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Abstract

Background: New contained semi-field cages are being developed and used to test novel vector control strategies of
dengue and malaria vectors. We herein describe a new Quarantine Insectary Level-2 (QIC-2) laboratory and field cages
(James Cook University Mosquito Research Facility Semi-Field System; MRF SFS) that are being used to measure the impact
of the endosymbiont Wolbachia pipientis on populations of Aedes aegypti in Cairns Australia.

Methodology/Principal Findings: The MRF consists of a single QIC-2 laboratory/insectary that connects through a central
corridor to two identical QIC-2 semi-field cages. The semi-field cages are constructed of two layers of 0.25 mm stainless steel
wire mesh to prevent escape of mosquitoes and ingress of other insects. The cages are covered by an aluminum security
mesh to prevent penetration of the cages by branches and other missiles in the advent of a tropical cyclone. Parts of the
cage are protected from UV light and rainfall by 90% shade cloth and a vinyl cover. A wooden structure simulating the
understory of a Queenslander-style house is also situated at one end of each cage. The remainder of the internal aspect of
the cage is covered with mulch and potted plants to emulate a typical yard. An air conditioning system comprised of two
external ACs that feed cooled, moistened air into the cage units. The air is released from the central ceiling beam from a
long cloth tube that disperses the airflow and also prevents mosquitoes from escaping the cage via the AC system. Sensors
located inside and outside the cage monitor ambient temperature and relative humidity, with AC controlled to match
ambient conditions. Data loggers set in the cages and outside found a ,2uC temperature difference. Additional security
features include air curtains over exit doors, sticky traps to monitor for escaping mosquitoes between layers of the mesh, a
lockable vestibule leading from the connecting corridor to the cage and from inside to outside of the insectary, and
screened (0.25 mm mesh) drains within the insectary and the cage. A set of standard operating procedures (SOP) has been
developed to ensure that security is maintained and for enhanced surveillance for escaping mosquitoes on the JCU campus
where the MRF is located. A cohort of male and female Aedes aegypti mosquitoes were released in the cage and sampled
every 3–4 days to determine daily survival within the cage; log linear regression from BG-sentinel trapping collections
produced an estimated daily survival of 0.93 and 0.78 for females and males, respectively.

Conclusions/Significance: The MRF SFS allows us to test novel control strategies within a secure, contained environment.
The air-conditioning system maintains conditions within the MRF cages comparable to outside ambient conditions. This
cage provides a realistic transitional platform between the laboratory and the field in which to test novel control measures
on quarantine level insects.
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Introduction

Dengue is the most abundant arboviral infection in the tropics,

with 50–100 million cases and 5 million people at risk annually

[1]. Currently, there is no available human vaccine, thus dengue

prevention is limited to control strategies attacking the mosquito

vectors Aedes aegypti and Aedes albopictus. Outside of community

education programs and source reduction campaigns that seek to

remove artificial containers that produce the vectors, most

government programs rely upon insecticides to reduce vector

populations. These methods are often inefficient, costly and

ineffective. Furthermore, many populations of A. aegypti have

developed physiological resistance to many pesticides, rendering

them ineffective [2].

Thus, novel population control strategies are being developed to

control vectors of dengue and other mosquito-borne diseases.
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Releases of genetically modified (GM) A. aegypti that are refractory

to dengue infection and transmission, and the inundative release of

sterile males are currently being developed to reduce populations

of A. aegypti [3,4]. Our research group is investigating the use of

strains of the endosymbiotic bacteria Wolbachia pipientis to induce

life-shortening and dengue virus interference in populations of A.

aegypti. The Wolbachia infection is driven to fixation in populations

of A. aegypti via a cytoplasmic incompatibility mechanism. The

wMelPop strain is known to shorten the life span of A. aegypti

reducing the number of individuals that survive long enough to

transmit dengue [5], and can also interfere with the replication

and transmission of several viruses in A. aegypti, including DENV-2

and chikungunya virus [6]. Entomopathogenic fungi are also being

studied for their life-shortening impact on A. aegypti [7].

Novel control strategies require confirmation under field

conditions before they can be deployed operationally. Further-

more, experiments involving population replacement methods

involving GM and novel agents such as Wolbachia and fungi that

are conducted out of the laboratory must be under tight

containment to avoid accidental release. A cross-disciplinary

scientific working group developed guidelines for testing of gene

drive systems within secure flight cages [8]. These facilities, termed

‘‘semi-field system’’ (SFS) [9], typically consist of secure biocon-

tainment laboratory for insect rearing, secure field cage for

experimental release, and associated security features such as

fencing, moats and pass-coded gates. Within the cages, experi-

mental houses or huts simulating domestic premises to be tested

are featured. This is especially important for A. aegypti, a mosquito

that typically feeds on humans and harbours within houses and

other human premises. Natural substrates of soil, grass and native

vegetation are included. Natural larval habitat such as puddles for

Anopheles malaria vectors and artificial containers for Aedes are

included. Biocontainment structures typically include double-door

atriums, air curtains, mosquito surveillance traps, double layers of

insect-proof screening, screened water drains, etc. In the tropics,

facilities must often be built to withstand heavy rain and strong

winds, often to tropical storm, cyclone or hurricane strength.

