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ABSTRACT 

 

Knowledge of the probability of occurrence of major tropical cyclone events forms 

an integral part of developing hazard mitigation strategies in regions prone to their 

impact.  Queensland landfalling tropical cyclones are analysed in this study in order 

to provide a climatology of event frequency and magnitude.  The adopted modelling 

approach differs from previous studies in the region in that it focuses specifically on 

the incorporation of historical and prehistorical information.  The availability of such 

records offers a means to test whether the satellite-based instrumental record, which 

encompasses only the last few decades, provides a representative sample with which 

to characterise extremes of the process.  

 

A methodology based on Bayesian statistical techniques is presented and applied to 

facilitate the incorporation of historical information.  Through this approach, 

historical observations are specified as prior information for models of seasonal 

activity and intensity.  When combined with reliable information from the 

instrumental record, subsequent inferences on the landfall climatology can be made 

with greater precision and confidence.  Among the statistical models considered is a 

Poisson distribution for seasonal counts, a Generalised Linear Model that 

incorporates an index of ENSO as a predictor for seasonal activity, and a Generalised 

Pareto Distribution for tropical cyclone minimum central pressures.   

 

The inclusion of historical information is shown to lead to increased certainty in 

parameter estimates for these models.  Furthermore, the incorporation of historical 

information on storm intensities leads to predictions of the frequency of major 
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landfall events that are higher than what would be expected from an analysis using 

only the instrumental record.  A further outcome of implementing a Bayesian 

strategy is the development of predictive distributions showing the probability of 

specific levels being reached in future periods. 

 

A trend analysis identified the presence of decadal to multi-decadal variability in 

seasonal storm numbers and in the strength of the relationship between ENSO and 

tropical cyclone activity.  A statistically significant downward trend in landfalling 

storm intensities over the 20
th
 century was also detected.  For Coral Sea region 

tropical cyclones, there is also evidence of decadal variability in storm numbers.  

Interestingly, a marginally significant upward trend in peak intensities is found for 

the Coral Sea region over the period 1960/61-2004/05, which is in contrast to the 

general downward trend in landfall intensities.  No evidence is found to suggest that 

ENSO has a direct effect on either regional or landfall storm intensities. 

 

A simulation model was then derived from the Coral Sea region satellite record and 

subsequently applied to generate a series of landfall events.  Comparison of the 

observed landfall record with this simulated series showed close agreement.  A 

further comparison of observed and simulated records with prehistoric data, 

previously reconstructed from storm ridge sequences found throughout the Great 

Barrier Reef region, showed some discrepancy.  In particular, estimates based on 

observed and simulated data were tending to underestimate the frequency of major 

events.  Uncertainties inherent in reconstructing storm intensities from the geological 

record complicate the utility of this comparison, however, suggesting further work is 

needed to address the use of prehistoric records as an independent data source. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Tropical cyclones pose an increasing risk to communities in Queensland because of 

the proliferation of development along its coastal margin over recent decades.  The 

growing exposure of these communities to the impact of tropical cyclones has 

recently prompted several studies aimed at quantifying that level of risk (e.g. Harper 

1999; McInnes et al. 2000; Harper et al. 2001; Hardy et al. 2004).  The extent of this 

threat is not easily assessed however, due to the relatively short length of reliable 

observational data and the complex nature of tropical cyclone behaviour.  In 

particular, at-site records of extreme winds and storm tide levels associated with 

these storms are typically available for periods of only a few decades.  These records 

alone are of limited practical use to directly infer design levels that form the basis of 

most hazard mitigation strategies.   

 

As a result, the use of simulation-based techniques has become a standard tool for 

assessing tropical cyclone risk in several countries including Australia (Harper 

1999).  Fundamental to this approach is that a climatology be derived from available 

meteorological observations to describe the characteristics of tropical cyclones in the 

region of interest.  In its simplest form this climatology represents a statistical 

analysis of parameters describing tropical cyclone numbers, tracks, sizes and 
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intensities.  This climatology then provides a means to simulate a large number of 

storm events from which to assess long-term event probabilities at a site of interest. 

 

The construction of a climatology is a largely empirical approach though, and as 

such, relies on the assumption that the observed history acts as a useful guide to the 

future.  Given that climate is a dynamic system that varies over several time scales, 

the typically limited duration of this observed history represents an obstacle to 

obtaining a representative climatology.   

 

This is especially relevant for the Australian region where tropical cyclone 

observations are generally considered to be only reliable since the 1960s (Holland 

1981).  Hence, most previous studies in the Queensland region aim at quantifying 

risk have sought to limit their analyses to the post-1960s period (e.g. Harper 1999; 

Harper et al. 2001; Hardy et al. 2004; James and Mason 2005).  Any attempt to 

derive this climatology must, however, be acutely aware of the uncertainties inherent 

in analysing observational series of limited temporal coverage.  Failure to recognise 

and accommodate such uncertainty can ultimately lead to misguided inferences on 

the nature of risk. 

 

The acquisition and use of additional data is therefore imperative to establish how 

representative the recent past may be in terms of assessing future risk.  In the 

Queensland region compelling evidence of past cyclone activity contained in 

historical and geological records has, however, largely been overlooked in previous 

studies for the region.  Given that such data sources generally comprise a less 

complete and less precise record of events, the reluctance among many investigators 
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to utilise this information is understandable.  However, this raises an important 

question as to whether such concerns should immediately outweigh any relevant 

information that may be obtained from these records.  Hence, the question of the 

utility of incorporating historical and prehistorical information into a baseline 

climatology for Queensland landfalling tropical cyclones is the main catalyst for this 

study. 

 

The main objective of this thesis is to develop this climatology by maximising the 

use of all available data sources.  This includes observations from the post-1960s 

satellite era as well as historical records from the pre-1960s period.  Furthermore, a 

prehistorical record of major storm events in the Queensland region reconstructed 

from geological evidence (Nott and Hayne 2001) is also incorporated.  To achieve 

this objective the study has been focused towards addressing several aims.  

Specifically, these are: 

 

• To provide and implement a framework for the inclusion of historical 

information in analysing statistics of landfalling storm counts and intensities 

in the Queensland region; 

 

• To address the issue of the identification of trends in the time series of these 

variables; 

 

• To examination the influence of climate variability, particularly that related to 

ENSO, on seasonal landfall activity; and, 

 



 4 

• To test the representativeness of the recent instrumental record against 

historical and prehistorical information sources. 

 

The structure of this thesis is tailored to investigate each of these aims.  Firstly, in 

Chapter 2 relevant background information on the nature of the tropical cyclone 

threat from a Queensland perspective is presented.  This chapter provides a brief 

introduction to the physical characteristics of tropical cyclones in the Queensland 

region as well as an overview of the tropical cyclone wind and storm tide hazards.  

This chapter also provides a discussion on the available sources of tropical cyclone 

observations in the region. 

 

Chapter 3 reviews pertinent literature regarding the development of tropical cyclone 

climatologies from observational records.  This chapter introduces the various 

sampling strategies that have been employed in previous studies to statistically 

analyse tropical cyclone characteristics.  A discussion on the various factors that are 

likely to have influence on the representativeness of the modern record is then raised.  

This discussion is placed in the context of previous studies conducted for the 

Queensland region.  The potential limitations of applying short observational records 

are also highlighted with reference to several studies showing evidence of temporal 

variability in storm activity and subsequent risk levels.  Lastly, this chapter 

introduces the principles and previous uses of a Bayesian statistical approach as a 

means to include historical information in the analysis of observed time series. 

 

Chapter 4 presents the first stage of a climatology of Queensland landfalling tropical 

cyclones derived from observations in the best track database for the Australian 
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region.  This details the implementation of a Bayesian statistical approach to 

combine historical counts from the pre-1960s historical era with reliable records 

from the post-1960s satellite period.  This chapter primarily focuses on the 

development of statistical models for seasonal activity from the combined record of 

landfall events.  Included is a regression model that examines the effect of ENSO on 

seasonal activity.  Moreover, the detection of trends in the time series is also 

addressed.  

  

Chapter 5 presents the second stage of the analysis on Queensland landfall events 

with emphasis on the observed series of storm intensities.  This follows along similar 

lines as Chapter 4 with a Bayesian approach again used to combine historical 

observations with information from the modern instrumental record.  The main 

objective of the chapter is the development of a model describing the frequency 

distribution of seasonal storm intensities through the implementation of extreme 

value techniques.  Furthermore, an analysis into identifying trends and investigating 

the effect of ENSO on storm intensities is also conducted.   

 

The development of a regional climatology for the Coral Sea region from 

instrumental records for the period 1960/61-2004/05 is addressed in Chapter 6.  This 

regional climatology serves as a basis to further assess the representativeness of the 

instrumental record by later comparison to statistics of observed landfall events.  

This chapter begins with an analysis of trends and climate influences on the regional 

record of counts and peak intensities.  A modelling approach is then adopted to 

simulate landfalling storms by combining a relatively simple empirical model for 

generating Coral Sea tropical cyclone tracks with a model for storm intensities 
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conditioned on observed spatial and temporal characteristics of the process.  

