism and the use of spin-polarisation (Paris experiment) or lack of
polarisation (Utrecht experiment) to infer the rotational coupling between different case
(c) sets. Levels that are predicted to become purely quintet at short-range in the single
channel approximation should be observable in the Paris experiment (which uses an optical
detection mechanism) but unobservable in the Utrecht experiment (which relies on an ion
detection mechanism). However, if the actual experimental data does show the level, then
it must be that coupling to other single-channel potentials with non-quintet character at
short-range is present. Levels that are strongly coupled by Coriolis couplings to potentials
that are significantly non-quintet will decay very quickly via Penning ionisation.

3.4.2 Observability Criteria

The multichannel calculations in this chapter allow further characterisation of each level
and make possible rejection on an individual level-by-level basis. This is because the
complete vibrational wave function is available for analysis and level specific information
can be easily generated. For each level, the short-range spin-S fraction f2S+1,v and an
approximate coupling factor Av between the excited bound level and metastable colliding
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states of an experimental setup can be calculated. The spin fraction f2S+1,v is defined by

f2S+1,v =
QS,v∑
S′ QS′,v

. (3.21)

Here, the spin probability QS,v is calculated in the LS basis (see appendix B.3)

QS,v =
∑

L′S′Ω′LΩ′S

δS,S′
∑
a

F
j1j2jΩj
L′S′Ω′LΩ′S

ˆ 20 a0

0
Ga,v(R) dR (3.22)

where the quantity F j1j2jΩj
L′S′Ω′LΩ′S

is given by equation (B.22) and Ga,v(R) are the vibrational
wave functions calculated from the differential equations (3.15). This spin fraction is useful
in estimating the likelihood of Penning ionisation in collisions of non-quintet character. It
is assumed that Penning ionisation occurs with nearly 100% probability for states with
non-quintet character for R < 20 a0. Therefore larger values of f1,v +f3,v (or, equivalently,
smaller values of f5,v) will result in smaller lifetimes for those bound levels.

The coupling factor Av, defined by

Av =
1

Ng

∑
a,g

〈Smslml|Ĥint|a〉
ˆ
Gg(R)Ga,v(R) dR, (3.23)

is essentially a Franck-Condon integral between the excited state
∑

aGa,v(R)|a〉 and a
set of Ng metastable states Gg(R)|SmSlml〉 where the particular value of g determines
the quantum numbers {S,mS , l,ml} that are most relevant in specifying experimental
conditions. As the temperature of the colliding metastable system is unknown and can
range from µK to mK, the metastable wave function, Gg(R), is replaced with unity. The
coupling between the metastable and excited states, 〈a′|Ĥint|a〉, is evaluated in the dipole
approximation and is given by equation (4.32). The transformation from the hybrid jj

basis |a〉 to the experimentally relevant basis |SmS , lml〉 is given by (B.38).

The calculation of the short-range spin character is motivated by the expectation that
experiments will not observe levels that possess too short a lifetime and hence have too
broad a resonance to be detectable. A direct measure of this lifetime can be calculated
by also considering the oscillation time of the wave function and a semi-classical model
for the loss of population in the state as a particle oscillates back and forth. The process
with most effect on the lifetime is that of Penning ionisation, so other loss processes such
as spontaneous emission are ignored in the calculation. It is assumed that the ensemble of
particles will decrease by a percentage of f1,v + f3,v for every oscillation. To determine the
speed of the particles, an approximate potential Va(R) is calculated for each channel from
(3.12) using

E − Va(R) = − ~2

2µ

G′′a,v(R)

Ga,v(R)
. (3.24)

The speed, v, at each point is va =
√

2(E − Va)/µ and the time for oscillation ta,osc =

2
´
v−1
a dR where the integral is over values of R for which va is real and positive. These

values lie between the classical turning points of the potential. If a double-well structure
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is evident in the potential then that level is ignored and no lifetime is calculated. By
approximating the semi-classical oscillation by a continuous decay equation

N(t) = N0e
−t/τa , (3.25)

the lifetime of the state τa may be found. After substitution of N(ta,osc) = f5,vN0 into
(3.25), τa = −ta,osc/ ln f5,v is found, from which the decay width can be calculated from
Γa = ~/τa. As there is a value Γa for each channel |a〉, a single value for the width is
determined from an average oscillation time weighted by the probability of wave function
in each channel:

Γv =
∑
a

Γa

ˆ ∞
0
|Ga,v(R)|2 dR. (3.26)

These values are included in the tables in the following sections, and it appears that the
decay widths are small for the majority of assigned levels. However, other unassigned levels
that are not shown in the tables also possess decay widths that can be negligible and so there
appears to be limited usefulness in considering the decay width as an observability criterion.
The final observability criteria for assignment of theoretical levels with experimental levels
do not make use of Γv.

The results reported in [120] were performed using the incorrect symmetrised basis (2.28).
This has an influence on the averaging processes used for the calculation of the observability
criteria and biases the values towards channels with Ω > 0 by a factor of two. However,
these criteria are not rigorously defined quantities and are used only as estimates to classify
levels.

3.4.3 Spin-polarised experiments beneath the j = 2 asymptote

The first experimental observations to be considered are those of Kim et al [67], who
confined spin-polarised atoms in a magnetic trap at approximately 10 µK. Colliding spin-
polarised metastable helium atoms have spin projections that are aligned in the same
direction, represented here by the quantum numbers S1 = S2 = 1, mS1 = mS2 = 1,
S = 2 and mS = 2. The experiment used an optical detection method and was able
to detect all decay paths from the excited state, including spontaneous emission. As the
spin-polarised state has a gerade symmetry, only ungerade excited levels are accessible by
the laser coupling, due to the selection rules of the dipole approximation. In the colliding
atoms, partial waves greater than s-waves will contribute little to the photoassociation
process as the very low temperatures are highly unlikely to permit d-wave or higher partial
waves reaching the interatomic distances of the excited resonances. Quantitatively, based
on the average collisional energy of Ek = (3/2)kT , atoms at 10 µK in a d-wave channel
will be classically repelled by the centrifugal barrier at 1600 a0.

The experiment systematically scanned the range 0 − 6 GHz of detuning from the j = 2

asymptote. After initial analysis of the observed levels in this region, more-deeply bound
levels were predicted to be observed and additional narrow scans were made that validated
these predictions. To perform a sensible analysis in this present study, only the observations
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belonging to the systematically scanned region will initially be compared to theoretical
predictions. In this region, constraints may be placed upon the calculated theoretical
quantities f5,v and Av in an attempt to reproduce the exact number and position of the
observed levels. This can only be done because it is certain there are no missing potentially
observable levels that lie between the reported levels in this region. Theoretical levels
that are to match observations from narrow scans should also obey these constraints, but
nearby theoretical levels that do not match to experimental observations cannot be rejected
without verified observability criteria as there is no experimental evidence to suggest their
invalidity.

In the range of detunings 0.08 − 6 GHz, a possible 71 theoretical levels are predicted to
exist in the ungerade excited manifold. To reduce this large number of levels to the 23
observations made in this region, different combinations of constraints – referred to as the
observability criteria – are placed upon the quantities f5,v and Av. Theoretical levels that
possess too small a value of f5,v will consist of significant singlet and triplet contributions,
have a short lifetime, and therefore a weak and broad resonance, and hence be unlikely to be
observed in experiment. Additionally, theoretical levels that are likely to be coupled by the
laser interaction from the metastable collisional state will possess large values of Av. With
these concepts in mind, two observability criteria were found empirically by iteratively
choosing values that included appropriate matches to the experimental observations while
excluding those that do not match well. The final criteria were found to be a 87.5% quintet
short-range character and a minimum coupling of 0.9 Eh. These conditions isolate 19 levels,
shown in table 3.10, that match consistently and almost uniquely with the experimental
measurements. Two of these theoretical levels lie very close to one another (−0.185 and
−0.184 GHz) and are likely to be indistinguishable due to overlap of their resonance peaks
and therefore belong to the observed level of −0.200 GHz.

Also included in table 3.10 are four theoretical levels that do not satisfy both of the
observability criteria, yet can be assigned to experimental observations in the knowledge
that the one criterion that is satisfied is unusually strong. For example, the theoretical level
−0.928 GHz has a reduced short-range quintet character f5 but is very strongly coupled
to the metastable manifold by a coupling which is approximately twice as strong as that
for the other levels.

From the assignments, it is evident that there is a trend for the theoretical levels to be
consistently lower than the observed experimental levels by approximately 3−5%. Because
of this discrepancy, the assignments that are made here differ from that of [86] quite often.
It is worth noting that the majority of assignments agree with those of the accumulated
phase method calculated by the experimental group [122], confirming the versatility of the
AP method and suggesting that comparison of binding energies as used by [86] is not the
best method to associate theoretical results with experimental observation.

In some entries of table 3.10, assignments are made to more than one Hund’s case (c) set.
Each case (c) set that has a contribution greater than 20% as calculated from equation
(3.16) has been included in the table. It should be noted that this contribution is averaged
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Table 3.10: Theoretical bound levels, with energies in GHz from the j = 2 asymptote, that
have been calculated to be observable in spin-polarised experiments and their assignments
to the observations of Kim et al [67]. The observability criteria used are Av > 0.9 Eh and
f5,v > 87.5%. Some levels do not completely satisfy the observability criteria, but can be
considered assignable due to the strength of one of the criteria. The fifth column lists the
contributions from case (c) sets that are larger than 20%.

Exp Theor Av (Eh) f5,v (%) Case (c) [86] assignment Γv (MHz)

−5.90 −5.729 1.306 99.9 2u, J = 2 2u, J = 2 0.3
−5.64 −5.463 1.775 98.9 2u, J = 3 0+

u , J = 1 2.0
−4.53 −4.394 1.157 96.8 1u, 0

+
u , J = 1 0+

u , J = 3 11.9
−4.25 −4.141 1.954 91.7 0+

u , 1u, J = 3 1u, J = 2 28.5
−3.57 −3.438 1.388 99.2 2u, J = 2 0+

u , J = 1 2.6
−3.37 −3.251 2.077 99.2 2u, J = 3 2u, J = 2 2.6
−2.59 −2.499 1.155 99.0 1u, 0

+
u , J = 1 1u, J = 3 2.6

−2.42 −2.337 2.214 96.3 0+
u , 1u, J = 3 1u, J = 1 8.2

−2.00 −1.937 1.420 98.5 2u, J = 2 0+
u , J = 1 3.1

−1.88 −1.807 2.418 99.7 2u, J = 3 2u, J = 2 0.5
−1.37 −1.326 1.058 98.7 0+

u , 1u, J = 1 1u, J = 3 2.0
−1.275 −1.223 2.552 99.8 0+

u , 1u, J = 3 − 0.3
−1.22 −1.160a 0.574 100.0 1u, J = 2 1u, J = 2 0.0
−1.07 −1.013 1.539 98.2 2u, J = 2 0+

u , J = 1 2.0
−0.98 −0.928a 3.196 84.6 2u, J = 3 2u, J = 2 20.9
−0.62 −0.589 2.733 99.3 0+

u , 2u, J = 3 1u, J = 1 0.5
−0.51 −0.487a 1.673 86.8 2u, J = 2 2u, J = 2 8.7
−0.455 − − − − 0+

u , J = 3 −
−0.280 −0.263a 3.483 73.6 0+

u , 2u, J = 3 0+
u , J = 1 9.7

−0.235 −0.215 1.861 99.1 2u, J = 2 1u, J = 1 1.8
−0.200 −0.185 0.989 99.9 1u, J = 2 2u, J = 2 0.0
− −0.184 3.012 95.6 2u, J = 3 − 1.3

−0.185 −0.167 5.059 92.7 0+
u , 1u, J = 3 1u, J = 2 1.1

−0.09 −0.083 2.328 99.7 2u, J = 2 0+
u , J = 3 0.0

aObservability criteria relaxed.
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Table 3.11: Theoretical bound levels, with energies in GHz from the j = 2 asymptote,
that are expected to be observed in experiments such as that of Kim et al that use spin-
polarised atoms and an optical detection mechanism. Some narrow scans of measurements
were performed by Kim et al and these assignments have been included. However, the
majority of energies have not been scanned in experiment.

Exp Theor Av (Eh) f5,v (%) Case (c) [86] assignment Γv (MHz)

− −124.26 0.963 99.0 2u, J = 3 − 68.8
− −95.030 1.009 98.8 2u, J = 3 − 55.0
− −71.694 1.033 98.7 2u, J = 3 − 39.7
− −68.734 0.912 96.4 1u, 0

+
u , J = 1 − 131.9

− −67.246 0.903 89.9 1u, 0
+
u , J = 3 − 357.4

− −53.287 1.060 98.5 2u, J = 3 − 36.9
− −50.408 0.953 96.1 1u, 0

+
u , J = 1 − 109.2

− −49.151 1.011 88.6 1u, 0
+
u , J = 3 − 334.2

− −38.927 1.230 99.1 2u, J = 3 − 20.9
− −36.204 0.981 95.9 1u, J = 1 − 79.5
− −35.158 1.118 87.7 1u, 0

+
u , J = 3 − 278.9

− −28.566 0.947 100.0 2u, J = 2 − 0.0
− −27.876 1.257 98.9 2u, J = 3 − 17.9
− −25.388 1.019 95.7 1u, J = 1 − 66.8
− −20.061 1.022 99.5 2u, J = 2 − 7.0
− −19.500 1.344 98.8 2u, J = 3 − 14.6
− −17.316 1.053 95.5 1u, J = 1 − 50.3
− −13.705 1.111 99.8 2u, J = 2 − 0.1

−13.67 −13.259 1.472 99.0 2u, J = 3 2u, J = 2 10.2
−11.70 −11.434 1.094 95.3 1u, J = 1 1u, J = 1 36.6
− −9.051 1.208 100.0 2u, J = 2 − 0.1

−8.95 −8.705 1.655 99.0 2u, J = 3 2u, J = 2 7.2
−7.45 −7.262 1.131 95.6 1u, J = 1 1u, J = 1 15.4

across the entire range of the bound level and may not well represent the detailed behaviour
of the level. For example, a level can be composed of 100% of one particular basis state in
a narrow region of interatomic distance, yet may not be listed as a case (c) contribution.
Furthermore, case (c) sets that have contributions as large as 15% have been omitted in
the table and could possible play an important role in properties associated with the levels.

The observability criteria established to account for levels with binding energies less than 6
GHz can be used to make assignments to the experimental observations of binding energies
greater than 6 GHz. All levels that are predicted to occur are shown in table 3.11 along
with assignments to observed levels if possible. The lack of assignment for theoretical
level −9.051 GHz is not due to a problem in the observability criteria, but because the
experiment did not scan this region of detuning.

3.4.4 Unpolarised experiments beneath the j = 2 asymptote

The second set of experimental observations to be considered are those of van Rijnbach
[66] and Tol [65]. Like the majority of photoassociation experiments involving metastable
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helium, these experiments use unpolarised gases which allow for many more collisional
channels and can excite gerade and ungerade 2s2p combinations. As the Utrecht mea-
surements of Tol suffered from a calibration error which was corrected post-measurement
by comparison to other experimental data, only the Amsterdam measurements of Tol will
be considered. The measurements of van Rijnbach and Tol for binding energies less than
1.5 GHz mostly overlap, except for three values that are not recorded by van Rijnbach
and one that is not observed by Tol. In both experiments ion detection was used as a
signal of the excited state, which requires some singlet or triplet character of the excited
bound levels. Hence, it is not expected that all of the levels observed in the spin-polarised
experiments will also be observed in these ion-detection experiments.

For these experiments a metastable helium gas at approximately 1− 2 mK was used. It is
likely that the lowest order partial wave will dominate the collisions of metastable atoms,
but for ungerade metastable collisions this corresponds to p-wave collisions. The p-wave
centrifugal barrier is significant for the low temperatures used, as the region R < 200 a0

becomes classically forbidden for colliding metastable atoms at a temperature of 1 mK.
Hence it is far more likely that ungerade 2s2p states will be excited by metastable collisions
than gerade 2s2p states. Additionally, excited gerade levels will only be strongly coupled if
they possess significant triplet character for a region of interatomic distance, yet this will
likely cause high rates of decay due to significant triplet character at short range.

The experiments systematically scanned a range of 0.045 − 13.57 GHz detuning and ob-
served 37 levels. Within this range, a total of 205 theoretical levels exist, and a sub-
set of levels is again determined based on similar observability criteria as for the spin-
polarised experiments. The exact empirical criteria were a minimum coupling to the
metastable manifold of 0.7 Eh and a quintet short-range character that must lie within
87.5% < f5,v < 99.8%. The maximum imposed upon the quintet short-range character is
necessary, as the ion-detection mechanism of the experiment rules out purely quintet levels.
Under these constraints, 21 levels are found that match reasonably well with experimental
observations and three more levels can be assigned with a slight relaxation of one of their
observability criteria (see table 3.12). Within the van Rijnbach observations, 15 were noted
to be weakly observed and only four of these have been assigned to theoretical levels. To
attempt to make further assignments to these levels would require a significant relaxation
of the observability criteria and introduce many more theoretical levels that would not
be assignable to any experimental measurement. Of the remaining ‘strong’ experimental
levels, three were not assigned. Three theoretical levels (−1.013, −0.215 and −0.167 GHz)
cannot be assigned to any experimental level. Note that the three observations of Tol that
do not overlap with van Rijnbach, −0.045, −0.105 and −0.622 GHz, are required to com-
plete assignments to the predicted theoretical levels, as is the observation of van Rijnbach
at −0.08 GHz that does not overlap with that of Tol.

Again the assigned theoretical levels have binding energies consistently lower than the
experimentally observed binding energies and this brings about a disagreement between
the assignments reported here and those of Deguilhem et al. While the majority of the
levels again agree with the assignments predicted by the accumulated phase method used in
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the initial predictions by the experimental groups, special mention must be made regarding
the observed levels assigned to 2u, J = 2, that is −3.49, −2.01 and −0.52 GHz. Despite the
assignment by Léonard et al [122] to these sets, they believed that neighbouring levels or
possibly gerade levels were the reason for these observations [123] as the 2u, J = 2 adiabatic
levels were predicted to possess purely quintet behaviour at short-range and not produce
ionisation. The results here show that this is not the case: these levels possess properties
that firmly place them in the ion detection regime. It is evident that the non-adiabatic and
Coriolis couplings reduce the strong quintet behaviour of these levels at short interatomic
distances.

It is worth noting that the gerade excited levels are almost completely unrepresented,
except for one corresponding to −0.109 GHz. This is not due to the l = 1 centrifugal
barrier, as the barrier is not included in the coupling strength calculation (3.23). Instead,
it is because excited gerade levels can only be coupled to metastable ungerade levels and
these are in triplet configurations. The spin-conserving nature of the coupling therefore
means that coupled excited gerade levels must have a strong triplet nature. In fact, almost
all of the 38 strongly coupled gerade levels (that is, those with Av > 0.7 Eh) in the range
0.045− 13.57 GHz have a value of f5,v < 0.2.

To characterise the nature of the gerade coupling the single-channel gerade potentials can
be analysed. If a gerade level is to be effectively coupled to the metastable manifold it must
possess triplet character at large interatomic distances yet become mostly quintet at short
interatomic distance to avoid loss by ionisation. Only three potentials that asymptote to
j = 2 satisfy this criteria in the gerade manifold, one from each of the 0+

g , 1g and 2g sets.
The first two potentials, 0+

g and 1g, possess less than 10% triplet character at 300 a0 and for
the wave function to extend out to this interatomic distance the binding energy must be less
than 350 MHz. Similarly, the remaining 2g potential does not possess 10% triplet character
until distances R > 500 a0 and permits the wave function to extend out to this distance
only for binding energies less than 140 MHz. The wave functions of these levels must
also extend out past the centrifugal barrier of the metastable collisions which also places a
limit upon the maximum binding energy of approximately 400 MHz. Crucially, each of the
three potentials is purely quintet at short-range and hence requires some coupling to other
manifolds to permit ion detection in experiment. The low probability of photoassociation
due to the combination of each of these properties and the lack of many gerade levels in
the observations should therefore be unsurprising.

Using the formulated observability criteria, predictions of observable levels may be made
for binding energies greater than the 14 GHz of detuning from the j = 2 asymptote that
was performed in the experiments. These levels are given in table 3.13.

3.4.5 Unpolarised experiments above the j = 2 asymptote

The experiments of van Rijnbach also studied resonances near the j = 1 asymptote. By
applying the observability criteria of the previous section to the levels calculated in section
3.3.3 and shown in tables 3.8 and 3.9, a direct one-to-one assignment can be made to all
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Table 3.12: Theoretical bound levels, with energies in GHz from the j = 2 asymptote, that
are calculated to be observable in ion detection experiments and their assignment to the
observations of van Rijnbach [66] and Tol [65]. The Utrecht values of Tol suffered from a
calibration error and so are included in the table only for completeness. The last column
represents the approximate decay width calculated from modelling the states as a semi-
classical oscillation, see equation (3.26), and its values are unhelpful in making assignments
to the observations.

Exp [66] Exp [65] Theor Av (Eh) f5,v (%) Case (c) [86] assignment Γv (MHz)

−13.57 − −13.259 1.045 98.8 2u, J = 3 2u, J = 2 9.0
−11.70b −11.69bc −11.433 0.711 95.5 1u, J = 1 1u, J = 1 42.3
−11.10b −10.93bc −10.930 1.087 87.5 1u, 0

+
u , J = 3 1u, J = 2 111.4

−8.94 −8.96c −8.705 1.169 98.9 2u, J = 3 2u, J = 2 6.0
−7.44 −7.44c −7.262 0.741 95.8 1u, J = 1 1u, J = 1 16.8
−7.01 −7.03c −6.895a 1.148 79.6 1u, 0

+
u , J = 3 1u, J = 2 68.9

−5.64 −5.65c −5.463 1.262 98.9 2u, J = 3 0+
u , J = 1 2.0

−4.53 −4.51c −4.393 0.784 96.8 1u, 0
+
u , J = 1 0+

u , J = 3 11.9
−4.26 −4.26c −4.141 1.389 91.7 0+

u , 1u, J = 3 1u, J = 2 28.5
−3.49b − −3.438 1.209 99.2 2u, J = 2 3g, J = 3 2.6
−3.38 −3.37c −3.251 1.477 99.2 2u, J = 3 2u, J = 2 2.6
−2.87 − − − − − 2u, J = 4 −
−2.60 −2.57c −2.499 0.855 99.0 1u, 0

+
u , J = 1 1u, J = 3 2.6

−2.42 −2.40c −2.338 1.574 96.3 0+
u , 1u, J = 3 1u, J = 1 8.2

−2.01 −2.02c −1.937 1.236 98.5 2u, J = 2 0+
u , J = 1 3.1

−1.88 −1.88c −1.807 1.719 99.7 2u, J = 3 2u, J = 2 0.5
−1.54 − −1.326 0.997 98.7 0+

u , 1u, J = 1 2u, J = 4 2.0
−1.28 −1.287 −1.223 1.814 99.7 0+

u , 1u, J = 3 1u, J = 1 0.3
− − −1.013 1.340 98.2 2u, J = 2 − 2.0

−0.98 −0.996 −0.928a 2.272 84.6 2u, J = 3 2u, J = 2 17.8
− −0.622 −0.589 1.943 99.3 0+

u , 2u, J = 3 1u, J = 1 0.5
−0.52 −0.533 −0.487a 1.457 86.8 2u, J = 2 2u, J = 2 8.7
−0.46 −0.465 − − − 2u, 0

+
u , J = 3 0+

u , J = 3 −
−0.27 −0.275 − − − 0+

u , 2u, J = 3 0+
u , J = 1 −

− − −0.215 1.620 99.1 2u, J = 2 − 0.3
−0.19 −0.182 −0.184 2.141 95.6 2u, J = 3 2u, J = 2 1.3
− − −0.167 3.597 92.7 0+

u , 1u, J = 3 − 1.1
− −0.105 −0.109 1.693 99.5 2g, J = 2 0+

u , J = 1 0.1
−0.08b − −0.066 3.094 99.4 2u, J = 3 0+

u , J = 3 0.1
− −0.045 −0.050 4.138 97.6 0+

u , 1u, J = 3 0+
u , J = 1 0.2

aObservability criteria relaxed.
bMeasurement that was recorded as a weakly observed level.
cValue from the Amsterdam measurements of Tol corrected for calibration error.
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Table 3.13: Theoretical bound levels, with energies in GHz from the j = 2 asymptote, that
are expected to be observed for binding energies greater than 14 GHz in experiments that
use unpolarised atoms and an ion detection mechanism.

Theor Av (Eh) f5,v (%) Case (c) Γv (MHz)

−95.030 0.717 98.8 2u, J = 3 55.0
−71.694 0.734 98.7 2u, J = 3 39.7
−53.287 0.753 98.5 2u, J = 3 36.9
−49.151 0.719 88.6 1u, 0

+
u , J = 3 334.2

−38.927 0.875 99.1 2u, J = 3 20.9
−35.158 0.795 87.7 1u, 0

+
u , J = 3 278.9

−27.876 0.894 98.9 2u, J = 3 17.9
−20.061 0.890 99.5 2u, J = 2 7.3
−19.500 0.955 98.8 2u, J = 3 14.6

Table 3.14: Theoretical resonances, with energies in MHz from the j = 1 asymptote that
satisfy the observability criteria for ion detection experiments. Note that these criteria
exclude all purely long-range levels. The assignments are calculated from only the closed
channels of the resonance wave function.

Exp Theor Γpre
v (MHz) Av (Eh) f5,v (%) Case (c) [86] assignment

−452 −427 70.2 1.331 98.9 0−g , J = 3 0−g , J = 3

−343 −283 6.5 1.827 99.6 0−g , J = 1 0−g , J = 1

−238 −182 36.0 1.708 98.7 0−g , J = 3 0−g , J = 3

−159 −117 3.3 2.418 99.2 0−g , J = 1 0−g , J = 1

−89 −65 16.1 2.154 98.8 0−g , J = 3 0−g , J = 3

−43 −40 1.3 3.273 99.5 0−g , J = 1 0−g , J = 1

of the experimental observations. These are presented in table 3.14. Note that effectively
a third observability criterion is active, as each of these theoretical levels possesses a pre-
dissociation width of less than 100 MHz, determined by the search process described in
section 3.3.4. This is a reasonable criterion to place upon the system as levels with large
widths are very weak and difficult to observe experimentally.

The assignments agree exactly with those of Deguilhem et al. It is interesting to see that
the only observable levels near this asymptote are those of the gerade excited manifold,
despite the indications and conclusions of the previous sections regarding gerade coupling
and triplet behaviour. This may be explained by again analysing the nature of the single-
channel potentials. In contrast to the j = 2 asymptotic potentials, the 0−g adiabatic
potential asymptoting to j = 1 that is mostly quintet at short range reaches 20% triplet
character for interatomic distances larger than 300 a0 and, more importantly, allows wave
functions to extend outwards to this distance for binding energies less than 1.8 GHz. Hence,
levels near the j = 1 asymptote have a greater opportunity to be coupled to the metastable
manifold.