We describe a SFS that features a biocontainment level 2

laboratory/insectary that connects directly to 2 identical Quaran-

tine Insectary Containment level 2 (QIC-2) semi-field cages. This

new facility, the James Cook University Mosquito Research

Facility (MRF), is currently being used to investigate the impact of

wMelPop and wMel strains of Wolbachia infection on survival of A.

aegypti, and the dynamics of its spread within a population of wild

type A. aegypti. Each of the SFS cages contains the ground floor of a

simulated Queenslander house and associated yard. Queenslander

houses are typically timber houses set on concrete or wooden

pillars, and are common throughout much of Queensland,

Australia (http://en.wikipedia.org/wiki/Queenslander_%28arch

itecture%29). They are generally unscreened to maximise

ventilation, and the ground floor is often not fully enclosed,

allowing free access to mosquitoes. Dengue transmission is often

most intense in suburbs dominated by these older types of housing

[10]. We describe the security and containment features of the

MRF, measure the environmental conditions inside and outside

the cage and the impact of its climate control system, and also

examine the survival of wild type A. aegypti within the cage. Finally,

we provide standard operating procedures (SOP; File S1) designed

to prevent escape of released mosquitoes.

Materials and Methods

Ethics statement
Human ethics approval for use of human volunteers to blood

feed colony (dengue free) A. aegypti was obtained (JCU Human

Ethics H2250). Volunteers were examined for fever before each

blood feeding, excluded if feverish, and could withdraw at

anytime. Written consent was obtained from all staff involved in

blood feeding.

Construction of the MRF insectary and semi-field system
cages

The MRF was constructed to provide a simulated Cairns urban

environment, under QIC-2 containment levels (http://www.daff.

gov.au/aqis/import/general-info/qap/class7/quarantine_approved_

criteria_qap_class_7.2_quarantine_insectary_containment_level_

2_qic2_facilities), for testing novel control strategies on A. aegypti.

The MRF is built on 133 m2 of land on the Smithfield campus of

James Cook University (16u48958’’S, 145u41915’’E) located ca. 15

km northwest of the city of Cairns, Queensland Australia. Cairns is

located in the wet tropics of northern Queensland, and has a

pronounced wet and dry monsoonal climate; the mean daily

temperature ranges from 21uC in winter to 27uC in summer, and

an average of 1992 mm of rain falls annually (Australian Bureau of

Meteorology; http://www.bom.gov.au/index.shtml). Cairns has a

history of dengue outbreaks [10,11], and A. aegypti are present in

most urban areas. The campus building site was chosen as it is

practical for researchers but, more importantly, it is situated within

tropical rainforest and is isolated from urban areas of Cairns where

A. aegypti is common. Thus, we think that any escaping A. aegypti are

highly unlikely to breed with existing populations in the Cairns

region. Construction on the MRF began in March 2008 and

finished in January 2009. The cost of the facility in $AUS was

$469,000 for the cage, $888,000 for the laboratory and $364,000

for the air conditioning system including controller. Total cost was

$1,721,000; with Goods and Services Tax (10%) this was

$1,893,000. Of this total, 55% was material costs, and 45% labor.

The MRF design (Figure 1) allowed us to provide direct and secure

access between the rearing laboratory and the SFS cages. Two

cages were built so that treatment and control experiments could

be conducted simultaneously. A service road connects to a loading

bay located near the entry to the MRF laboratory.

Laboratory and semi-field system insectary. The MRF

entrance leads to a common meeting room with a kitchen, sink,

and an adjoining bathroom (Figure 1). From the meeting room, a

double door vestibule with air curtain (positioned over meeting

Author Summary

Novel vector control strategies require validation in the
field before they can be widely accepted. Semi-field
system (SFS) containment facilities are an intermediate
step between laboratory and field trials that offer a safe,
controlled environment that replicates field conditions. We
developed a SFS laboratory and cage complex that
simulates an urban house and yard, which is the primary
habitat for Aedes aegypti, the mosquito vector of dengue
in Cairns Australia. The SFS consists of a Quarantine
Insectary Level-2 (QIC-2) laboratory, containing 3 constant
temperature rooms, that is connected to two QIS-2 cages
for housing released mosquitoes. Each cage contains the
understory of a ‘‘Queenslander’’ timber house and
associated yard. An automated air conditioning system
keeps temperature and humidity to within 1uC and 5% RH
of ambient conditions, respectively. Survival of released A.
aegypti was high, especially for females. We are currently
using the SFS to investigate the invasion of strains of
Wolbachia within populations of A. aegypti.

Aedes aegypti Semi-Field System
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room) leads to a QIC-2 laboratory and mosquito rearing facilities.

The main laboratory consists of a large open area with stainless steel

benches for standard laboratory work. Three controlled

temperature rooms (CT rooms) for rearing mosquitoes connect to

the main laboratory. Temperature within the CT rooms could be

set between 20–30uC but was maintained at 26uC for mosquito

rearing. Humidity was not controlled centrally. Adult mosquito

cages were enclosed in plastic wrap with damp sponges to maintain

high humidity in each cage. The main laboratory then leads

through an automatic locking door into the corridor connecting the

laboratory to the SFCs. The corridor (internal dimensions 2.4 m

wide610.5 m long62.7 m high excluding airlocks) is constructed of

concrete block overlaid with plaster board that leads to two

airlocked vestibules (2.4 m62.2 m) that each connect to a cage

(cage A and B). Entry into each cage requires activation of the door

lock that prevents the concurrent opening of both vestibule doors.