Diagnostic procedures used to verify the adequacy of the derived models for these 

variables are also presented.   

 

Chapter 7 is devoted to evaluating recent work conducted on the geological record of 

past storm events.  This chapter initially overviews some of the recent developments 

in the study of prehistoric tropical cyclones.  A comprehensive review of several 

sites in the east Queensland region where records of major events have been 

reconstructed is provided.  An overview of the methodology for reconstructing storm 

intensities from geological evidence is presented and an evaluation of the robustness 

of this methodology then undertaken.  This is achieved by modelling the water level 

responses to several recent tropical cyclones at a case study site.  Lastly, a discussion 

on both the potential merits and limitations of the prehistorical record is given. 

 

Chapter 8 compares climatologies for landfalling tropical cyclones derived from 

analyses of instrumental, historical and prehistorical records presented in previous 

chapters.  This is accomplished by firstly generating a time series of landfall events 

from the Coral Sea regional simulation model described in Chapter 6.  The results of 

these simulations are then compared with statistics of storm intensities developed 

from historical and instrumental records as outlined in Chapter 5.  Further 

comparison of these results with the prehistorical record reviewed in Chapter 7 is 

then undertaken. 

  

Chapter 9 summarises major findings, discusses implications, and provides 

recommendations from this research, including avenues for further extensions to the 
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analysis.  Results are cast in the context of previous studies aimed at analysing the 

statistical properties of tropical cyclones in the Queensland region.  The implications 

of the results for the prediction of tropical cyclone risk are then discussed.  In light of 

this research, directions for future study are given including a proposed methodology 

for further incorporation of the prehistoric record.   
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CHAPTER 2 

 

QUEENSLAND PERSPECTIVE 

 

 

2.1 Introduction 

 

Being the most developed region of tropical Australia, the east coast of Queensland 

is particularly vulnerable to the impacts of tropical cyclones.  This chapter provides a 

brief introduction to the nature of the tropical cyclone threat in this region.  A review 

of the general characteristics of tropical cyclones in the region is firstly presented.  

An overview of two major components of the hazard that have received considerable 

attention in recent studies, namely extreme winds and storm tides, is then provided.  

Finally, a review of available sources of tropical cyclone information in the 

Queensland region is summarised with particular reference to the best-track database.  

 

 

2.2 Queensland Tropical Cyclones 

 

Tropical cyclone activity in the Queensland region is highly seasonal, typically 

extending from November to May and peaking over the period January to March.  

Figure 2.1 shows a histogram of the intraseasonal distribution of tropical cyclone 

occurrences for the Coral Sea region.  This highlights a peak in occurrence at around 

the middle of February.  McBride and Keenan (1982) found that the majority of 
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tropical cyclones in the Australian region develop in the Southern Hemisphere 

monsoon trough that extends across northern Australia for much of the cyclone 

season.  There are two key regions of tropical cyclone formation near Queensland, 

the Coral Sea and Gulf of Carpentaria (Figure 2.2).  Storms that originate in the Gulf 

region generally pose a reduced threat of significant impact to the east coast, at least 

in terms of generating extreme winds and high sea levels, as they rapidly weaken 

after landfall tracking across the continental landmass.  Overland these systems may 

decay to tropical depressions, although when conditions are favourable they can re-

intensify after moving back over water into the Coral Sea (McBride and Keenan 

1982).   
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Figure 2.1  Histogram of Coral Sea tropical cyclones occurrence given by day in 
season for events over the period 1960/61-2004/05.  The season covers 
from the beginning of July to the end of June in the following year. 
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Figure 2.2  Map showing tracks of Queensland landfalling tropical cyclones of 
Coral Sea origin over the period 1960/61-2004/05.  Note that only 
events that attained a minimum central pressure of at least 990 hPa at 
some stage are plotted. 

 

 

 

 

The majority of storms that impact directly on Queensland’s east coast originate in 

the Coral Sea region of the southwest Pacific.  Although tropical cyclone paths often 

exhibit erratic behaviour in this region (Holland 1984; Dare and Davidson 2004), the 

most usual track is for the low latitude intensifying system to initially move 

westwards and polewards towards the Queensland coast.  Interactions with mid-

latitude trough and ridge systems that develop in regions to south of the monsoon 

trough have a strong influence on the subsequent motion and intensification patterns 

of tropical cyclones in this region (Dare and Davidson 2004).   
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Many tropical cyclones exhibit a tendency to following recurving tracks from west to 

east at higher latitudes (Holland 1984).  Polewards of about 14-15
0
S this strong 

tendency for eastwards motion, which is unique to the southwest Pacific basin, 

becomes increasingly apparent.  Given the northwest to southeast orientation of the 

Queensland coast (Figure 2.2), this often results in a number of coastal tropical 

cyclone paths being directed either offshore or approximately parallel to the coast at 

some stage.   

 

Typically, only those tropical cyclones that retain a strong westward component of 

motion make landfall on the Queensland coast.  Landfalling storms usually decay 

rapidly after crossing the coast, although a number re-intensify by either re-entering 

the Coral Sea after recurving or continuing westwards to the Gulf region.  At 

subtropical latitudes, decaying and transitional systems tend to predominant due to 

encountering strongly sheared, middle-upper tropospheric westerlies as well as lower 

sea surface temperatures (Holland 1984).  As a result, few Coral Sea tropical 

cyclones reach their maximum intensity polewards of 22
0
S.  In the case of those 

systems tracking near to the coast, funnelling of low-level winds along the Great 

Dividing Range also acts to weaken many systems as very dry continental air is 

advected into the cyclone, which limits their tropical moisture supply (Holland 

1984).   

 

The Bureau of Meteorology (BoM) classifies tropical cyclone intensity in the 

Australian region according to a five-tier scale shown in Table 2.1.  This 

classification scheme differs form the conventional Saffir-Simpson scale used in the 

Atlantic Basin.  Events reaching category three status on this scale are commonly 
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referred to as severe tropical cyclones.  The most intense events tend to originate 

around 8-12
0
S in the Coral Sea region (Holland 1984, Figure 6, p. 36).  These 

systems also tend to intensify at a faster rate and take longer to reach their maximum 

intensity than do weaker systems.  Another notable feature is the apparent frequent 

occurrence of ‘midget’ storms, comprising a class of small, rapidly intensifying 

systems with recent examples being tropical cyclones Rona (1998/99), Steve 

(1999/00) and Tessi (1999/00).  

 

 

 

 

Table 2.1  Australian scale for ranking tropical cyclone intensity 

 

Category Peak Wind Gust (km/h)
1
 Central Pressure (hPa) 

1 <125 >985 

2 125-170 970-985 

3 170-225 945-970 

4 225-280 920-945 

5 >280 <920 
              

 

                               1
 3-second peak gust. 

  

 

 

While globally an average of about 80 tropical cyclones are observed to form each 

year (Emanuel 2003), the likelihood of a severe tropical cyclone reaching any one 

location along the east Queensland coast is relatively low.  For instance, over the 

period 1960/61-2004/05 (45 tropical cyclone seasons) a total of 37 tropical cyclones 
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that formed in the Coral Sea region, and reached minimum central pressures of at 

least 990 hPa at some stage, made landfall along the Queensland coast (Figure 2.2).  

Of these, only ten were severe tropical cyclones at the time of landfall, classed as 

having minimum central pressures ≤970 hPa.  The lowest central pressure was 

recorded during tropical cyclone Dinah’s landfall (945 hPa) in the 1966/67 season.  

Other notable events have included Ada (961 hPa) in 1969/70, Althea (950 hPa) in 

1971/72, Simon (950 hPa) in 1979/80, Winifred (957 hPa) in 1985/86, Aivu (955 hPa) 

in 1988/89, and more recently Ingrid (955 hPa) in 2004/05.  The rarity of major 

tropical cyclone events (category 4 and 5) since 1960/61 serves to highlight that little 

information is available in the recent history to characterise the frequency of 

extremes in the region.  Several decades prior to this, however, major tropical 

cyclones events including Mahina in 1898/99 (914 hPa) and two storms recorded 

during the 1917/18 season and impacting Mackay (930 hPa) and Innisfail (926 hPa) 

respectively, caused substantial impacts.   

 

Historically, tropical cyclone activity in the Coral Sea has also shown a strong 

dependence on large-scale climate fluctuations.  In particular, the interannual (or 

interseasonal) variation in storm activity associated with the El Niño-Southern 

Oscillation (ENSO) phenomenon has a marked bearing on the number of tropical 

cyclones that form in the entire Australian region from season to season (Solow & 

Nicholls 1990; Nicholls 1992).  This has lead to the development of several forecast 

schemes for seasonal tropical cyclone activity that incorporate an index of ENSO.  In 

the Coral Sea region the reduced (increased) incidence of storm activity during El 

Niño (La Niña) phases appears to be primarily related to localised sea surface 

temperature (SST) variability (Nicholls 1984; Basher and Zheng 1995).   
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During El Niño phases, positive SST anomalies occur further eastwards causing 

tropical cyclone genesis to in turn shift eastwards.  During La Niña phases, positive 

SST anomalies occur closer to the Queensland coast, which generally results in an 

increased likelihood in the incidence of tropical cyclones nearer Queensland.  There 

is also some indication that tropical cyclone tracks extend further south during La 

Niña seasons.  Grant and Walsh (2001) recently suggested that variability in east 

Queensland storm activity is also linked to the influence of low-frequency Pacific 

SST anomalies associated with the Interdecadal Pacific Oscillation (IPO).  They 

subsequently attributed this as being related to changes in vertical wind shear 

associated with the pattern of decadal SST variability.   

