
Access to this file is available from:

http://eprints.jcu.edu.au/19011
A life submerged in sound: Determining if aquaculture sounds induce stress in fish

Thesis submitted by
Andrea CRAVEN BSc Aquaculture & BSc Marine Biology, GradCertResMeth

In March 2010

For the degree of Masters by research

In the department of Aquaculture

School of Marine and Tropical Biology

James Cook University

Townsville QLD 4811

Australia
Statement on the contribution of others

In order of contribution

Thesis editorial and review assistance
 Craig McPherson – editorial assistance
 Guy Carton – review assistance
 Christine Erbe – review assistance

Data Analysis
 Guy Carton – Consultation and suggestions

Statistical consultation
 Guy Carton – Checking and suggestions

Financial Support
 None

Data collection
 Volunteers for Assistance on days of sampling
 Guy Carton – Data collection assistance and blood sampling assistance
 Sango Mitomi – Data collection assistance
 Cris Tizoc Armbruster Bernstorff – Data collection assistance

 RNA DNA collection trials and procedure assistance
 Carolyn Smith-Kuene – teaching, method procedure
 Jose Domingos – team effort on trials

All aspects of ethics and oversight associated with this project were approved prior to the commencement of the associated work.

 Animal ethics approval number A 1280

 Approval commenced 05 March, 2008 and approved through to 31 March, 2010

 Report of completion was supplied by 31 March 2009
Associated Peer reviewed work

Published article

Poster presentation

Articles in Perpetration for submission by 2011

To be submitted to *Aquaculture*
Acknowledgements

I would first like to acknowledge Queensland Department of Primary Industries and Northern Fisheries Centre for the use of their facility for this project, without their assistance and facility access I wouldn’t have been able to create my base line work and therefore my thesis. I would then like to acknowledge my supervisor Guy Carton for agreeing to the project idea even before he arrived at JCU and his assistance throughout, and the support I received from the rest of the Aquaculture mob. I would like to also expend a big thank you to Christine Erbe for reading through my thesis.

I would like to thank Geoff McPherson and his kind and always useful wisdom and extend a special thanks to Jill and Rohan for their support. I would also like to acknowledge my good friends at JCU for always having time to listen and to my family (Mom, Tom, Alex, Melissa, Dan, Julie, Laurie, Dad and Adam) and friends at home for always showing your support for me and my crazy ambitions even though you’re all so far way, I love you all.

As special thanks I would like to acknowledge the unwavering support from my partner Craig to whom I cannot express thank you enough for keeping my head straight through these last couple for years and knowing me better than I know myself.

To all, thank you.
Table of Contents

Table of Contents ... v
Table of Figures ... viii
Table of Tables .. ix
Abstract .. x

Chapter 1. General introduction and literature review .. 1
1.1. The basics of the teleost hearing system ... 2
 1.1.1 Structure, mechanisms and functions ... 2
 1.1.2 How fish detect sounds .. 4
1.2. The acoustic environment and fish ... 7
 1.2.1 Sound produced by the environment ... 8
1.3. Anthropogenic sounds ... 9
 1.3.1 Airguns and pile driving .. 9
 1.3.2 Deterrents .. 10
 1.3.3 Water traffic .. 10
1.4. How sound affects fish ... 11
 1.4.1 Thresholds and damage .. 11
1.5. Fish stress physiology ... 12
 1.5.1 Stress responses .. 13
 1.5.2 The primary, secondary and tertiary stress responses 14
 1.5.3 Auditory and non-auditory effects of sound stress ... 16
1.6. Aquaculture and fish: life submerged in an anthropogenic environment 17
 1.6.1 Stress in aquaculture ... 17
 1.6.2 The acoustic environment in aquaculture ... 17
 1.6.3 Fish, stress and sound in aquaculture ... 19
1.7. Thesis direction and aims .. 20

Chapter 2. A lesson in bioacoustics: an introduction to thesis methods 22
2.1. Introduction ... 22
2.2. Absolute SPL and unit determination .. 23
2.3. Experimental and sound considerations ... 26
2.4. Conclusions ... 32

Chapter 3. Determining and quantifying components of an aquaculture soundscape 33
3.1. Introduction ... 33
3.2. Methods and Materials .. 35
 3.2.1 Location and facility ... 35
 3.2.2 Sound Recording Equipment ... 36
 3.2.3 Sampling Protocol ... 36
 3.2.4 Data analysis .. 39
 3.2.5 Hydrophone calibration ... 40
 3.2.6 Data evaluation and analysis ... 40
3.3. Results ... 41
 3.3.1 Broodstock tanks .. 41
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>63</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>73</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>73</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>74</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>79</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>83</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>85</td>
</tr>
<tr>
<td>Appendix Figure 8.1</td>
<td>103</td>
</tr>
</tbody>
</table>
Table of Tables

Table 1.1... 18
Table 2.1... 25
Table 2.2... 30
Table 3.1... 43
Table 4.1... 62
Table 5.1... 72
Table 6.1... 84
Table 6.2... 85
Abstract

Fish bioacoustics includes research on sound production and audition in fishes as well as effects of anthropogenic sound on fishes. An environment that is wholly anthropogenic is an aquaculture recirculating system. Fish within this culture system are under unique conditions, as the associated sounds are not ‘natural’, and the fish are completely confined to this soundscape with no option of escape. This environment is poorly understood in relation to how it affects the biology of cultured species. The limited available information on this type of soundscape and the physiological interaction fish have with it, has presented many unknown potentials, which includes the risk to stock productivity and fish welfare. The lack of understanding helped to create the baseline question for this compilation of work, which was ‘are aquaculture sounds, sounds of concern?’

To determine the components of this type of soundscape a survey of an operational recirculating facility was conducted. This evaluation determined the major components of the soundscape (the pump) and the other influences that shape and create this soundscape. Where dominant characteristics (low frequency dominated) and SPLs (min mean SPL of 105 dB re 1μPa^2/Hz and a max SPL 124 dB re 1μPa^2/Hz) at were identified. The information provided by the baseline study created an understanding of acoustic parameters to determine the physiological responses of fish to this type of soundscape.

The acoustic characteristics investigated were further evaluated in combination with information previously published on other species, barramundi was evaluated for physiological stress responses to the introduction of specific sounds at three sound pressure levels (124,130,139 dB re 1μPa^2/Hz, at 187.5Hz). The fish were examined after short-term exposure and long-term exposure to the continuous sounds of an aquaculture soundscape. The results showed a significant correlation between the highest sound level and the initial stress responses of the presence of cortisol which increased over a 24hr period. Due to the increase throughout 24hrs, it was important to determine if this trend continued into the tertiary level of response. Therefore, the fish were evaluated over a long-term duration. The long-term results, displayed high variation among individuals concluding with no significant effect on the growth of the fish across the two-month exposure period. The highest sound level exposure did display the greatest range of variability throughout the treatment.

The last evaluation was determining if transient sounds play a larger role in stress responses of the fish under this type of soundscape. Two interval types were evaluated (random and constant intervals). The data revealed high variability of outcomes between measures of stress concluding that no effect could be determined. Across all physiological evaluations, a limited to no effect was determined, however possible influences associated with the life history of these fish may present levels of pre-adaptation to this type of soundscape. This theory is further investigated and discussed.