The laboratory, CT rooms, connecting corridor and vestibules have

white walls and floors to enhance visual location of free-flying and

resting mosquitoes. The main entry vestibule is also fitted with a

long wall mirror so that staff can inspect for mosquitoes behind

themselves. A locked emergency exit door was also present in each

cage entry vestibule. The doorway into the cage was fitted with a

vertical doorway (on the cage side) and a fine polyester mesh curtain

(on the vestibule side) to minimise entry of mosquitoes from the cage

when the door is open.

The MRF SFS cages: structural. The SFS cages (Figures 1–

3) are engineered to the Australian Building Code Cyclone Rating

Category 2 to withstand winds up to 216 km/hr (60 m/sec). Each

cage is built upon a levelled soil pad with a concrete perimeter,

and consists of an inner and outer layer (a ‘‘cage within a cage’’)

separated by 14 cm space. This definitive containment area is

required by Australian Quarantine and Inspection Services for

identifying possible breaches of the mesh screens. The outer cage

measures 18.0 m long69.0 m wide and 2.8 m and 4.1 m high at

the wall and ceiling peak, respectively. The interior cage measures

17.5 m68.7 m, with a respective height of 2.8 m and 4.1 m at the

wall and centre ceiling, for a total interior volume of 465 m3. The

cage walls consist of 27 1.5 m wide galvanised steel portal frames

that support a V-shaped roof consisting of 11 panels connecting to

the roof along each side, 5 panels at each rear end, and a solid

concrete wall at the front (Figure 2). Each portal frame is

individually screened with inner and outer layers of 0.25 mm

stainless steel mesh (wire diameter 0.09 mm) separated by 14 cm.

Individual portal screens are designed to be removable and

repairable in the event of damage. Damage to external screens

may not require depopulating of the cage, but severe damage to

internal screens that would allow mosquitoes to invade the space

between the screens would require cage depopulation. The 27

portal frames sit on a 100 cm610 cm concrete perimeter slab

which is sitting on top of 60 cm deep620 cm wide concrete rat

walls for the entire perimeter of the cages. The cage exterior is

covered with 7 cm heavy aluminum security screen over the entire

roof and sides to 120 cm off the ground to provide protection from

flying debris. The roof and 2/3 of the side walls are also covered

with Blue Gum Polyfab 90% shade cloth elevated on galvanised

steel pegs and frames 30 cm above the security mesh to minimise

Figure 1. Architectural plan for the James Cook University Mosquito Research Facility semi-field system. The laboratory/insectary with
constant temperatures rooms (CT) and SFS cages with simulated Queenslander (Qld) and air conditioning system (AC) shown.
doi:10.1371/journal.pntd.0000988.g001
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solar gain within the cage while maintaining ventilation between

the shade cloth and the cage. Waterproof covers are located inside

the cages over the Queenslander structure, laboratory entrance,

and along the centre of the cage above the air-conditioning sock to

protect these areas from rainfall.

The internal residential ‘‘Queenslander’’ structure (4.065.06
2.2 m high; internal volume 44 m3; Figures 2 and 3) is designed to

simulate the ground floor (or the understory) of a Queenslander

house based on traditional design and construction materials used

in the construction of these houses in north Queensland. Twelve

20620 cm concrete reinforced posts, set in 4 rows of 3 posts, were

sunk 80 cm in to the ground, leaving 210 cm exposed headroom.

Each post was topped with a 350 ml diameter galvanised steel pan

(ant cap) to prevent access by termites and ants. Wooden bearers

(967 cm) were laid across three posts at each of the 4 rows. Ten

764 cm wooden joists were attached crosswise to the bearer with a

galvanised steel cyclone rod. An external grade 19 mm thick

plywood ‘floor’ was fixed atop the joists and finished with a

weather resistant sealant. Half of the structure has been enclosed

with timber stud wall framing and fibro cladding, with a back door

fitted to aid in its authenticity. A vinyl blind was added to the front

side wall panel to further enclose the structure, leaving on the front

aspect of the structure (11 m2) open. A fluorescent light tube is

attached beneath the joists and power points are located on one of

the posts.

The Queenslander structure was fitted with two chairs, a small

lounge, a suitcase and small table to create a domestic

environment. To further humanise the structure, clothes were

hung and used towels, obtained twice/week from a local

gymnasium, were scattered on the floor and hung on a clothes

horse. A concrete pathway connected the exit door to the

simulated Queenslander understory. A residential yard was

created outside the house by covering exposed soil in a 10–

15 cm deep layer of garden mulch. The mulch was incubated

beneath black plastic tarp exposed to sunlight for 24 hours to kill

insects within the mulch. Common flowering ornamental plants

(Calyptrocalyx sp., Whitfielda longiflora, Chlorophytum sp., Spathphyllum

sp., (Peace lily), Jasminium officinale (Climbing Jasmin), Calathea

warscewiczii, Euphorbia sp. (Diamond frost), Cuphea sp. and Dypsis

lutescens (Golden cane)), set in plastic pots, were placed

throughout the yard. An automatic sprinkler system with

ground-based mister heads was installed under the mulch to

water the plants. An attempt was made to kill any arthropods in

the mulch by steam-cleaning the mulch after it was laid out. After

the initial wet season, the garden mulch, which had become

sodden and muddy, was replaced with coir mulch. The coir

mulch retained moisture but did not break down as rapidly as the

garden mulch.