 

 

2.3  Tropical Cyclone Hazards 

 

In regions prone to their impact, tropical cyclones represent a hazardous event 

because of their capability to generate a range of responses.  These include extreme 

winds, intense rainfall, terrestrial flooding, and coastal flooding from the combined 

effects of the storm surge and wind-generated ocean waves.  Tropical cyclones 

accounted for an estimated average cost of $266 million annually and almost one-

third of all known building damage from natural hazards in Australia over the last 

century (Blong 2004).  Historically, the greatest loss of life associated with these 

events in Queensland has been due to heavy seas and river flooding associated with 

heavy rainfall.  With an expanding base of industry, infrastructure and residential 

housing along this coast, however, exposure to both severe winds and coastal 

flooding is of increasing concern.      
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2.3.1 Severe Winds 

 

Tropical cyclone Tracy, which caused around $837 million (2003 dollars) in insured 

losses and destroyed 65% of Darwin’s residential buildings in 1974 (Blong 2004), 

serves to highlight the destructive and costly nature of tropical cyclone winds.  Due 

to the large spatial extent of the tropical cyclone’s circulation the scale of its impact 

can be geographically widespread.   Variation in the size of individual storms of 

similar intensity can also produce markedly different scales of impact along the 

coast.  Callaghan (1996) highlights several cases in which variations in the size of 

individual tropical cyclones of similar intensity produced markedly different 

responses along the Queensland coast. 

    

As exemplified with tropical cyclone Tracy, which was a small storm with a radius 

of maximum winds of only 7 km (Holland 1980), the more devastating impacts are 

generally confined to the eyewall region surrounding the storm’s centre.  This is 

where the strongest winds are often experienced.  Highest wind speeds are also 

generated on the side of the vortex where an asymmetry in the wind field is produced 

by the storm’s forward motion (Emanuel 2003).  This forward motion asymmetry 

often results in stronger winds being produced to the left of the direction of motion in 

southern hemisphere tropical cyclones.   

 

Tropical cyclones generally weaken overland due to the loss of their latent heat 

supply that is derived through the transfer of heat from the ocean to the atmosphere.  

The increase in surface friction at landfall is accompanied by increased turbulence 

though, which acts to generate strong, short-duration wind gusts.  These gust 
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deviations contribute substantially to the destructive nature of tropical cyclone winds 

overland.  For several United States hurricanes, Krayer and Marshall (1992) found 

that 2-second wind gust speeds were on average 55% higher than the 10-minute 

mean wind speed at locations of open terrain.  Spatial variations in the pattern of 

wind damage may also arise due to the modification of wind flow by topography.  

Damage surveys conducted by Walker and Reardon (1986) after tropical cyclone 

Winifred’s landfall in 1986 indicated that sheltering and channelling of the wind flow 

brought about significant variation in impacts at locations along the northeast 

Queensland coast.   

 

Another potentially important factor on the severity of tropical cyclone impacts is the 

influence that improved building standards, introduced shortly after the impact of 

tropical cyclone Tracy in 1974, have had in reducing the vulnerability of Queensland 

coastal communities to the severe wind hazard.  Walker and Reardon (1986) 

attributed the relatively low levels of damage to structures during tropical cyclone 

Winifred, which generated peak wind gusts of the order of 180 to 200 km/h, as 

largely due to post-Tracy building regulations. 

 

2.3.2 Coastal Flooding 

 

A storm surge is a trapped, long wave motion that is forced by the low surface 

pressure and sustained high winds acting on the ocean surface associated with severe 

weather systems like tropical cyclones.  Together with the nearshore wind-wave 

effects of set-up and run-up this can result in an extensive incursion of seawaters into 

low-lying coastal areas.  An historical example is the severe category 4 tropical 
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cyclone (930 hPa) that struck Mackay in January 1918.  It produced a 5.4 m storm 

tide that inundated most of the township and resulted in 30 lives lost and some $2 

million (1918 dollars) in damages (Davidson et al. 1993).  Smith and Greenaway 

(1994) showed that an occurrence of a similar event today would inundate a large 

proportion of residential buildings in Mackay by over one metre with a significant 

associated cost.  This highlights the problem faced by the growing exposure of 

Queensland coastal communities to tropical cyclones. 

 

The magnitude of the storm surge depends on a number of factors including the 

intensity, speed, size and path of the storm as well as coastal bathymetry and 

topography.  Initially an ‘inverse barometer effect’, which mirrors the storm’s 

surface pressure profile, raises the sea level about 0.1 m for every 10 hPa drop in the 

ambient or peripheral pressure.  As the storm nears the coast the wind-generated 

surface current will often greatly increase the surge height by forcing waters over the 

continental shelf.  The degree to which this ‘wind set-up’ of onshore flow elevates 

sea levels is determined largely by the depth, extent and gradient of the continental 

shelf.   

 

The state of the astronomical tide at the time of the storm’s arrival at the coast will 

also influence the total water level and the extent of any coastal flooding.  Tropical 

cyclone Althea, which generated a storm surge of nearly 3 m at Townsville, caused 

only minor damage as its landfall occurred shortly after a low tide such that total 

water levels were only slightly above the highest astronomical tide (HAT).  The 

critical level at which the storm tide (i.e. the combined surge and tide) generally 

becomes hazardous is that which exceeds the local HAT, above which most coastal 
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development is located.  Short-period wind-waves superimposed on the storm tide 

create an additional increase in water levels within the nearshore zone through the 

effects of wave set-up and run-up. 

 

 

2.4  Available Data Sources 

 

The limited availability and accuracy of tropical cyclone information sources has 

long remained an obstacle to providing a statistically robust description of the 

tropical cyclone climate.  In the Queensland region documented sources of tropical 

cyclone information are available from the mid-1800s (Callaghan, 2004).  The actual 

best-track database for the Australian region contains observations dating back to the 

early 1900s.  In addition, there exists a long-term record of extremes for the region 

based on events reconstructed from geological evidence.  In the following sections a 

review of these information sources is given.   

 

2.4.1 Best-Track Database 

 

In the Australian region a tropical cyclone is defined as a nonfrontal, synoptic-scale 

system that has developed over tropical waters and has a 10-minute mean surface 

wind speed of at least 63 km/h (17.5 m/s) near the centre of the organised wind 

circulation (Dare and Davidson 2004).  The best-track database archived by the 

BoM compiles observations of these events in the Australian region (90
0
E - 160

0
E).  

This dataset provides the bulk of the data used in this study and is available in 

electronic format at http://www.bom.gov.au/climate/how/. To ensure greatest 
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accuracy, observations within this database were cross-referenced with information 

from the Queensland region (approximately 135
0
E - 165

0
E) tropical cyclone 

database, which was obtained from the Severe Weather Section of the BoM in 

Brisbane.  The Queensland region database represents a subset of the Australian best-

track database and contains observations for the Coral Sea and Gulf of Carpentaria 

regions.  In cases where there was a discrepancy in corresponding observation 

between the two datasets, the Queensland region database was used as the preferred 

record. 

 

The observations within the best-track databases are quite variable in terms of their 

accuracy, completeness and temporal resolution.  The overall record prior to about 

1960 is generally acknowledged to be of poorer quality (Holland 1981; Harper et al. 

2001).  For the post-1960 period, records of individual events are typically given as 

six-hourly fixes of location (longitude and latitude) and intensity (minimum central 

pressure) for the time intervals 0000, 0600, 1200, and 1800 UTC.  In some instances 

central pressure estimates are not always available at every six-hourly fix, while in 

other cases estimates are given at hourly or three-hourly intervals.  In contrast, for 

events prior to the 1960s observations are in the main less complete and only 

available at 12 or 24-hourly intervals.  

 

A comprehensive review of the Australian region dataset was originally undertaken 

by Holland (1981) who summarised the evolution of the observational network and 

provided an informative assessment of the accuracy of several key parameters (Table 

2.2).  The main point emphasised by Holland (1981) is that the quality of this 
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database is largely a reflection of available observation platforms, which have 

improved over time in association with several factors. Namely;  

 

• The commencement of the Second World War in 1939 led to an escalation in 

sea and air traffic in the Coral Sea region that was paralleled by a large 

increase in surface observations. 

 

• During the mid-1950s weather watch radars were installed at several 

locations providing almost continuous nearshore coverage of the Queensland 

coast. 

 

• During the 1960s satellite-based analysis techniques became formalised and 

have since provided the bulk of positional and intensity fixes. 