All of the resonances that have been calculated near the j = 0 asymptote, listed in table
E.2, cannot be observed in ion-detection experiments because they are purely long-range
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Table 3.15: Theoretical resonances, with energies in MHz from the j = 0 asymptote, that
are observable in spin-polarised experiments using an optical detection mechanism and
their assignments to Kim et al [67]. The observability criteria for Av, f5,v and Γpre

v have
been applied in a similar manner to table 3.14. An additional criterion, fR<20, is present
which indicates whether or not the resonance has a purely long-range nature. For purely
long-range resonances, the criterion upon f5,v may be ignored, as ionisation cannot occur.

Exp Theor Γpre
v (MHz) Av (Eh) fR<20 Case (c)

−1418.1 −1418.05 0.008 3.472 1× 10−9 0+
u , J = 1

−648.5 −648.49 0.008 2.095 3× 10−10 0+
u , J = 1

−253.3 −253.12 0.008 3.812 1× 10−11 0+
u , J = 1

−79.6 −79.65 0.002 4.399 6× 10−11 0+
u , J = 1

−18.2 −18.29 0.002 6.858 2× 10−11 0+
u , J = 1

and hence cannot ionise. Experiments that use an optical detection method, however, can
observe these states. For the Kim et al experiments, only spin-polarised atoms are used
and so only ungerade excited resonances may be observed. The list of resonances that
can be assigned to the Kim et al measurements are presented in table 3.15. The very
good agreement between theory and experiment is due to the purely long-range nature
of the resonances, as the long-range electronic potentials are well understood in terms of
their precise atomic properties. Note that purely long-range resonances are not affected by
the short-range quintet fraction f5,v as they cannot extend into the short-range distances
required for ionisation.

The search for resonances was also performed for up to 2 GHz of detuning from the j = 0

and j = 1 asymptotes and some additional resonances were found near the j = 1 asymptote
that fit the observability criteria for ion detection experiments. These are listed in table
E.4. A large number of the resonances appear to overlap one another and almost all of the
resonances possess a short-range proportion fR<20 between 10−6 and 10−8. As mentioned
in section 3.3.4, this does not distinguish the purely long-range resonances from others. As
all of the predictions are gerade levels, only unpolarised ion detection experiments would
be able to observe the peaks, which in turn requires the resonances to not be purely long-
range so that they can produce ions for detection. The dynamics of these resonances should
therefore be analysed in more detail in future calculations.

3.5 Short-range correction

As the theoretical binding energies for ungerade levels are consistently lower than the ex-
perimental observations, a correction to the input potentials of the theoretical calculation
is suggested. Because the only gerade level that satisfies the observability criteria is rea-
sonably close to its assigned observation, only the ungerade potentials are considered for
variation. Motivated by the observation that many ultracold molecular properties are very
sensitive to the slope of the potential at the inner classical turning point [103], the MCSCF
1,3Σ+

u and 1,3Πu and the MRCI 5Σ+
g,u and 5Πg,u input potentials are modified in this region
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by introducing a multiplicative factor c through a smoothing function of the form

V ′(R) = V (R)


(1 + 2c) R < R1

[1 + c(1 + cos[a(R−R1)])] R1 < R < R2

1 R2 < R

, (3.27)

where a = π/(R2 −R1), which represents a fractional increase of 2c inwards of R1 that is
smoothly activated over the region R1 < R < R2. Because the bound levels are strongly
quintet in character at short range (due to the observability criterion f5,v > 87.5%) the
largest influence from variation of the potentials is expected to come from the quintet
potentials. In fact, because the 5Πu potential is purely repulsive, the 5Σ+

u potential will
have the largest influence. This need to vary the quintet potentials, however, contradicts
the expectation [124] that the MRCI potentials are the most accurate and that the MCSCF
potentials are more likely to require adjustment.

Many different combinations of variations can be performed that cause both beneficial
and detrimental changes to occur. Five such variations were performed in total and the
results and their assignments are presented in tables 3.16 and 3.17 for the polarised and
unpolarised results respectively. Variation A applies a 1% increase (c = 0.005) turned on
over the region 5 < R < 10 a0 to all of the ungerade potentials. The results from A are
promising and show much improvement in both binding energy and observability criteria.
Variation B applies the scaling to only the MCSCF 1,3Σ+

u and 1,3Πu potentials and has only
a modest effect on the results. A larger range for variation is applied in C, turned on over
the region 20 < R < 30 a0 and applied to only the MCSCF potentials but this produces
many detrimental effects in the assignments. Variation D, which applies the variation of
A to only the MRCI 5Σ+

u and 5Πu potentials, produces results with a large improvement,
although not as much as variation A. Variation E applies the combined variations of C and
D, but is not successful in producing desirable changes.

Although the variation A (the effect of which is shown in figure 3.2) produces the best
results, variation D ranks a close second. The results of A are now discussed in more
detail. In the spin polarised results, the variation improves the situation for the levels
−0.928 and −0.487 GHz, such that they no longer require a relaxation of the criteria for
assignment. For most of the levels, the differences between the experimental observations
and the theoretical binding energies have been significantly reduced and are within the
experimental uncertainty of 20 MHz.

The situation for the unpolarised experiment results is improved even more by the use of
the variation. A new theoretical assignment to the observation −0.27 GHz is now possible,
albeit with a relaxed criterion, and the spurious theoretical level at −1.013 GHz has been
removed. The levels at −6.895, −0.928 and −0.487 GHz that previously required relaxation
of one criterion are now firmly placed as assignments to observations. The agreement
between the theoretical and experimental binding energies is also greatly improved.

In total, between the polarised and unpolarised experiments, only three observed levels
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Figure 3.2: A plot of the scaled ungerade potentials that are not purely repulsive, before
and after application of equation (3.27) for variation A, which scales the potentials by 1%
turned on from 10 a0 to 5 a0.

are unable to be associated with the theoretical levels after application of the variation if
weakly observed levels are excepted. Only two spurious levels were found that could not
be assigned to any experimental observation. This is deemed to be a great success of the
short-range correction that has been made possible due to the multichannel calculations.

The resonance levels above the j = 2 asymptote do not greatly benefit from the short-
range correction to the ungerade potentials as applied in variations A–E. This is because
all levels near the j = 0 asymptote are purely long-range and the ungerade levels that are
near the j = 1 asymptote have very large ionisation rates as can be seen in tables E.2 and
E.3.

During the review of this thesis, it was brought to the attention of the author that previous
work relevant to corrections of potentials has been published [125, 126]. The authors of the
articles found that, for a set of potentials carefully constructed from detailed physically
motivated adjustments to standard forms of diabatic potentials, there was a consistent
difference from ab initio potentials from MRCI and MCSCF calculations involving a slight
increase of well depth by < 3% and a slight shift to smaller R by < 5 mÅ. While the
adjustment in this thesis has a minor, unintended, effect of shifting the well position
to smaller R, in hindsight it would be valuable to consider a translation of the ab initio
potentials as a separate parameter. However, this consideration does not reduce the validity
of the correction considered in this thesis, and the agreement between experiment and
theory gained from the correction confirms its usefulness.
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Table 3.16: The experimental observations of Kim et al and the effectiveness of theoretical
assignments from the use of different variations of the short-range potentials. Missing
assignments for an observation are highlighted in red, and levels that require a relaxation
of the observability criteria are highlighted in yellow. The results from unvaried potentials
are presented in the second column and the forms of the variations are described in the text.
From the total missing assignments and relaxations required, it is obvious that variation
A produces the best match. All energies are in GHz.

Variation

Exp Theor A B C D E

−13.67 −13.259 −13.626 −13.261 −13.266 −13.621 −13.634
−11.70 −11.434 −11.772 −11.447 − −11.764 −11.840
− − −11.246 − − −11.220 −
− −9.051 −9.324 −9.051 −9.052 −9.324 −9.324

−8.95 −8.705 −8.970 −8.706 −8.710 −8.967 −8.975
−7.45 −7.262 −7.498 −7.270 − −7.493 −7.547
− − −7.112 − − −7.101 −

−5.90 −5.729 −5.920 −5.729 −5.729 −5.920 −5.921
−5.64 −5.463 −5.650 −5.464 −5.467 −5.648 −5.654
−4.53 −4.394 −4.554 −4.398 − −4.551 −4.580
−4.25 −4.142 −4.293 −4.152 −4.129 −4.285 −4.338
−3.57 −3.438 −3.567 −3.438 −3.438 −3.566 −3.567
−3.37 −3.251 −3.376 −3.252 −3.252 −3.375 −3.377
−2.59 −2.499 −2.603 −2.500 −2.515 −2.603 −2.609
−2.42 −2.338 −2.435 −2.340 −2.358 −2.433 −2.449
−2.00 −1.937 −2.020 − −1.936 −2.019 −2.017
−1.88 −1.807 −1.886 −1.808 −1.806 −1.886 −1.883
−1.37 −1.326 −1.387 −1.327 −1.334 −1.387 −1.389
−1.275 −1.223 −1.282 −1.224 −1.224 −1.282 −1.283
−1.22 −1.160 −1.220 − −1.160 −1.220 −1.220
−1.07 −1.013 −1.062 −1.014 −1.014 −1.062 −1.062
−0.98 −0.928 −0.974 −0.928 −0.928 −0.973 −0.974
−0.62 −0.589 −0.621 −0.589 −0.590 − −0.622
−0.51 −0.487 −0.515 −0.489 −0.489 −0.511 −0.516
−0.455 − − −0.432 −0.435 −0.458 −0.459
−0.280 −0.263 −0.278 −0.267 − −0.276 −
−0.235 −0.215 −0.228 −0.215 −0.215 −0.228 −0.228
−0.200 −0.185 −0.199 −0.185 −0.185 −0.199 −0.199
− −0.184 −0.196 −0.184 − −0.196 −0.197

−0.185 −0.167 −0.179 −0.167 −0.168 −0.178 −0.181
−0.09 −0.083 −0.089 −0.083 −0.083 −0.089 −0.089

Total Missing 1 1 2 4 1 1
Total Relaxations 4 2 2 5 4 6
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Table 3.17: The experimental observations of Rijnbach and Tol and the effectiveness of
theoretical assignments from the use of different variations of the short-range potentials.
Missing assignments for an observation are highlighted in red along with spurious theoret-
ical levels that cannot be assigned to any experimental observation. Levels that require a
relaxation of the observability criteria are highlighted in yellow. The results from unvaried
potentials are presented in the second column and the forms of the variations are described
in the text. From the total missing assignments, it is obvious that variation A produces
the best match. The level at −0.105 GHz that is assigned to 2g, J = 2 in table 3.12 has
been omitted as the gerade potentials are not varied. All energies are in GHz.

Variation

Exp Theor A B C D E

−13.57 −13.259 −13.626 −13.261 −13.266 −13.621 −13.634
−11.70b −11.434 −11.772 −11.447 − −11.764 −11.845
−11.10b −10.930 −11.246 −10.957 − −11.224 −11.392
−8.94 −8.705 −8.970 −8.706 −8.710 −8.966 −8.975
−7.44 −7.262 −7.498 −7.270 − −7.493 −7.547
−7.01 −6.895 −7.119 −6.912 − −7.103 −
−5.64 −5.463 −5.650 −5.464 −5.466 −5.647 −5.654
−4.53 −4.394 −4.554 −4.398 − −4.551 −4.580
−4.26 −4.145 −4.293 −4.152 − −4.285 −4.338
−3.49b −3.438 −3.567 −3.438 − −3.566 −3.567
−3.38 −3.251 −3.376 −3.252 − −3.375 −3.377
−2.87 − − − − − −
−2.60 −2.499 −2.603 −2.500 −2.515 −2.603 −2.609
−2.42 −2.338 −2.435 −2.340 −2.358 −2.433 −2.449
−2.01 −1.937 −2.020 - −1.936 −2.019 −2.017
−1.88 −1.807 −1.886 −1.808 −1.806 −1.866 −1.883
−1.54 −1.326 −1.387 −1.327 −1.333 −1.338 −1.390
−1.28 −1.223 −1.282 −1.224 −1.224 −1.282 −1.283
− −1.013 − − −1.014 −1.062 −1.062

−0.98 −0.928 −0.974 0.928 −0.928 −0.973 −0.974
−0.622c −0.589 −0.621 −0.589 −0.590 − −0.622
−0.52 −0.487 −0.515 −0.489 −0.489 − −0.516
−0.46 − − −0.432 −0.435 −0.458 −0.459
−0.27 − −0.278 − − −0.276 −0.348
− −0.215 −0.228 −0.215 −0.215 −0.228 −0.228
− − − − − − −0.199

−0.19 −0.184 −0.196 −0.185 −0.185 −0.196 −0.197
− −0.167 −0.179 −0.167 −0.168 − −0.181
− − − − −0.083 − −0.089

−0.08b −0.066 −0.072 −0.066 − −0.071 −0.072
−0.045c −0.050 −0.055 −0.050 −0.052 −0.055 −0.057

Total Missing
or Spurious 6 4 5 14 5 6

Total Relaxations 3 1 3 2 1 5

bMeasurement that was recorded as a weakly observed level.
cValue of Tol that was not observed by van Rijnbach.
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Table 3.18: Comparison of the energies, in GHz, of theoretical levels that have been as-
signed to experimental observations near the j = 2 asymptote, calculated using either the
long-range coefficients of Marinescu [110] or Zhang et al [107]. The short-range potentials
have been corrected by applying variation A, as described in section 3.5.

Marinescu Zhang et al Marinescu Zhang et al Marinescu Zhang et al

−13.626 −13.622 −3.567 −3.564 −0.974 −0.973
−11.772 −11.771 −3.376 −3.374 −0.621 −0.621
−11.246 −11.254 −2.603 −2.602 −0.515 −0.514
−9.324 −9.319 −2.435 −2.434 −0.278 −0.279
−8.970 −8.966 −2.020 −2.019 −0.228 −0.228
−7.498 −7.497 −1.886 −1.885 −0.199 −0.199
−7.119 −7.121 −1.387 −1.386 −0.196 −0.196
−5.920 −5.917 −1.282 −1.281 −0.179 −0.179
−5.650 −5.648 −1.220 −1.219 −0.072 −0.071
−4.554 −4.552 −1.062 −1.061 −0.055 −0.055
−4.293 −4.293

3.6 Zhang et al coefficients

The calculations undertaken in the previous sections of this chapter have used the coeffi-
cients of Marinescu [110] for the long-range Born-Oppenhemier potentials, that are shown
in table 2.1. Calculations have also been performed using the more recent coefficients of
Zhang et al [107]. The calculated binding energies do not significantly differ between the
different sets of coefficients. The only difference of note is that the Zhang et al coefficients
predict an additional experimental assignment at −0.434 GHz when using the unvaried po-
tentials. However, once variation A (described in section 3.5) is applied to the short-range
potentials, the assignments predicted by the different coefficients are identical. Table 3.18
shows the difference between the binding energies for the two sets of coefficients after the
short-range correction is applied.

3.7 Summary

In this chapter the 2s2p manifold of excited states has been investigated using calcula-
tions with varying degrees of approximation, together with an exact calculation. It has
been shown that the non-adiabatic and Coriolis couplings that are ignored in approxi-
mate calculations can significantly alter the results and these differences are measurable
in experiment. Furthermore, although the input short-range potentials of Deguilhem et al
[86] are very accurate, a 1% modification to the slope of the inner classical turning point
of the ungerade quintet potentials is required to produce agreement between theory and
experiment. This agreement has been obtained by formulating observability criteria that
quantify the likelihood for the metastable gas to make a transition to the probed state
and to also quantify the likelihood for observing such a state in terms of the probability of
ionisation.
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Several levels were observed in the 2s2p manifold that are classified as purely long-range
states. These states exist entirely at large interatomic distances, R > 100 a0 and are de-
termined completely by well known atomic parameters. In the next chapter, a particular
set of levels in the 0+

u , J = 1 set that asymptotes to j = 0 is investigated in terms of
the precise nature of the line shapes that occur in the photoassociation process. Although
any level may be investigated in such detail, the 0+

u levels have been chosen because there
are existing measurements of their line shifts [70] and because they do not depend on
any uncertainties in the short-range character of the potentials. They may also be accu-
rately represented by the single-channel approximation as the non-adiabatic and Coriolis
couplings for the purely long-range levels are not significant [90].
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Chapter 4
Photoassociation dynamics of long-range

levels

4.1 Introduction

Photoassociation (PA) of ultracold atoms provides a powerful technique to study the dy-
namics of ultracold collisions. The technique involves the resonant excitation of two atoms
into a molecular state by the use of a carefully tuned laser. A very high resolution spec-
trum (< 1 MHz) can be observed in experiment due to the narrow thermal distribution
of energies in the initial scattering state. In fact, the resolution of the spectra is often
much narrower than the natural line width of the transition. For example, the helium
2s→ 2p transition has a width of 1.626 MHz which is much larger than the 42 kHz ther-
mal width of colliding helium atoms at 2 µK. This means that the free→bound transition
may be considered as well defined as an equivalent bound→bound transition of more tra-
ditional spectroscopy. Furthermore the free→bound spectroscopy allows for measurements
to be made relative to well known reference energies which makes absolute level detection
possible, a feat that is difficult in other types of spectroscopy.

For normal temperatures of the colliding atoms, calculations of the photoassocation process
must consider a vast number of entrance channels corresponding to many different partial
waves. This makes PA very difficult to analyse and observe at room temperature. However,
the advent of cooling techniques to attain ultracold temperatures produces conditions
where only a very few partial waves contribute and may even restrict collisions to the lowest
order s-wave rotation. This has important consequences for the allowed configurations of
excited molecules that may be formed, as selection rules limit the coupling of the total
angular momentum. One advantage of using ultracold temperatures is that studying slowly
rotating molecules is not only possible but relatively easy.

Many species other than metastable helium have been used in PA experiments, of which a
selection of experiments and calculations may be found in [46] and [41]. Combinations of
mixed species [60, 127] have also been investigated through the use of PA. The dynamics
of PA has been studied in Bose-Einstein condensates where the many-body interactions
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can be highly influenced by the laser coupling [56, 128, 129]. The ultra-fast domain of
femtosecond [47, 48] or even attosecond [49] light pulses to photoassociate molecules has
also been investigated. These techniques allow detailed control of the photoassociation
process, including the possibility of limiting the loss rates of the process.

One very important aspect of photoassociation spectroscopy that cannot be observed in
most other types of spectroscopy is the ability to excite purely long-range molecules. These
molecules possess inner classical turning points that exist far beyond the region of bound
levels commonly associated with molecules, ranging from 100 a0 up to 500 a0. The prop-
erties for these levels can be studied in a very precise manner because their interactions
are completely described by their long-range components only, such as the dispersion and
dipole-dipole forces. These interactions are specified entirely in terms of atomic properties
which are often known to much greater accuracy than the equivalent molecular proper-
ties. The photoassociation of these purely long-range states may also be used to precisely
determine properties of the ground state system. This is because the interactions of the
excited state system are highly sensitive to the coupling from the ground level and so small
perturbations in the ground level will have a significant effect upon the photoassociation
spectra. Molecular and collisional properties, such as the scattering length or radiative
lifetime [46], may be calculated from observations of these long-range levels. Furthermore,
processes that may occur at short interatomic distances such as ionisation are heavily
suppressed in these cases. A general review of ultracold photoassociation is given in [41].

Advanced techniques such as two-photon PA have been used by Moal et al [73] to accurately
measure the least bound vibrational level of the 5Σ+

g metastable state by analysing a
dark resonance in the spectra. From this binding energy, combined with the ab initio
potential of Przybytek and Jeziorski [93], a high precision value of the scattering length
a = 7.512± 0.005 nm was obtained. A related two-photon experiment was also performed
with ytterbium by Kitagawa et al [51].

Photoassociation in metastable rare gases is of particular interest as the large internal
energy of ∼ 20 eV can be released during collisions and provides useful experimental
strategies to study these quantum gases. Two accessible transitions are of experimental
interest, the triplet 2s → 2p (1083 nm) and 2s → 3p (389 nm) transitions. These are
illustrated in figure 4.1. In this chapter, the system of colliding metastable helium atoms
being photoassociated to the 2s2p, 0+

u , J = 1 molecular state belonging to the j = 0

asymptote will be modelled. This molecular state fits entirely within the purely long-range
description of the photoassociation process, as the inner classical turning points of levels in
the potential lie at large interatomic distances of approximately 150 a0. A diagram of this
process is presented in figure 4.2, showing the notation used for each energy pertaining to
the system and the transition between them.

A theoretical description for a generalised PA problem has been formulated by Bohn and
Julienne [52] by making use of quantum defect theory and treating the laser coupling as
a perturbation. In this way, analytical derivation of the PA line shapes was possible. Si-
moni et al [53] calculated line shapes in rubidium for arbitrary laser intensity, but assumed
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Figure 4.1: Atomic states of helium relevant to photoassociation of metastable helium.

that the laser coupling was negligible at asymptotic separation. Napolitano [54] presented
a theory for the semi-analytic calculation of S-matrix elements in a sodium system which
made use of dressed states to correctly treat the asymptotic laser coupling. Napolitano,
however, assumed that the detuning was large compared with the intensity and did not
include fine structure into the formalism. Montavão and Napolitano [55] then extended
the formalism of [54] to calculate line shapes of strontium.

Theoretical calculations of PA dynamics in metastable helium are limited to the calcu-
lation of Portier et al [88], which was based upon second-order perturbation theory and
was therefore restricted to the low laser intensity limit. The need exists to determine
the behaviour of metastable helium under high intensity photoassociation and this is the
subject of the study presented in chapter. A series of progressively more accurate cal-
culations will be performed, starting from a perturbative calculation and finishing with
a complete multichannel calculation. The multichannel equations will be solved without
invoking approximations regarding the laser detunings and coupling strengths. To do this,
the dressed state formalism of Napolitano will be applied in order to correctly treat the
asymptotic laser coupling. However, numerical calculations will be employed so that arbi-
trary laser intensity and detunings can be investigated without treating the laser coupling
as a perturbation.

4.2 Laser coupling

The exact form of the laser coupling is required to be able to carefully investigate the
properties of the matter and laser system. The definition of the laser coupling from section
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Figure 4.2: Photoassociation of metastable helium to the 2s2p, 0+
u , J = 1 molecular state

asymptoting to j = 0. E∞g,e are the asymptotic energies for the metastable (ground) and
2s2p (excited) state potentials respectively and B0

e is the binding energy of the unperturbed
v = 0 level. ∆E is the detuning from asymptotic resonance and δE is the line shift of the
bound level due to the laser coupling. Note the disparate scales along the interatomic axis.

2.1.5 is:

Ĥint = −
( e
m

) ∑
i=1,2

p̂i · Â(ri), (4.1)

where the vector potential of the laser field is

Â(ri) =
∑
ξ

[
Eξ(ri)âξ + E∗ξ(ri)â

†
ξ

]
(4.2)

and Eξ is given by

Eξ(ri) =

√
~

2ωξε0V
eik·riεξ. (4.3)

Normally, the dipole approximation (DA) is invoked because it is known that the atomic
2s → 2p transition is dominated by the electric dipole term, see figure 4.1. However, the
DA requires k · ri � 1. Consequently the approximation is not necessarily valid for long
range molecules where the interatomic distance, R, is an appreciable fraction of k. In
this section, the complete laser coupling term will be derived without making the DA. A
detailed comparison of results obtained with and without the DA will be performed for
the non-perturbative, multichannel calculation. The DA will be made in the perturba-
tive calculations as they are already approximate and all previous calculations make this



4.2: Laser coupling 69

Figure 4.3: The coordinate system chosen to represent the nuclear and electron coordinates
where the origin of the coordinate frame is located at the centre of the dimer. In this
particular representation, the electron around atom A has been given the label 1 and that
around B the label 2.

approximation.

In order that the derivation may be more easily generalised to other systems, the basis
states of the system will not be assumed to be the hybrid jj basis (2.29) but will instead
take the more general form

|a〉 ≡ |ψrot
a 〉|ψel

a 〉, (4.4)

where a = (g, e). In this factored form, all of the nuclear rotation of the molecule that
depends upon the orientation angles (θ, φ) is contained in |ψrot

a 〉 and no R-dependence is
present in the electronic states |ψel

a 〉.

The required matrix elements are

V int
eg ≡ 〈e|〈n− 1, ω, ελ|Ĥint|g〉|n, ω, ελ〉. (4.5)

In equation (4.5), only the âξ terms of Ĥint contribute, which leads to

V int
eg = − e

m

√
n~

2ωε0V
〈e|
∑
i

[p̂(ri) · ελ] eik·ri |g〉 (4.6)

where 〈n− 1, ω, ελ|âξ|n, ω, ελ〉 = δλξ
√
n has been used. In order to simplify this equation,

a coordinate system must be specified. If the origin of this system is taken to be the centre
of mass of the dimer, then

ri = η̂i
1

2
R+ r′i (4.7)

R = rNB − rNA (4.8)

where rNA and rNB are the coordinates for the nucleus of atom A and B respectively (see
figure 4.3). As the basis states are to be symmetrised with respect to electron exchange, it
is not known which electron label (1 or 2) is associated with which atom and so an operator
η̂i is defined that takes the values of ∓1 if electron i orbits nucleus A or B respectively. This
operator facilitates the evaluation of the matrix element in (4.6). Similarly the momentum
operators are given by

p̂(ri) = η̂i
1

2
p̂(R) + p̂(r′i). (4.9)
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With this representation of the coordinate system, equation (4.6) becomes

V int
eg = − e

m

√
n~

2ωε0V
∑
i

〈e|
[
η̂i

1

2
p̂(R) + p̂(r′i)

]
· ελeη̂iik·R/2eik·r

′
i |g〉. (4.10)

If the states are expanded in the product form (4.4), the action of the momentum operators
within the inner product 〈e| . . . |g〉 produces the following terms

〈ψrot
e |

ik · ελ
4
〈ψel

e |η̂2
i e
η̂iik·R/2eik·r

′
i |ψel

g 〉|ψrot
g 〉

+ 〈ψrot
e |

1

2
〈ψel

e |η̂ieη̂iik·R/2eik·r
′
i |ψel

g 〉p̂(R) · ελ|ψrot
g 〉

+ 〈ψrot
e |i(k · ελ)〈ψel

e |eη̂iik·R/2eik·r
′
i |ψel

g 〉|ψrot
g 〉

+ 〈ψrot
e |〈ψel

e |eη̂iik·R/2eik·r
′
i p̂(r′i)|ψel

g 〉 · ελ|ψrot
g 〉. (4.11)

Although η̂i by necessity must be evaluated inside the electronic inner product, its action
is only to replace the operator by ±1 and does not otherwise affect the evaluation of the
inner product 〈ψel

e | . . . |ψel
g 〉. Of the four terms in (4.11), the first and third are zero because

k ·ελ = 0 for the transversely polarised laser field. Furthermore, as the electronic states are
assumed to be independent of interatomic distance, the inner products 〈ψel

e | . . . |ψel
g 〉 will

only be non-zero if r′i is within the extent of its respective atomic orbital. Hence, it can
be assumed that exp(ik · r′i) ≈ 1 because the wavelength is much greater than the radial
extent of the atomic orbital. Note that this does not invoke the dipole approximation as
only an assumption is being made about the extent of the atomic orbitals and not the entire
molecule. With this assumption the second term is zero as the excited and metastable basis
states are orthogonal, leaving only the remaining non-zero fourth term.