The MRF SFS cages: hydraulics. The MRF drainage

system is designed to Australian AQIS containment level QIC2

standards to prevent the egress or ingress of insects. Shallow spoon

drains run around the concrete perimeter of the cage and flow into

18 floor drains. Floor drains are screened with a large-particle

arrestor trap covered by a fine-mesh filter sock. Each week, the

arrestor basket and filter sock are removed and cleaned. Trapped

particles are rinsed out and waste particles (mulch and dirt) are

either returned to the cage floor or placed in an autoclave bin.

Slab wastes drain to the storm water whilst sinks drain to the

Figure 2. Longitudinal section of James Cook University Mosquito Research Facility semi-field system cage.
doi:10.1371/journal.pntd.0000988.g002
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municipal sewage system. Water can also percolate out through

the dirt floor of the cage.

The MRF SFS: electrical. The cages are fitted with wall and

ceiling mounted fluorescent lights and bollard lights down the

walkways. All fittings have been chosen to meet outdoor

conditions, and have been installed with sealants to the wiring

cavities to prevent the ingress of insects. Several 10 amp power

points have been located on the laboratory wall and within the

cages. Air curtains located above the vestibule entry doors are

programmed to come on 2 seconds prior the door unlocking and

only one set of doors can be opened any given time. This can be

overridden by disabling the programming system. The vestibule

doors are on an alarm system to alert the operators of the facility

that doors have been left open. The doors are on self closing

operators and the alarm system is provided for back up purposes

only.

The MRF SFS: climate control. An air conditioning (AC)

system was constructed to control temperature and humidity

within each cage to match ambient conditions and prevent

overheating due to solar gain within the SFS cages. The AC

system is comprised of two external AC units that fed cooled,

humidified air into each cage. The air is released from the central

ceiling beam from a suspended 17 m long, 55 cm diameter

polyester cloth air distribution sock (Klimagiel Via XXIV Maggio,

6 Verona Italy; Figures 2 and 3) perforated with 4 mm holes that

run the length of the sock. The cloth tube disperses modified air

evenly along the cage ceiling while preventing mosquitoes from

escaping the cage via the AC duct. Sensors located 2.5 m above

ground inside and outside the each cage monitor ambient

temperature and relative humidity, with AC controlled to

maintain within +/2 1uC and +/2 5% RH of ambient

conditions. The air handling units serving the cages constantly

ventilate the space during the day. The cooling coil is activated

only when a temperature difference of + 0.5uC (internal to external

ambient) is detected. The units serving the cages can also be set to

artificially increase the RH levels during the dry season if required.

Humidity can also be increased by increasing the sprinkler

watering time.

Environmental conditions within the SFS cages
The screening of the cages reduced incoming light and thus

potential solar gain. We measured light passing through the cage

layers into the SFS cages using a Extech EasyView EA30 light

meter (Extech Instruments Corporation, Waltham, MA 02451

U.S.A.) during mid day on clear conditions. We measured

temperature and RH inside and outside each cage to test the

ability of the shade cloth awning and AC system to maintain

ambient conditions. Data loggers (Esis Hygrocon DS1923, Esis Pty

Ltd, PO Box 450, Pennant Hills NSW 1715 AUSTRALIA) were

set 24 cm above ground on a 8 L plastic bucket located within the

Queenslander house and in the yard in the center of each cage,

and run while the AC was on and off to investigate the impact of

solar gain and the AC unit on conditions within the cages.

Outside, 2 data loggers were set, one under a shaded tree ca.

Figure 3. Simulated yard and Queenslander within the MRF SFS. The air distribution sock of the air conditioning system can been seen at the
top of the image.
doi:10.1371/journal.pntd.0000988.g003
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1.5 m off the ground (equivalent to 1.5 m Stevenson screen height

used by Bureau of Meteorology) and the other set on a upturned

bucket in a shaded area adjacent to cage A. None of the data

loggers were exposed to direct sunlight that could heat the unit and

provide inaccurate temperature readings.

Security features of the MRF
Several systems are deployed at the MRF SFS to provide

security against vandalism and to minimise the accidental release

of insects. The cages are surrounded by 2 m high fencing topped

with barbed wire to prevent access by animals and humans. Each

cage has an auto-locking door that could only be opened once the

entry door into the vestibule was closed. Before being opened, the

entry door activated an air curtain above the cage side door that

blew air downward over the entryway. The interior also had

overlapping screens composed of fine polyester Tentex 72007

cloth (located on the vestibule side) that had a metal chain weight

sewn into the bottom to ensure the screens securely overlapped.

All doors entering the laboratory are auto-locking, and keys are

only available to JCU staff working on the project. The doors have

all been fitted with rubber seals. In total, there are 6 doors (3 from

cage to insectary, and 3 from insectary to external) between each

cage and the external exit of the MRF SFS. Within each vestibule

entry into the cage, a BG-Sentinel trap (BGS, Biogents GmbH,

Regensburg, Germany) [12] runs continuously and a sweepnet is

provided for staff to capture any escaped mosquitoes. All drains

within the cages have stainless steel basket screens (0.25 ml)

covered with fine mesh socks that are regularly inspected and

cleaned. The external and internal walls of the cage are inspected

for damage weekly. All supply air and return air grilles are fitted

with 0.25 mm stainless steel mesh within the MRF facility. Fire

extinguishers are located within the cages and laboratory, and fire

detectors are located in the laboratory, air-conditioning system

and plant rooms. The building is fitted with a ‘‘Notifier’’ system

that automatically dials out to the fire brigade and campus security

personnel in the event of a fire alarm. A set of SOPs (File S1) are

used to maintain surveillance and security within the MRF SFS.