 

At present, due to the relatively sparse distribution of the Australian surface 

recording network over the ocean and the absence of any regular aircraft 

reconnaissance of tropical cyclones, sampling is largely conducted by analysis of 

remotely sensed imagery.  The principal means by which storm intensity is estimated 

has been the Dvorak satellite analysis technique (Bureau of Meteorology 1978).  Put 

simply, this method indirectly derives tropical cyclone intensity (minimum central 

pressure or maximum wind speed) on the basis of interpretation of various cloud 

patterns observed in satellite imagery.  On occasions such estimates are 

supplemented with direct recordings from several offshore and coastal automatic 

weather stations (AWS).   
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Table 2.2  Accuracy of key parameters for eastern Australian cyclones that 
approached to within 500 km of the coast (adapted from Holland 1981). 

 

Parameter 1909-39 1939-59 1959-69 1969-79 

Occurrence (undetected) 15-30% 5-15% <5% <5% 

Landfalling (undetected) 5-15% <5% <5% <5% 

Locational Errors <250 km <150 km <100 km <50 km 

Intensity
 a
 <15 hPa <15 hPa <15 hPa <10 hPa 

Intensity
 b
 unknown unknown <30 hPa <20 hPa 

        

         a
 observations made within 100 km and 12 hrs of the time of maximum intensity 

         b
 all other observations 

 

 

 

 

While the Dvorak technique generally allows for complete and consistent intensity 

estimates (Martin and Gray 1993), it is important to note that no extensive calibration 

of the technique has been undertaken in Australia due to the lack of independent data 

(e.g. from aircraft reconnaissance).  Moreover, this technique, (i) incorporates a 

strong empirical component, which is derived entirely from observations in the 

northwest Pacific and Atlantic basins, and (ii) relies on analysis techniques adopted 

by local meteorological authorities (e.g. wind-pressure relationships).  Hence, there 

does exist a potential for error in estimating storm intensities using the method.  

Holland (1981; 1984) for instance, notes a systematic underestimate of 10-15 hPa in 

earlier satellite estimates of intensity in the Coral Sea region.  In comparing satellite-

based intensity estimates with more reliable measurements obtained from aircraft 

reconnaissance in the northwest Pacific, Martin and Gray (1993) found average 

differences of 10 hPa between the two platforms.     
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Prior to the advent of satellite technology, intensity estimates were only obtainable 

from surface measurements from ships and land stations.  Consequently, much of the 

database is incomplete in the earlier half of last century.  During this period a number 

of tropical cyclones, particularly those that remained well out to sea for their 

duration, were likely to have been undetected.  Conversely, it is also likely that some 

weather systems were mis-classified as tropical cyclones due to inadequate surface 

information.  Overall, estimates of storm intensities during this period are sparse and 

in many cases are not likely to be an accurate reflection of the actual intensities.  

Holland (1981) demonstrated that central pressures were consistently underestimated 

in the absence of adequate surface measurements from the tropical cyclone’s inner 

core.   

 

It has been recommended on this basis that any statistical analysis of the Queensland 

sample be limited to only the period post-1960 or later (Harper et al. 2001; James 

and Mason 2005).  In recent years though, improvements and extensions, particular 

to the landfall record prior to the 1960s, have progressed (e.g. Davidson and Dargie 

1996; Callaghan 2004).  Furthermore, Holland’s (1981) analysis indicates that most 

landfalling events would likely have been identified (see Table 2.2) due to a dense 

network of coastal stations.  In fact, there is a clear indication of a greater quantity 

and quality of observations during the early half of last century when tropical 

cyclones made landfall.  This is a consequence of a greater concentration of 

population in coastal areas.  As such, there was an increased likelihood of obtaining a 

direct surface measurement for landfalling storms.  This means that a greater level of 

reliability can be attached to the landfalling record than for the basin as a whole in 

the era prior to satellite observations.  
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A distinction is made throughout this thesis between an instrumental era (post-

1959/60) and an historical era (pre-1960/61) in the best-track observations.  The 

former represents the beginning of a formal structure in the tracking and recording of 

tropical cyclones, whereas the later represents a period in which sampling was 

largely ad-hoc.  This separation into two periods is consistent with the results of 

Buckley et al. (2003) who identified a major discontinuity in a subset of the best-

track database during the mid-1950s, which was attributed to improvements in the 

observational network.  The period post-1960 has been used in a number of recent 

studies (e.g. Harper et al. 2001; McDonnell and Holbrook 2004) as the period for 

which reliable data on tropical cyclones in the Australian region is available.  

 

Even over the post-1960 period Nicholls et al. (1998) point out that further 

improvements in observational technologies and greater scientific understanding 

have had an effect on tropical cyclone classification.  Buckley et al. (2003) also 

noted the presence of a shift in tropical cyclone frequency in the late 1970s that was 

attributed to an increased ability to discriminate between tropical cyclones and other 

low-pressure systems.  The effect of this on the observational database would be an 

artificial bias towards a greater number of tropical cyclone events than was actually 

present. 

 

2.4.2 Prehistorical Records 

 

Recent research focused towards reconstructing past, unobserved storm events on the 

basis of evidence preserved in the geological record (e.g. Nott and Hayne 2001; Liu 

and Fearn 2000), has emerged as a promising means to gain a better insight into the 
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long-term behaviour of tropical cyclones.  It extends the current historical and 

instrumental records to periods well beyond that of human observation.   In some 

cases this prehistoric record can be extended back over the last 5,000-6,000 years, 

which coincides with the termination of the mid-Holocene marine transgression 

(Nott 2004).   

 

At several locations along the Queensland coast the presence of coral shingle ridges 

has been inferred to be the product of elevated water levels associated with major 

tropical cyclone events (Chappell et al. 1983; Chivas et al. 1986).  Nott and Hayne 

(2001) recently developed a methodology to reconstruct a history of past events at 

sites where long sequences of storm ridges have been preserved.  This record is 

reviewed in greater detail in Chapter 7 including a discussion on its potential 

advantages and possible limitations.  Given the rarity of major storm events observed 

along the Queensland coast over the last century, this prehistoric record is 

complementary in providing an additional and independent source of information on 

extremes.  

 

 

2.5 Summary 

 

Landfalling tropical cyclones remain amongst the greatest natural threats to life and 

property in Queensland.  As a result of increasing coastal population and 

development in the region, vulnerability to extreme winds and storm tides generated 

by tropical cyclones has increased.  While tropical cyclone information in the 

Queensland region is available for over 100 years, prior to the 1960s observations are 
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generally less reliable.  However, since the introduction of satellite monitoring and 

analysis of tropical cyclones in the Australian region during the 1960s, only a few 

major storm events have made landfall along the Queensland coast.   This situation 

represents a barrier to providing an informed assessment of risk and highlights a need 

to consider additional sources of information such as historical and prehistorical 

records. 
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CHAPTER 3 

 

LITERATURE REVIEW 

 

 

3.1  Introduction 

 

Considerable effort has been dedicated to researching both the physical and statistical 

characteristics of tropical cyclones in the Australian region.  This has included 

investigations into the basic mechanisms governing track movements, spatial 

distribution of genesis, and rates of intensification (e.g. McBride and Keenan 1982; 

Holland 1984; Dare and Davidson 2004).  Other studies have focused on the effects 

of climate variability, particularly that related to ENSO, on seasonal activity (e.g. 

Nicholls 1992; Nicholls et al. 1998; Grant and Walsh 2001; McDonnell and 

Holbrook 2004).  Moreover, the projected effects of global climate change on 

tropical cyclone behaviour have also received considerable attention in recent years 

(e.g. Henderson-Sellers et al. 1998; Walsh and Ryan 2000).   

 

Similarly, studies of tropical cyclone risk in Australia have been numerous.  These 

have been based on the application of Monte Carlo simulation techniques using 

parametric and numerical models of the tropical cyclone wind field, storm tides and 

wind-waves to generate site responses.  The output from these simulated responses 

are then used to determine the likelihood of extreme levels being reached.  These 

design level estimates have subsequently been employed to assess physical and 
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economic risks to structures for the purposes of hazard mitigation (Smith and 

Greenaway 1994; Granger et al. 1999; Stewart 2003). 

 

Over the past few decades a concerted effort has been made to develop and improve 

models for the simulation of tropical cyclone responses for risk assessment.  Some 

recent examples are the inclusion of overland coastal inundation in a numerical 

model for storm surges (Hubbert and McInnes 1999) and the representation of 

secondary eyewalls in a tropical cyclone wind field model (McConochie et al. 1999).  

In contrast, relatively little progress has been achieved in improving climatological 

models necessary to characterise the underlying stochastic process.  This is 

somewhat surprising given that this aspect represents perhaps the most vital 

component of the simulation-based methodology, which chiefly aims to describe this 

process within a statistical framework.  The approach is fundamentally probabilistic, 

seeking to ascertain the likelihood with which various tropical cyclone events are 

likely to occur.   

