Privacy and Security in Online Auctions

Thesis submitted by
Jarrod Trevathan

for the Degree of Doctor of Philosophy
in the School of Mathematics, Physics and Information Technology at
James Cook University

supervisor: Associate Professor Wayne Read

jarrod.trevathan@jcu.edu.au
wayne.read@jcu.edu.au

March 2007
Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published and unpublished work of others has been acknowledged in the text, and a list of references is given.

Jarrod Trevathan
March, 2007
Statement on Access to this Thesis

I, the under-signed, the author of this work, understand that James Cook University will make this work available for use within the University Library, and via the Australian Digital Thesis Network, for use elsewhere.

I understand that as an unpublished work, a thesis has significant protection under the Copyright Act. I do not wish to place any restriction on access to this thesis. However, any use of its content must be acknowledged and could potentially be restricted by future patents.

Jarrod Trevathan
March, 2007
Acknowledgments

Firstly, I would like to thank Wayne Read for his supervision throughout this thesis.

Next, I would like to thank my parents Ian and Bev Trevathan, and brother Shane, for their support. Thank you Sharith for helping me edit my publications.

Meow to Mr Gab.

Muchas gracias para mi querida amiga Andrea.

Accolade is also due to those who directly or indirectly contributed this thesis.
Abstract

Buying and selling online is inherently insecure. Misuse of an individual’s personal information is now the leading concern among those who engage in e-commerce. This thesis examines privacy and security issues in online auctions. Various auction fraud issues are investigated, and several novel counter measures proposed. An online auction server was constructed to aid in developing these security measures. This allowed investigation and testing in a controlled environment. The research results include:

1. A complete model for conducting secure and anonymous online auctions;
2. A method for detecting a fraudulent bidding practice referred to as shill bidding;
3. Autonomous bidding agents which bid maliciously. (Used to test the ability of the proposed security mechanisms);
4. A complete model for conducting secure and anonymous online share trading; and
5. Several alternate proposals for auction clearing algorithms.

The proposed security mechanisms have been implemented on the online auction server. Results are given as simulated and practical tests. In addition, the auction server’s software design is documented. Many of the techniques discussed in this thesis can be readily applied to commercial online auctions.
Contents

1 Introduction ... 1
 1.1 Aims .. 2
 1.2 Methodology .. 2
 1.3 Results .. 3
 1.4 Thesis Organisation .. 3

2 Online Auction Software .. 5
 2.1 RAS: A System for Supporting Research in Online Auctions 5

3 Auction Privacy and Security Issues 15
 3.1 Security, Anonymity and Trust in Electronic Auctions 15
 3.2 Design Issues for Electronic Auctions 24

4 Privacy and Security in English Auctions 33
 4.1 Secure Online English Auctions 33

5 Fraudulent Auctioning Practices ... 45
 5.1 Undesirable and Fraudulent Behaviour in Online Auctions 45
 5.2 Detecting Shill Bidding in Online English Auctions 56
 5.3 Detecting Collusive Shill Bidding 71

6 Software Bidding Agent Security 82
 6.1 A Simple Shill Bidding Agent 82
 6.2 A New Approach to Avoiding the Local Extrema Trap 90
 6.3 An Adaptive Shill Bidding Agent 97

7 Privacy and Security in Continuous Double Auctions 106
 7.1 Privacy and Security Concerns for Online Share Trading 106
 7.2 An Anonymous and Secure Continuous Double Auction Scheme 114

8 Online Auction Software 2 ... 125
 8.1 A Software Architecture for Continuous Double Auctions 125
 8.2 Variable Quantity Market Clearing Algorithms 138

9 Conclusions .. 146