Extensive monitoring is conducted on the JCU campus to detect

mosquitoes that may have escaped the SFS. Sticky ovitraps [13]

and 4 BGS traps are also situated in buildings near the MRF, and

are serviced weekly. Sticky traps consisting of 700 BGS ml red

plastic cups containing a sticky panel insert are placed within the

containment space between the mesh layers of each portal frame

(Figure S1). If required, breaches of the cage sections can be

rectified by replacement of the independently fitted double layers

of 0.25 BGS mm stainless steel mesh. Any mosquitoes collected are

identified in the laboratory, and A. aegypti are sent to University of

Queensland for identification of Wolbachia infection. The presence

of Wolbachia was detected by polymerase chain reaction analysis

using primers specific to the wMelPop IS5 insertion sequence as

described in [14]. Several times a year container surveys are

conducted on the JCU campus, and potential A. aegypti larval

habitat is removed or treated with S-methoprene pellets.

Distribution of A. aegypti within the SFS cages
We sampled cohorts of male and female A. aegypti released

within the MRF cage to determine their preferred resting sites.

Three cohorts of 120 female and 60 male pupae were allowed to

emerge in the cages at two day intervals. Mosquitoes were

provided with daily human blood meals and access to oviposition

sites as per regular experiment procedures. Separate areas in the

cages were surveyed with a Prokopack aspirator [15] 3–7 days

post-emergence. The cages were divided into five sections; (facing

into the cage) left garden, inside Queenslander, right garden,

behind Queenslander and front entrance of cage, and were

surveyed in that order. Three surveys were performed at around

dusk, when mosquitoes were less active, and three surveys were

performed in mid-morning prior to blood-feeding. The dusk

collections were performed 7, 8, 9 days after the first release of

pupae and the day collections were performed 9, 10 and 11 days

after the first release of pupae. One person (PHJ) performed all

aspirator surveys and followed a specified route around objects (eg,

plants, light fittings, furniture, sweaty towels) in each section.

Mosquitoes were released back into the cages at the end of each

survey. Data for all survey times were combined. For each cage,

Fisher’s Exact Test was used to compare the total number of

female and male mosquitoes captured within the Queenslander

structure compared with those captured elsewhere in the cage.

Survival of mosquitoes within the SFS cages
A cohort of known numbers of equally aged male and female Ae.

aegypti were allowed to synchronously emerge in each cage to

estimate daily survival within each MRF cage. Mosquitoes (F1

obtained from populations collected from over 280 ovitraps set in

suburbs across Cairns) were reared in the MRF insectary as a

single large cohort. Larvae were reared in 3.4 L white buckets with

approximately 2 L of water (ca. 100–150/bucket) and fed a diet of

fish food (Tetramin). Temperature was maintained at 26uC with a

12:12 photoperiod. Pupae were sexed using size as an indicator

and 2500 female and 2500 male 0–24 hr old pupae were placed in

buckets and allowed to emerge in each cage (total 5000 mosquitoes

per cage).

Mosquitoes within the SFS cages were blood fed on 1–2 human

volunteers for 10 min. at around 10 AM each day. Two BGS traps

were set in the Queenslanders in each cage and run for 30 min.

and the mean number of male and female captured Ae aegypti

calculated. Samples were not returned to the cages. After 22 days,

all remaining mosquitoes were captured using BGS traps and

human-bait sweepnet collections.

Mosquito oviposition took place in 8 ovibuckets placed in the

yard area of each cage. The ovibucket consisted of a 4 litre plastic

bucket filled with 2 BGS L of a 20% hay infusion; a 10615 cm red

flannel cloth strip was attached inside the bucket as an oviposition

substrate. Half of the ovibuckets in each cage were changed every

three days so each ovibucket was in the cage for 6 days.

Daily survival rates (DSR) were estimated using BGS trap

sample and final trap-out data. Both methods of analysis assume

that mortality is independent of age and are potentially biased as

BGS trap samples were not returned to the cages [16,17].

However, linear analyses were used for both estimates as the

recapture rate was low (overall 10–12% of the total initial

population), survival was high and data from the first collection

period was very low.

Mean BGS trap collections (+1) for females and males in each

cage were loge transformed and fitted by linear regression against

time (day of sample day 0 to day 15 for females and day 11 for

males). The DSR were calculated from the resulting slopes [18].

For the DSR estimate for females using log-linear regression, the

first sample point on day 3 was excluded from the regression as

fewer mosquitoes were collected in the BGS-trap on day 3 than on

the next sample day, day 7 (Figure 4A), likely due to a poor

collection of teneral adult females by the BGS trap [19] on day 3.

Male DSR were estimated based on samples from day 3 to day

11.

The DSR based on the remaining number of female mosquitoes

collected in each cage on day 22 was estimated by solving for p in

the exponential decay equation
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yn~y0pn

where n is days and y is the number of mosquitoes on that day.

As no males were collected in the final trap-out or in the BGS

traps after day 7 (Figure 4B), day 11 and 0 males were used to

estimate DSR.