 

The intention of this chapter is to outline the general framework for obtaining this 

probabilistic description as well as examine potential limitations in the Queensland 

context.  Firstly, a brief theoretical background to the estimation of event 

probabilities is summarised.  A review of the various sampling strategies that have 

been employed in the literature to define the statistical properties of tropical cyclones 

is then provided.  Of key importance to the veracity of a statistical approach is the 

issue of representativeness.  For natural hazards, this relates mainly to the capacity of 

available records to model the stochastic behaviour of extreme values of the process.  

This is discussed with respect to the importance of fully describing uncertainty as 
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well as with reference to various studies highlighting temporal variability in tropical 

cyclone behaviour.  The final part of the review describes methodologies that have 

been applied in recent years, specifically Bayesian statistical techniques, as a means 

to incorporate less reliable sources of historical information. 

 

 

3.2  Risk Prediction Concepts 

 

As a starting point, the prevailing methodology in assessing the risks of natural 

hazards seeks to define the likelihood of an extreme event occurring in a given future 

period.  This gives rise to concepts such as the 100-year design level, which is 

loosely defined as the magnitude of an event expected to occur, on average, once 

every 100 years.  Such concepts are more conveniently expressed as an odds-ratio, 

where for example, the 100-year event would be referred to as the magnitude of an 

event with a 1 in 100 chance of being exceeded in a given year.  The widespread use 

of design events in hazard mitigation is generally seen as adopting a compromise 

between providing a sufficient level of protection from a particular hazard, while not 

overly restricting development and other human activity in areas potentially 

vulnerable to the hazard.  Whether such an approach offers a rational and justifiable 

means of reducing risk has been subject to much debate (see e.g. Baker 1994).   

 

The basis of the approach generally relies on using established statistical methods to 

estimate the probability of an extreme event occurring, based on the past record of 

such events.  According to Hosking and Wallis (1997) a statistical approach is often 

preferable given the various sources of uncertainty inherent in physical processes that 
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give rise to observed events.  While this notion is open to some criticism, because of 

its assumptions and neglect of important physical processes responsible for 

generating the hazard, it nevertheless provides a means to analyse risk from complex 

phenomena whose dynamics are not fully understood. 

 

The principle objective of conducting a statistical analysis in this context is to 

quantify the behaviour of the process at high levels that correspond to hazardous 

events.  This involves deriving a probabilistic structure for the process from the 

observed data so as to make inferences on anticipating extremes in a future period.  

In doing so it is assumed that the sequence of observed values ),,( 1 mxxx …=  

comprise realisations of a random variable X.  For discrete random variables the 

probability mass function: 

 

)(Pr)( xXxf == ,                 (3.1) 

 

gives the probability that the random variable X takes the value x.  For a continuous 

random variable, its cumulative probability distribution function, defined as: 

 

)(Pr)( xXxF ≤= ,                      (3.2) 

 

assigns probability to the range of values that the random variable X may take.   

 

Estimation of the probability distribution is achieved using either nonparametric or 

parametric methods.  In the latter case, the variable X is assumed to follow a 

particular distribution with parameters that are estimated from the data 
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),,( 1 mxxx …=  using techniques such as that based on the principle of maximum 

likelihood.  As an example of the discrete case, it is commonly assumed that the 

distribution of tropical cyclone counts follows a Poisson distribution (Solow and 

Nicholls 1990; Elsner and Bossak 2001).  In the continuous case, it is often assumed 

on the basis of mathematical argument that annual maximum observations of some 

environmental variables follow certain limiting distributions of the extreme value 

type (Coles 2001; Katz et al. 2002).   

 

The advantage of parametric methods for assigning probability to events is that they 

provide a convenient framework to model processes at high levels for which few data 

are available.  This also applies to the case of extrapolation to unobserved levels.  

One disadvantage concerns the assumption of a particular probability distribution for 

the underlying process, which if incorrectly specified can result in a poor 

representation of the process at high levels.  Alternative procedures based on 

nonparametric methods do not make this assumption, however, they also have 

limitations in describing the process at high levels because of their reliance on local 

estimation of the empirical probability distribution.  In either case it is important to 

show that the adopted model at least describes the observed data well using various 

diagnostic techniques.   

 

 

3.3 A Review of Sampling Strategies 

   

By far the most common approach to assessing long-term tropical cyclone risks 

consists of generating a series of storm responses.  This is motivated by the fact that 
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the rarity of storm events affecting any one site is such that direct estimation of long-

term probabilities of their responses (e.g. winds and storm tide levels) is rarely 

possible.  In an attempt to overcome this, simulation-based methods have become an 

accepted way to generate a viable at-site dataset of storm responses (Harper 1999).  

This typically involves a statistical analysis of the regional tropical cyclone 

meteorology in order to derive a climatology.  This climatology then serves as the 

basis for simulating a full array of possible storm scenarios to characterise the local 

response climate.  Thus, by generating an artificial series of storm events, whose 

statistical characteristics are consistent with those observed, this dataset of responses 

can feasibly be enlarged. 

 

In order to apply this technique the selection of an appropriate sampling strategy is 

required.  By analysing the statistical properties of observed storms over a broad 

geographical region a more robust description of the tropical cyclone climate is 

achievable.  In effect this can be viewed as an attempt to overcome the sparsity of 

local tropical cyclone events by a ‘substitution of space for time’ principle that 

considers a wider area to develop the climatology.  In some respects such an 

approach is necessary due to the fact that tropical cyclones are translating systems 

whose core characteristics are not sampled at fixed sites, but rather at points defined 

by the storm’s path. 

  

3.3.1 Fixed Subregion Approach 

 

The traditional sampling strategy considers a fixed region around the target site and 

draws upon only storms that entered this area to define the regional climatology.  
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This supposes that the climatology is relatively uniform or homogenous across that 

region.  McInnes et al. (2000) presents a typical example of the application of this 

approach for estimating storm tide design levels at Cairns in north Queensland.  This 

sampling strategy has also been used in other studies conducted in the region (e.g. 

Hardy et al. 1987; Harper 1999).  The approach has also formed the basis of several 

studies on hurricane wind risk conducted in the United States including Vickery and 

Twisdale (1995) and Huang et al. (2001).  Chu and Wang (1998) also applied this 

technique in the central North Pacific.  

 

A potential shortcoming in the application of this strategy regards the choice of 

sampling region.  This is often selected as a compromise between obtaining a large 

enough sample size, while not being overly biased by the inclusion of tropical 

cyclones that are physically unrepresentative of those likely to impact the target site.  

For instance, Harper (1999) selected a 500 km radius around sites along the 

Queensland coast to serve as a ‘control volume’, although presents no formal test to 

justify this selection.  Vickery and Twisdale (1995) undertook an investigation into 

the effects of sample region size and noted difficulties in choosing an optimal region, 

highlighting the difficulties in identifying heterogeneity at small spatial scales with 

limited data. 

 

3.3.2 Basin-wide Approach 

 

Several alternative sampling methods have been proposed in recent years, which 

endeavour to obtain more of a ‘basin-wide climatology’ and then simulate the entire 

lifespan of a tropical cyclone event.  Casson and Coles (2000) accomplish this by 
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generating hurricane events in the Atlantic basin from a probability model that 

describes the spatial and temporal patterns of the process.  Their approach combines 

a model for generating storm tracks with a model for minimum central pressures with 

parameters that vary according to the location in space and time of each point along 

the simulated track. These relationships were derived from the United States best-

track database over the period 1886-1994. 

   

James and Mason (2005) present a method to simulate the track movements and 

intensities of tropical cyclones across the Coral Sea region that makes use of a series 

of first-order autoregressive models.  Underlying this approach is the assumption that 

after initialisation, future changes in a storm’s location and intensity are governed by 

changes at the previous time step.  The parameters for this model were derived from 

128 tropical cyclone events in the Coral Sea region over the period 1968/69-2000/01.  

This simulation model forms the basis of the most recent attempts to estimate design 

levels for storm tide risk in Queensland (Hardy et al. 2004) as well as tropical 

cyclone wind-wave statistics in the Great Barrier Reef (Hardy et al. 2003).  Vickery 

et al. (2000) simulate hurricane events in the United States using a somewhat similar 

approach, although their model attempts to account more for the spatial variation in 

these relationships and makes use of a substantially larger database of events. 

 

The application of these basin-wide sampling approaches has largely superseded the 

simpler alternative of using a fixed subregion, although the latter is not without its 

merits.  Unlike the Atlantic basin, the lack of reliable basin-wide records in the Coral 

Sea region prior to the advent of satellite monitoring restricts the time period 

available for analysis.  The availability of a long period of record provides a way to 
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not only develop a more robust statistical model, but also a more solid basis with 

which to verify simulated event characteristics.  For instance, Vickery et al. (2000) 

describe a comparison of simulated landfalling intensities of major United States 

hurricanes from an Atlantic basin climatology with the observed record of such 

events.   

 

The utility of such an approach in the Queensland region would clearly be restricted 

if such a comparison were limited to only the past few decades of recorded events.  

James and Mason (2005) present a comparative analysis of simulated event 

characteristics with observed values for three subregions along the Queensland coast.  