To proceed further, the term eη̂iik·R/2 must be manipulated into a usable form. By ex-
panding it in terms of Legendre polynomials [113],

eη̂iik·R/2 =
∑
p

ip(2p+ 1)jp(kR/2)Pp(η̂i cos θ)

=
∑
p

ip(2p+ 1)jp(kR/2)(η̂i)
pDp∗

00(θ, φ, 0), (4.12)

the matrix element (4.10) may be written as

V int
eg = − e

m

√
n~

2ωε0V
∑
i,p

ip(2p+ 1)jp(kR/2)〈ψrot
e |D

p∗
00〈ψ

el
e |(η̂i)pp̂(r′i)|ψel

g 〉 · ελ|ψrot
g 〉 (4.13)

where, for convenience, the angular variables of the rotation matrix are suppressed. Be-
cause all terms except the kinetic term of Ĥmol, given by (2.1) and (2.10), commute with
the coordinates ri, the following relationship can be derived:

e

m
p̂(r′i) =

i

~

[
Ĥmol, d̂

i
]
, (4.14)
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where d̂i = er′i. Noting that

〈ψel
e |(η̂i)p[Ĥmol, d̂

i]|ψel
g 〉 = (Ee − Eg)〈ψel

e |(η̂i)pd̂i|ψel
g 〉 (4.15)

then the coupling becomes

V int
eg = −

√
n~ω
2ε0V

∑
i,p

ip+1(2p+ 1)jp(kR/2)〈ψrot
e |D

p∗
00〈ψ

el
e |(η̂i)pd̂i|ψel

g 〉 · ελ|ψrot
g 〉, (4.16)

where the difference of electronic energies Ee − Eg has been set equal to the laser energy
~ω in (4.16). The matrix element of d̂i is most easily evaluated in the molecular frame
using spherical tensors, which requires the expansion:

d̂i · ελ =
∑
µ

(−1)µ(ελ)−µd̂
i
µ = (−1)λd̂iλ

= (−1)λ
∑
β

D1∗
λβ d̂

i
β, (4.17)

where the subscripts µ and β denote the spherical tensor components in the space- and
molecular-fixed frames respectively and (ελ)−µ = δλ,µ. This allows the complete separation
of the rotational and electronic parts of the matrix element

V int
eg = −(−1)λ

√
n~ω
2ε0V
×
∑
i,p,β

ip+1(2p+ 1)jp(kR/2)〈ψrot
e |D

p∗
00D

1∗
λβ|ψrot

g 〉〈ψel
e |(η̂i)pd̂iβ|ψel

g 〉. (4.18)

Combining the two rotation matrices [113] yields the general form of the coupling

V int
eg = −(−1)λ

√
n~ω
2ε0V

×
∑
p

ip+1(2p+ 1)jp(kR/2)
∑
i,β,F

C1pF
λ0λC

1pF
β0β 〈ψ

rot
e |DF∗

λβ |ψrot
g 〉〈ψel

e |(η̂i)pd̂iβ|ψel
g 〉. (4.19)

At this point a distinct choice of basis must be made. For the jj basis in the he-
lium system symmetrised with respect to electronic inversion (w-symmetrised jj basis)
(B.3) is used, which is equivalent to setting |ψel

a 〉 ≡ |γj1j2jΩjw〉 and |ψrot
a 〉 ≡ NJ

mJΩj
=√

(2J + 1)/4πDJ∗
mJΩj

. This is possible because the electronic inversion symmetry does not
involve the rotational part of the system and so allows the definition

|γj1j2jΩjw〉 ≡ Njj,w

[
|(γ1j1)A(γ2j2)BjΩj〉

+ (−1)w+L1+L2+j1+j2−j |(γ1j1)B(γ2j2)AjΩj〉
]

(4.20)

where Njj,w = 1/2 for γ1j1 = γ2j2 and Njj,w = 1/
√

2 otherwise, as has been previously
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defined. Under these substitutions, the electronic matrix element becomes

〈ψel
e |(η̂i)pd̂iβ|ψel

g 〉 = 〈γ′j′1j′2j′Ω′jw′|(η̂i)pd̂iβ|γj1j2jΩjw〉 (4.21)

and must be evaluated in the w-symmetrised LS basis (B.17). For the metastable (2s2s)
and 2s2p systems, this symmetrisation reduces to

|2s2s〉 =
1√
2

[
|(2s)A(2s)B0S0ΩS ; r1, r2〉 − |(2s)A(2s)B0S0ΩS ; r2, r1〉

]
(4.22)

|2s2p〉 =
1

2

([
|(2s)A(2p)B1SΩLΩS ; r1, r2〉 − |(2s)A(2p)B1SΩLΩS ; r2, r1〉

]
+ (−1)1−S+w

[
|(2p)A(2s)B1SΩLΩS ; r1, r2〉 − |(2p)A(2s)B1SΩLΩS ; r2, r1〉

])
(4.23)

where the electron permutation has been included as described by (B.1). The electronic
matrix element is therefore

〈2s2p|(η̂i)pd̂iβ|2s2s〉 =
dat

2
√

2

[
1 + (−1)w

′+1+S+p
]
δβΩ′L

, (4.24)

where dat = 〈L′ = 1,Ω′L||d̂iβ||L = 0,ΩL = 0〉 is the reduced matrix element of the atomic
dipole moment and all dashed quantities refer to the excited state. Note that the p index is
a result of the inclusion of η̂i. Equation (4.23) is similar to the LS symmetrisation of Burke
[130], except that the spin states are included in the symmetrisation presented here. To
complete the evaluation of the electronic matrix element this result must be transformed
into the jj basis by using (B.25), yielding the matrix element

〈γ′j′1j′2j′Ω′jw′|(η̂i)pd̂iβ|γj1j2jΩjw〉 =
∑

LSΩLΩS

1

2
√

2
datF

j′1j
′
2j
′Ω′j

LSΩLΩS
F
j1j2jΩj
LSΩLΩS

[
1 + (−1)w

′+1+S+p
]
,

(4.25)
that simplifies on applying the quantum numbers of the metastable basis, L1 = L2 = 0

and S1 = S2 = j1 = j2 = 1, to become

〈γ′j′1j′2j′Ω′jw′|(η̂i)pd̂iβ|γj1j2jΩjw〉 =
1

2
√

2
datF

j′1j
′
2j
′Ω′j

1jβΩj

[
1 + (−1)w

′+1+w+p
]
. (4.26)

Note that (−1)S = (−1)j = (−1)w has been used, since (−1)w−S = (−1)w−j = 1 for the
2s2s state.

The rotational matrix element is

〈ψrot
e |DF∗

λβ |ψrot
g 〉 =

¨
dΩ

√
(2J + 1)(2J ′ + 1)

4π
DJ ′

m′JΩ′j
DF∗
λβD

J∗
mJΩj (4.27)

which, after integration over the rotation matrices [113], becomes

〈ψrot
e |DF∗

λβ |ψrot
g 〉 =

√
2J + 1

2J ′ + 1
CJFJ

′

mJλm
′
J
CJFJ

′

ΩjβΩ′j
. (4.28)
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The complete matrix element for the w-symmetrised basis is therefore

V int,w
eg = −(−1)λ

√
I

ε0c

√
2J + 1

2J ′ + 1

∑
p

ip+1(2p+ 1)jp(kR/2)

×
∑
β,F

C1pF
λ0λC

1pF
β0βC

JFJ ′

mJλm
′
J
CJFJ

′

ΩjβΩ′j
datF

j′1j
′
2j
′Ω′j

1jβΩj

[
1 + (−1)w

′+1+w+p
]

2
(4.29)

where the laser intensity is given by I = n~ωc/V.

For the 2s → 2p transition in metastable helium, dspat = 2.146 × 10−29 C m which can be
determined from knowledge of the spontaneous decay width Γa = 1.6246 MHz [109] and
the relationship [117]:

Γ =
d2
atω

3

3πε0c3
(4.30)

where ω is the angular frequency of the transition.

The matrix element in the complete symmetrised jj basis (2.29) follows from (4.29) with
careful consideration of the normalisation coefficients:

V int
eg = −(−1)λ

√
I

ε0c

√
2J + 1

2J ′ + 1
N int
jj

∑
p

ip+1(2p+ 1)jp(kR/2)

×
∑
β,F

C1pF
λ0λC

1pF
β0βC

JFJ ′

mJλm
′
J
CJFJ

′
ΩβΩ′datF

j′1j
′
2j
′Ω′

1jβΩ

[
1 + (−1)w

′+1+w+p
]

2
(4.31)

where N int
jj =

√
2 if either Ω = 0 and Ω′ > 0 or vice versa and N int

jj = 1 otherwise.

4.3 Dipole approximation

In the dipole approximation (DA) the assumption k · R � 1 is made which is satisfied
when the laser wavelength is much larger than the molecule under consideration. Under
this assumption, jp(kR/2)→ jp(0) = δp0 and the laser coupling matrix element reduces to

V int
eg = −i(−1)λ

√
I

ε0c

√
2J + 1

2J ′ + 1
N int
jj

∑
β

CJ1J ′

mJλm
′
J
CJ1J ′

ΩβΩ′datF
j′1j
′
2j
′Ω′

1jβΩ

[
1 + (−1)w

′+1+w
]

2
.

(4.32)
There are two major differences between (4.31) and (4.32). First, the DA enforces the
selection rules |J−1| ≤ J ′ ≤ |J+1| and w′ = 1−w (gerade↔ ungerade), whereas the full
matrix element allows couplings from J to any J ′ with even values of p coupled to opposite
w parity and odd values to the same w parity. Second, the presence of the spherical Bessel
functions in the full matrix element (4.31) modifies the effective momentum of the coupled
vibrational wave function. This is because the coupling from a scattering wave function
ψg(R), with wave number kg =

√
2µEk and kinetic energy Ek in the asymptotic limit
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R→∞ becomes:

V int
eg ψg(R) ∝ jp(kR/2)eikgR ∝ ei(kg+k/2)R−ipπ/2 − ei(kg−k/2)R+ipπ/2

= eik+R−ipπ/2 − eik−R+ipπ/2 (4.33)

where k± = kg ± k/2. This can be recognised in physical terms as a momentum transfer
from the photon to the vibrational motion of the dimer which either dampens the vibra-
tion (k−) or enhances it (k+). Because of the form of (4.33), it is expected that atoms
colliding at temperatures with values of kg much greater than the value k of the laser field
(e.g. room temperature physics) will not be noticeably influenced by the use of the dipole
approximation (p = 0). However, ultracold gases are commonly cooled below the photon
recoil limit of a suitable transition and this transition is often one that is exploited in
the photoassociation process. These gases are therefore highly likely to have kg . k. For
example, ultracold metastable helium can be condensed to a Bose-Einstein condensate at
approximately 2µK for which the colliding atoms have kg = 2.6 × 10−3a−1

0 , whereas the
photons of the laser field for the 1083 nm 2s → 2p transition have k = 3.1 × 10−3a−1

0 .
In this case, there is a significant difference between the exp(ik±R) terms of the complete
coupling and the exp(ikgR) term of the approximate coupling. Therefore, significant effects
can be anticipated from the introduction of the dipole approximation.

4.4 Photoassociation profiles

With the complete laser coupling formulated, the photoassociation process may now be
investigated. The goal of the following sections is to calculate the properties of the PA
profiles for arbitrary laser frequency and intensity. These profiles can be described in terms
of their line widths and positions or, alternatively, their line shifts from the unperturbed
energy level. The calculations will investigate the purely long-range rovibrational levels in
the 0+

u , J = 1 potential which asymptotes to j = 0, and will determine the properties of
the profiles through a series of progressively more complete calculations. These long-range
levels are investigated because their binding energies have been analysed to a high degree of
accuracy both theoretically [90] and experimentally [67]. Furthermore, experimental mea-
surements exist of line shifts at varying intensities [70]. Initially perturbative calculations
of the line shifts will be performed, followed by a multichannel calculation in the dipole
approximation and finally a complete multichannel calculation that includes the complete
laser coupling term.

As has been mentioned in chapter 3, the influence of the non-adiabatic and Coriolis cou-
plings upon these ultra-long range bound levels is very small and highly unlikely to cause
noticeable secondary effects in the line shapes of the levels. Consequently the single-
channel treatment will be used for the excited state in order to simplify the calculations.
This R-dependent single-channel molecular state is of the form (3.6) and will be denoted
|e0〉. For the metastable molecular basis states, |g〉 will be used to represent the hybrid
jj basis states of (2.29). This notation indicates the molecular properties only; the com-
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plete states including the vibrational wave functions G0
e(R) and Gg(R) will be denoted

|e0, R〉 ≡ R−1G0
e(R)|e0〉 and |g,R〉 ≡ R−1Gg(R)|g〉.

4.5 Perturbative line shifts in the dipole

approximation

4.5.1 Direct perturbative calculation

For small laser intensities, the coupling may be considered a perturbation to the molecular
system. The unperturbed Hamiltonian is then Ĥ0 = Ĥmol + Ĥrad. In this limit, the line
shifts and widths are given by second order perturbation theory. The shift in the energy
of the state |e0, R〉 is

δE(2) =
∑
v

|〈e0, R|Ĥint|gv, R〉|2

E0 − Ev
+

ˆ
|〈e0, R|Ĥint|g(E′), R〉|2

E0 − E′
dE′, (4.34)

where the explicit notations |gv, R〉 and |g(E′), R〉 are used to refer to a normalised bound
level v and an energy normalised scattering state of energy E′ respectively of the basis
states |g,R〉. The term E0 is the unperturbed energy of the excited state including that of
the laser field, i.e. E0 = E∞e −Bv

e +(n−1)~ω. Here E∞a is the energy of the asymptotically
separated atoms of state a and Bv

a is the binding energy of the bound level v of the state
a. The metastable energies are Ev = E∞g − Bv

g + n~ω and E′ = E∞g + E′′ + n~ω where
E′′ ≥ 0.

To use these relations, one must carefully identify the different laser frequencies that are
used during an experiment. Usually an experiment involves excitation of the dimers to
the state |e0, R〉 from many colliding pairs of metastable atoms which have a small kinetic
energy Ek. To maximise the coupling to the excited level, the laser detuning should
accommodate this kinetic energy by setting ~ω = ~ω0 −Be

v −Ek, where ~ω0 = E∞e −E∞g
is the asymptotic energy difference. In this situation, the denominators of (4.34) become

E0 − Ev = Ek +Bv
g , (4.35)

E0 − E′ = Ek − E′′. (4.36)

Unfortunately, the direct calculation of the line shift using equation (4.34) requires the
matrix elements of the molecular Hamiltonian Ĥmol to be diagonal in the basis |g〉, which
is not true for the hybrid jj basis. To make use of a diagonal basis, a much larger basis set
is required (see for example, Portier et al [88] who required 24 basis states as opposed to
the nine directly coupled states of the hybrid jj basis). However, some useful conclusions
may be drawn from the form of the perturbation. In the ultracold limit of Ek → 0 the first
term of (4.34) shows that couplings from the excited state to bound levels of the metastable
states produce blue shifts because Bv

g is positive whereas the second term shows that the
scattering continuum produces red shifts in the excited levels. When finite temperatures
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Figure 4.4: Energy dependence of the numerator of the continuum contributions to the
second order perturbative energy shift given by equation (4.34).

are considered, there is a crossover temperature at which the continuum term will cease
to produce red shifts and begin to effect blue shifts. Additionally, since Ĥint ∝

√
I, it is

clear from the perturbative formula (4.34) that the line shift is linearly proportional to
laser intensity.

To demonstrate the method of direct calculation using equation (4.34), the use of the hybrid
jj basis is temporarily set aside and the basis states |g〉 are chosen to include the rotation
l as a quantum number and make the matrix elements of the molecular Hamiltonian
diagonal. In this case, the LS basis |γLSmLmSlml〉 ≡ |γLSmLmS〉|lml〉 for the spin-
polarised metastable state will be used, see appendix B.2. In this basis, the numerator of
the continuum term in (4.34) has the energy dependence shown in figure 4.4. These values
are calculated using energy normalised metastable scattering functions

Gg(R) =

√
2µ

~2πk
sin(kR− φ) (4.37)

where k =
√

2µ(E′ − E∞g ) and φ = φ(E′) is a phase shift. The line shift δE(2) calculated
from equation (4.34) is shown in figure 4.5. It can be seen that the crossover from red to
blue detunings occurs at approximately 5 mK.

Direct calculation of line shifts using equation (4.34) provides a simple procedure, made
unattractive by the inherent requirements of a basis |g〉 with diagonal matrix elements,
which leads to a considerably larger basis set, and the required calculation of the wave
function |g(E′), R〉 at each value of E′. Problems with convergence are also possible if
a sufficiently fine grid for E′′ is not used. Despite these drawbacks, it is still a viable
approach for calculating the line shift of the excited level. This has been done for the
v = 0 level coupled by σ− laser light to the spin-polarised metastable state, |SmS , lml〉 =
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Figure 4.5: Perturbative line shifts per laser intensity calculated from equation (4.34) for
varying kinetic energy Ek. The laser is assumed to be tuned so that it is resonant with
the unperturbed energy of the bound level.

|22, 00〉, for which the result δE(2) = cI is obtained where the proportionality constant is
c = −4.25 MHz/W.cm−2. This value agrees well with −4.42 MHz/W.cm−2, the partial
s-wave contribution obtained by Portier et al [88].

4.5.2 F-operator solution

To overcome the limitations of the direct evaluation of the second order perturbation
equation, (4.34), various techniques have been developed that allow the equation to be
represented in a different form. One technique called the propagator method has been
used by Portier et al [88] to calculate the perturbative line shifts of metastable helium.
In this section an alternative technique, that is due to Dalgarno and Lewis [131] and
referred to here as the F̂ -operator method, will be used to calculate the perturbative line
shift δE(2). This method converts the summation and integration over bound levels and
scattering energies to a set of coupled differential equations, the number of which equals
the number of coupled metastable basis states.

The method introduces an operator F̂ which is required to satisfy

[F̂ , Ĥ0]|e0, R, n− 1〉 = Ĥint|e0, R, n− 1〉 (4.38)

where Ĥ0 = Ĥmol + Ĥrad must include the laser field Hamiltonian so that energy conser-
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vation is satisfied. Equation (4.34) is then reduced to the form

δE(2) = 〈e0, R, n− 1|ĤintF̂ |e0, R, n− 1〉

− 〈e0, R, n− 1|F̂ |e0, R, n− 1〉〈e0, R, n− 1|Ĥint|e0, R, n− 1〉

= 〈e0, R, n− 1|ĤintF̂ |e0, R, n− 1〉 (4.39)

where |e0, R, n− 1〉 ≡ |e0, R〉⊗ |n− 1, ω, ε〉 and the second term is zero because there is no
direct coupling by the laser interaction from the excited state to itself.

To solve equation (4.38) for the operator F̂ , the inner products with the metastable and
excited basis states must be formed. The inner product with the excited basis state |e0, n−
1〉 ≡ |e0〉 ⊗ |n− 1, ω, ε〉 gives

〈e0, n− 1|
(
E0 − Ĥmol − Ĥrad

)
F̂ |e0, R, n− 1〉 = 0 (4.40)

where Ĥ0|e0, R, n − 1〉 = E0|e0, R, n − 1〉. The term F̂ |e,R, n − 1〉 is then expanded in
terms of the metastable and excited bases

F̂ |e0, R, n− 1〉 =
1

R

∑
g′

fg′(R)|g, n〉+ fe(R)|e0, n− 1〉

 , (4.41)

where |g, n〉 ≡ |g〉 ⊗ |n, ω, ε〉, such that (4.40) becomes(
E0 − 〈e0|Ĥmol|e0〉 − 〈n− 1, ω, ε|Ĥrad|n− 1, ω, ε〉

) 1

R
fe(R) = 0. (4.42)

In the hybrid jj basis, this becomes(
~2

2µ

d2

dR2
− V KC

e (R)− V SC
e (R)− (n− 1)~ω + E0

)
fe(R) = 0 (4.43)

where V SC
e (R) = 〈e0|Ĥel+Ĥrot|e0〉 is the excited state single-channel potential as described

in section 3.2.1. V KC
e (R) is the kinetic correction term for the single-channel potential,

see equation (3.11), which was excluded in chapter 3 because it caused problems in its
evaluation due to the sharply varying nature of the single-channel potentials at diabatic
crossings. It is included here as it remains smooth and unambiguous throughout the
region of the long-range 0+

u potentials and gives rise to noticeable variations in the results
obtained.

The inner product of equation (4.38) with a metastable basis state gives

〈g, n|
(
E0 − Ĥmol − Ĥrad

)
F̂ |e0, R, n− 1〉 = 〈g, n|Ĥint

1

R
Ge(R)|e0, n− 1〉 (4.44)

where Ge(R) is the vibrational wave function of the excited state. After applying the
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expansion (4.41), the equation becomes

∑
g′

[
E0δg′g − 〈g|Ĥmol|g′〉 − 〈n, ω, ε|Ĥrad|n, ω, ε〉δg′g

] 1

R
fg′(R) = V int

ge0(R). (4.45)

In the hybrid jj basis, this becomes[
~2

2µ

d2

dR2
+ (E0 − n~ω)

]
fg(R)−

∑
g′

[
V rot
gg′ + V el

gg′

]
fg′(R) = V int

ge0(R), (4.46)

where the matrix elements V rot
gg′ and V

el
gg′ are given by (2.38) and (2.32) respectively and the

laser coupling matrix element between the single-channel excited state and a metastable
basis state is

V int
ge0(R) = 〈g, n|Ĥint|e0, n− 1〉

=
∑
a

Dae(R)V int
ga (4.47)

where the single-channel coefficients Dae(R) in the hybrid basis are given by (3.6) and a
enumerates the hybrid basis states that comprise the single-channel excited state.

The substitution of expansion (4.41) into (4.39) produces the desired solution for the line
shift:

δE(2) =
∑
g

ˆ
G0
e(R)V int

ge0(R)fg(R) dR. (4.48)

From this equation, and the fact that differential equation (4.43) is uncoupled from the
differential equations (4.46), it is clear that fe(R) is not required in order to determine the
line shift. Hence, only the differential equations (4.46) need be solved.

The boundary conditions for equations (4.46) require special mention. The action of F̂
must be finite for all R, hence the asymptotic form of fg(R) is required to not increase
faster than R. The influence of the laser field coupling from the excited state is also
expected to be negligible at large R, hence the requirement fg(R)/R→ 0 as R→∞ must
be imposed. From the form of equations (4.46), it can be seen that they asymptotically
uncouple and simplify in the limit R→∞ to the form[

~2

2µ

d2

dR2
+ E0 − n~ω − E∞g

]
fg(R) = 0. (4.49)

This equation has three general solutions depending upon the sign of E0 − n~ω − E∞g =

−Be
v − ~∆ω where ∆ω = ω − ω0. If the laser is red detuned to the bound level then this

quantity is positive and oscillatory solutions are obtained whereas for blue detunings the
quantity is negative and exponentially increasing and decaying solutions are obtained. In
the special case of detuning precisely to the bound level, fg(R) is linear in R.

As mentioned in the previous section, an experiment involving the excitation of colliding
metastable atoms will attempt to tune the laser frequency as closely as possible to the
transition so that ~∆ω = −Be

v −Ek. In the ultracold limit Ek → 0 the solutions of (4.49)
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become linear, fg(R) = C +mR and to produce finite solutions such that fg(R)/R → 0

as R→∞, the condition m = 0 must be imposed. This can be enforced by applying zero-
derivative boundary conditions upon the differential equations, in contrast to the more
commonly applied boundary conditions that the function values are zero.

To solve these equations, the discrete variable representation (DVR) method is used, which
is fully described in appendix D. The cosine basis is required in order to impose the zero-
derivative boundary conditions upon the equations and N = 104 grid points are used
in the range of Rmin = 3 a0 to Rmax = 2000 a0. The equi-spacing of the cosine basis
across the region is not optimal as rapidly oscillating wave functions over the ranges of
the ground state potentials require a dense spacing of grid points at smaller R, whereas
few grid points are required in the asymptotic region of the solutions due to the large
wavelengths for scattering at ultracold temperatures. Hence, a quartic scaling function
R = ζ(t) is used to redistribute the grid points across the region without modifying the
boundary conditions. This quartic, of the form ζ(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4, must
satisfy the requirements, see appendix section D.5,

c0 = a,

c1 > 0,

c2 = 0,

c3 = 2(b− a− c1),

c4 = −c3/2. (4.50)

Larger values of c1 straighten the scaling function and in the limit c1 →∞, R ∝ t. A value
of c1 = 10 was chosen. This placed 53% of points within the first quartile and 22% within
the second quartile and produced acceptable results. When compared to an equi-spaced
grid, this choice of scaling decreased the total number of grid points required for calculation
to the necessary precision by an order of magnitude.

The excited single-channel state of the form (3.6) is a linear combination of four particular
hybrid basis functions that share the quantum numbers γ1 = (L1, S1) = (0, 1), γ2 =

(L2, S2) = (1, 1), j1 = 1, Ω = 0, J = mJ = 1 and w = 1 and these will be suppressed
in the labels of the basis states. The four states can then be written with the reduced
notation |j2, j〉 and are explicitly,

|j2, j〉 =

{
|0, 1〉, |1, 1〉, |2, 1〉, |2, 3〉

}
. (4.51)

The metastable basis states, denoted by the shorthand |jΩ, JmJ〉, that are directly coupled
to this set of hybrid excited states by σ− polarised laser light are

|jΩ, JmJ〉 =

{
|00, 22〉, |20, 22〉, |21, 22〉

}
(4.52)

where the quantum numbers γ1 = γ2 = (Lα, Sα) = (0, 1), j1 = j2 = 1 and w = 0

are implied. Additionally, the metastable state |22, 22〉 is indirectly coupled to the excited
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Table 4.1: Perturbative line shifts per laser intensity in MHz/(W cm−2) calculated from
equation (4.48) for the long-range bound levels of the single-channel potential asymptoting
to He(2s 3S1) + He(2p 3P0) in the 0+

u configuration. Results are shown for the inclusion
and exclusion of the kinetic correction term V KC

e . The results are also compared to those
of Portier et al [88] who used a propagator method to solve the second order perturbation
equations without inclusion of the kinetic correction term.

Levels Polarisation No V KC
e With V KC

e Ref. [88]

v = 0 σ− -6.439 -6.507 -6.37
σ+ -7.724 -7.784 -7.36

v = 1 σ− -11.662 -11.748 -11.70
σ+ -10.205 -10.270 -10.25

v = 2 σ− -29.442 -29.692 -29.57
σ+ -24.675 -24.877 -24.11

state because of Coriolis couplings to the states listed in (4.52). Similarly the states directly
coupled by σ+ polarised laser light are

|jΩ, JmJ〉 =

{
|00, 00〉, |00, 20〉, |20, 00〉, |21, 10〉, |20, 20〉, |21, 20〉

}
(4.53)

and those that are indirectly coupled via the Coriolis couplings are

|jΩ, JmJ〉 =

{
|20, 10〉, |22, 20〉

}
. (4.54)

The results for the shifts of the three lowest bound levels calculated by solving for fg(R) in
equation (4.46) and substituting into equation (4.48) are presented in table 4.1. Results are
shown with and without the inclusion of the kinetic correction term V KC

e . There is good
agreement between the results and those of Portier et al who did not include the kinetic
correction term. The small differences in this case are likely due to the input potentials
and parameters used in the calculation. The effect of including V KC

e is also small but
noticeable, which suggests that non-adiabatic effects may be of more importance to line
shape calculations than to the binding energies of the bound levels. For example, inclusion
of the kinetic correction term yields a 0.7% variation in the v = 0 binding energy, yet the
line shift that results from the presence of a laser field of intensity 1 W.cm−2 varies by
1.1% for the same conditions.