Results

Environmental conditions within the SFS cages
Ambient light entering the cage was reduced by 98–99%

(Table 1), and was reduced by well over 99% within the

Queenslander. Temperature and relative humidity within the

cages accurately tracked ambient conditions outside the cage

during the Sept 2009 period (Figure 5, Figure S3). Indeed, the AC

system appeared to reduce daily peak temperatures by about 2–

3uC, suggesting that the shade cloth awning above the cage helped

prevent significant solar gain within each cage. Temperature and

RH were comparable between the two cages. The mean absolute

difference in hourly temperature inside and outside the cage was

0.92 and 1.02uC, respectively, for cage A and B with the AC

turned off; and 0.71 and 0.99uC, respectively, with the AC turned

on. For RH, the mean absolute difference was 5.6% and 5.5%,

respectively, for cage A and B with the AC turned off; and 2.9%

and 4.8%, respectively, with the AC turned on. Temperature and

RH within the Queenslander were comparable to both outside

ambient and yard conditions within each SFS cage (Table 2). The

level of solar gain was not high, and reflects the 99% reduction in

light entering the cage. Thus, temperature did not become

extreme when the AC system was off, although the AC did appear

to reduce highest temperatures in the afternoon. Aberrant RH

peaks within both cages during the day was caused by water from

the automated sprinkler system. Long term temperatures in both

cages remained comparable (Figure S3), with cage A ca. 0.5uC
warmer than cage B. Especially hot afternoon temperatures in

early February 2010 exceeded 35uC, but were nearly identical

inside and outside both cages.

The exterior drainage system prevented overrunning and

flooding within the MRF cage due to heavy tropical rains. Indeed,

no evidence of flooding within the MRF cage has been observed

despite extreme rain events in excess of 300 ml within 24 hr.

Overflow of interior drains from rain penetrating the cage screens

has also not been observed. The soil base of the cage allows much

of the storm water to percolate out of the cage rather than being

flushed through the floor drains.

Biosecurity of the MRF-SFS
There is no evidence of A. aegypti escaping from the MRF-SFS.

Aedes aegypti were occasionally captured in the BGS traps and sticky

ovitraps located on the JCU campus. From February to June, 2009

Figure 4. Survival of A. aegypti in the MRF SFS. Mean number of
female (A) and male (B) A. aegypti collected in BGS traps (2 traps/cage)
in 30 minutes in each cage.
doi:10.1371/journal.pntd.0000988.g004

Table 1. Light in the James Cook University – Mosquito
Research Facility semi-field system cage.

Location Lux % reduction

Outside cages, full sun 118,000 not applicable

Inside cage, sunlit near entry 2,350 98.01%

Inside cage, under shade of center sock 1,105 99.06%

Inside cage, entrance into Queenslander house 392 99.67%

Inside cage, at back wall of Queenslander house 20 99.98%

Values are mean of peak incidental light measured in lux at ground level using a
Extech EasyView EA30 light meter from each cage from 11:35–11:55, March 3,
2009.
doi:10.1371/journal.pntd.0000988.t001

Figure 5. Temperature and relative humidity inside and
outside the MRF SFS cages. The air conditioning system was off
from 8–10/09/2009 and on from 16–19/09/2009.
doi:10.1371/journal.pntd.0000988.g005
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a total of 47 (30 female and 17 male) A. aegypti were collected in 4

BGS traps from February to May 2009. During this time 14,800

non-infected and 48,000 Wolbachia-infected A. aegypti had been

released in the cages. But none of the A. aegypti collected from the

external traps was positive for Wolbachia by PCR assay. Whilst the

absence of Wolbachia does not preclude the possibility that these

mosquitoes escaped from the SFS cages, an alternative source of

the mosquitoes was usually located. For example, the majority

(25/47) of the A. aegypti were captured in one fortnight in a BGS

trap located near an A. aegypti field bioassay from which adult

mosquitoes had inadvertently escaped. Also, A. aegypti had been

detected on campus before the cages were operational. Mosquito

trapping and inspections detected larvae in potted plant bases,

drain sumps and tyres. Although these sites were treated, breeding

may have persisted.

Unwanted arthropods, such as millipedes, phorid flies, ants and

some spiders, were observed in the SFS cages. These were

probably introduced before screening of the cages was completed,

and may also have been entered the cages from contaminated

mulch or ornamental plants. Many remained in the cages despite

the steam-cleaning of the mulch. Most arthropod populations were

self-limiting while spiders and their webs were removed by hand.

Ants may been present in the site soil or tunnelled beneath fencing

and ratwalls into the cages. These were subsequently controlled by

placing ant baits containing AmdroTM (0.73% hydramethylnon)

within protective plastic petri dishes inside and outside each cage.

A few geckoes (the exotic Hemidactylus frenatus (Dumeril and

Bibron)) that probably invaded the Queenslander before the cages

were screened were also found in each cage. These were removed

by hand or by spraying with DettolTM (active ingredient

Chloroxylenol (4-chloro-3,5-dimethylphenol)). Whilst the use of

Dettol is not an approved method for removing geckos, it was the

only effective one available. Spraying Dettol at the gecko would

cause it to jump off the wall onto the floor rather than running to a

crevice in the Queenslander wall or ceiling. Once on the floor the

gecko could be quickly caught and killed by freezing.