Given that James and Mason (2005) utilised only tropical cyclone observations over 

the period 1968/69-2000/01, the sample size for each of their subregions ranged from 

between 20-38 events.  Furthermore, there were relatively few observed extremes in 

the samples derived from these subregions so it is unclear how well hazardous events 

are modelled.  

 

 

3.4 The Issue of Representativeness 

 

The successful implementation of any scheme aimed at defining the statistical 

properties of a hazard process is foremost dependent on the observed record being a 

representative sample of the population.  This is especially relevant for an analysis 

concentrating on the occurrence of extremes.  It is widely recognised that for many 

environmental variables the typical length of observational records makes the 
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estimation of extreme events probabilities a difficult undertaking (Hosking and 

Wallis 1997).   

 

Furthermore, as pointed out in the seminal paper of Baker (1994) on the role of 

statistics in the prediction of extreme flood events, most analyses have tended to 

concentrate on datasets comprising predominantly small events to model the 

properties of unobserved high magnitude events.  Clearly, the use of such techniques 

alone does not guarantee that the prediction of risk is ultimately improved.  As 

argued by Baker (1994) the need to obtain greater information on past large 

magnitude events fundamentally represents the most important avenue to achieving 

better estimates of risk.      

   

There are several important factors relating to this issue of representativeness that 

highlight potential shortcomings with past approaches taken in the Queensland 

region.  It is especially important to recognise that the availability of further data may 

lead to vastly different estimates of the statistical properties of the process.  Here 

aspects pertaining to the assessment of uncertainty in tropical cyclone simulation 

techniques as well as the presence of temporal variability in tropical cyclone records 

are reviewed in this context of representativeness.   

 

3.4.1 Representation of Uncertainty 

 

In any form of statistical inference there exists two main types of uncertainty, 

sampling uncertainty and model uncertainty.  Both forms of uncertainty are 

influenced by the amount of data available for model fitting.  An important 
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component of the application of tropical cyclone simulation-based techniques is the 

representation of uncertainty associated with generated event characteristics.  

Uncertainty in this process is introduced in a number of ways.   Primarily, these are 

related to the length of the simulated response series and the climatological model 

from which events are randomly selected and subsequently simulated. 

 

While it is common to assess uncertainty based solely on the simulated event series, 

this can lead to unrealistically small measures of uncertainty.  By generating a series 

corresponding to a long simulation period the level of uncertainty in this component 

of the process is arbitrarily reduced.  Harper (1999) for instance recommends the 

simulation of a 10,000-year duration to adequately determine design levels up to 

return periods of 1,000 years.  The contribution of this to the overall level of 

uncertainty is thus likely to characterise only a small fraction of the total amount.  

Furthermore, up to the point where a suitable model can be reliably fit to the 

simulated observations, there is little to be gained by conducting further simulations 

as a means to reduce uncertainty. 

 

According to Coles and Simiu (2003) a greater amount of uncertainty arises from the 

climatological model employed to simulate the event series.  For this reason it is 

pertinent to also assess uncertainty on the basis of the length of the available tropical 

cyclone record used to derive this model component.  There are however, relatively 

few examples in the literature that have adequately dealt with this issue.  Ideally this 

should be approached by taking into account uncertainty in the various statistical 

models that comprise the climatological model, which includes variables describing 

tropical cyclone frequencies, intensities, paths and sizes.   
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For the simulation of United States hurricane events Casson & Coles (2000) 

accomplish this by assuming parameter estimates for each model variable to be 

asymptotically normally distributed.  They then repeated a Monte Carlo simulation 

of hurricane events a number of times by randomly generating parameter values from 

each variable’s sampling distribution.  An alternative approach proposed by Coles 

and Simiu (2003) involves employing bootstrap resampling techniques on the 

simulated event series.  In this approach, the size of each bootstrap sample is selected 

to correspond to the size of the observed series of tropical cyclone events, rather than 

be a function of the size of the simulated event series.   

 

The importance of addressing these uncertainties centres on recognizing that 

simulation techniques are used to generate an increased, but nevertheless, artificial 

series of events.  For previous studies conducted in the Queensland region there has 

been an evident lack of consideration of this aspect.  For instance, in the most recent 

estimates of design-level for wind speeds (Harper 1999) and storm tides (Hardy et al. 

2004) obtained through the application of simulation techniques, no formal 

assessment of uncertainty in these levels is given.  This essentially highlights a 

failure to test the representativeness of the observed sample by not adequately 

characterising the variability inherent in the process. 

   

3.4.2 Temporal Variability 

 

The reluctance among many investigators to seek and use past sources of information 

in the Queensland region must be placed in the contexts of criticisms like those of 

Baker (1994) for river flood hazard assessments.  In this region concerns over the 
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representative nature of the modern tropical cyclone record have recently been raised 

in light of the interpretation of long-term geological evidence.  This reconstructed 

record appears to show that periods existed in the past where the frequency of major 

tropical cyclone events was dissimilar to that directly observed in recent times (Nott 

and Hayne 2001; Nott 2003).  The implications of this information for tropical 

cyclone risk have yet to be fully considered. 

 

These concerns must also be placed in the context of the dynamic nature of the 

climate system and its subsequent effect on the recorded time series of natural 

events.  Evidence of this is apparent from growing recognition that interannual to 

interdecadal forms of climate variability have the effect of reducing or elevating the 

level of risk from natural hazards like floods and tropical cyclones over time (e.g. 

Kiem et al. 2003; Jagger et al. 2001).  For instance, Jagger et al. (2001) demonstrated 

the variation in annual hurricane wind risk in the United States conditional on the 

influence of climate factors like ENSO.   

 

In addition to this, it is now known that the effect of ENSO on climate is not constant 

through time, but varies over decadal time scales (e.g. Power et al. 1999).  Elsner et 

al. (2001) found that the strength of the relationship between U.S. hurricanes and 

ENSO varied on decadal scales over the 20
th
 century.  A full understanding of the 

consequences of this, and other forms of variability, for tropical cyclone risk in the 

Queensland region is difficult to discern from the short period of satellite 

observation. 
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Where longer-term instrumental records are available, such as in the Atlantic basin, 

evidence for the presence of shifts to active or inactive regimes in major hurricane 

activity has also been identified (e.g. Gray 1990; Goldenberg et al. 2001).  Gray 

(1990) found that multidecadal variability in United States major hurricane landfalls 

were closely linked to multidecadal variations in West African summer rainfall.  

Goldenberg et al. (2001) attributed a recent shift to an active period of major 

hurricane activity in the United States to simultaneous increases in North Atlantic 

SSTs and decreases in vertical wind shear.  In the central north Pacific region, Chu 

and Zhao (2004) applied a change-point analysis to show that a shift to a more active 

period of tropical cyclone activity occurred during the early 1980s.   

 

Little attention has traditionally been given in the analysis of tropical cyclone risk to 

directly addressing the implication of these regimes, which may encompass periods 

of increased or reduced risk (Nott 2004).  Clearly, the availability of longer-term 

historical and geological records allows much greater scope for better understanding 

such features.  For instance, Liu and Fearn (2000) hypothesised that the existence of 

millennial-scale regimes in major hurricane landfalls in Florida, reconstructed from 

geological evidence, was linked to large-scale shifts in the position of the Bermuda 

High.   

     

The lack of a long-term, high-resolution record of tropical cyclones in the Australian 

region obviously represents an obstacle to fully resolving some of these issues.  

Nevertheless, the incorporation of available sources of historical and prehistorical 

information that have been largely overlooked in recent studies conducted in 

Queensland, offers an opportunity to assess the representativeness of recent records.  
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In the United States, prehistorical information has recently proven to be a useful tool 

for independently assessing design levels (Murnane et al. 2000).  Murnane et al. 

(2000) compared predictions of hurricane wind speed exceedance probabilities 

estimated from a model using the 20
th
 record against sedimentary evidence 

documenting the frequency of major hurricane events over millennial time scales.   

 

The role of such information has assumed a greater importance in the field of natural 

hazards risk assessment over recent decades, yet there do remain several 

impediments to its ultimate incorporation.  These stem largely from the inherent 

uncertainties associated with past information sources.  Addressing any ambiguities 

that may arise in the interpretation of such evidence and making account for the 

likely lower level of precision should thus also be given priority.   

 

 

3.5 Incorporation of Historical Information 

 

As discussed in Chapter 2, prior to introduction of satellite reconnaissance the 

capability to detect and monitor tropical cyclones in the Australian region was 

limited.  Given the range of issues raised in the previous section, however, it is 

important to determine if the period of satellite observation offers a sufficiently 

representative sample to characterise the process at high levels.  In this context, the 

recent works of Solow and Nicholls (1990), Elsner and Bossak (2001), Solow and 

Moore (2000), Chu and Zhao (2004) and Elsner and Jagger (2004) are particularly 

relevant.  These studies have focused on the development and application of 
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methodologies that enable the incorporation of historical data in analysing the 

statistical aspects of tropical cyclone behaviour.   