4.6 Multichannel solution in the

dipole approximation

4.6.1 Introduction

The perturbative calculation of the line-shift requires the laser coupling to be small and
predicts a linear dependence upon laser intensity. To investigate higher laser intensities
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and to determine whether deviations from linearity occur requires a complete multichannel
non-perturbative solution. In the calculation the linearly independent scattering solutions
are found as a function of laser detuning and the scattering (S) matrix is determined by
matching to the asymptotic forms of the solutions. Profiles of cross sections calculated
from the S-matrix can then be plotted and the resonance peaks analysed.

However, to be able to define the S-matrix, asymptotic matching of the wave functions
must be possible, requiring the scattering channels to be asymptotically uncoupled. In
the dipole approximation the laser interaction does not vanish asymptotically, which has
necessitated the development of several different methods to facilitate the decoupling of
the scattering channels. Simoni et al [53] have performed calculations assuming that
the laser coupling is small and negligible at large R and were able to use an analytical
method to calculate the S-matrix. Napolitano [54] resolves the issue by using ‘dressed’
states, which are specific combinations of the basis states that become asymptotically
decoupled. In Napolitano’s calculation, semi-analytical solutions to the S-matrix were
produced, although this required the assumption that the laser detuning was much greater
than the laser coupling. Additionally, fine-structure was not included in Napolitano’s
calculations.

In this section, the S-matrix elements will be calculated in the dipole approximation using
two alternative methods that treat the helium system non-perturbatively. The first uses
dressed states to asymptotically uncouple the basis states following Napolitano’s procedure
but without making any assumptions. The second applies an artificial dampening to the
laser coupling at very large interatomic distances to asymptotically uncouple the basis
states in a different manner. The two methods behave differently under variation of the
laser frequency and intensity for the helium system under investigation but give nearly
identical results for the widths and shifts of the resonance peaks.

4.6.2 Multichannel equations

The non-perturbative calculation requires the solution of the complete differential equations(
Ĥmol + Ĥrad + Ĥint + Ĥspon

)
|Ψ〉 = E|Ψ〉 (4.55)

where the state of the total system, |Ψ〉, is expanded in terms of the metastable hybrid
basis |g〉 and the excited single-channel state |e0〉 in the form

|Ψ〉 =
∑
g′

1

R
Gg′(R)|g′, n〉+

1

R
G0
e(R)|e0, n− 1〉. (4.56)

To solve equation (4.55) for the radial wave functions Gg(R) and G0
e(R), scalar products

must be formed with the metastable and excited basis states. This results in a set of
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coupled differential equations of the form

∑
g′

[
〈g|Ĥmol

1

R
Gg′(R)|g′〉+ 〈n, ω, ε|Ĥrad|n, ω, ε〉

]
+ 〈g, n|Ĥint

1

R
G0
e(R)|e0, n− 1〉 = E

1

R
Gg(R) (4.57)

and

〈e0|Ĥmol
1

R
G0
e(R)|e0〉+ 〈n− 1, ω, ε|Ĥrad|n− 1, ω, ε〉

+
∑
g′

〈e0, n− 1|Ĥint
1

R
Gg′(R)|g′, n〉 = E

1

R
G0
e(R). (4.58)

In the hybrid jj basis, these equations become[
− ~2

2µ

d2

dR2
+ n~ω − E

]
Gg(R) +

∑
g′

Vgg′Gg′(R) + V int
ge0G

0
e(R) = 0 (4.59)

and[
− ~2

2µ

d2

dR2
+ V SC

e (R) + V KC
e (R) +

i

2
Γe0(R) + (n− 1)~ω − E

]
G0
e(R)

+
∑
g′

V int
g′e0Gg′(R) = 0. (4.60)

Here the laser coupling matrix element V int
ge0 is given by equation (4.47), Vgg′ = 〈g|Ĥrot +

Ĥel + Ĥfs|g′〉, the single-channel excited state potential is V SC
e (R) as described in section

3.2.1 and the kinetic correction term is V KC
e (R) as described by equation (3.11). The term

i

2
Γe0(R) = 〈e0|Ĥspon|e0〉 (4.61)

represents the spontaneous loss as described in section 2.4. This loss term may be enabled
or disabled as desired.

Once the radial wave functions Gg(R) and G0
e(R) have been determined, the S matrix

elements may be calculated [132] by asymptotically matching

G =
R→∞

H0
−A+H0

+B = (H0
− −H0

+S)A (4.62)

where the matrix G is formed from the radial wave functions so that Gγγ′ represents a
vector of solutions Gγ = {Gg, G0

e} and the second subscript γ′ labels the linearly inde-
pendent solutions found by applying linearly independent boundary conditions to (4.55).
Henceforth, the states |γ〉 will be used to represent both |g, n〉 and |e0, n−1〉. The diagonal
matrices H0

± = δγγ′h
±
γ take the form of incoming and outgoing waves for the open chan-

nels (real kγ) and exponentially decaying and increasing functions for the closed channels
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(imaginary kγ):

h∓γ =
1√

2|kγ |
eiφγe∓ikγR, (4.63)

where kγ =
√

2µ(E − E∞γ ), E∞γ is the asymptotic energy of state |γ〉 and the phase factor

exp(iφγ) is unity for open channels. The matrices A, B and S = −BA−1 have the block
structure

A =

[
Aoo Aoc

Aco Acc

]
, B =

[
Boo Boc

Bco Bcc

]
, S =

[
Soo Soc

Sco Scc

]
(4.64)

where o refers to the open channels and c to the closed channels. It is desirable to avoid
matching to the asymptotic closed channel solutions, as it is difficult to accurately sepa-
rate the exponentially increasing and decreasing components. However, if Aco = 0 then
Soo = −BooA

−1
oo . To enforce Aco = 0 it is enough to ensure that the closed channel

solutions decay as R → ∞; that is, the solutions must remain physical. This makes the
calculations easier to perform and is possible because only Soo is required to extract the
photoassociation profiles.

The differential equations (4.59) and (4.60) can be written in the matrix form− ~2

2µ

d2

dR2
δγγ′ +

∑
γ′

Wγγ′(R)

Gγ′(R) = 0 (4.65)

where Wγγ′ = 〈γ′|
(
Ĥrot + Ĥel + Ĥfs + Ĥrad + Ĥint + Ĥspon − E

)
|γ〉 is the potential ma-

trix. In the hybrid jj basis coupled by σ− laser light, the potential matrix is

W =


D0

1 0 0 0 ~Ω0
1

0 D0
5 L01 0 ~Ω0

5

0 L10 D1
5 L12 ~Ω1

5

0 0 L21 D2
5 0

~Ω0
1 ~Ω0

5 ~Ω1
5 0 Ve −∆E

 . (4.66)

Here, DΩ
2S+1 = 2S+1Σ+

g + LΩΩ − Ek and LΩΩ′ = V rot
gg′ . The incident kinetic energy is

Ek = E − E∞g and the Rabi couplings are ~ΩΩ
2S+1 = V int

ge0 . The excited state potential is
Ve = V SC

e + V KC
e + iΓe0/2 and the laser detuning from dissociation is ∆E. In reaching

(4.66) from equations (4.59) and (4.60), the energy relations

E − E∞g − n~ω = Ek (4.67)

and
E − E∞e − (n− 1)~ω = ∆E (4.68)
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were used, see figure 4.2. Finally, the basis states |γ〉 are ordered according to

|1〉 = |j = 0,Ω = 0〉 ⊗ |n, ωλ, ελ〉,

|2〉 = |j = 2,Ω = 0〉 ⊗ |n, ωλ, ελ〉,

|3〉 = |j = 2,Ω = 1〉 ⊗ |n, ωλ, ελ〉,

|4〉 = |j = 2,Ω = 2〉 ⊗ |n, ωλ, ελ〉,

|5〉 = |e0〉 ⊗ |n− 1, ωλ, ελ〉, (4.69)

where the states |1〉 → |4〉 have the implicit quantum numbers of the metastable manifold
coupled by σ− laser light: L1 = L2 = 0, S1 = S2 = j1 = j2 = 1, J = 2, mJ = 2 and w = 0.

Two mechanisms may be used to probe the population of the excited state and hence the
strength of the photoassociation resonance. If the loss term is omitted from (4.66) then
the elastic and total cross sections of the entrance channels can be calculated and a sharp
variation of the cross sections will be observed in the neighbourhood of the resonance.
However, if the loss term for the excited state is included within (4.66) then the S-matrix
will no longer be unitary and the PA line shape of the spontaneously emitted photons will
be proportional to this loss of unitarity. Although the spontaneous loss produces a 2p to 2s

atomic transition, the decayed 2s (metastable) atoms are not considered to repopulate the
initial entrance channel. This is because the decayed atoms have a thermal distribution
that is much greater than that for the bulk of the ultracold gas and so will not be confined
by the trapping potentials used in the experiment. The higher thermal energy of the
decayed atoms also heats the ultracold gas which may then be detected as an increased
temperature or a reduced optical density of the gas [67].

The asymptotic form of the radial wave functions must be completely uncoupled in order
to properly define the S matrix using (4.62). However, the asymptotic coupling matrix

W∞ =


−Ek 0 0 0 ~Ω0

1

0 −Ek 0 0 ~Ω0
5

0 0 −Ek 0 ~Ω1
5

0 0 0 −Ek 0

~Ω0
1 ~Ω0

5 ~Ω1
5 0 −∆E + iΓ/2

 (4.70)

is clearly not diagonal. To resolve this problem either the correct basis under which this
matrix does become diagonal must be determined (the dressed state formalism, see section
4.6.3), or the off-diagonal elements must be artificially dampened to zero in the asymptotic
region (the modified radiation coupling method, see section 4.6.4).

The treatment of σ+ polarisation is identical to that for σ− polarisation except that its
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basis set is larger:

|1〉 = |j = 0,Ω = 0, J = 0,mJ = 0〉 ⊗ |n, ωλ, ελ〉,

|2〉 = |j = 0,Ω = 0, J = 2,mJ = 0〉 ⊗ |n, ωλ, ελ〉,

|3〉 = |j = 2,Ω = 0, J = 0,mJ = 0〉 ⊗ |n, ωλ, ελ〉,

|4〉 = |j = 2,Ω = 1, J = 1,mJ = 0〉 ⊗ |n, ωλ, ελ〉,

|5〉 = |j = 2,Ω = 0, J = 2,mJ = 0〉 ⊗ |n, ωλ, ελ〉,

|6〉 = |j = 2,Ω = 1, J = 2,mJ = 0〉 ⊗ |n, ωλ, ελ〉,

|7〉 = |j = 2,Ω = 2, J = 2,mJ = 0〉 ⊗ |n, ωλ, ελ〉,

|8〉 = |e0〉 ⊗ |n− 1, ωλ, ελ〉. (4.71)

In the following sections, only the σ− polarisation case will be discussed, as the σ+ polar-
isation calculation is almost identical in all respects.

4.6.3 Dressed state formalism

To determine the correct states that will uncouple at large R, the asymptotic potential
matrix (4.70) can be diagonalised,

WD
∞ = U−1W∞U (4.72)

so that WD(R) = U−1W (R)U becomes diagonal for R → ∞. The eigenvectors of the
diagonalisation, U , define the transformation from the hybrid jj basis to the new ‘dressed’
basis by |β〉 =

∑
a(U

−1)aβ|a〉. In the dressed basis the differential equations (4.65) become

∑
β′

[
− ~2

2µ

d2

dR2
δββ′ +WD

ββ′(R)

]
G̃β′(R) = 0 (4.73)

where the radial wave functions G̃β(R) possess the asymptotic form (4.62). The energies
are then Eβ = −WD

ββ(R→∞) and can be complex.

Napolitano [54] used the dressed state formalism to analyse a sodium system and was
able to diagonalise this basis by a completely analytical method, because the effect of
the laser term was restricted to the coupling of two separate pairs of states within the
six total basis states. Napolitano then invoked the approximations ∆E � Γ and ∆E �
~Ω, where Ω was the Rabi frequency of the states under consideration, to reduce the
diagonalisation to an analytically manageable form. However, in the present calculations,
analytical diagonalisation is not used because a larger number of asymptotically coupled
states exist in the helium system and also because these approximations on ∆E need to
be avoided for this system. Instead, direct numerical diagonalisation is utilised, with the
eigenvalues and eigenvectors of W found using a standard numerical package.

Because numerical diagonalisation is utilised however, some important issues become ap-
parent. Firstly, it is not guaranteed that there will be the same number of open and
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closed channels before and after the diagonalisation, although in practice this is not a
problem for the chosen energies of the helium system. Secondly, the imaginary component
of the undressed closed excited channel may taint the other channels, thereby introducing
‘closed-like’ behaviour in them. Thirdly, the diagonalisation procedure results in a set of
degenerate eigenvalues for which numerical techniques do not produce a unique ordering
or unique orthogonal representation of the eigenvectors.

The first issue regarding the number of open and closed channels for a particular energy E is
of no consequence in the current investigation as the asymptotic energies of the metastable
and the excited levels ‘repel’ each other as they are coupled. Hence the dressed scattering
states have increased scattering energy relative to the undressed metastable scattering
states. Similarly an energy that is bound in the excited state potential will always remain
bound after the dressing.

The second issue – the tainting of the open channels by the imaginary component of
the excited state – is a subtle, but important, modification of the system. In the original
undressed states (4.69), four are open and one is closed. This can be shown by determining
the asymptotic behaviour of the wave functions for each of these channels when the laser
intensity is zero so that the Rabi couplings vanish. The undressed states have two distinct
energies, Ek (which is four-fold degenerate) and ∆E − iΓ/2, see (4.70). The channels that
have oscillatory wave functions at long range, corresponding to Ek > 0 and kγ real, persist
to R → ∞ and so are called open channels, whereas those with exponentially increasing
and decreasing wave functions, corresponding to ∆E < 0 and kγ imaginary, cannot exist
physically at R → ∞ and are termed closed channels. The five dressed states cannot be
classified so easily. After the diagonalisation there are three distinct asymptotic energies
E∞γ . One represents a set of three open channels as it is purely real with E∞γ > 0 and
has a three-fold degeneracy. Of the channels associated with the other two energies, one
must be classified as closed because E∞γ is comprised of a large negative real component
and a small imaginary component and will be dominated by exponentially increasing and
decreasing solutions at long range. The final channel, however, is not so easily classified;
its energy has a positive real component so that it would normally be considered an open
channel except that its energy also possesses a small imaginary component. This means
that its asymptotic wave function is of the form (4.62) where the incoming and outgoing
solutions are represented by (4.63), which can be written in the alternative form

h∓γ ∼ e∓ik
r
γRe±k

i
γR, (4.74)

where kγ = krγ+ikiγ and both krγ and kiγ are real and positive. If these asymptotic solutions
are continued to R→∞, the solution h−γ increases nonphysically and h+

γ → 0, indicating
that this energy must logically correspond to a closed channel. The practicalities of the
situation however, make the use of such a definition unfeasible. Firstly, other systems such
as the sodium system investigated by Napolitano or systems with no undressed degener-
ate entrance energies, would consist entirely of closed channels if the solutions are treated
in this way. Secondly, kγ is predominantly real with kiγ � krγ , so that the numerical
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integration would have to be performed over a huge number of oscillations of the wave
function before it substantially decays. Additionally, krγ and kiγ vary with laser detuning
and intensity, further complicating the issue. Therefore, for the analysis of the dressed
states, this ambiguous channel is treated as a ‘pseudo-open’ channel by enforcing a max-
imum interatomic separation Rmax at an interatomic range where the separate channels
are completely decoupled, the usual procedure for multichannel calculations, and where
the exponential factors e±k

i
γR may be considered approximately constant in the matching

to the asymptotic wave function of the pseudo-open channel. The matrix element Sγγ′ ,
normally used to represent the outgoing flux in channel γ as R→∞ that results from the
incoming flux in channel γ′ from R → ∞, is redefined by this choice of Rmax. Hereafter,
the matrix element Sγγ′ will be defined as the outgoing flux at Rmax resulting from the
incoming flux at Rmax.

The third issue presented by use of numerical diagonalisation concerns the ordering of
the eigenvectors corresponding to the degenerate energies of the dressed channels. No
eigenvalue decomposition routine that the author is aware of has enough robustness in its
ordering of eigenvectors to ensure that a small perturbation of the potential matrix W is
guaranteed to produce a small and smooth perturbation of its eigenvectors. In fact, the
standard method of QR decomposition without pivoting converges to one of two neigh-
bourhoods. Attempts have been made to alleviate this problem so that a specific ordering
can be imposed upon the result of the diagonalisation as the laser frequency is varied,
but no successful method was found. Fortunately, any observable quantity generated from
the S matrix must not rely on the ordering of the individual degenerate channels over
the range of different laser frequencies. Hence, neither the overall loss of unitarity nor an
average formed over all the degenerate channels will vary, as a unitary transformation that
reorders the degenerate eigenvectors cannot affect the observables of the system.

4.6.4 Modified radiation coupling

The alternative to using the dressed state formalism is to artificially force the existing
basis to become diagonal by imposing a R-dependent decay upon the laser coupling. This
requirement is simple to implement through the replacement V int

eg → Ṽ int
eg where

Ṽ int
eg =

V int
eg (R) for R ≤ Rz
V int
eg (R) exp

[
−ρ(R−Rz)2

]
for R > Rz.

(4.75)

Here ρ is a decay constant that should be chosen so that the dampening does not introduce
any artifacts into the numerical calculation. These artifacts can be the result of back
reflections of the incoming part of a channel off the Gaussian profile of the modified laser
coupling or sudden mixing between the channels in the dampening region. As will be shown
later (see figure 4.8), the form of dampening (4.75) does cause artifacts in the results but
these may also be avoided by judicious choice in the types of profiles formed from the
S-matrix elements. A value for ρ in this thesis is chosen such that the coupling decay takes
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place over many wavelengths of oscillation. The constant Rz bears some resemblance to
the Rmax parameter of the dressed state formalism and indeed the two should be made
equal so that the results can be more easily compared between the two methods.

The modified radiation coupling avoids the diagonalisation ofW∞and hence also avoids the
issues presented in the previous section. It is a much more attractive scheme to implement,
although the possibility of reflections from, and mixing through, the activation of the laser
coupling can causes some problems which will be discussed in the following sections.

4.6.5 Numerical implementation details

The equations for the dressed state formalism, (4.73), and the equations for the modi-
fied radiation coupling, (4.65) with the substitution (4.75), were solved using two different
techniques. The first was based on the relaxation method [133] which employs a matrix
boundary value method. The differential equations are converted to matrix form by re-
placing the derivatives with their numerical approximation on adjacent grid points and the
values of the wave function by a trial solution. The matrix equations, which are of a sparse
block structure that is predominantly tri-diagonal, are iteratively solved for the wave func-
tion which is then substituted back into the equations as a new trial solution. By careful
application of intermediate boundary conditions in the method, a series of regions with
different step sizes were created that allowed the mesh grid to best represent the solution
in each region. To reach the desired accuracies, very few (less than five) iterations were
required. However, to calculate the complete set of linearly independent solutions that are
needed to construct the scattering matrix, the relaxation method must be run many times
with differing boundary conditions. Although the matrices involved in the calculation are
sparse, they must span the entire interatomic range of interest at a fine enough spacing to
maintain numerical accuracy and hence are computationally intensive.

The second technique, the renormalised Numerov method, was used in order to decrease
the calculation time of the PA profiles. The method, which is described in further detail in
appendix C, is a shooting method that is well suited to differential equations of the form
of Schrödinger’s equation. It has the advantage of being able to calculate simultaneously
all the linearly independent solutions and can be used with arbitrary granularity without
memory limitations. Although the retained solution may be produced on a relatively
coarse grid, it will have been calculated using a very finely spaced grid. Furthermore, the
renormalised Numerov method can also split the calculation into separate regions so that
different step sizes may be used to best represent the dynamics of the solution.

For either method, the outer boundary of the calculation was placed at 106 a0. At this
distance the maximum coupling between different channels, even for the dressed state
formalism at high intensity, is less than 2×10−16 Eh. For the modified radiation coupling,
the dampening of the coupling began at Rz = 2 × 105 a0 with a dampening factor of
ρ = 1.6 × 10−4 a−2

0 . This allowed the dampening to take place over many wavelengths
of the incident flux so as to not affect the results adversely. The wavelength of the open
channels is λ ≈ 2300 a0 for a kinetic energy Ek = 10−11Eh (T = 2.1µK) so the coupling
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will gradually dampen to 99% of its original value after 250 wavelengths. The regions of
differing step size for the renormalised Numerov method were determined empirically and
the following values were used for the step size ∆R:

∆R =



0.001 a0 3 a0 < R < 40 a0,

0.01 a0 40 a0 < R < 500 a0,

0.1 a0 500 a0 < R < 104 a0,

5.0 a0 104 a0 < R < 106 a0.

(4.76)

4.6.6 Detection of the resonance through spontaneous loss

Away from resonance, the S-matrix is expected to slowly vary with laser detuning and
laser intensity. However, at the location of a resonance corresponding to a bound level in
the excited state potential, the S-matrix is expected to pass through a region of sharp and
sudden variation. This can be observed in the spectroscopic profiles with and without the
presence of the spontaneous loss term. The elastic and total collision cross sections are
the only profiles that can be calculated without the presence of loss. These are often very
dynamic away from resonance and can mask the sharp variation of the resonance itself.
In contrast, the cross section for spontaneous photon emission is often negligible away
from resonance, causing the resonance peaks to be more prominent. The cross section for
photon emission from a single entrance channel γ is represented by the loss term iΓ/2 in
the excited state and so can be related to the loss of unitarity of the S-matrix. The cross
section is given by

σphoton
γ =

π

k2
γ

1−
∑
γ′

|Sγ′γ |2
 . (4.77)

The loss rate is then Lγ = 〈vγσphoton
γ 〉 where 〈. . .〉 denotes a thermal average over a

distribution of the asymptotic relative velocities vγ = ~kγ/µ of the two colliding atoms.
Because ultracold temperatures are considered here, the thermal distribution is very narrow
and the thermal averaging can be ignored, giving Lγ ≈ vγσphoton

γ .

As previously mentioned in section 4.6.3, the degenerate dressed state channels are not
guaranteed to be a smooth function of laser frequency and/or intensity due to the arbitrary
ordering produced in the numerical diagonalisation. Consequently σphoton

γ will not vary
smoothly with respect to laser detuning. In order to overcome this problem and to produce
a smoothly varying profile, the cross sections σphoton

γ are averaged over degenerate channels.
This combination must be smooth as the average is invariant with respect to the ordering
of the degenerate channels and so is an observable of the system. Further combinations
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Figure 4.6: Photoassociation profiles at low laser intensity of 64 mW/cm2 in the dressed
state formalism using spontaneous loss from the excited state as the spectroscopic signal.
The loss is calculated from three different averages A, B and C of the entrance channels,
see (4.78), (4.79) and (4.80). The PA resonances are overlaid on a pronounced background
profile.

may be formed by including the pseudo-open channel. Three particular possibilities are:

σdressed
A =

1

nd

∑
βd

σphoton
βd

, (4.78)

σdressed
B =

1

1 + nd

∑
β

σphoton
β (4.79)

and
σdressed
C = σphoton

βp
, (4.80)

where βd enumerates the degenerate channels, nd is the total number of degenerate chan-
nels, βp represents the pseudo-open channel and β = {βd, βp} enumerates all open and
pseudo-open channels. Although separate contributions from the colliding channels are
present in each profile, the resonance position and width will not differ between the pro-
files.

A sample plot of the three dressed profiles for a low intensity of 64 mW is presented in
figure 4.6. It can be seen that the resonance occurs in exactly the same position for all
three profiles, although the relative magnitudes of the profiles are vastly different. Much
of the loss and strength of the resonance originates in the pseudo-open channel. This is
expected as the pseudo-open channel is most strongly coupled to the excited state.

The profiles of σphoton
γ for the modified radiation coupling do not suffer from the problem
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of degeneracies as in the case of the dressed profiles and each profile varies smoothly with
laser detuning. However, in order to compare the results of the dressed states procedure
with those for the modified radiative coupling procedure, the profile

σmodified =
1

no

∑
β

σphoton
β (4.81)

is also generated, where no is the number of open channels. This cross section is closely
related to σdressed

B . Sample plots of the modified radiation coupling profiles σphoton
γ are

presented in figure 4.7. All of the channels exhibit oscillatory background behaviour in the
profiles, apart from the suppression in the channel Ω = 2 that is not directly coupled to
the excited state. This oscillatory background can be significantly varied by changing the
smoothing constant ρ in the R-dependent coupling Ṽ int

eg .

This behaviour can be understood by undertaking a calculation limited to the asymptotic
region around Rz which emulates a single incoming channel by enforcing travelling wave
boundary conditions. The solutions resulting from this isolated calculation consist of a
back reflection produced by the activation of the laser coupling, and an inwards admixture
of channels, as illustrated in figure 4.8. This mixing and reflection is heavily dependent
upon the laser coupling and gives rise to the significant oscillatory behaviour in the profiles.
The formation of the averaged profile σmodified suppresses this behaviour, as can be seen
in figure 4.9. A conclusion that can be drawn from the oscillatory behaviour of the σphoton

γ

profiles is that the form of the laser activation is very important to the physics of the
system. As will be shown in the next section, the use of the complete laser coupling term
rather than that based upon the dipole approximation introduces the correct R-dependence
of the coupling for large R and removes this oscillatory behaviour.

Dressed profiles and the σmodified profile of the modified radiation coupling for high laser
intensities are shown in figures 4.10 and 4.11 respectively. All the low and high intensity
profiles show prominent backgrounds. These backgrounds do not occur in theoretical
spectra calculated for other systems such as the spectra of Montalvão and Napolitano [55]
calculated for photoassociation of strontium.

For the modified radiation coupling profiles, it is quite straight forward to determine the
origin of the background. Firstly, the profiles asymptote to zero as ∆E →∞ and become
Lorenztian-like as ∆E → 0. Secondly, if the excited state potential well is artificially deep-
ened by a several orders of magnitude, the background becomes much smaller in magnitude.
A similar reduction in background is observed when Ek is increased by several orders of
magnitude. Because the laser can populate scattering states of the excited manifold if it
is not significantly detuned from atomic resonance, these observations suggest that the
shallow nature of the excited potential well is the reason for the significant background.
This shallow nature can be quantified by the relative magnitude of the asymptotic matrix
elements in the potential (4.70). Because the kinetic energies Ek are very small (< 1 MHz)
and the only other diagonal term ∆E ≤ 1500 MHz is not overly large when compared to
the spontaneous width of the excited state (3 MHz FWHM) or the off-diagonal coupling
terms (which can be as large as 50 MHz), the matrix is not strongly diagonal and deviates
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Figure 4.7: Photoassociation profiles, σphoton
γ at low laser intensity of 64 mW in the mod-

ified radiation coupling formalism using spontaneous loss from the excited state as the
spectroscopic signal. The background to the profiles has significant oscillatory behaviour
and partially obscures the resonance peaks. The legend indicates the metastable basis
state that corresponds to the value of γ.