Distribution of A. aegypti within the SFS cages
For cage A, significantly more A. aegypti females and males were

collected inside the Queenslander structure compared with all the

other areas of the cage (Fisher’s exact test, p = 0.02). This was less

apparent in Cage B where similar number of females were

captured in the Queenslander, (Fisher’s exact test, p = 0.32), but

fewer mosquitoes were collected overall (Figure 6).

Estimated daily survival of A. aegypti in the SFS cages
The mean numbers of female and male A. aegypti collected in the

BGS traps was consistent between the two cages (Figure 4; Figure

Table 2. Environmental conditions within the MRF SFS cages.

Cage A Cage B Outside

Yard Qld Yard Qld

Temp., uC 22.963.9 22.563.1 22.163.7 22.463.0 22.863.5

RH (%) 79.0616.4 77.8612.1 82.4615.7 80.7613.2 79.5614.6

Data are mean daily temperature (uC) and relative humidity (%) readings from
data loggers set in simulated yard and Queenslander house (n = 2/area)
recording every 30 min. from 16–25 Sept. 2009 within cage A and B. Outside
readings (n = 2) were taken in shade 0.24 m and 1.5 m above ground.
doi:10.1371/journal.pntd.0000988.t002

Figure 6. Distribution of resting A. aegypti within the MRF-SFS cages. Mean (6 SE) number of A. aegypti collected with a Prokopack aspirator
inside and outside (yard) the Queenslander structure (collection times combined).
doi:10.1371/journal.pntd.0000988.g006

Aedes aegypti Semi-Field System

www.plosntds.org 8 March 2011 | Volume 5 | Issue 3 | e988



S2). The day 22 trap-out collected 1,073 and 880 females from

Cage A and Cage B, respectively; no males were collected from

either cage. Estimated daily survival rate of females was similar for

both cages across both estimation methods, ranging from 0.92–

0.96 (Table 3). The DSRs for males were much lower, but there

was nearly a 30% difference between estimates from the two

methods, perhaps owing to different termination days.

Discussion

The MRF provides a secure insectary for the production of

mosquitoes and replicate quarantine level 2 SFS cages for conducting

of experimental releases. The temperature and relative humidity

within both SFS cages closely tracks ambient conditions outside the

cages. We had fears that solar gain within the cages would result in

high daytime temperatures that could be lethal to mosquitoes.

Temperatures over 50uC were reported within the SFS in Tanzania,

Africa [9]. However, the Tanzanian SFS had no AC system, and no

protective awning to reduce solar gain. Our AC system was able to

help maintain mean daily maximum temperatures within 1–2uC of

external ambient (Figure 5, Figure S3). The multiple layers of shade

cloth and screening reduced incident light within the cage by 98–99%

(Table 1). This, coupled with ventilation facilitated by the void of 20–

30 cm void beneath the shade cloth, ensured that the cage did not

heat up appreciably when the AC was turned off (Figure 5).

Temperature and relative humidity within the SFS Queenslander

were similar to those recorded in the SFS yard, but light incidence

was considerably reduced. Temperature and RH with in the SFS

Queenslander are comparable to those occurring within a typical

well-ventilated Queenslander house. Data loggers set from 1–8 Dec.

2007 in three rooms within a Queenslander house in Cairns

demonstrated that average temperature was within 1uC of external

Stevenson screen height temperature (S. Ritchie, unpublished data).

However, cooler, high-humidity microclimates did exist in sheltered,

moist areas such bathroom and laundry. The moist towels placed in

the Queenslander within our SFS would have also provided a cooler,

high humidity microclimate.

A simple awning system also minimised solar gain and excessive

temperature within in two smaller cages (7 m66 m64 m high)

near the MRF-SFS. These cages were built of 0. 25 ml Tentex

polyester covered with a 0.2 m elevated 90% shade cloth awning.

The mean maximum daily temperature (from 10 Feb. – 1 Mar

2010 using data loggers set 0.24 above ground) in these cages was

only 0.44uC and 0.17uC higher than ambient (J. Darbro,

unpublished data). Thus, data from both the MRF-SFS and the

adjacent small cages indicate that a simple elevated awning of

shade cloth will provide shade and ventilation, preventing high

solar gain and extreme temperatures within the cage. This would

be a cheaper alternative to air conditioning units.

Aspirator collections within the SFS cages indicated that most

mosquitoes harboured within the Queenslander structure. Fur-

thermore, we do not observe large numbers of mosquitoes resting

on the cage walls. These observations indicate that the MRF SFS

simulates a typical north Queensland urban environment for A.

aegypti. Daily survival rate of female A. aegypti was quite high within

the MRF SFS. Estimated daily survival rate of 0.92–0.96 was

obtained from a released cohort of females A aegypti. Male DSR

was much lower, (ca. 0.5–0.78), suggested that they died from

starvation due to a lack of food or feeding. Either the flowering

plants available in the cage were not suitable, or the males spent

less time feeding compared with other behaviours such as mating.

However, the high DSR estimates for females may be unrealistic

high. Certainly mortality from predation, insecticide exposure and

desiccation during prolonged flights are minimised within the

cage. Female mosquitoes also had ready and easy access to a blood

source (volunteer blood feeders were available every day) and

oviposition sites, and thus were likely to expend less energy in

searching for hosts or oviposition sites than wild mosquitoes.

We acknowledge that the MRF SFS has limitations. Due to the

high construction costs, we were limited to only two SFS cages.