 

Adopting a novel approach, Elsner and Bossak (2001) recently highlighted the 

advantages of Bayesian statistical methods as ideally suited for combining reliable 

sources of instrumental hurricane records with less precise historical data.  In recent 

years the Bayesian statistical approach has been employed by a number of 

investigators examining times series of environmental variables.  Examples include 

the use of expert opinion in predicting the frequency of intense rainfall events (Coles 

and Tawn 1996), the use of regional information to improve predictions of high wind 

speeds (Coles and Powell 1996), the incorporation of historical flood information to 

improve estimates of flood frequency (Kuczera 1999), and accounting for error 

reporting in a regression model for tornado counts (Wikle and Anderson 2003). 

 

3.5.1 Bayesian Approach 

 

As demonstrated in the aforementioned studies, Bayesian techniques offer an 

alternative to classical statistical approaches by providing a rational framework for 

incorporating prior information.  This is especially important for an analysis of 

extremes, which by definition are rare events and often poorly represented in 

observed time series.  Such prior information can be either informative or non-

informative, wherein the former is derived from various sources including expert 

opinion, spatial information and historical observations.  In the context of modelling 

tropical cyclones, the Bayesian approach offers a framework to incorporate 

informative knowledge about the process, in the form of historical data, with more 
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reliable information contained in instrumental records (Elsner and Bossak 2001).  

This allows the period of record to be extended.  To date, no studies have 

implemented this methodology in the Queensland region. 

 

As a starting point, consider a sequence of observations ),,( 1 mxxx …=  that are 

independent realizations of a continuous random variable whose density falls within 

the parametric family }:)({ Θ∈θθxf , where θ are the model parameters.  In the 

conventional statistical approach, θ is assumed fixed and its estimate is typically 

obtained as that most likely to have generated the sample observations by 

maximizing the likelihood function, )( xθL , of )( θxf .  Fundamental to the 

Bayesian philosophy is that θ is treated as a random variable and assigned a prior 

density )(θπ , about which information is expressed without reference to the data x.  

Inference concerning θ is then based on the posterior distribution, which is obtained 

by Bayes’ Theorem as: 
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d)()(

)()(
)( xθLθ

θxθLθ
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π

π
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∫Θ

,             (3.3) 

 

where Θ denotes the parameter space of θ.  The posterior distribution thus involves a 

contribution from the observed data through )( xθL  and prior information through 

)(θπ .  The output of a Bayesian analysis is not a single point estimate of θ, but 

rather a posterior distribution that summarises all information about θ.  This has 

several advantages over classical techniques, particularly in terms of representing 

uncertainty, which can lead to improved predictive inference.   
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Predictions of future values of the process are computed with the posterior predictive 

density.  Given a future observation z with density function )( θzf , the posterior 

predictive density of z, given the data x, is:  

 

=)( xzf ∫Θ π θdxθθzf )()( .               (3.4) 

    

The predictive density averages the distribution across the uncertainty in θ, as 

measured by the posterior distribution (Coles and Powell 1996).  Thus, it summarises 

the uncertainties in both the model parameters and that in the future value of z.   

 

3.5.2 Other Approaches 

 

There are several alternative approaches outlined in the literature to facilitate the 

inclusion of historical observations, particularly in the case relating to incomplete 

records.  For instance, working under the assumption that the record of landfalling 

United States hurricanes is complete dating back to 1930, Solow and Moore (2000) 

used this information to extend backwards the incomplete record of hurricane 

activity in the North Atlantic Basin and then tested for a trend in the extended basin-

wide record.  Similarly, in fitting a regression model to tropical counts in the 

Australian region with an index of ENSO as a predictor, Solow and Nicholls (1990) 

treated counts prior to 1965 as incomplete.  They then proposed a model for 

estimating the likelihood that an event was observed during the pre-1965 period as a 

means to reconstruct the incomplete portion of the record.  
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In the field of flood frequency analysis another approach based on the concept of 

censoring has gained considerable popularity for dealing with incomplete historical 

information (e.g. Martins and Stedinger 2001; Kuczera 1999).  This methodology 

arose as an approach to deal with circumstances where, in addition, to a continuously 

gauged record of flood flows, there may also exist a partial record of extreme events 

based on documentary accounts or physical evidence of palaeoflood events. 

 

In such cases, the historical or prehistorical record may be complete in terms of 

recording all major events above some local threshold.  Standard statistical 

techniques based on treating the combined record as a censored dataset can then be 

implemented, wherein unobserved, pre-gauged events are classified as censored 

observations.  In the context of historical tropical cyclone accounts, such an approach 

may also prove a feasible technique.  This is because with certain major historical 

storms, particularly those landfalling events causing substantial impacts, there is 

likely to exist reasonable estimates of their magnitude.  A central pressure estimate 

of 914 hPa recorded during the landfall of tropical cyclone Mahina in Queensland in 

1899, which is known to have caused over 300 fatalities (Callaghan 2004), is one 

notable example.       

 

 

3.6 Summary 

 

As is the case in any attempt to define the statistical properties of a hazard process, 

the short period of time for which data has been sampled presents perhaps the 

greatest limitation to better understanding and managing risk.  Most recent studies of 
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tropical cyclone risk in Queensland have opted to limit their analyses to observations 

collected in the post-1960s satellite period.  As demonstrated in this chapter though, 

there are several important issues associated with this decision that amounts to an 

assumption that this record is a representative sample.  To date, no investigation has 

been conducted to test whether such an assumption is justifiable.  Given that several 

methodologies are described in the literature for extending the analysis to include 

past sources of historical information, it is apparent that similar techniques can 

readily be applied in the Queensland context.    

 

The presence of temporal variability in storm behaviour due to natural climate 

variability emphasises a dynamic component to risk that also warrants attention from 

a Queensland perspective.  Furthermore, an in-depth investigation into uncertainty 

levels in simulated event characteristics is needed to address issues of 

representativeness.  Also, recent studies based on examining geological evidence of 

past major storm events have reported results that are at odds with the observed 

history of the process.  This further highlights a need to formally conduct a 

comparative analysis to further evaluate the representativeness of the observed 

record.  
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CHAPTER 4 

 

QUEENSLAND LANDFALLING TROPICAL 

CYCLONES: COUNTS 

 

 

4.1 Introduction 

 

To date, no comprehensive analysis of the frequency and intensity of landfalling 

tropical cyclones in Queensland has been undertaken.  In this chapter Queensland 

landfalling tropical cyclone counts over the period 1910/11-2004/05 are studied.  The 

analysis is largely based on a Bayesian statistical approach.  The best-track record is 

separated into historical (1910/11-1959/60) and instrumental (1960/61-2004/05) eras.   

Through the Bayesian approach historical counts are combined with instrumental 

observations to fit a model for seasonal activity.  This is then extended to a 

regression model incorporating an index of ENSO as a covariate term.  A trend 

analysis is also conducted on the time series to examine for variation in seasonal 

activity over time and in its relationship to ENSO.   

 

The main aim of the analysis is to investigate ways of using earlier historical counts 

to improve inference on the frequency of landfall events.  As mentioned in previous 

chapters, as a consequence of improvements in the observational network in the latter 

half of last century, tropical cyclone observations in the Australian region are 

generally less reliable prior to the 1960s.  The analysis presented here is based on the 
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assumption that landfall events are relatively well represented in the pre-1960s 

record.  Indeed, Holland (1981) noted that most coastal crossing events in the eastern 

Australian region dating back to 1910 would likely have been identified.  

Furthermore, Grant & Walsh (2001) considered data back to 1920 as sufficiently 

reliable for the purposes of investigating the effects of ENSO on Queensland storm 

activity.  Thus, the assumption that an analysis of tropical cyclone landfall 

characteristics in the Queensland region need not be restricted to the post-1960s 

period would appear to be reasonable.   

 

 

4.2 Data 

 

Landfalling events for the period 1910/11-2004/05 were extracted from the BoM 

Australian and Queensland region best-track databases.  Prior to conducting the 

analysis, tropical cyclones that did not attain a minimum central pressure of ≤990 

hPa at some stage during their lifetime were removed.  This follows the approach 

taken by Nicholls et al. (1998) in minimising any potential contamination of the 

record due to observational bias.  Both Nicholls et al. (1998) and Buckley et al. 

(2003) attributed an apparent shift to a lower frequency of events at sometime 

between the late 1970s and mid-1980s to an increased ability to discriminate between 

tropical cyclones and other low-pressure systems.  Thus, the 990 hPa threshold is 

used here to remove weak events that may in fact be other forms of low-pressure 

systems.   
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A landfall was defined here as a tropical cyclone originating in the Coral Sea and 

crossing the mainland east Queensland coast (Figure 2.2).  This definition also 

includes major near-coast islands.  Note also that multiple landfalls of the same 

tropical cyclone were counted only as a single event.  Figure 4.1 shows the time 

series of landfall counts for the period 1910/11 to 2004/05.  Table 4.1 provides 

summary statistics for the series separated into historical and instrumental eras.  The 

90% confidence intervals for the mean listed in Table 4.1 were obtained using a bias-

corrected and accelerated percentile bootstrap method (Efron and Tibshirani 1993) 

employing 1,000 bootstrap samples.  The overlap in confidence intervals for the 

historical and instrumental eras shown in Table 4.1 indicates no significant 

difference, although the mean is somewhat higher during the instrumental era.   
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Figure 4.1  Time series of Queensland tropical cyclone landfall numbers over the 
period 1910/11-2004/05.  Note that only tropical cyclones that attained 
a central pressure of 990 hPa or lower at some stage are counted. 
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Table 4.1  Summary statistics of Queensland landfalling tropical cyclone counts 
separated into historical and instrumental eras. 