Figure 4.8: An illustration demonstrating the mixing and reflection from the dampening
of the modified radiation coupling, represented here by the shaded region.
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Figure 4.9: The average of the photoassociation profiles in figure 4.7, given by equation
(4.81), demonstrating the smoothing of the oscillatory background.

significantly from Hermiticity. To demonstrate this nature, an additional calculation was
performed that artificially deepened the excited state potential V SC

e (R) of the potential
matrix (4.66) by a factor of 100. In this toy model, the PA spectrum, shown in figure 4.12,
has a much reduced background.

The backgrounds of the dressed state profiles require a more complicated explanation
because they must be considered from the laser coupled picture which is difficult to con-
sider semi-classically. As the undressed potential matrix becomes more and more off-
diagonal, by either increasing the laser intensity or by probing smaller laser detunings, the
dressed pseudo-open channel takes on more of the excited state character and becomes more
strongly coupled to the dressed closed channel. In contrast, the degenerate open channels
become less coupled to either of the excited or pseudo-open channels. In this situation
the pseudo-open profile, σdressed

C , will approach nearly complete loss as the pseudo-open
channel becomes more like a closed channel and the degenerate profile, σdressed

A , will reduce
in magnitude until only negligible loss is present in the open channels. This may seem
counter-intuitive but an important process is missing in the description of the system that
has been used to calculate the profiles: the turning on of the laser. If a system is to be
prepared in the dressed basis then a conversion from a well defined undressed system by
the introduction of a laser will result in a certain proportion of the undressed open chan-
nels transforming to the pseudo-open and closed dressed states. These contributions will
decay very quickly, leaving only the remaining portion of the initial system in the degen-
erate open channels which are effectively decoupled from the excited state for high laser
intensity. Because a small fraction will always transform to the dressed open channels,
even in the limit of infinite intensity, a constraint upon the maximum loss from the system
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is enforced which can be termed the saturation of the laser. For finite intensities the loss
from the conversion process is not as great but the degenerate open channels are somewhat
coupled to the closed channel, allowing loss to occur in the resonance region and giving
rise to visible resonance peaks.

The dressed state profiles also exhibit an unusual shape for the resonances in the regime
of high laser intensity due to an interference between the background and the resonance
itself. These resonances cannot be described by a simple Lorentzian profile but a Fano
profile [134, 135] can accurately match the form of the resonance. The Fano profile is of
the form

f(ε) = Abg(ε) +Ares
(ε+ q)2

1 + ε2
, (4.82)

where Abg(ε) describes the background that is approximately linear in the neighbourhood
of the resonance, Ares is the strength of resonance, ε = (E−Eres)/(Γres/2) is a dimensionless
variable representing the energy and Eres and Γres are the position and full width of the
resonance. The parameter q is the Fano parameter that is a measure of the ratio of direct
(background) scattering to resonant scattering. As the resonances reduce to Lorentzian
profiles in the low intensity limit, which occurs for q → ∞ and Ares → 0, it is simpler
numerically to match to the alternate form

f(ε) = Abg(ε) +A′res

(1 + pε)2

1 + ε2
(4.83)

where p = 1/q and A′res = qAres. The Lorentzian-like behaviour of the modified radiative
coupling resonances and the low intensity dressed state resonances is indicated by their
small value of p ≤ 10−2. However, the high intensity dressed state resonances are signif-
icantly non-Lorentzian, represented by values of up to p ∼ 0.5, which indicate significant
interference in the scattering solutions.

From the calculation of the profiles for a range of laser intensities, it is possible to obtain
the resonance position and width as a function of laser intensity and to determine the
dependence of line shift and width upon intensity. This is shown in figures 4.13 and 4.14
which illustrate the near-linear dependence of the line shift and quadratic dependence of
the line width. A least squares fit to the data highlights this, as can be seen in table 4.2.
One higher polynomial order has been calculated in the fits to quantify the deviation from
linear and quadratic behaviour for the shift and width respectively. The last column of
the table indicates the maximum intensity above which the resonance profile either (a)
has too little magnitude to be detectable; or (b) overlaps other nearby resonances. The
relative magnitudes of the coefficients indicate that at maximum intensity the quadratic
contribution to the shift is approximately 2.5% and the cubic contribution to the width is
approximately 15%. Note that these are the maximum deviations from linear and quadratic
behaviour and the derivations are generally much smaller for more common laboratory laser
intensities on the order of mW.cm−2.
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Figure 4.10: Photoassociation profiles at high laser intensity of 6.4 W in the dressed state
formalism using spontaneous loss from the excited state as the spectroscopic signal. The
profile for σdressed

A has been enlarged in (b) to highlight the unusual resonance shapes. Note
the different y-axis scales between (a) and (b) and that in figure 4.6. Also note that the
strength of the resonance and background diminishes as the laser detuning ∆E → 0.
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Figure 4.11: Photoassociation profile σmodified at a high laser intensity of 6.4 W in the
modified radiation coupling formalism using spontaneous loss from the excited state as the
spectroscopic signal. Note the reduction in strength of resonance and the saturation of the
background as laser detuning ∆E → 0.
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Figure 4.12: Photoassociation spectrum for the 0+
u , J = 1 system at a laser intensity

of 6.4 W/cm−2 with the excited state potential V SC
e (R) of the potential matrix (4.66)

artificially deepened by a factor of 100. The detuning of the spectrum is localised around
the most bound level of the potential. The background that was prominent in figures 4.6
and 4.9 has completely disappeared in this profile, indicating that it is the shallow nature
of the potentials that is the cause for the non-zero background.
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Figure 4.13: Laser intensity dependence of the line shift for the three lowest bound levels
of the excited state when coupled to the metastable manifold by σ−polarised light. The
dependence is very close to linear.
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Figure 4.14: Laser intensity dependence of the resonance width for the three lowest bound
levels of the excited state when coupled to the metastable manifold by σ− polarised light.
The dependence is close to quadratic, see table 4.2.
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Table 4.2: Quadratic, s1I+s2I
2 and cubic, w0 +w1I+w2I

2 +w3I
3 fits to the line shift and

widths respectively of the resonances for the lowest three bound levels of the excited state.
The final column indicates the intensity below which the resonances can be discerned.
The shifts and widths are in MHz, the intensity in W/cm2 and the coefficients (sn, wn) in
MHz (W/cm2)−n.

Shift Width

Level Polarisation s1 s2 w0 w1 w2 w3 Imax

v = 0 σ− -6.514 -0.023 3.233 0.441 0.304 -0.0093 7.0
σ+ -7.781 -0.021 3.226 0.730 0.329 -0.0091 7.0

v = 1 σ− -11.77 0.074 3.231 1.51 2.87 -0.34 3.2
σ+ -10.30 -0.018 3.219 1.47 1.70 -0.10 3.2

v = 2 σ− -29.79 3.90 3.216 6.25 36.9 -21.9 0.4
σ+ -24.95 1.13 3.197 5.44 18.2 -4.20 0.6

4.6.7 Detection without spontaneous loss

When the spontaneous loss term iΓ/2 of the excited state is omitted, the diagonalisation
procedure produces an asymptotic matrix that is Hermitian and has purely real diago-
nalised energies. Hence the dressed state formalism does not introduce a ‘pseudo-open’
channel as was found in section 4.6.3. Because the matrix is now Hermitian, however, no
loss of unitarity can be observed and alternative profiles must be used to reveal the dynam-
ical aspects of the resonances. Two such profiles are the total and elastic cross sections.
The total cross section represents the likelihood for atoms in the entrance channel to make
any kind of collision whereas the elastic cross section represents the likelihood that the
system exits the collision in the same channel that it entered. These cross sections are
given by

σelastic
γ =

π

k2
γ

|Tγγ |2 =
π

k2
γ

(|1− Sγγ |2) (4.84)

and

σtotal
γ =

π

k2
γ

|
∑
γ′

Tγ′γ |2

=
π

k2
γ

|
∑
γ′

Sγ′γ − δγ′γ |2 (4.85)

where S ≡ I + iT . These cross sections are difficult to analyse because of the need
to theoretically predict their behaviour for a multichannel system away from resonance.
Indeed, calculating some sample profiles shows that the modified radiation coupling profiles
possess a very rapidly oscillating background that completely overwhelms the resonance,
see figure 4.15. The profiles presented in figure 4.15 are the averages σelastic =

∑
γ σ

elastic
γ

and σtotal =
∑

γ σ
total
γ . In contrast to the loss profiles presented in figures 4.7 and 4.9, the

averaging process here does not remove the oscillatory behaviour.

The profiles that result from the dressed state formalism shown in figures 4.16 and 4.17
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Figure 4.15: Profiles of the elastic and total cross sections of the modified radiation coupling method at low laser intensity of 64 mW/cm2. The severe
oscillatory behaviour completely overwhelms the resonances (shown in the inserts). The total cross section is the larger of the two cross sections.
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Figure 4.16: Profiles of the averaged elastic and total cross sections of the dressed state
formalism at a low laser intensity of 64 mW/cm2. The total cross section is the larger of
the two cross sections.

do, however, possess a much smoother background that does not exhibit the significant
oscillations that are present in the modified radiation coupling profiles. The resonances in
these profiles fit very well to Fano profiles and the position and width parameters can be
found for a range of laser intensities in a similar fashion to that described in section 4.6.6
for the profiles that included the loss term. The line shifts and widths calculated in this
manner are very similar to the shifts and widths from the loss calculation and are shown
in table 4.3. The small differences between the fits of the shifts from resonance detection
with and without loss can be considered as the combined uncertainty of the numerical
techniques. The values indicate that the line shifts are accurate to 0.1 MHz/W.cm−2.
Because the resonances of the profiles without loss are very narrow in the low intensity
limit, these are more precise in determining the line shift when compared to the loss profiles
that have a width ∼ 3.2 MHz ‘built in’ to the Hamiltonian. As well, because of this ‘built
in’ loss, the fit parameters for the width are necessarily different between the methods.
Because the width of the profiles without loss must approach zero in the zero intensity
limit, the form of fit w = w1I + w2I

2 + w3I
3 is used for the non-loss profiles.
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Figure 4.17: Profiles of the averaged elastic cross section (a) and total cross section (b) of
the dressed state formalism at a high laser intensity of 6.4 W/cm2.



4.7: Multichannel solutions with the complete coupling term 103

Table 4.3: The quadratic, s1I + s2I
2 and cubic, w1I + w2I

2 + w3I
3 fits to the line shift

and widths respectively of resonances for the lowest three bound levels of the excited state
calculated without inclusion of loss. The final column indicates the intensity below which
the resonances can be discerned. The shifts and widths are in MHz, the intensity in W/cm2

and the coefficients (sn, wn) in MHz (W/cm2)−n.

Shift Width

Level Polarisation s1 s2 w0 w1 w2 w3 Imax

v = 0 σ− -6.535 -0.016 0 0.316 0.379 -0.018 7.0
σ+ -7.799 -0.015 0 0.601 0.402 -0.018 7.0

v = 1 σ− -11.791 0.120 0 1.178 3.433 -0.490 3.2
σ+ -10.282 -0.005 0 1.193 2.124 -0.232 3.2

v = 2 σ− -29.692 3.621 0 5.136 43.254 -28.597 0.4
σ+ -24.809 0.745 0 4.397 23.636 -11.836 0.6

4.7 Multichannel solutions with the

complete coupling term

4.7.1 Differences between the approximate and exact coupling

Calculation of the PA profiles without making use of the dipole approximation for the laser
coupling introduces two important differences. First, the dipole selection rules, |J − 1| ≤
J ′ ≤ |J + 1| and gerade→ungerade parity are broken such that states with J > 3 are now
accessible from s-wave metastable scattering channels. However, it will be shown in section
4.7.3 that these couplings are negligible in the resonance region. Second, as gerade→gerade
transitions are allowed, a larger basis is required when calculating the profiles to the 0+

u

manifold. The enlarged basis for σ− polarisation consists of the gerade singlet and quintet
states |1〉, . . . , |4〉 described in (4.71), together with the following ungerade triplet states
and the original excited state:

|5〉 = |j = 1,Ω = 0〉 ⊗ |n, ωλ, ελ〉,

|6〉 = |j = 1,Ω = 1〉 ⊗ |n, ωλ, ελ〉,

|7〉 = |e0〉 ⊗ |n− 1, ωλ, ελ〉. (4.86)

The p summation of the complete coupling equation (4.31) can be separated into even
values of p that couple gerade and ungerade states, and odd values of p which couple
ungerade to ungerade states. The potential matrixW does not change its form and is given
by (4.66) with the upper 4×4 submatrix expanded to a 6×6 matrix. Finally, because only
colliding metastable states coupled to the 0+

u , J = 1 manifold are considered here, only
the terms 0 ≤ p ≤ 4 will contribute due to the restrictions imposed by the Clebsch-Gordan
coefficients in the coupling term (4.31). The σ+ polarisation also requires the introduction
of additional ungerade triplet states along with the existing states |1〉, . . . , |7〉 described in
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(4.71). These additional states, along with the original excited state, are:

|8〉 = |j = 1,Ω = 0, J = 0,mJ = 0〉 ⊗ |n, ωλ, ελ〉

|9〉 = |j = 1,Ω = 1, J = 1,mJ = 0〉 ⊗ |n, ωλ, ελ〉

|10〉 = |j = 1,Ω = 0, J = 2,mJ = 0〉 ⊗ |n, ωλ, ελ〉

|11〉 = |j = 1,Ω = 1, J = 2,mJ = 0〉 ⊗ |n, ωλ, ελ〉

|12〉 = |e0〉 ⊗ |n− 1, ωλ, ελ〉. (4.87)

The second major difference that the full coupling introduces is due to the presence of the
spherical Bessel functions, jp(kR/2). Because the p-summation is finite, and the functions
jp(x)→ x−1 sin(x−pπ/2) for x→∞, the full coupling term asymptotically disappears and
the expanded set of basis states completely decouple at large R, removing the need for the
dressed state formalism or artificial R-dependent dampening terms. As will also be shown,
the presence of the oscillatory Bessel functions requires the complete gerade and ungerade
metastable manifolds to be present otherwise severe background oscillations occur in the
profiles. This also indicates that an initial gerade spin-polarised quintet entrance channel
can scatter into a triplet ungerade exit channel. However, in the small R resonance region
only the p = 0 term strongly contributes because jp(kR/2) ≈ 0 for kR� p and p 6= 0.

4.7.2 Results

The method of calculation proceeds identically to that of the modified radiation coupling
calculation presented in section 4.6 except that the complete coupling is used for V int

eg

and either the additional states (4.86) or (4.87) are included as appropriate. The results
in this section will be presented as a sequence of progressive corrections to the dipole-
approximation arising from the inclusion of particular values of p within the summation
over p in the complete coupling (4.31).

The first of these corrections is to allow only the p = 0 term of the summation to contribute.
This term is identical to the dipole approximation except for the presence of the j0(kR/2)

factor and allows couplings only to the gerade metastable states. Sample plots for the
averaged profile

σnondipole =
1

n

∑
γ

σphoton
γ , (4.88)

where n is the total number of channels, are presented in figure 4.18. It is evident that
severe unphysical oscillations exist in the profile for high intensities. Inclusion of the
remaining even p terms (p = 2, 4) results in the profiles shown in figure 4.19, which show
that the oscillatory background has been significantly reduced but not completely removed.

Inclusions of all terms of the p-summation into the laser coupling gives profiles, see figure
4.20, which are much smoother and resemble the form of the dipole approximation profiles,
except for a very small oscillatory background present at small detuning. Additionally, each
individual σphoton

γ profile is smooth, see figure 4.21, in contrast to the oscillatory behaviour
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Figure 4.18: Photoassociation profiles from the p = 0 term of the complete coupling term
using loss as the spectroscopic signal. Figure (a) uses a low laser intensity of 64 mW/cm2

and figure (b) a high laser intensity of 6.4 W/cm2. Large unphysical oscillations are present
and increase dramatically as the laser intensity is increased.
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Figure 4.19: Photoassociation profiles identical to that of figure 4.18 (b) except that all
even p summation terms are included. A severe reduction in the background oscillations
is observed but the profiles are still not as smooth as desired.

observed for the modified radiation coupling, shown in figure 4.7. This indicates that
the functions jp(kR/2) act as the true, physical R-dependent dampening of the coupling,
and do not cause unphysical reflections or mixing of the channels as seen for the artificial
dampening Ṽ int

eg used previously in the modified radiation coupling.

Calculation of profiles from the elastic and total cross sections (4.84) and (4.85) respectively
using the full coupling term, produces profiles with the background oscillatory behaviour
similar to that for the modified radiation coupling and hence makes the profiles difficult to
analyse. This means that the dressed state formalism in the dipole approximation is the
only method by which the resonance shifts and widths may be easily calculated without
introducing loss. The presumed reason for the inability of the modified radiation coupling
and the full coupling methods to successfully do this is due to the activation of the laser
since a strong variation of behaviour with respect to the laser detuning occurs as it is
slowly ‘turned on’. The dressed state formalism, however, builds in the activated laser as
part of the basis and so does not exhibit this variation with laser detuning.

Although the profile σnondipole in figure 4.20, calculated from the complete coupling is simi-
lar to the profile σmodified in figures 4.9 and 4.11, some subtle but significant differences can
be observed. At low intensities a reduction in the background loss for σnondipole is apparent
which can easily be explained by the functions jp(kR/2) which asymptote to zero much
faster than in the modified radiation coupling in the dipole-approximation profiles. The
strength of the resonance, as determined by the parameter A′res in equation (4.83) is larger
by an order of magnitude. For higher laser intensities, similar behaviour is observed but the
saturation behaviour also changes significantly. In the dipole approximation, saturation
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Figure 4.20: Photoassociation profile σnondipole based on the complete coupling term in-
cluding all terms of the p summation using loss as the spectroscopic signal and with a high
laser intensity of 6.4 W/cm2. A smooth background is observed in contrast to those of
figures 4.18 and 4.19.
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Figure 4.21: Photoassociation profiles σphoton
γ based on the complete coupling term includ-

ing all terms in the p summation using loss as the spectroscopic signal. The smoothness
of these profiles compared with the separate σphoton

γ profiles calculated in the modified
radiation coupling of the dipole approximation, figure 4.7, indicate that the dampening
introduced by the complete coupling does not introduce artifacts into the model.
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was observed as the background of the profile plateaued, whereas the full coupling profiles
evidently maintain a smoothly increasing structure. Additionally, the discernability of the
resonance is maintained to larger intensities in the full coupling profiles, beyond intensities
for which the resonance is no longer discernible in the dipole approximation profiles. For
example, the v = 0 resonance can be visually identified up to an intensity of ∼ 50 W.cm−2

in the σnondipole profiles, as opposed to ∼ 6.4 W.cm−2 in the σdressed profiles.

No noticeable differences are observed in the fits to the line shifts and widths as a function
of intensity. This has been the consistent trend observed throughout the investigation of
the photoassociation profiles: only the background of the profiles and the strength of the
resonance vary between the methods used. For the dressed state and modified radiation
coupling methods within the dipole approximation, and for the method based on the full
coupling term, all of the resonance position and width parameters remained identical to
within the accuracy of the calculation. However, it is important to highlight the fact
that the full coupling calculation produces resonances which are discernible to higher laser
intensities.

4.7.3 Couplings to J > 3 levels

Although couplings to levels which do not satisfy the selection rules |J − 1| < J ′ < |J + 1|
have not been investigated previously due to the application of the dipole approximation
to the calculations, the complete coupling (4.31) allows the laser to couple channels of any
value of J to one another. Specifically, the metastable levels in the s-wave collisional state
(with J = 0 or J = 2) can be coupled to excited levels with J > 3. These couplings occur
through higher values of p in the summation of the complete coupling. However, a coupling
between the levels does not necessarily mean there will be any visible resonance peaks. The
major obstacle to the formation of resonances is the suppression of the coupling at small
interatomic distances due to the relation jp(kR) ≈ 0 for kR� p which severely limits the
coupling strength for p > 0.

To investigate these couplings, the same Hund’s case (c) 0+
u configuration that asymptotes

to j = 0, used previously in this chapter, is employed. The state with the smallest value
of J for which the dipole approximation allows no coupling from a metastable state to
occur is the 0+

u , J = 5 state. The binding energies of the three bound levels probed in this
potential have been calculated with a single-channel approximation as described in chapter
3 and are −854.94 MHz, −286.85 MHz and −54.38 MHz. The method of calculation of the
photoassociation profiles proceeds identically to that described in section 4.7, except that
the excited molecular state |e0〉 in state |7〉 of (4.86) is replaced by the 0+

u , J = 5 state.
In order to calculate all terms of the complete coupling (4.31), the p-summation must be
extended to p = 8.

The photoassociation profiles σnondipole are presented in figure 4.22 and show no visible
resonances. Hence, it is concluded that the complete coupling cannot be responsible for
any additional resonances that break the dipole selection rules.



4.8: Summary 109

200 400 600 800 1000 1200 1400 1600
�E MHz

0

1

2

3

4

5

6

7

C
ro

ss
 s

e
ct

io
n
 (
1
0
6
a
0
)

Figure 4.22: Photoassociation profiles based on the complete laser coupling between the
metastable states and vibrational states in the 0+

u , J = 5 potential asymptoting to j = 0.
The couplings do not satisfy the selection rules of the dipole approximation. No visible
resonances are present in the profile due to the Bessel functions jp(kR/2) present in the
complete coupling term that are approximately zero for kR� p and p 6= 0.

4.8 Summary

In this chapter the line shifts and widths of photoassociation resonances to the lowest
three vibrational states of 0+

u , J = 1 potentials asymptoting to j = 0 were calculated
using several different methods. Initially, perturbative calculations were used to determine
the line shift in the low intensity limit and it was found that the shift depends linearly
upon the laser intensity. The photoassociation process was then modelled using a full
multichannel calculation which included the metastable basis states and the excited state.
When the dipole approximation was used for the laser coupling, the coupled differential
equations were not asymptotically decoupled, and extraction of the S-matrix elements
needed to calculate the photoassociation profiles required the introduction of one of two
alternative methods. The first method was the dressed-state formalism that involves a
transformation to a basis in which the equations are asymptotically decoupled whereas
the second method introduced a modified radiation coupling that was dampened at large
interatomic separations and artificially decoupled the equations. With either method,
significant backgrounds were observed in the spontaneous emission photon cross section
profiles due to the weakly bound nature of the excited state levels. When photon emission
from the excited state was not included in the model, the profiles calculated from the elastic
and total cross sections were found to be satisfactory only in the dressed-state formalism.

Finally, inclusion of the complete laser coupling, in which the commonly used dipole ap-
proximation is not made, allowed the differential equations to be solved without any need
for dressed states or a modified laser coupling. Although the complete coupling allows
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for breaking of the dipole selection rules, no resonances were observed in those cases.
The complete coupling also significantly improved the contrast between the background of
the photon cross section profiles and the resonances, suggesting that models of ultracold
photoassociation should make use of the complete coupling, especially for weakly bound
levels. In all cases, the line shape parameters of line shift and width were found to agree
well within numerical accuracy.



Chapter 5
Conclusions and future work

5.1 Conclusions

5.1.1 Calculations performed

This thesis reports an investigation of the process of photoassociation in ultracold metastable
helium and the molecular properties that are involved. In chapter 2 the formalism frame-
work for the molecular system of a pair of helium-4 atoms was outlined and the interactions
between the atoms and with the laser radiation field were described. Several bases were
formulated that allowed the matrix elements of one or more terms of the Hamiltonian to
be written in their simplest form. From these, the hybrid jj basis (representing a Hund’s
case (c) basis) was chosen as being most suited to calculations within the framework of
the helium system. Matrix elements of the Hamiltonian were then derived for the jj basis,
with careful consideration given to the symmetries of the system.

Chapter 3 then utilised the jj basis to analyse the bound levels that exist in the 2s 3S1 +

2p 3Pj , j = 0, 1, 2 metastable helium configurations by using comprehensive multichannel
calculations. Although approximate single-channel calculations of levels in this manifold
already existed, no exact calculations had previously been performed and the effects of the
neglected non-adiabatic and Coriolis couplings had not been investigated.

The multichannel calculations undertaken in the present study have been made possible due
to the recently recent development of ab initio short-range potentials by Deguilhem et al
[86]. In this thesis, results from approximate calculations were compared with the accu-
rate multichannel results and some significant differences were observed, especially when
Coriolis couplings were introduced. These differences are large enough to be noticeable
in experiment and so indicate the necessity for using multichannel calculations, particu-
larly for short-range bound levels. By using the exact results, assignments of theoretical
levels were made to the experimental observations. The assignments were based on the
formulation of several observability criteria that indicated the likelihood that the level
would undergo ionisation and that the level would undergo a transition from a colliding
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metastable pair as used in an experimental setup. These criteria proved to be very suc-
cessful as an almost unique set of assignments between experiment and theory were made.
However, a consistent 3-5% difference existed between the experimental and theoretical
binding energies in these assignments and a short-range correction to the ungerade input
potentials was applied. This correction significantly improved the agreement between the-
ory and experiment, as well as allowing additional levels to be assigned. The criteria were
used to predict the existence of observable bound levels and resonances in ranges of detun-
ing that have not yet been probed by experiment. It is anticipated that these predictions
will be tested by future experiments.

In chapter 4, the photoassociation dynamics of a particular set of bound levels in the
purely long-range 0+

u , J = 1 potential that asymptotes to the 2s 3S1 + 2p 3P0 limit was
investigated. The line shifts of the levels were first calculated using an approximate per-
turbative technique and these results agreed well with previous perturbative calculations
[88]. The PA process was then modelled using a precise multichannel calculation including
the channels of the metastable and 2s2p manifolds. Accurate PA profiles were determined
from the scattering matrix which was calculated from the solutions of the multichannel
calculations.

Two classes of profile were generated to analyse the PA signal. The first class of PA profile
used the mechanism of spontaneous emission from the excited state as the PA signal and re-
quired different treatments if the dipole approximation of the laser coupling was employed.
These treatments in the dipole approximation used either a dressed state formalism or the
application of a R-dependent dampening of the laser coupling. Both methods generated
photoassociation profiles that exhibited a significant background that originated from the
shallow nature of the long-range potential well. The complete laser coupling, without the
dipole approximation, did not require the use of the dressed formalism or R-dependent
dampening, and it produced noticeably less background in the profiles. This suggests
that photoassociation calculations involving weakly bound dimers should not make use the
dipole approximation as it can obscure the resonances under investigation. The second
class of profile was calculated without inclusion of spontaneous emission in the system and
analysed the PA signal via the elastic and total cross sections. For these profiles, only the
dressed state formalism allowed the line parameters to be determined because the other
methods produced an oscillatory background that dominated the profiles and obscured the
resonances. All the different multichannel calculations, with and without loss, yielded the
line shape parameters of line position and width for the extracted PA resonances which
were the same to within numerical error.