Thus, experimental replication will be minimal, requiring multiple

sequential experiments in some instances. These experiments

could be further complicated by seasonal differences between

sequential runs. Environmental conditions within the SFS cage are

also different from the natural urban environment. While

temperature and RH were comparable to external ambient

conditions (Table 2, Figure 5), the screening and shade cloth

greatly reduced light and wind within the cage, and the limited

space within the cage would may have greatly restricted flight

activity. These could impact mosquito survival and the potential

infection by agents such as Wolbachia. Thus, results from SFS

experiments must be interpreted with caution, especially regarding

extrapolation to field conditions.

The MRF SFS is a highly secure environment. No Wolbachia-

infected A. aegypti have been detected outside the SFS. Adult

mosquitoes would have to escape through a double layer of

0.25 mm stainless steel, limiting these events to a breech of the

containment by damage to the structure by flying tree branches,

sabotage or vehicular collision. Barring a breech of the cage

screening, a mosquito would have to fly through 6 secure locked

doors to escape. Both are highly unlikely events. Adult mosquitoes

could oviposit in free water or even mulch within the cage.

However, all drains have secure 0.25 mm mesh baskets that would

contain larvae. The oviposition buckets are the only source of free-

standing water in the SFS cage. Thus, larvae hatched from eggs

laid on mulch and other wet areas would not develop into adults.

Nonetheless, care must be taken to eliminate free standing water in

areas like plant axils and drains. In some instances regulatory

bodies may require that genetic material not leave the SFS. Water

from drainage and direct contact with the soil could allow for

transfer of genetic material in our cage without the escape of living

mosquito eggs, larvae or adults. A sealed concrete foundation,

Table 3. Daily survival rate estimates for A. aegypti in the MRF-SFS cages.

Method Females Males

Cage A Cage B Cage A Cage B

log linear regression estimate based on BGS trap data (95% CI) 0.92 (0.87– 0.98) 0.94 (0.92–0.97) 0.77 (0.69–0.85) 0.78 (0.76–0.79)

exponential decay estimate based on final trap-out data 0.96 0.95 0.49 0.49

Mosquitoes collected with BGS traps to 15 days post release. After 22 days, all remaining mosquitoes were captured using BGS traps and human-bait sweepnet
collections.
doi:10.1371/journal.pntd.0000988.t003
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together with collection of waste water, would have to be used to

prevent this. Finally, insects and other animals entered the cage in

some instances. Most invaded the cage before it was screened,

entered in mulch and plants brought into the cage or may have

burrowed from the soil. Care must be taken to ensure

contamination is minimal, and harmful mosquito predators, such

as ants and geckoes, are eliminated.

Nonetheless, contained SFS cages offer excellent opportunity to

conduct research on insects. The secure environment prevents

release of quarantine insects; to date, no Wolbachia-infected A.

aegypti have been detected in surveillance traps on the JCU

campus. The cage allows for the release of cohorts of known

numbers. Thus, the direct impact of a control measure can be

estimated by comparing changes in population between control

and treatment cages. This approach as been used to study the

impact of pesticides, repellents and parasite-vector interactions (for

a review see Ferguson et al. [9]). Cohort cage studies can also be

used to study the behaviour of mosquitoes [9], and to estimate the

relative efficacy of traps [20]. The MRF SFS could also be used to

conduct insecticide and repellent evaluations under controlled

semi-field conditions without the ethical dilemma of disease risk.

We hope to investigate the impact of competing oviposition

containers on efficacy of ovitraps such as sticky ovitraps and lethal

ovitraps. Furthermore, detailed studies on A. aegypti behaviour,

such as the microclimate of preferred harbourage sites, can be

conducted on released cohorts within the Queenslander structure.

While we have not established populations within the cage, we

believe it would be relatively easy to do so as has been done with

Anopheles [9].

For our studies with Wolbachia, we will be able to observe the

rate of Wolbachia invasion within a population of wild A. aegypti.

These studies will measure the penetration of Wolbachia within wild

A. aegypti after simultaneous release of known ratios of Wolbachia-

infected and uninfected A. aegypti. This will occur over several

generations and be used to estimate the time to fixation We are

currently conducting invasion experiments using the wMelPop and

wMel strains.

Supporting Information

Figure S1 Escape of mosquitoes from interior of SFS
cage is monitored by sticky trap set in space between the
two stainless steel layers of MRF-SFS cage.
Found at: doi:10.1371/journal.pntd.0000988.s001 (3.83 MB TIF)

Figure S2 Aedes aegypti daily survival rate estimate
based on mean recaptures in BGS traps (loge+1
transformed). a: Cage A Female A. aegypti; b: Cage B Female

A. aegypti; c: Cage A Male A. aegypti; d: Cage B Male A. aegypti.

Found at: doi:10.1371/journal.pntd.0000988.s002 (0.19 MB TIF)

Figure S3 Temperature in the MRF SFS cages tracks
ambient external temperature. Values are mean daily

minimum and maximum temperature within MRF cage A and

B, and Bureau of Meteorology data collected 10 km from the site

(from 25 Sept 2009 – 9 Feb. 2010).

Found at: doi:10.1371/journal.pntd.0000988.s003 (0.37 MB TIF)

File S1 Standard operating procedures for the James
Cook University Mosquito Research Facility semi-field
system. Updated February 2009.

Found at: doi:10.1371/journal.pntd.0000988.s004 (0.14 MB

DOC)
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