5.1.2 Critical Appraisal

Although every effort was made to describe the system as accurately as possible, occa-
sionally terms were ignored in the calculations because there were strong indicators that
their effect was negligible. Determining the extent of their influence explicitly would re-
quire a significant amount of time and effort which was deemed unnecessary. The major
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assumptions are listed below, along with comments on their validity.

For the derivation of the matrix elements present in the differential equations, the electronic
and rotational basis states were assumed to not vary with interatomic distance R and hence
that the atomic quantum numbers Lα, Sα and jα (the orbital, spin and total angular
momenta respectively for atom α) remain well defined for all R. This is reasonable as the
electronic wave functions of the separated atoms do not overlap for the ranges considered
in this thesis. The molecular configuration of the electronic wave function can hence be
approximately considered a combination of two separate atomic configurations that are
only slightly perturbed from their atomic states.

Penning ionisation, a dominant process in metastable helium experiments, was not directly
included in the molecular Hamiltonian, although an ionisation rate was estimated from
the short-range form of the calculated wave functions in chapter 3. The ionisation can be
neglected in the molecular Hamiltonian as it occurs with nearly 100% probability if the
colliding atoms approach one another at close interatomic distances unless the spins of the
colliding atoms are aligned in which case the ionisation is heavily suppressed. This allows
a quick analysis of the wave function to retrospectively determine if and how much loss has
occurred. The exclusion of the ionisation process in the differential equations of chapter 4 is
not important as only line shifts of purely long-range excited levels were considered. These
long-range levels cannot reach the short interatomic distances that are required for Penning
ionisation to occur. To properly include ionisation into the system, an optical potential
method similar to [79] could be used. Alternatively a separate channel representing the
He+

2 state can be introduced into the multichannel calculations to accurately model the
ionisation process.

The Born-Oppenheimer (BO) approximation was used to calculate the electronic matrix
elements. Its validity relies on the large mass ratio of the nucleus to the electron. Although
this ratio is of four orders of magnitude, the helium nucleus is relatively light in comparison
to other atomic species which have been photoassociated. To address this issue is not a
trivial process however, as the BO approximation significantly reduces the complexity of
the differential equations that must be solved. The reduction in nuclear motion due to
the ultracold temperatures of the system also provides justification for the use of the BO
approximation.

In chapter 4, the purely long-range excited levels were approximated using a single-channel
potential. Although this appears to be in violation of the nature of the precise non-
perturbative multichannel calculations, these purely long-range states have been shown,
in chapter 3 of this thesis and previously [90], to experience very little influence from the
non-adiabatic and Coriolis couplings of a full multichannel calculation. In chapter 4 it was
also assumed that the photoassociation profiles observed in experiment result from only
the s-, p- and d-wave colliding channels of a pair of metastable atoms. This is clearly
justifiable due to the very small kinetic energies of the ultracold gas.

The formalism presented in chapter 2 and section 4.2 is complete for the helium-4 system
but it lacks the inclusion of nuclear spin which is required for other systems such as helium-
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3. The incorporation of nuclear spin and consequently hyperfine structure, however, is not
likely to be a difficult process.

Finally, although a very successful improvement to the short-range electronic potentials
was introduced in chapter 3, the choice of correction was not based on physical grounds
and it is hoped that the successful predictions of the current investigation will motivate
those with experience in calculating molecular potentials to consider and possibly improve
the form of correction that has been presented here.

5.2 Future work

The calculations presented in this thesis have accurately modelled photoassociation of the
helium-4 system to the 2s2p excited state, and this will provide the foundation for many
future studies. Investigation of bound levels of the helium system may be extended further
by performing calculations with fermionic helium-3. Apart from the inclusion of nuclear
spin and the corresponding hyperfine structure, the formalism is identical for helium-3
and helium-4. Although the hyperfine structure of helium-3 spans a range of energies
comparable to the fine-structure of helium-4, helium-3 contains approximately double the
number of asymptotic states and hence introduces a more complicated behaviour to the
coupled equations. This complexity may enhance the likelihood for photoassociation to
occur and give rise to more purely long-range states, including those suggested by existing
approximate calculations [136].

The existing measurements in helium-4 photoassociation also provide a useful starting point
for determining observability criteria for the helium-3 system. The application of these
criteria for the coupling strength and ionisation rate will allow predictions for observable
levels in the absence of any experimental measurements. A similar process can be applied
to the mixed helium-3/helium-4 system, where the symmetries of the coupling scheme
simplify. The possibility of using the 2s3p excited state, which is accessible in experiment
from metastable helium using 389 nm lasers, is also available for helium-3, helium-4 and the
mixed combination. Although initial investigations have not found any purely long-range
resonances in the 2s3p level of helium-4, a thorough investigation must be performed. To
this end it would be invaluable to have access to accurate short-range electronic potentials
for this system.

In chapter 3, predictions for the existence of resonances up to 2000 MHz of detuning from
the j = 1 asymptote were made and these are listed in table E.4. Many resonances overlap
significantly and almost all possess observability properties that permit them to be seen
in experiments using an ion detection mechanism. However, it is uncertain whether the
resonances possess enough short-range proportion to produce a measurable ion signal. It
would be very useful to perform calculations similar to those of chapter 4, so that the
detail of the line shapes over this range of detuning can be analysed. The analysis may
also expose interesting behaviour due to the overlapping resonances.

The effects of including the full laser coupling must also be investigated more thoroughly in
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systems other than helium so that the validity of the dipole approximation may be better
evaluated for ultracold systems. The presence of the backgrounds to the loss profiles, which
are believed to result from the weakly-bound nature of the levels, is unusual and has not
been observed in other theoretical investigations known to the author. If similar shallow
potential wells can be observed in other atomic species it would be most interesting to
compare the behaviour of photoassociation in these species with calculations using either
the dressed state formalism or the R-dependent dampening.

Trapping conditions of the ultracold gases should also play an interesting role in the pho-
toassociation process. Previous investigations of trapping conditions in metastable helium
gases [100, 79, 98] can be extended to include the photoassociation process. Different types
of trapping potentials, such as those provided by optical dipole traps or optical lattices,
may enhance the PA resonances or allow for multi-transition couplings between states
of the system. The laser coupling to excited states also allows for the enhancement or
suppression of collisions between atoms.

Finally, the calculations performed in this thesis may also be extended to other metastable
rare gas systems such as neon or xenon. However, more detailed and accurate potentials are
needed for these systems so, although the adaption of the formalism to these systems may
not be too difficult to implement, the usefulness of results calculated from insufficiently
accurate potentials is dubious. Although these atomic species have not been successfully
condensed into a Bose-Einstein condensate, this does not impact on the potential applica-
tions of their interactions in the ultracold gaseous phase.

In conclusion, there are many untouched areas of ultracold quantum physics that may be
investigated using the techniques established in this thesis. Although the photoassociation
process is well known for a few transitions of a few atomic species, it will be many years
or decades until the useful applications of photoassociation of ultracold gases are fully
understood.
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Appendix A
Notation and Physical Constants

A.1 Notation

ri: Coordinates of electron i.

rNk : Coordinates of nucleus k.

R = (R, θ, φ): Relative nuclear separation. R = |R| is the interatomic separation and
(θ, φ) are the angles of rotation of the molecule-fixed OZ axis from the space-fixed
Oz axis.

Ĥmol, Ĥel, Ĥfs: Molecular, electronic and relativistic correction Hamiltonians.

T̂n, T̂R: Kinetic energy operator of the nuclei and its radial component.

Cj1j2jmj1mj2mj
: Clebsch-Gordan coefficient given by 〈j1mj1j2mj2 |j1j2jmj〉.

k = A,B: Label for the nuclei.

α = 1, 2: Subscript on quantum numbers to denote an atomic state.

Lα, Sα, jα: Orbital, spin and total angular momenta quantum numbers, respectively, of
atom α.

L, S, j: Total orbital, total spin, and total electronic angular momenta quantum numbers,
respectively, of the dimer.

l: Relative rotational angular momentum quantum number of the dimer.

J : Total angular momentum quantum number of the dimer.

mx: Projection of quantity x along the laboratory, space-fixed Oz axis.

Ωx: Projection of quantity x along the intermolecular OZ axis.
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Λ = |ΩL|: The absolute projection of total orbital angular momentum along the inter-
molecular OZ axis and represented by the notation Λ = Σ,Π,∆, ... for |ΩL| =

0, 1, 2, ...

Ω = |Ωj |: The absolute projection of total electronic angular momentum along the inter-
molecular OZ axis.

γα: Represents the quantities {γα, Lα, Sα} where γα denotes the quantities implicitly spec-
ified in the basis that are required to designate the atomic state of atom α.

w: Quantum number given to the symmetry of the operator î which inverts the total
electronic wave function through the centre of charge. w = 0, 1 for g, u symmetry.

σ: Quantum number given to the symmetry of the operator σ̂e which reflects the wave
function through a plane containing the intermolecular axis. When used in the
Hund’s case (a) basis (and the Born-Oppenheimer potentials) σ̂e only reflects the
spatial part of the electronic wave function. When used in the Hund’s case (c) basis
σ̂e reflects the total electronic wave function.

2S+1Λσw: Hund’s case (a) notation where Λ = |ΩL|.

2S+1Λσw(R): Born-Oppenheimer potential.

Ωσ
w: Hund’s case (c) notation where Ω = |Ωj | = |ΩJ |.

Ga(R): Radial wave function associated with basis state |a〉.

Dj
mm′(α, β, γ): Wigner rotation matrix where (α, β, γ) are Euler angles in the Z-Y-Z con-

vention. The angles represent the rotation of the axes as is the convention of Brink
and Satchler [113].

A.2 Physical constants

The values used for the physical constants, taken from the 2006 CODATA recommended
values [137], are:

Hartree energy: Eh = 4.35974394× 10−18 J.

Reduced Planck’s constant: ~ = h/2 = 1.054571628× 10−34 J.s.

Bohr radius: a0 = 5.291772108× 10−11 m.

Atomic mass of helium-4: m = 4.002603 u.

Atomic mass unit: u = 1.660538782× 10−27 kg.



Appendix B
Coupling Schemes and Symmetrisation

B.1 jj symmetrisation

The hybrid jj basis, |γj1j2jΩjJmJ〉, must obey several symmetries of the molecular Hamil-
tonian to be properly classified as a basis of the molecular system. Bo Gao [114] has
presented a comprehensive formulation of several different sets of basis states relevant to
ultracold collisions that includes a careful consideration of nuclear statistics and molecular
symmetries. Unfortunately, Bo Gao’s states do not include the molecular projection Ωj

and so the derivation presented in [114] does not directly apply to the symmetry of the
hybrid jj basis considered here.

The first symmetry that must be addressed is that of antisymmetry under electron per-
mutation. Because the inner 1s electrons of the atomic states do not influence the matrix
elements of the system, these will be ignored and only the labels of the outer 2s or 2p

electrons will be considered. The unsymmetrised states (2.27) must be redefined so that
they are properly antisymmetric under permutation of the two outer electrons without
affecting the coupling scheme. This redefinition is

|γj1j2jΩjJmJ〉 ≡
1√
2

[|γj1j2jΩjJmJ ; r1, r2〉 − |γj1j2jΩjJmJ ; r2, r1〉] (B.1)

where r1 and r2 are the position vectors of the two electrons. The antisymmetrisation does
not affect the matrix elements with the exception of those of the complete laser coupling
when the dipole approximation is not assumed.

The next symmetry that must be analysed is the electronic inversion represented by the
operator î. This operator inverts the electronic wave function through the centre of charge
of the system. Its action is equivalent to swapping the states of each atom and then
inverting these states about their atomic centres, which is denoted by the operator îα,
α = {1, 2}. The atomic inversion of a spherical harmonic is well known: îα|LαΩLα〉 =

YLαΩLα
(π − θ, φ + π) = (−1)LαYLαΩLα

(θ, φ) = (−1)Lα |LαΩLα〉 and the atomic inversion
of the spin states has no effect. Hence the action of î is determined from the atomic state
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representation by using the molecule-fixed frame version of equations (2.19) and (2.20):

î|(γ1j1)A(γ2j2)BjΩjJmJ〉 = î
∑

Ωj1
ΩL1

ΩS1
Ωj2

ΩL2
ΩS2

Cj1j2jΩj1Ωj2Ωj
CL1S1j1

ΩL1
ΩS1

Ωj1

× CL2S2j2
ΩL2

ΩS2
Ωj2
|γ̄1L1ΩL1S1ΩS1〉A|γ̄2L2ΩL2S2ΩS2〉BNJ

mJΩj

= (−1)L1+L2
∑

Ωj1
ΩL1

ΩS1
Ωj2

ΩL2
ΩS2

Cj1j2jΩj1Ωj2Ωj
CL1S1j1

ΩL1
ΩS1

Ωj1

× CL2S2j2
ΩL2

ΩS2
Ωj2
|γ̄1L1ΩL1S1ΩS1〉B|γ̄2L2ΩL2S2ΩS2〉ANJ

mJΩj

= (−1)L1+L2+j1+j2−j
∑

Ωj1
ΩL1

ΩS1
Ωj2

ΩL2
ΩS2

Cj2j1jΩj2Ωj1Ωj
CL1S1j1

ΩL1
ΩS1

Ωj1

× CL2S2j2
ΩL2

ΩS2
Ωj2
|γ̄1L1ΩL1S1ΩS1〉B|γ̄2L2ΩL2S2ΩS2〉ANJ

mJΩj

= (−1)L1+L2+j1+j2−j |(γ2j2)A(γ1j1)BjΩjJmJ〉 (B.2)

The factor of (−1)j1+j2−j arises from the symmetry of the Clebsch-Gordan coefficient [113].
The eigenstates of the operator î corresponding to the eigenvalue (−1)w must therefore
have the form

|γj1j2jΩjwJmJ〉 ≡ Njj,w

[
|(γ1j1)A(γ2j2)BjΩjJmJ〉

+ (−1)w+L1+L2+j1+j2−j |(γ2j2)A(γ1j1)BjΩjJmJ〉

]
(B.3)

where Njj,w = 1/2 for γ1j1 = γ2j2 and Njj,w = 1/
√

2 otherwise. For metastable states
with γ1j1 = γ2j2, a selection rule (−1)w−j = 1 is obtained.

The states must also be symmetrised with respect to the nuclear permutation, X̂n. This
operator is nontrivial to analyse as swapping the nuclei also reverses the orientation of the
interatomic axis. The nuclear parity operator can be considered instead of this permutation
operator (as there is no nuclear spin or other structure to distinguish between the action
of the parity and permutation operators). The action of X̂n then simply inverts the Euler
angles that rotate the space-fixed Oz axis onto the molecule-fixed OZ axis, (φ, θ, 0) →
(φ + π, π − θ, 0). Along with the observation that X̂n does not affect space-fixed atomic
states, |jmj〉, the action of X̂n on a molecular-fixed atomic state can then be derived:

X̂n|jΩj〉 = X̂n

∑
mj

Dj
mjΩj

(φ, θ, 0)|jmj〉

=
∑
mj

Dj
mjΩj

(φ+ π, π − θ, 0)|jmj〉

=
∑
mj

(−1)jDj
mj ,−Ωj

(φ, θ, 0)|jmj〉

= (−1)j |j,−Ωj〉. (B.4)
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The symmetry of the rotation matrix arises because

Dj
mjΩj

(φ+ π, π − θ, 0) = e−imj(φ+π)djmjΩj (π − θ)

= (−1)−mje−imjφ(−1)j−mjdjmj ,−Ωj
(θ)

= (−1)jDj
mj ,−Ωj

(φ, θ, 0) (B.5)

where djmjΩj (θ) is the reduced rotation matrix [113]. Relation (B.5) also gives

X̂nN
J
mJΩj (θ, φ) = (−1)JNJ

mJ ,−Ωj . (B.6)

From these relations, the action of X̂n upon the states (B.2) is

X̂n|(γ1j1)A(γ2j2)BjΩjJmJ〉

= X̂n|(γ1j1)A(γ2j2)BjΩj〉NJ
mJΩj (θ, φ)

= X̂n

∑
Ωj1Ωj2

Cj1j2jΩj1Ωj2Ωj
|γ1j1Ωj1〉A|γ2j2Ωj2〉BNJ

mJΩj

= (−1)j1+j2+J
∑

Ωj1Ωj2

Cj1j2jΩj1Ωj2Ωj
|γ1j1,−Ωj1〉B|γ2j2,−Ωj2〉ANJ

mJ ,−Ωj

= (−1)j1+j2+J
∑

Ωj1Ωj2

(−1)2j1+2j1−2jCj2j1j−Ωj2−Ωj1−Ωj

× |γ1j1,−Ωj1〉B|γ2j2,−Ωj2〉ANJ
mJ ,−Ωj

= (−1)j1+j2+J |(γ2j2)B(γ1j1)Aj,−Ωj , JmJ〉. (B.7)

Therefore, the states that are symmetric under the action of X̂n and î must be

|γj1j2jJmJ ; Ωw〉 = Njj,Ω

[
|γj1j2jΩwJmJ〉+ (−1)w+L1+L2−j+J |γj1j2j,−Ω, wJmJ〉

]
,

(B.8)
where Njj,Ω = 1/2 for Ω = 0 and Njj,Ω = 1/

√
2 otherwise. For Ω = 0, a selection rule

(−1)w+L1+L2−j+J = 1 is obtained.

When Ω = 0, these states also possess a reflection symmetry under the action of σ̂e which
performs a reflection through the XZ plane on the electronic wave function. Consider the
action of σ̂e on an atomic state: it is equivalent to an inversion of the atomic state (̂iα) with
a π rotation around the OY axis with the origin at the atomic centre (ĈY π). The action
of îα has been discussed previously. The rotation around the Y axis performed by ĈY π is
equivalent to a set of Euler angles (0, π, 0) that generate a rotation matrix Dj

ΩjΩ′j
(0, π, 0) =

(−1)j+ΩjδΩj ,−Ωj , which implies that ĈY π|jΩj〉 = (−1)j+Ωj |j,−Ωj〉. Therefore, the action
of σ̂e on the unsymmetrised states |γj1j2jΩjJmJ〉 with Ωj = 0 is

σ̂e|γj1j2j0JmJ〉 = îĈπY
∑

Ωj1
ΩL1

ΩS1
Ωj2

ΩL2
ΩS2

Cj1j2jΩj1Ωj20C
L1S1j1
ΩL1

ΩS1
Ωj1

× CL2S2j2
ΩL2

ΩS2
Ωj2
|γ̄1L1ΩL1S1ΩS1〉|γ̄2L2ΩL2S2ΩS2〉NJ

mJ0
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= (−1)2L1+2L2+S1+S2
∑

Ωj1
ΩL1

ΩS1
Ωj2

ΩL2
ΩS2

Cj1j2jΩj1Ωj20C
L1S1j1
ΩL1

ΩS1
Ωj1

× CL2S2j2
ΩL2

ΩS2
Ωj2
|γ̄1L1,−ΩL1S1,−ΩS1〉|γ̄2L2,−ΩL2S2,−ΩS2〉NJ

mJ0

= (−1)L1+L2+2S1+2S2−j
∑

Ωj1
ΩL1

ΩS1
Ωj2

ΩL2
ΩS2

Cj1j2j−Ωj1 ,−Ωj20C
L1S1j1
−ΩL1

,−ΩS1
,−Ωj1

× CL2S2j2
−ΩL2

,−ΩS2
,−Ωj2

|γ̄1L1,−ΩL1S1,−ΩS1〉|γ̄2L2,−ΩL2S2,−ΩS2〉NJ
mJ0

= (−1)L1+L2−j |γj1j2j0JmJ〉. (B.9)

When this is applied to the complete symmetric state (B.8) with Ω = 0, no additional
complications arise and the result

σ̂e|γj1j2jJmJ ; 0w〉 = (−1)L1+L2−j |γj1j2jJmJ ; 0w〉 (B.10)

is obtained. From this it can be seen that the symmetry requirement (−1)w+L1+L2−j+J = 1

for Ω = 0 in (B.8) can be rewritten as (−1)w+σ+J = 1. Therefore a selection rule is obtained
for states with Ω = 0: Hund’s case (c) sets 0+

g and 0−u only allow for even values of J and
sets 0−g and 0+

u only allow for odd values of J .

B.2 LS coupling

The LS basis couples each atom’s orbital angular momenta and each atom’s spin angular
momenta separately to form L = L1 +L2 and S = S1 + S2:

|γLSmLmS〉 =
∑

mL1
mL2

mS1
mS2

CL1L2L
mL1

mL2
mL
CS1S2S
mS1

mS2
mS
|γ̄1L1mL1S1mS1〉|γ̄2L2mL2S2mS2〉.

(B.11)
The LS basis can also be represented in the molecule-fixed frame by replacing all quantities
mx with Ωx. The transformation between these two frames of reference is

|γLSΩLΩS〉 =
∑
mLmS

DL
mLΩL

(φ, θ, 0)DS
mSΩS

(φ, θ, 0)|γLSmLmS〉. (B.12)

The total electronic states of the dimer are

|γLSjmj〉 =
∑
mLmS

CLSjmLmSmj
|γLSmLmS〉 (B.13)

and inclusion of the nuclear rotation, |lml〉, is analogous to that for the jj basis:

|γLSjlJmJ〉 =
∑

mLmSmjml

CLSjmLmSmj
CjlJmjmlmJ |γLSmLmS〉|lml〉. (B.14)
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In a similar manner as for the hybrid jj basis states (2.25), the LS basis can be written
in a mixed molecular-fixed and space-fixed frame representation as

|γLSjlJmJ〉 =
∑

ΩLΩSΩj

(−1)j−ΩjCLSjΩLΩSΩj
CjJlΩj ,−Ωj ,0

NJ
mJΩj (θ, φ)|γLSΩLΩS〉 (B.15)

which demonstrates a coupling of j = L+S and J to form l. Hence, the hybrid LS basis
states are defined as

|γLSΩLΩSJmJ〉 ≡ NJ
mJ ,ΩL+ΩS

(θ, φ)|γLSΩLΩS〉. (B.16)

The electronic Hamiltonian term, Ĥel, is diagonal in this basis.

The implementation of symmetry requirements for the hybrid LS basis is very similar
to that for the jj basis and will not be shown here. However, one important difference
between the LS and jj bases must be discussed. For the jj basis, the projection of the
total electronic angular momentum Ωj is no longer a good quantum number and only the
modulus Ω = |Ωj | may be retained in the basis labels. Similarly, in the LS basis the total
orbital and spin angular momentum ΩL and ΩS are no longer good quantum numbers, due
to the requirement that nuclear permutation must be symmetric, and only their moduli,
Λ = |ΩL| and Σ = |ΩS |, can be retained. However, writing down the basis using only the
labels |γLSΛΣ〉 means that the value of Ω is not well defined, as Ω = |ΩL + ΩS | which
could be either Ω = Λ ± Σ. This ambiguity can be resolved by including Ω with the
basis labels, i.e. |γLSΛΣΩ〉, as in [106]. Alternatively, the relative projection of L against
S, sgn(ΩLΩS), may be specified to uniquely determine the state. This thesis defines the
quantity Ω̃S , which represents the magnitude Σ as well as the orientation of S relative to
L. Explicitly Ω̃S = sgn(ΩLΩS)|ΩS | and the states are |γLSΛΩ̃S〉.

The LS states that possess the correct symmetry under the action of î are

|γLSΩLΩSwJmJ〉 ≡ NLS,w

[
|(γ1)A(γ2)BLSΩLΩSJmJ〉

+ (−1)w−L+S1+S2−S |(γ2)A(γ1)BLSΩLΩSJmJ〉

]
(B.17)

where NLS,w = 1/2 if γ1 = γ2 and NLS,w = 1/
√

2 otherwise. For the metastable con-
figuration, γ1 = γ2 and the selection rule (−1)w−S is obtained. The states that are also
symmetric under permutation of the nuclei, X̂n, are

|γLSJmJ ; ΛΩ̃Sw〉 = NLS,Λ

[
|γLSΛΩ̃SwJmJ〉

+ (−1)w+L1+L2−L−S+J |γLS,−Λ,−Ω̃S , wJmJ〉

]
(B.18)

where |ΩL| = Λ > 0, however Ω̃S may be negative. The normalisation constant is NLS,Λ =
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1/2 if Λ = Ω̃S = 0 and NLS,Λ = 1/
√

2 otherwise.

The states (B.18) are also symmetrised with respect to the reflection operator σ̂e for
Λ + Ω̃S = Ω = 0 since

σ̂e|γLSJmJ ; Λ,−Λ, w〉 = (−1)w+J |γLSJmJ ; Λ,−Λ, w〉. (B.19)

B.3 Transformation between LS and jj bases

Of the the hybrid jj and hybrid LS bases, each is best suited to regions of interatomic dis-
tance where its respective diagonal term of the Hamiltonian (either Ĥfs or Ĥel) dominates.
The jj basis is hence best used for large interatomic distances, where the fine-structure
splitting is much larger than the electronic splittings and, similarly, the LS basis is most
suited to small interatomic separations where the electronic splittings dominate. Although
the jj basis has been chosen for this thesis, the LS state is still required to find the matrix
elements of the electronic Hamiltonian and therefore the transformation between the two
bases is needed.

The transformation between the unsymmetrised bases |γj1j2jΩjJmJ〉 and |γLSΩLΩSJmJ〉
is found by inverting (B.11) in the molecular frame,

|γ1ΩL1ΩS1〉|γ2ΩL2ΩS2〉 =
∑

LSΩLΩS

CL1L2L
ΩL1

ΩL2
ΩL
CS1S2S

ΩS1
ΩS2

ΩS
|γLSΩLΩS〉 (B.20)

and then using (2.20) and (2.19), also in the molecular frame, to find

|γj1j2jΩj〉 =
∑
LS

ΩLΩS

∑
Ωj1

ΩL1
ΩS1

Ωj2
ΩL2

ΩS2

CL1L2L
ΩL1

ΩL2
ΩL
CS1S2S

ΩS1
ΩS2

ΩS

× Cj1j2jΩj1Ωj2Ωj
CL1S1j1

ΩL1
ΩS1

Ωj1
CL2S2j2

ΩL2
ΩS2

Ωj2
|γLSΩLΩS〉

=
∑

LΩLSΩS

F
j1j2jΩj
LSΩLΩS

|γLSΩLΩS〉 (B.21)

where F j1j2jΩjLSΩLΩS
is given by

F
j1j2jΩj
LSΩLΩS

=
√

(2S + 1)(2L+ 1)(2j1 + 1)(2j2 + 1)


L1 L2 L

S1 S2 S

j1 j2 j

CLSjΩLΩSΩj
, (B.22)

which results from the contraction [113] of the five Clebsch-Gordan coefficients in equation
(B.21). The term {· · · } is a Wigner 9-j symbol and the implicit set of quantum numbers
{γ1, γ2} has been suppressed in the labelling of F j1j2jΩjLSΩLΩS

. Two properties of the coefficient
are required:

F
j2j1jΩj
LSΩLΩS

= (−1)L1+L2+L+S1+S2+S+j1+j2+jF
j1j2jΩj
LSΩLΩS

(B.23)
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and
F
j1j2j,−Ωj
LS,−ΩL,−ΩS

= (−1)L+S−jF
j1j2jΩj
LSΩLΩS

. (B.24)

The transformation from the î-symmetrised jj (B.3) and LS (B.17) bases is straight-
forward after using (B.23):

|γj1j2jΩjwJmJ〉 = Njj,w

∑
LSΩLΩS

F
j1j2jΩj
LSΩLΩS

|(γ1)A(γ2)BLSΩLΩSJmJ〉

+ (−1)w+L1+L2+j1+j2−jF
j2j1jΩj
LSΩLΩS

|(γ1)B(γ2)ALSΩLΩSJmJ〉

= Njj,w

∑
LSΩLΩS

F
j1j2jΩj
LSΩLΩS

[
|(γ1)A(γ2)BLSΩLΩSJmJ〉

+ (−1)w−L+S1+S2−SF
j2j1jΩj
LSΩLΩS

|(γ1)B(γ2)ALSΩLΩSJmJ〉

]

=
Njj,w

NLS,w

∑
LSΩLΩS

F
j1j2jΩj
LSΩLΩS

|γLSΩLΩSwJmJ〉. (B.25)

Because only 2s2s and 2s2p levels are considered here, either γ1 = γ2 and j1 = j2, or
γ1 6= γ2 and j1 6= j2, making the fraction Njj,w/NLS,w = 1.

The transformation between the fully symmetrised jj and LS bases is not as concisely
described. Using (B.8) and (B.25), the transformation becomes

|γj1j2jJmJ ; Ωw〉 = Njj,Ω

∑
LSΩLΩS

F j1j2jΩLSΩLΩS
|γLSΩLΩSwJmJ〉

+ (−1)w+L1+L2−j+JF j1j2j,−Ω
LS,−ΩL,−ΩS

|γLS,−ΩL,−ΩSwJmJ〉. (B.26)

To convert the RHS into a representation of symmetrised LS states (B.18), the coefficient
symmetry (B.24) is required, as well as the separation of the ΩL > 0, ΩL = 0 and ΩL < 0

parts of the summation over ΩL:

|γj1j2jJmJ ; Ωw〉 = Njj,Ω

∑
LS

( ∑
ΩL>0,ΩS

[
F j1j2jΩLSΩLΩS

|γLSΩLΩSwJmJ〉

+ (−1)w+L1+L2−L−S+JF j1j2j,ΩLSΩLΩS
|γLS,−ΩL,−ΩSwJmJ〉

]
+

∑
ΩL<0,ΩS

[
F j1j2jΩLSΩLΩS

|γLSΩLΩSwJmJ〉

+ (−1)w+L1+L2−L−S+JF j1j2j,ΩLS,ΩL,ΩS
|γLS,−ΩL,−ΩSwJmJ〉

]
+
∑
ΩS

[
F j1j2jΩLS0ΩS

|γLS0ΩSwJmJ〉

+ (−1)w+L1+L2−L−S+JF j1j2j,ΩLS0ΩS
|γLS0,−ΩSwJmJ〉

])
.

(B.27)
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In the first summation ΩL can be relabelled Λ and the second summation can be converted
to a sum over positive Λ by the substitutions −ΩL → Λ and −ΩS → Ω̃S . Finally, the first
and last summations can also be relabelled with ΩS → Ω̃S . This gives

|γj1j2jJmJ ; Ωw〉 = Njj,Ω

∑
LS

[ ∑
Λ>0,Ω̃S

F j1j2jΩ
LSΛΩ̃S

[
|γLSΛΩ̃SwJmJ〉

+ (−1)w+L1+L2−L−S+J |γLS,−Λ,−Ω̃SwJmJ〉
]

+
∑

Λ>0,Ω̃S

F j1j2jΩ
LS,−Λ,−Ω̃S

[
|γLS,−Λ,−Ω̃SwJmJ〉

+ (−1)w+L1+L2−L−S+J |γLS,Λ, Ω̃S , wJmJ〉
]

+
∑
Ω̃S

F j1j2jΩ
LS0Ω̃S

[
|γLS0Ω̃SwJmJ〉

+ (−1)w+L1+L2−L−S+J |γLS0,−Ω̃SwJmJ〉
]]
. (B.28)

By taking out a phase factor from the second summation, the first two summations can be
combined to give the final result

|γj1j2jJmJ ; Ωw〉

= Njj,Ω

∑
LSΩ̃S

[
√

2
∑
Λ>0

[
F j1j2jΩ
LSΛΩ̃S

+ (−1)w+L1+L2−L−S+JF j1j2jΩ
LS,−Λ,−Ω̃S

]
|γLSJmJ ; ΛΩ̃Sw〉

+
√

2 + 2δΩ̃S ,0
F j1j2jΩ
LS0Ω̃S

|γLSJmJ ; 0Ω̃Sw〉

]
, (B.29)

where 1/NLS,Λ = 2 for Λ = Ω̃S = 0 and 1/NLS,Λ =
√

2 otherwise, has been used.

B.4 Electronic matrix element

As described in section 2.1.1, the electronic Hamiltonian in the Born-Oppenheimer approx-
imation satisfies the eigenvalue equation

Ĥel|ΛσSw〉 =
[
E∞γ + 2S+1Λσw(R)

]
|ΛσSw〉 (B.30)

where σ is required only for Λ = 0 and is the symmetry under reflection of the spatial
part of the electronic wave function only through a plane containing the interatomic axis.
Equation (B.30) implies that the matrix elements of Ĥel are diagonal in the LS basis
(B.18). Therefore, the states for the matrix elements of Ĥel in the jj basis (B.8) must be
transformed to the LS basis. That is, if |a〉 ≡ |γj1j2jJmJ ; Ωw〉 then, from (B.29), the
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matrix elements are

〈a′|Ĥel|a〉 = E∞a δa′a + δη′ηNjj,Ω′Njj,Ω

∑
LSΩ̃S

(
2
∑
Λ>0

2S+1Λw(R)

[
F
j′1j
′
2j
′Ω

LSΛΩ̃S
F j1j2jΩ
LSΛΩ̃S

+ 2(−1)w+L1+L2−L−S+JF
j′1j
′
2j
′Ω

LSΛΩ̃S
F j1j2jΩ
LS,−Λ,−Ω̃S

+ F
j′1j
′
2j
′Ω

LS,−Λ,−Ω̃S
F j1j2jΩ
LS,−Λ,−Ω̃S

]
+ (2 + 2δΩ̃S ,0

)2S+1Σ+
w(R)F j1j2jΩ

LS0Ω̃S
F
j′1j
′
2j
′Ω

LS0Ω̃S

)
, (B.31)

where η = {w,Ω, J,mJ , γ}.

If Ω = 0, then Ω̃S = −Λ and this expression reduces to

〈a′|Ĥel|a〉 = E∞a δa′a + δη′η
1

4

∑
LS

(
2
∑
Λ>0

2S+1Λw(R)

[
F
j′1j
′
2j
′0

LSΛ,−ΛF
j1j2j0
LSΛ,−Λ

+ 2(−1)w+L1+L2−j+JF
j′1j
′
2j
′0

LSΛ,−ΛF
j1j2j0
LSΛ,−Λ + (−1)j

′−jF
j′1j
′
2j
′0

LSΛ,−ΛF
j1j2j0
LSΛ,−Λ

]
+ 4× 2S+1Σ+

w(R)F j1j2jΩLS00 F
j′1j
′
2j
′0

LS00

)
,

= E∞a δa′a + δη′η
∑
LS

(
2
∑
Λ>0

2S+1Λw(R)F
j′1j
′
2j
′0

LSΛ,−ΛF
j1j2j0
LSΛ,−Λ + 2S+1Σ+

w(R)F
j′1j
′
2j
′0

LS00 F j1j2j0LS00

)
= E∞a δa′a + δη′η

∑
LS

∑
ΩL

2S+1Λw(R)F
j′1j
′
2j
′0

LSΩL,−ΩL
F j1j2j0LSΩL,−ΩL

(B.32)

where Ω = 0 implies that (−1)w+L1+L2−j+J = 1 for the states (B.8) to be non-zero and
(−1)j

′−j = 1 because of the σ̂e symmetry (B.10).

If Ω > 0 then expression (B.31) becomes

〈a′|Ĥel|a〉 = E∞a δa′a + δη′η
1

2

∑
LSΩ̃S

(
2
∑
Λ>0

2S+1Λw(R)
[
F
j′1j
′
2j
′Ω

LSΛΩ̃S
F j1j2jΩ
LSΛΩ̃S

+ F
j′1j
′
2j
′Ω

LS,−Λ,−Ω̃S
F j1j2jΩ
LS,−Λ,−Ω̃S

]

+ 22S+1Σ+
w(R)F j1j2jΩ

LS0Ω̃S
F
j′1j
′
2j
′Ω

LS0Ω̃S

)
,

= E∞a δa′a + δη′η
∑
LSΩ̃S

(∑
Λ>0

2S+1Λw(R)
[
F
j′1j
′
2j
′Ω

LSΛΩ̃S
F j1j2jΩ
LSΛΩ̃S

+ F
j′1j
′
2j
′Ω

LS,−Λ,−Ω̃S
F j1j2jΩ
LS,−Λ,−Ω̃S

]

+ 2S+1Σ+
w(R)F j1j2jΩ

LS0Ω̃S
F
j′1j
′
2j
′Ω

LS0Ω̃S

)
= E∞a δa′a + δη′η

∑
LSΩ̃SΩL

2S+1Λw(R)F
j′1j
′
2j
′Ω

LSΩLΩ̃S
F j1j2jΩ
LSΩLΩ̃S

(B.33)

where the term F
j′1j
′
2j
′Ω

LSΛΩ̃S
F j1j2jΩ
LS,−Λ,−Ω̃S

in (B.31) is proportional to CLSj
′

ΛΩ̃SΩ
CLSj−Λ,−Ω̃S ,Ω

and must
be zero for Ω 6= 0.

Because the result (B.32) can also be retrieved from the form of (B.33) then this final
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result may be used in general.

B.5 Experimentally relevant basis states

It is often more relevant to identify initial colliding metastable states in an experiment
using the basis |SmS , lml〉, especially for a gas of spin-polarised metastable atoms. This
basis is defined by

|SmS , lml〉 ≡ |γLSmLmSw〉|lml〉 (B.34)

where it is assumed that L = mL = 0 and (−1)w−S = 1 due to selection rules for metastable
levels, as explained below equation (B.17). The transformation to the hybrid jj basis is
derived by noting that L1 = L2 = 0 and hence Sα = jα, so that the coupling scheme

|γLSjlJmJw〉 =
∑

mlmSmL

CjlJmL+mS ,ml,mJ
CLSjmLmSmL+mS

|γLSmLmSw〉|lml〉 (B.35)

becomes
|γ0SjlJmJw〉 = δS,j

∑
mlmS

CSlJmSmlmJ
|SmS , lml〉. (B.36)

This can be inverted to give

|SmS , lml〉 =
∑
JmJ

CSlJmSmlmJ
|γ0SSlJmJw〉 (B.37)

which, when combined with equation (2.25), gives the desired transformation:

|SmS , lml〉 =
∑
JmJΩ

(−1)S−ΩCSJlΩ−Ω0C
SlJ
mSmlmJ

|γS1S2SJmJ ; Ωw〉. (B.38)



Appendix C
Renormalised Numerov method

C.1 Bound states

The Numerov method was devised to solve differential equations of the form[
d2

dx2
+Q(x)

]
Ψ(x) = 0 (C.1)

where Q is a n× n matrix and Ψ a matrix of vectors representing n-linearly independent
solutions to the equation. The Numerov method is defined by the three term recurrence
relationship [121]

(1− Tn+1)Ψn+1 − (2 + 10Tn)Ψn + (1− Tn−1)Ψn−1 = 0 (C.2)

where Ψn = Ψ(xn),

Tn = −h
2

12
Q(xn), (C.3)

h is the stepsize and and xn = nh. The local error of the method is O(h6) at each step
with a global error of O(h5). This recurrence relation can be written in a different manner
by making a transformation Fn = (1− Tn)Ψn, that converts (C.2) to

Fn+1 −UnFn + Fn−1 = 0 (C.4)

where Un = 12(1− Tn)−1 − 10I. In this form, it is possible to define a ratio matrix

Rn = Fn+1F
−1
n (C.5)

that converts the three term recurrence relation to a two term recurrence relation [121]

Rn = Un −R−1
n−1. (C.6)

This recurrence relationship requires two matrix inversions in its evaluation, but it pos-
sesses some important advantages. Firstly, there is no likelihood of overflow errors in
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the calculations which is of great importance for wave function calculation in classically
forbidden regions. Secondly, the transformation does not require an approximate determi-
nation of the first non-boundary point Ψ1 to maintain O(h5) global accuracy [138] if the
initial value for R−1

0 is known from the boundary conditions. For zero valued boundary
conditions, as is usually the case for calculation of wave functions, thenR−1

0 = F0F
−1
1 = 0.

In order to find the energies of bound levels, a scan over energy E is performed and
equation (C.6) is used to integrate outwards to some maximum point xN for each value
of E. As the energy is scanned, nodes in the wave function appear at locations xn, and
are detected by the condition |Rn| < 0 at these points. The only exception occurs for
multiple nodes that exist at the same grid point. To detect these, the LU decomposition
of Rn must be performed and the presence of negatives on the diagonal of U indicates the
existence of nodes. Although this technique to count multiple nodes is unproven to work
in all cases [121], no problems were observed for the calculations in this thesis. The exact
binding energies of the bound levels are isolated by observing when the total node count
is incremented as the energy is scanned. A bisection method is used to place upper and
lower bounds on the binding energy to the accuracy required.

To calculate the wave function for a bound level or a scattering solution, repeated applica-
tion of R−1

n from equation (C.5) may be used to ‘rewind’ the wave function from a known
value at a point xN . This gives

Ψn = (1− Tn)−1Fn = (1− Tn)−1

(
N∏
i=n

R−1
i

)
(1− TN )ΨN . (C.7)

However, the outwards integration of (C.6) cannot be used alone to calculate bound wave
functions because as it is difficult to accurately match to the decreasing exponential solu-
tions at the outer boundary. Instead, one must integrate outwards from the inner boundary
and inwards from the outer boundary to a matching point, xm, at which the integrations
can be appropriately joined. The inwards integration is similar in form to (C.6):

R̄n = Un − R̄−1
n+1 (C.8)

where R̄n = Fn−1F
−1
n . The outer boundary condition for bound levels is R̄−1

N = 0 which is
analogous to the inner boundary condition. To match the inwards and outwards solutions,
it is sufficient that the solutions must equal one another at two adjacent grid points. This
can be shown [121] to require

(Rm − R̄−1
m+1)f(xm) = 0 (C.9)

where f(xm) = (1 − Tn)ψ(xm) and ψ(xm) is the solution vector at the matching point.
The desired solution is the eigenvector of the matrix Rm − R̄−1

m+1 that corresponds to an
eigenvalue of zero. The goodness of match may be judged by calculating a few additional
outward steps of the integration beyond the match point, so that the derivative ψ′(xm+1/2)

may be calculated from both the inward and outward integrations. The agreement between
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the derivatives then gives a clear indication of the accuracy of the matching. Once the
solution vector at the matching point, ψ(xm), has been calculated from C.9, the entire
solution may be generated via repeated application of the inverse ratio matrix in a similar
fashion to (C.7): Fn = R−1

n R
−1
n+1 . . .R

−1
m−1Fm for n < m and Fn = R̄−1

n R̄
−1
n−1 . . . R̄

−1
m+1Fm

for n > m.

C.2 Resonances

When searching for resonances in the coupled differential equations (C.1), open channels
that represent the predissociation channels must possess proper outgoing boundary con-
ditions. To determine the boundary condition upon the ratio matrix R̄−1

N = FNF
−1
N−1,

the channels are assumed to be decoupled and hence the solution matrix Ψ(x→∞) may
be written as a diagonal matrix Ψij(x) = Ψi(x)δij . In this form it is simple to apply the
appropriate boundary conditions by imposing conditions

Ψi(xN ) = 0

Ψi(xN−1) = 1

for closed channels, and conditions

Ψi(xN ) = eikixN

Ψi(xN−1) = eikixN−1

for open channels, where ki =
√
Qii(x→∞). These conditions mean that

(R−1
N )ij = δij

eikih for open channels

0 for closed channels.
(C.10)

The energies of resonances are complex, the imaginary part of which is the decay width
of the resonance. The bisection method based on counting nodes that was used to isolate
bound levels cannot be used for resonances as a two dimensional search in the complex
plane is required. The resonances exist at energies that satisfy equation C.9 which gives
the condition D(E) = |Rm−R̄−1

m+1| is zero. A gradient descent method can be used in the
complex plane to find the zeros of D(E). The starting energy for the descent, E0, must
be carefully chosen as the method will only converge to one final minimum for each choice
of E0. To produce many starting points to scan the complex plane, the equations were
initially solved for artificial box states. The box states are the bound levels that result
from treating all channels as closed, effectively discretising the continuum. The energies of
these box states were trialled as starting energies for the descent method in the true system,
however the results were not satisfactory as many known resonances were not identified.

An alternative procedure to search for the resonances was formulated that is similar to
the bisection method of the node counting procedure for bound levels. The procedure first
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isolates regions that are known to contain an allowed solution, by using Cauchy’s argument
principle, which states a contour integral of f ′(z)/f(z), where f(z) is a meromorphic
function, will give

1

2πi

˛
C

f ′(z)

f(z)
dz = N − P (C.11)

where N is the number of zeros and P is the number of poles in the region bounded by the
contour C, each zero or pole being counted as many times as its multiplicity. If the function
D(E) is assumed to be meromorphic and the contours chosen so that only a single zero
or pole lies within each, then the contours place bounds upon the location of resonances.
By using box shaped contours, with sides that have either a constant real or imaginary
component, convergence to the exact location of the zeros may be obtained by repeated
bisection of the dimensions of the box. Because the number of function evaluations of
D(E) required in this approach is very large, and each evaluation requires the complete
outwards and inwards integration of the differential equations, it is best to use the argument
principle only to isolate the local region of each resonance and then narrow the search with
the gradient descent method to calculate the exact energy of the resonance.

C.3 Application to regions of different step size

Because the Numerov method uses a fixed size grid and the differential equations vary more
rapidly for different ranges of interatomic distance, a multi-region procedure was developed
that allows for different grid step sizes within each region. Each region is integrated using
the appropriate equation (C.6) or (C.8), however only the innermost and outermost regions
have a well defined value of R−1

0 or R̄−1
N . At the connection between two adjacent regions,

the ratio matrix R−1
c exists for both regions but it has different values in each region

because each region has a different value of h. The value of R−1
c that must be found at

the start of a new region can be calculated from the derivative term Ψ′(xc) by predicting
Ψ(xc+1) using the accurate O(h5) formula of Gonzalez and Thompson [138], adapted to
multichannel calculations

Ψ(xc+1) = [I − 3Tc+1 + 8Tc+2Tc+1]−1

×
[(
I − 1

2
Tc+2

)
Ψ(xc) + h (I − Tc+2) Ψ′(xc) + (

7

2
I − 4Tc+2)TcΨ(xc)

]
.

(C.12)

This formula preserves the global O(h5) accuracy of the solution. With the derivative
found, it is simple to calculate R−1

c in the next region and proceed with the integration as
usual. Problems may occur in the node counting procedure when a node is in the vicinity
of the border between regions as the procedure of matching between the regions may cause
a node to be missed. If this is the case, the numerical routine will back away from the
connecting point by finding a value xc−n for which there are no nodes in the nearby vicinity
and then applies the matching as normal.

The greatest advantage of the renormalised Numerov method is that it may be used to
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integrate the differential equations to any accuracy required without memory constraints.
This is possible because only the previous value Rn is required to calculate the next value
Rn+1. If only every kth value of n is required to analyse the solutions, the Rn matrices
can be stored as the combined product Rn+k−1 . . .Rn. This is permitted because the
relationship between points Fn and Fn+k is simply Fn+k = Rn+k−1 . . .Rn+1RnFn. The
R−1
n matrices may also be stored in a similar manner. These stored matrices produce the

accuracy of a calculation at a stepsize of h, but on a coarse grid of hk.
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Appendix D
Discrete Variable Representation (DVR)

method

D.1 Introduction

The DVR method is a matrix method for solution of coupled ordinary differential equations
that allows a solution to be expanded in terms of a functional basis upon a set of discrete
grid points. Numerous DVR bases can be employed to enforce a variety of boundary
conditions and each basis represents the solution in a different form. Any functional basis
may be used, provided it satisfies the constraints described in this section. For atomic
and molecular physics, two useful bases are the Fourier sine and cosine bases as these can
be used to represent solutions of wave functions to a high degree of accuracy. Because
the method creates a set of matrix equations, the numerical implementation is relatively
straightforward. The only disadvantage of the DVR method is the large memory usage
required. Because the DVR consists of large non-sparse matrices, it cannot be broken
into smaller subproblems that may be more easily calculated within the constraints of the
physical computer system.

An alternative mapped grid method developed by Willner et al [139] that is suited to
near-dissociation calculations was brought to the author’s attention after implementation
of the DVR method. The mapped grid method uses a sophisticated technique to distribute
grid points based on the local values of the de Broglie wavelength. Use of these grids allow
a much smaller set of points to be used and hence permit calculations to a higher degree
of accuracy. The accuracy of the DVR method, however, is more than sufficient for the
calculations performed in this thesis.

In the DVR description, a set of Lagrange functions {fi} and a set of N discrete grid points
{xn} over the range a ≤ x ≤ b are used to express a set of coupled differential equations
of the form ∑

α

[
d2

dx2
δβα − Eδβα + Vβα(x)

]
ψα(x) = hβ(x), (D.1)
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where h(x) represents an optional inhomogeneity and α, β enumerate the channels of the
problem, as the matrix form ∑

j

AijΨj = Hi. (D.2)

The Lagrange functions must satisfy two conditions:

fi(xj) = δij (D.3)

and ˆ b

a
f∗i (x)fj(x)dx = λiδij , (D.4)

where λi is a real valued constant. Condition (D.3) allows any wave function Ψ(x) to be
expanded in these Lagrange functions and be exact upon the N discrete points xi:

Ψ(x) =
N∑
i=1

Ψ(xi)fi(x). (D.5)

The constants λi are chosen to represent the weights of a Gaussian quadrature on the
points xi, such that, for any function F (x),

ˆ b

a
F (x)dx ≈

N∑
i=1

λiF (xi). (D.6)

This choice is well suited to calculating scalar products of wave functions expanded in the
form (D.5). For example,

ˆ b

a
Φ∗(x)Ψ(x)dx =

∑
ij

Φ∗(xi)Ψ(xj)

ˆ b

a
f∗i (x)fj(x)dx

=
∑
i

Φ∗(xi)Ψ(xi)λi. (D.7)

The choice of Lagrange functions to most accurately approximate the solutions is an impor-
tant one. The Lagrange functions can be related to a set of N orthonormal basis functions
{φk} that satisfy the discrete orthonormality condition

ˆ b

a
φ∗k(x)φl(x)dx = δkl =

∑
i

λiφ
∗
k(xi)φl(xi) (D.8)

by forming the linear combinations

fi(x) =

N∑
k=1

ckiφk(x). (D.9)

Inverting (D.9) using (D.8) gives

φk(x) =
∑
i

1

λi
c∗kifi(x). (D.10)
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Comparison of equation (D.10) with equation (D.5) shows that cki = λiφ
∗
k(xi). Further-

more, the functions (D.9) can only satisfy equation (D.4) if Λ0 = C∗C where the matrix
C has elements cki and Λ0

ki = δkiλi. This relationship defines λi via the discrete closure
relationship:

λ−1
i δij =

N∑
k=1

φ∗k(xi)φk(xj). (D.11)

The quadrature points of xi for polynomial bases φk are given by the zeros of first truncated
basis function. That is, if k = 1, . . . , N for the truncated orthonormal basis set, then the
N zeros of φN+1(x) are the quadrature points xi.

D.2 Conversion of differential equations to matrix

equations

Once a basis has been chosen, the differential equations (D.1) may be converted into a
matrix equation by expanding the wave functions and the inhomogeneity, if present, in the
form (D.5):

N∑
i=1

∑
α

[
d2

dx2
δβα − Eδβα + Vβα(x)

]
fi(x)ψα(xi) =

N∑
j=1

hβ(xj)fj(x). (D.12)

Forming an inner product with fi′(x) gives

ˆ b

a
f∗i′(x)

N∑
i=1

∑
α

[
d2

dx2
δβα − Eδβα + Vβα(x)

]
fi(x)ψα(xi) =

ˆ b

a

N∑
j=1

hβ(xj)f
∗
i′(x)fj(x),

(D.13)

and making use of (D.4) gives:

N∑
i=1

∑
a′

[ˆ b

a
f∗i′(x)

d2

dx2
fi(x)δβα − Eλi′δii′δβα +

ˆ b

a
Vβα(x)f∗i′(x)fi(x)

]
ψα(xi) = λi′hβ(xi′).

(D.14)
If the term involving the potential Va′a(x) is assumed to be well described by a linear
expansion of the basis functions φk then Gaussian quadrature may be used to simplify the
integral

ˆ b

a
Vβα(x)f∗i′(x)fi(x) ≈

∑
n

λnVβα(xn)f∗i′(xn)fi(xn)

= λi′Vβα(xi)δii′ (D.15)
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where fi(xn) = δin has been used. Additionally, the derivative term can be written

Ti′i =
1

λi′

ˆ b

a
f∗i′(x)

d2

dx2
fi(x)dx

=
1

λi′

∑
n

λnf
∗
i′(xn)

d2fi
dx2

(xn)

=
d2fi
dx2

(xi′) (D.16)

This is exact for polynomial bases as d2fi/dx
2 can be represented by a linear combination

of the set of fi(x) functions. By using (D.15) and (D.16), equation (D.14) may be rewritten
as

N∑
i=1

∑
α

[Ti′iδβα − Eδii′δβα + Vβα(xi)δii′ ]ψα(xi) = hβ(xi′) (D.17)

which can also be expressed in matrix form

(
T −E0 + V B

)
Ψ = H (D.18)

where the matrices are in a block structure with indices, γ = αN + i and γ′ = βN + i′

Tγ′γ = Ti′i δβα, (D.19)

E0
γ′γ = Eδii′ δβα, (D.20)

V B
γ′γ = δii′ Vβα(xi), (D.21)

Ψγ = ψα(xi) (D.22)

and
Hγ′ = hβ(xi′). (D.23)

The only unevaluated portion of this matrix equation is the differential term, T , which
can be calculated analytically in most cases without prior knowledge of the potential or
inhomogeneity. If no inhomogeneity is present, then (D.18) represents an eigenvalue prob-
lem, which may be solved with any standard numerical package to determine the allowed
energies of the system. If the inhomogeneity is present, then the system may be solved in
a standard fashion to determine the solutions ψα(x).

D.3 Fourier sine DVR basis

The choice of basis φk(x) determines the boundary conditions that are placed upon the
differential equations. The Fourier sine basis that is orthogonal on the range a ≤ x ≤ b

has zero value boundary conditions and is defined by

φk(x) =

√
2

b− a
sin

kπ(x− a)

(b− a)
(D.24)



D.3: Fourier sine DVR basis 153

where k = {1, . . . , N}. The basis is associated with a set of N quadrature weights λi and
N equidistant quadrature grid points xi = a + i∆x where ∆x = (b − a)/(N + 1) . From
equation (D.11) the quadrature weights may be calculated as follows

λ−1
i =

2

b− a

N∑
k=1

sin2 kπ(xi − a)

(b− a)

=
2

b− a

N∑
k=1

sin2 kπi

N + 1

=
1

b− a

N∑
k=1

[
1− cos

2iπk

N + 1

]
. (D.25)

The sum over the cosine terms may be replaced by the real part of a summation over the
complex variable zk = cos kθ + i sin kθ. Because,

N∑
k=1

zk =
z − zN+1

1− z

=
(z − zN+1)(1− z∗)

(1− z)(1− z∗)

=
z − 1− zN+1 + zN+1z∗

2(1− cos kθ)
, (D.26)

then the real part, after substitution of θ = nπ/(N + 1), becomes

cos
knπ

N + 1
= Re{

N∑
k=1

zk} =
cos nπ

N+1 − 1− cosnπ + cos nπ
N+1 cosnπ + sin nπ

N+1 sinnπ

2(1− cos nπ
N+1)

(D.27)

=
−(1− cos nπ

N+1)(1 + cosnπ)

2(1− cos nπ
N+1)

= − [1 + (−1)n]

2

=

−1 n even

0 n odd
. (D.28)

Substituting this result back into (D.25), where n = 2i, gives the result

λi =
b− a
N + 1

. (D.29)
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Using these weights, the discrete orthonormality condition (D.8) is satisfied for the Fourier
sine basis. To see this, consider

ˆ b

a
φ∗k(x)φl(x)dx =

N∑
i=1

λiφ
∗
k(xi)φl(xi)

=
2

N + 1

N∑
i=1

sin
kπ(xi − a)

b− a
sin

lπ(xi − a)

b− a

=
2

N + 1

N∑
i=1

sin
kπi

N + 1
sin

lπi

N + 1

=
1

N + 1

N∑
i=1

cos
(k − l)πi
N + 1

− cos
(k + l)πi

N + 1
. (D.30)

Since k − l and k + l possess the same odd/even parity, equation (D.28) shows that each
term of the summation is zero for k 6= l. In the case of k = l,

N∑
i=1

λiφ
∗
k(xi)φk(xi) =

1

N + 1

[(
N∑
i=1

1

)
− (−1)2k

]
= 1 (D.31)

which leads to the desired result:

ˆ b

a
φ∗k(x)φ∗l (x)dx =

N∑
i=1

λiφ
∗
k(xi)φl(xi) = δkl. (D.32)

For the basis to produce the correct Lagrange functions that satisfy conditions (D.3) and
(D.4), the functions must also satisfy the discrete closure condition (D.11):

N∑
k=1

φ∗k(xi)φk(xj) =
2

b− a

N∑
k=1

sin
kπ(xi − a)

(b− a)
sin

kπ(xj − a)

(b− a)

=
2

b− a

N∑
k=1

sin
kπi

N + 1
sin

kπj

N + 1

=
1

b− a

N∑
k=1

[
cos

(i− j)kπ
N + 1

− cos
(i+ j)kπ

N + 1

]
. (D.33)

This simplifies upon using (D.28) in an analogous manner to (D.30), to give the desired
result

N−1∑
k=0

φ∗k(xi)φk(xj) =
N + 1

b− a
δij

= λ−1
ij δij . (D.34)

Having proved that the Fourier sine basis successfully implements a DVR basis, the deriva-
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tive matrix T given by (D.16) must be determined. Noting that

d2

dx2
φl(x) = − l2π2

(b− a)2
φl(x) (D.35)

then

Tji =
b− a
N + 1

ˆ b

a

∑
kl

φk(xj)φ
∗
k(x)

d2

dx2
φ∗l (xi)φl(x)dx

= − π2

(N + 1)(b− a)2

∑
kl

l2φk(xj)φ
∗
l (xi)

ˆ b

a
φ∗k(x)φl(x)dx

= − π2

(N + 1)(b− a)2

N∑
k=1

k2

[
cos

(i− j)πk
N + 1

− cos
(i+ j)πk

N + 1

]
. (D.36)

The summations can be rewritten by considering the real part of another summation

N∑
k=1

k2 cos
nπk

N + 1
= −(N + 1)2

π2

d2

dn2
Re{

N∑
k=1

exp i
kπn

(N + 1)
}

= −(N + 1)2

π2

d2

dn2
Re{

N∑
k=1

zk}, (D.37)

where n = i± j. After differentiating (D.27), this gives

N∑
k=1

k2 cos
nπk

N + 1
= −(N + 1)(−1)n

2

[
(N + 1)− csc2 nπ

2(N + 1)

]
. (D.38)

If i 6= j then the complete term is

Tji = −π
2(−1)i+j

2(b− a)2

[
csc2 (i− j)π

2(N + 1)
− csc2 (i+ j)π

2(N + 1)

]
. (D.39)

On the other hand, if i = j then the first cosine term of (D.36) becomes a sum of squares
and gives

Tii = − π2

(N + 1)(b− a)2

[
1

6
N(N + 1)(2N + 1) +

1

2
(N + 1)2 − 1

2
(N + 1) csc2 iπ

N + 1

]
= − π2

2(b− a)2

[
1

3
(2(N + 1)2 + 1)− csc2 iπ

N + 1

]
. (D.40)

Consequently the complete matrix can be written as

Tji = −π
2(−1)i+j

2(b− a)2

1
3(2(N + 1)2 + 1)− csc2 iπ

N+1 if i = j

csc2 (i−j)π
2(N+1) − csc2 (i+j)π

2(N+1) if i 6= j.
(D.41)
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D.4 Fourier cosine DVR basis

The Fourier cosine DVR basis, first investigated by Karabulut and Sibert [140], has the
form

φk(x) =


1√
b−a for k = 0√

2
b−a cos kπ(x−a)

(b−a) otherwise
(D.42)

where k = {0, . . . , N − 1}. The boundary conditions enforced by this basis are of zero
derivative and the N equidistant quadrature grid points associated with the basis are
xi = a + (i − 1

2)∆x where ∆x = (b − a)/N . The quadrature weights, calculated from
(D.11), are

λ−1
i =

1

b− a
+

2

b− a

N−1∑
k=1

cos2 kπ(xi − a)

(b− a)

=
1

b− a
+

2

b− a

N−1∑
k=1

cos2 kπ(i− 1
2)

N

=
1

b− a

(
1 +

N−1∑
k=1

[
1− cos

(2i− 1)πk

N

])
. (D.43)

Using equation (D.28), this simplifies to

λ−1
i =

1

b− a
N. (D.44)

These weights allow the the Fourier cosine basis to satisfy the discrete orthonormality
condition (D.8). Consider

ˆ b

a
φ∗k(x)φl(x)dx =

N∑
i=1

λiφ
∗
k(xi)φl(xi)

=
2

N

N∑
i=1

cos
kπ(xi − a)

b− a
cos

lπ(xi − a)

b− a

=
1

N

N∑
i=1

cos
(k − l)π(i− 1

2)

N
+ cos

(k + l)π(i− 1
2)

N
. (D.45)

The summation over half integer cosines may be evaluated in a similar manner to (D.27)
by considering a complex variable z = exp(iθ), where θ = nπ/2N , and the series

N∑
i=1

z2i−1 =
z − z2N+1

1− z2

=
z − z∗ − z2N (z − z∗)

2− z2 − (z∗)2

=
z − z̄ − z2N (z − z∗)
2(1− cos2 θ + sin2 θ)

. (D.46)
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Taking the real part of the series gives

Re{
N∑
i=1

z2i−1} =
sin 2Nθ sin θ

2(1− cos2 θ + sin2 θ)

=
sinnπ sin nπ

2N

2(1− cos2 θ + sin2 θ)

= 0. (D.47)

This means that equation (D.45) is zero for k 6= l. For k = l only the first term contributes
and gives the desired result:

N∑
i=1

λiφ
∗
k(xi)φl(xi) = δkl. (D.48)

To satisfy conditions (D.3) and (D.4) the discrete closure relationship (D.11) must be
satisfied:

N−1∑
k=0

λiφ
∗
k(xi)φk(xj) =

1

N
+

2

N

N−1∑
k=1

cos
kπ(xi − a)

b− a
cos

kπ(xj − a)

b− a

=
1

N

[
1 +

N−1∑
k=1

cos
kπ(i− j)

N
+ cos

kπ(i+ j − 1)

N

]
. (D.49)

Making use of (D.28) in the i 6= j case, allows the reduction of the RHS of (D.49) to

1

N
[1 +−1] = 0 (D.50)

as either i− j or i+ j−1 will be even but not both. For i = j the second term has i+ j−1

odd and so
N−1∑
k=0

λiφ
∗
k(xi)φk(xj) = δij (D.51)

as desired.

To calculate the derivative term in the cosine basis the relationship

d2

dR2
φl(x) = − l2π2

(b− a)2
φl(x)(1− δl0) (D.52)

is used to solve for the derivative matrix:

Tji =
b− a
N

ˆ b

a

N−1∑
k=0

N−1∑
l=0

φk(xj)φ
∗
k(x)

d2

dR2
φ∗l (xi)φl(x)dx

= − 2π2

N(b− a)2

N−1∑
k=1

k2 cos
kπ(j − 1

2)

N
cos

kπ(i− 1
2)

N

= − π2

N(b− a)2

N−1∑
k=1

k2

[
cos

kπ(i− j)
N

+ cos
kπ(i+ j − 1)

N

]
. (D.53)
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Using equation (D.38) this can be reduced for i 6= j to

Tji = −π
2(−1)i+j

2(b− a)2

[
csc2 (i− j)π

2N
− csc2 (i+ j − 1)π

2N

]
(D.54)

whereas for i = j, it reduces to

Tii = − π2

N(b− a)2

[
1

6
(N − 1)N(2N − 1) +

N2

2
− N

2
csc2 (2i− 1)π

2N

]
= − π2

2(b− a)2

[
1

3
(2N2 + 1)− csc2 (2i− 1)π

2N

]
. (D.55)

The complete matrix is therefore

Tji =
π2(−1)i+j

2(b− a)2

1
3(2N2 + 1)− csc2 (2i−1)π

2N for i = j

csc2 (i−j)π
2N − csc2 (i+j−1)π

2N for i 6= j
. (D.56)

D.5 Scaled grid

The Fourier sine and cosine DVR bases are associated with a linearly spaced grid. For
the helium system under investigation it is preferable to place many grid points at short
interatomic distances. Unfortunately, attempting this with a linearly spaced grid will also
require many unnecessary points at large interatomic distances. To handle this issue in a
more elegant manner, a scaling may be applied to the variable x such that the DVR grid is
mapped onto a non-linear mesh grid [100]. The scaling must be treated correctly however,
so that the boundary conditions are not affected.

If the scaling is defined by x = χ(t) where tmin < t < tmax such that a = χ(tmin) and
b = χ(tmax) then the change of variable in the derivative term is

d2

dx2
= g2 d

dt
g2 d

dt

= g3(2
dg

dt

d

dt
+ g

d2

dt2
)

= g3(
d2

dt2
g − d2g

dt2
) (D.57)

where g =
√

1/χ′(t) where χ′(t) = dχ/dt. Using this result in the expansion of the
differential equation (D.1) gives

∑
α

(
g3(t)

d2

dt2
g(t)δα′α − Eδα′α + Ṽα′α(t)

)
ψα(χ(t)) = hα′(χ(t))

where Ṽa′a(t) = Va′a(χ(t))+δa′ag
3(t)g′′(t). The required expansion in terms of the Lagrange

functions occurs in a slightly different manner to (D.12) as the product g(t)ψa(χ(t)) of the
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derivative term is expanded in terms of the Lagrange basis separately to the potential term:

∑
α

[(∑
i

g3(t)
d2

dt2
fi(t)g(ti)ψα(xi)δα′α

)
+

(∑
k

[
−Eδα′α + Ṽα′α(t)

]
fk(t)ψα(xk)

)]
=
∑
j

hα′(xj)fj(x) (D.58)

where xi = χ(ti). Like terms of ψα(xi) can be collected between the two expansions so
that the expression becomes

N∑
i=1

∑
α

[
g3(t)

d2

dt2
fi(t)g(ti)δα′α +

(
−Eδα′α + Ṽα′α(t)

)
fi(t)

]
ψα(xi) =

∑
j

hα′(xj)fj(x)

(D.59)
and, after forming the inner product with fi′(t) as in equation (D.13), the result is

N∑
i=1

∑
α

(
g3(ti′)Ti′ig(ti)δα′α − Eδα′α + Ṽα′α(ti)δii′

)
ψα(χ(ti)) = hα′(χ(ti)). (D.60)

In matrix form this is (
T̃ −E0 + Ṽ B

)
Ψ = H, (D.61)

where (T̃ )γ′γ = g3(ti′)Ti′ig(ti)δα′α.

Because in (D.58) the product g(t)ψα(χ(t)) is expanded in the DVR basis, one must be
careful that the boundary conditions on ψα(x) remain the same. If the sine Fourier basis is
used, with zero value boundary conditions, then the desired conditions ψα(a) = ψα(b) = 0

can only be satisfied for g(tmin)ψα(a) = 0 and g(tmax)ψα(b) = 0 if g(t) 6= 0. This is always
satisfied due to the definition of g(t) and hence there are no problems with introducing a
scaling to the sine Fourier basis. On the other hand, in the cosine Fourier basis the scaled
boundary conditions give

d

dt
[g(t)ψα(χ(t))]

∣∣∣∣
tmin

=
dg

dt
(tmin)ψα(a) + g(tmin)

dχ

dt
(tmin)

dψα
dx

(a) = 0 (D.62)

and similarly for tmax. To satisfy the desired boundary conditions dψα/dx = 0 at x = a, b

requires the constraints dg/dt = 0 and dχ/dt 6= 0 at the boundaries. The first constraint
is satisfied if d2χ/dt2 = 0 and so a monotonically increasing quartic was tried:

χ(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0 (D.63)

where tmin = 0 and tmax = 1, and the constants are c0 = a, c2 = 0, c3 = 2(b − a − c1),
and c4 = −1

2c3. The value of c1 can be any arbitrary positive value (c1 cannot be zero
because of the constraint dχ/dt 6= 0) and influences the linearity of the scaling. A value
of c1 = 10 was chosen that places 53% of points within the first quartile, 22% within the
second quartile and gave reasonable results for the integration. This use of the scaling
reduces the required number of grid points by an order of magnitude.
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Appendix E
Tabulation of results

This appendix presents more detailed tabulations of results obtained for the bound states
and resonances of the 2s2p helium system. Listed below are the sections of the thesis
relevant to each table:

Table E.1: Comparison between the single-channel results of Deguilhem et al [86] and
the single-channel results calculated in section 3.2 for levels near the j = 2

asymptote.

Table E.2: Complete list of resonances near the j = 1 asymptote. This table lists the
resonances found in section 3.3.4 and shown in table 3.8. The table here includes
the calculated observability criteria that are defined in section 3.4.2.

Table E.3: As for table E.2 but for resonances near the j = 0 asymptote that are shown in
table 3.9.

Table E.4: List of resonances, that are up to 2 GHz of detuning from the j = 1 asymptote
and are predicted to be observable in an experiment using an ion detection
mechanism. The resonances are found by the calculations presented in section
3.3.4 and satisfy the observability criteria that are defined in section 3.4.2.
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Table E.1: Deguilhem et al [86] results compared with this work’s single-channel results using potentials smoothly matched using equation (3.7).
The large differences in the 0+

u series are commented upon in chapter 3. All values are in GHz detuning from the j = 2 asymptote.

1u,J = 1 1u,J = 2 1u,J = 3 2u,J = 2 2u,J = 4 3g,J = 3

This work [86] This work [86] This work [86] This work [86] This work [86] This work [86]

11.319 11.301 11.006 10.989 10.544 10.527 13.666 13.647 12.513 12.494 10.253 10.243
7.167 7.154 6.930 6.918 6.582 6.569 9.020 9.006 8.127 8.113 6.086 6.080
4.316 4.307 4.141 4.132 3.885 3.877 5.703 5.692 5.027 5.017 3.432 3.428
2.432 2.426 2.307 2.301 2.126 2.120 3.414 3.407 2.920 2.913 1.816 1.813
1.250 1.246 1.166 1.162 1.044 1.041 1.913 1.908 1.569 1.564 0.887 0.886
0.566 0.564 0.513 0.511 0.438 0.436 0.996 0.992 0.770 0.767
0.216 0.215 0.187 0.186 0.146 0.145 0.478 0.476 0.339 0.338

0.208 0.207
0.079 0.079
0.025 0.025

0+
u ,J = 1 0+

u ,J = 3 0+
g ,J = 0

This work [86] This work [86] This work [86] This work [86] This work [86] This work [86]

14.583 13.658 13.723 12.832 328865 329019 146839 146963 29134.0 29195.5 1306.02 1303.84
9.699 9.029 9.030 8.389 316676 316830 137864 137985 25152.1 25207.4 1036.99 1035.43
6.205 5.735 5.698 5.252 304672 304823 129100 129663 21574.4 21623.2 816.338 814.929
3.796 3.481 3.425 3.130 292852 293002 120553 120669 18397.9 18440.1 635.999 634.969
2.215 2.015 1.954 1.770 281216 281364 112229 112343 15610.6 15646.2 489.948 489.201
1.229 1.108 1.052 0.942 269763 269909 104136 104248 13190.8 13219.9 372.634 372.093
0.642 0.572 0.527 0.465 258493 258637 96283.6 96392.0 11108.3 11131.3 279.319 278.898
0.311 0.273 0.240 0.208 247406 247548 88679.2 88784.7 9327.25 9344.62 205.851 205.531
0.136 0.117 0.096 0.080 236503 236643 81334.3 80735.3 7810.11 7822.30 148.662 148.423
0.052 0.044 0.031 0.025 225783 225922 74260.3 74359.3 6520.57 6528.04 104.738 104.559

215249 215385 67469.9 67565.1 5425.98 5429.21 71.5190 71.3779
204900 205035 60976.7 61068.3 4498.05 4497.67 46.8564 46.7391
194739 194872 54796.0 54883.3 3712.72 3709.75 28.9585 28.8703
184768 184899 48943.2 49026.3 3049.57 3045.65 16.3890 16.3330
174989 175119 43434.7 43512.8 2491.18 2487.39 8.01767 7.98018
165406 165534 38287.1 38359.9 2022.71 2019.43 2.92504 2.90289
156021 156147 33515.6 33583.1 1631.39 1628.59 0.33791 0.327973
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Table E.2: Resonances that are present in the helium 2s 3S1 + 2p 3Pj dimer within 600 MHz
of detuning from the j = 1 asymptote. The detuning and predissociation width Γpre

v have
been given in MHz. These resonances have been calculated without any modification of the
short-range potentials. The columns 5–8 list the properties of the levels that may be used
as observability criteria. Av is the coupling strength of the level in Eh photoassociated
from either a spin-polarised (spin) or unpolarised (unpolar) collision of metastable states.
f5,v is the proportion of quintet character at short range (R < 20 a0) and fR<20 is the
proportion of the wave function at short range.

j = 1 asymptote

J,w Detuning Γpre
v Case (c) Avspin Avunpolar f5,v(%) fR<20

J = 1, g −282.545 6.510 0−g 0.0 1.827 99.6 1× 10−4

−164.426 0.259 1g 0.0 2.615 78.3 6× 10−5

−116.695 3.281 0−g 0.0 2.418 99.2 6× 10−5

−62.573 1.156 1g 0.0 1.172 78.8 2× 10−4

−40.463 1.309 0−g 0.0 3.273 99.5 3× 10−5

−27.739 0.057 1g 0.0 3.358 78.4 1× 10−5

−15.900 0.677 1g 0.0 2.989 79.1 1× 10−4

−9.978 0.471 0−g 0.0 3.786 97.6 1× 10−5

J = 2, g −130.220 0.357 1g 0.0 2.674 77.5 7× 10−6

−30.227 0.374 1g 0.0 2.083 78.25 9× 10−6

−19.068 0.037 1g 0.0 2.507 76.7 1× 10−6

J = 3, g −427.213 70.193 0−g 0.0 1.331 98.9 2× 10−5

−181.796 35.987 0−g 0.0 1.708 98.7 5× 10−5

−87.659 0.217 1g 0.0 3.317 75.1 1× 10−6

−64.683 16.147 0−g 0.0 2.154 98.8 5× 10−5

−17.337 5.851 0−g 0.0 3.170 98.9 3× 10−5

−11.694 0.045 1g 0.0 0.739 78.1 5× 10−7

−5.659 0.033 1g 0.0 3.167 75.5 4× 10−7

J = 0, u −18.276 0.002 0−u 0.0 0.0 0.0 1× 10−9

J = 1, u −418.241 0.419 0+
u 3.096 2.448 0.0 1× 10−4

−204.732 0.282 0+
u 2.778 2.278 0.0 8× 10−5

−82.005 0.147 0+
u 3.976 3.269 0.0 4× 10−5

−25.649 0.059 0+
u 5.160 4.277 0.0 2× 10−5

J = 2, u −191.499 0.020 2u 4.826 4.202 2.1 4× 10−8

−72.254 0.017 2u 3.742 3.259 2.4 4× 10−8

−21.434 0.008 2u 6.336 5.517 2.5 2× 10−8

J = 3, u −478.137 5.301 0+
u 1.967 1.398 0.0 3× 10−4

−282.480 3.213 0+
u 0.573 0.408 0.0 2× 10−4

−166.782 0.063 2u 2.023 1.438 2.0 4× 10−8

−121.640 1.610 0+
u 0.291 0.207 0.0 8× 10−5

−57.555 0.044 2u 0.427 0.304 2.2 3× 10−8

−38.405 0.665 0+
u 0.162 0.115 0.0 3× 10−5

−14.288 0.019 2u 0.523 0.372 2.3 1× 10−8

−7.024 0.222 0+
u 0.027 0.019 0.0 2× 10−5
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Table E.3: Resonances that are present in the helium 2s 3S1 + 2p 3Pj dimer within
1500 MHz of detuning from the j = 0 asymptote. The detuning and predissociation
width Γpre

v have been given in MHz. These resonances have been calculated without any
modification of the short-range potentials. The columns 5–8 list the properties of the levels
that may be used as observability criteria. Av is the coupling strength in Eh of the level
photoassociated from either a spin-polarised (spin) or unpolarised (unpolar) collision of
metastable states. f5,v is the proportion of quintet character at short range (R < 20 a0)
and fR<20 is the proportion of the wave function at short range.

j = 0 asymptote

J,w Detuning Γpre
v Case (c) Avspin Avunpolar f5,v(%) fR<20

J = 1, g −207.681 0.002 1g 0.0 2.211 25.7 4× 10−13

−43.804 0.002 1g 0.0 2.234 77.7 1× 10−13

J = 2, g −170.933 0.002 1g 0.0 1.858 68.6 1× 10−10

−28.523 0.002 1g 0.0 2.008 69.6 7× 10−11

J = 3, g −115.744 0.000 1g 0.0 0.195 60.3 3× 10−11

−7.964 0.002 1g 0.0 0.030 71.4 4× 10−14

J = 1, u −1418.047 0.008 0+
u 3.472 2.458 45.4 1× 10−9

−648.486 0.008 0+
u 2.095 1.554 9.5 3× 10−10

−253.120 0.008 0+
u 3.812 2.766 3.5 1× 10−11

−79.653 0.002 0+
u 4.399 3.236 2.3 6× 10−11

−18.286 0.002 0+
u 6.858 5.021 2.1 2× 10−11

J = 3, u −1212.671 0.045 0+
u 0.595 0.423 26.0 9× 10−10

−513.066 0.045 0+
u 0.111 0.079 48.7 4× 10−10

−174.558 0.026 0+
u 0.190 0.135 0.0 3× 10−9

−41.635 0.008 0+
u 0.058 0.041 82.7 2× 10−9
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Table E.4: Resonances near the j = 1 asymptote that may be observable in experiments
using an ion detection mechanism. The observability criteria for Av, f5,v and Γpre

v have
been applied in a similar manner to table 3.14 as described in the text. An additional
criterion, fR<20, is present which indicates whether or not the resonance has a purely
long-range nature. Many of the resonances overlap with one another.

J,w Theor Γpre
v (MHz) Av (Eh) f5,v fR<20 Case (c)

J = 1, g −1178.7 20.5 0.934 99.7 1× 10−4 0−g
−603.9 11.9 1.336 99.7 1× 10−4 0−g

J = 2, g −1996.5 54.5 2.454 89.3 1× 10−6 1g
−1963.7 56.5 1.418 91.5 7× 10−8 1g, 2g
−1952.5 59.4 1.231 95.8 6× 10−7 1g
−1899.6 63.3 3.108 90.8 7× 10−8 1g, 2g
−1889.2 66.9 0.843 95.7 5× 10−7 1g
−1867.1 59.4 0.948 97.2 2× 10−7 1g
−1861.5 70.1 2.221 96.9 1× 10−6 1g, 2g
−1821.2 73.6 0.749 93.4 5× 10−7 1g
−1804.3 60.3 2.122 98.2 5× 10−7 1g
−1742.7 64.0 0.724 97.9 7× 10−7 1g
−1704.0 85.3 1.814 98.9 8× 10−7 1g, 2g
−1684.2 75.5 0.828 99.4 6× 10−7 1g
−1676.2 83.8 1.698 89.6 2× 10−7 1g
−1617.4 93.3 1.973 98.7 7× 10−7 1g, 2g
−1613.3 83.1 1.385 93.6 7× 10−7 1g
−1591.7 91.2 2.958 92.9 1× 10−7 1g
−1581.5 90.0 0.972 91.1 7× 10−7 1g
−1502.1 98.5 1.754 93.4 1× 10−7 1g
−1490.9 97.3 1.197 91.8 9× 10−7 1g

J = 3, g −1998.3 59.7 0.950 95.0 5× 10−7 0−g
−1985.2 53.0 1.820 90.0 7× 10−7 0−g
−1973.4 56.6 0.760 91.4 7× 10−7 0−g
−1956.2 56.5 1.041 96.8 3× 10−7 0−g
−1937.2 68.2 1.014 88.7 5× 10−7 0−g
−1912.0 61.0 1.165 92.4 1× 10−6 0−g
−1842.3 68.5 1.629 96.9 1× 10−6 0−g
−1822.5 69.4 1.366 89.3 5× 10−7 0−g
−1691.3 69.8 1.553 89.6 3× 10−6 0−g
−1541.2 82.3 1.718 94.3 2× 10−6 0−g
−1456.5 90.3 1.982 91.0 2× 10−6 0−g
−1365.1 97.2 1.720 90.8 1× 10−6 0−g
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