 

Quantiles of Mean 
Period Mean Variance 

5% 95% 

1910/11-1959/60 0.68 0.59 0.46 0.90 

1960/61-2004/05 0.82 0.83 0.56 1.07 

 

 

 

 

4.3 Model for Seasonal Activity 

 

Given the time series of seasonal counts, the first step in the development of the 

landfall climatology is a model for seasonal activity.  This section describes the 

adopted model for this variable as well as a methodology for including historical 

observations in the fitting process.  The distribution of counts was taken to follow a 

Poisson process (Solow and Nicholls 1990; Elsner and Bossak 2001; Chu and Zhao 

2004).  The Poisson distribution is a probability model for the frequency of discrete 

random events.  The distribution is characterised by single parameter, λ  , specifying 

the mean rate of event occurrence.  Under this model, the probability of n̂  events 

occurring in T seasons is given by (Elsner and Bossak 2001): 
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The mean and variance of the Poisson distribution are both given as the product of 

λT.  The maximum likelihood estimate of λ  can be determined from the number of 

events n recorded in the sample interval T.   

 

Keim and Cruise (1998) proposed a formal goodness-of-fit test for the Poisson 

distribution.  Specifically, the ratio R̂  of the sample variance to the sample mean is 

compared against a critical value CR  of the chi-squared distribution with m-1 

degrees of freedom, where m is the sample size.  The value of CR  is obtained from 

])1(/[
2

,1 −χ α− mm , where the one-tailed α = 0.10 significance level is used.  If 

α−< 1,C
ˆ RR  or α> ,C

ˆ RR , depending on whether R̂  is less than or greater than 1, the 

Poisson hypothesis is rejected (Keim and Cruise 1998).   

 

 

 

Table 4.2  Summary of Poisson hypothesis test for observed seasonal counts. 
 

Period R̂  
Reject 

Region 
     Decision 

1910/11-1959/60 0.87 <0.75 Do Not Reject  

1960/61-2004/05 1.01 >1.28 Do Not Reject  

 

 

 

Applying this test to the record indicated that the Poisson distribution was an 

acceptable candidate for the series (Table 4.2).  Keim and Cruise (1998) 
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recommended using the α = 0.10 significance level in preference to the standard α = 

0.05 level for the Poisson hypothesis test, as this favours an easier rejection of the 

null hypothesis and thus greater confidence in the distribution should it be accepted.  

An alternative to the Poisson distribution, in the case where the Poisson hypothesis is 

rejected, would be the binomial (negative binomial) distribution when the variance is 

significantly smaller (larger) than the mean.   

 

4.3.1 Combining Historical and Instrumental Counts 

 

Historical counts naturally contain a greater degree of uncertainty due to sampling 

limitations.  Prior to the introduction of remote sensing technologies this may be 

because some tropical cyclones went undetected, or because some systems were 

misclassified as tropical cyclones.  Elsner and Bossak (2001) describe the use of a 

Bayesian approach to deal with this circumstance.  They combine historical counts 

for the period 1851-1899 with reliable observations for the period 1900-2000 to 

make inferences on United States hurricane activity.  The approach supposes that 

instead of disregarding historical counts due to their likely lower level of precision, 

such data can still provide useful information in estimating the seasonal rate of event 

occurrence.  

 

 To effect a Bayesian analysis the Poisson rate parameter λ  is firstly assigned a prior 

distribution.  A natural candidate is the gamma distribution: 
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which is the conjugate prior for the Poisson rate parameter with conditional 

expectation TnE ′′=λ /)( .  In this formulation n′  and T ′  are prior parameters and 

(.)Γ  denotes the gamma function.  Since the gamma distribution is the conjugate 

prior for λ , it can be shown that the posterior distribution for λ  belongs to the same 

distributional family and is also a gamma distribution (Elsner and Bossak 2001; Chu 

and Zhao 2004).  It then follows, given prior parameters n′  and T ′  and the sample 

statistics n and T, the posterior parameters for λ  are given as nnn +′=′′  and 

TTT +′=′′ . 

 

The prior parameters ),( Tn ′′  here represent the contribution of historical 

information, while the sample statistics ),( Tn  summarise the reliable instrumental 

observations.  For the instrumental record there were 37 landfall events in 45 seasons 

(1960/61-2004/05), so n = 37 and T = 45.  Since the earlier historical counts are 

observed with less certainty it is necessary to incorporate this into the estimation 

process through the specification of prior parameters that reflect this lower level of 

precision.  Elsner & Bossak (2001) approach this using bootstrap resampling to 

obtain 90% bootstrap confidence intervals for the historical rate.  These confidence 

intervals allocate a likely range of uncertainty in estimating λ  from historical 

observations.  This effectively acknowledges that while any estimate of λ  from 

historical counts is less precise due to sampling limitations, there are sufficient data 

to conclude that it is falls within the range given by the bootstrap confidence 

intervals (Table 4.1).  The prior parameters obtained here by taking a similar 

approach to that detailed by Elsner and Bossak (2001) were n′  = 24.5 and T ′  = 36.9, 

which gives posterior parameters of n ′′  = 61.5 and T ′′  = 81.9.   
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Figure 4.2 shows gamma distributions on λ  based on prior, likelihood and posterior 

parameters.  It is apparent from this figure that there is only a small difference in the 

location of the densities, although the inclusion of historical data as prior information 

results in a more ‘peaked’ posterior density for λ  than that based on only the 

instrumental counts.  Hence, the use of historical data advantages the analysis by 

reducing uncertainty.  

 

As discussed in Chapter 3, a further advantage of the Bayesian approach is the scope 

it provides for predictive inference on future values of the process.  In this 

framework, uncertainty in both parameter estimates and that due to randomness in 

future observations is conveniently handled.  Specifically, inference on future values 

of the process is made possible with the posterior predictive density.  The predictive 

density under the Poisson-Gamma model structure is a negative binomial distribution 

(Elsner and Bossak 2001; Chu and Zhao 2004).  Thus, the number n̂  of events 

expected in future period T̂ , given values for n ′′  and T ′′ , can be estimated with: 
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with mean TnT ′′′′ /ˆ  and variance ]/)ˆ([/ˆ TTTTnT ′′′′+′′′′ . 

 

Figure 4.2 shows a predictive distribution for a T̂  = 20-season prediction period.  

This indicates that there is about a 85% probability of observing at least 10 

landfalling tropical cyclones (conditional on their attaining a central pressures of 
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≤990 hPa at some stage) over the next 20 years, while there is only about a 10% 

probability of there being at least 20 landfalls. 
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Figure 4.2  Bayesian analysis of landfall counts. (a) Gamma densities on the 

Poisson rate parameter based on prior, likelihood and posterior 
parameters, and (b) predictive distribution for the number of tropical 
cyclone events expected over a 20-year period. 
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4.4 Relationship to ENSO 

 

It is well recognized that tropical cyclone activity in the Australian region exhibits 

marked interannual variability in association with the El Niño Southern Oscillation 

(ENSO) (Solow and Nicholls 1990; Nicholls 1992; Nicholls et al. 1998).  ENSO is a 

coupled atmospheric-oceanic cycle that occurs quasi-periodically in the tropical 

Pacific Ocean on a time scale of 2-7 years.  The importance of this relationship has 

also been established for Coral Sea and Queensland region tropical cyclones (Basher 

and Zheng 1995; Grant and Walsh 2001; McDonnell and Holbrook 2004).  Here it is 

proposed to examine the significance of ENSO as a predictor of seasonal tropical 

cyclone landfall numbers with a regression analysis. 

 

4.4.1 Regression Analysis   

 

Nicholls et al. (1998) employed a linear regression on the August lead SOI and storm 

counts in the entire Australian region as a means to forecast seasonal activity.  Both 

Solow and Nicholls (1990) and McDonnell and Holbrook (2004) adopted a Poisson 

regression model in a similar context using the September SOI.  Poisson regression is 

a special case of the generalised linear model (GLM), which is an extension to the 

classical linear models to include response variables that follow distributions in the 

exponential family (e.g. Poisson, Gamma, Negative Binomial).  The generalisation 

allows a function .)(g  to link the random component of the model, which is the 

probability distribution for the mean of the response variable )(u , to a systematic 

component that describes the predictor variables or covariates ),...,( 1 pxx  

(McCullagh and Nelder, 1989): 
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The GLM is typically fit by way of a maximum likelihood procedure to estimate the 

parameter vector ),...,( 0 pββ=β  using iterative reweighted least squares 

(McCullagh and Nelder, 1989).   

 

Use of a Poisson regression is preferable here due to the relatively small number of 

seasonal counts, and particularly because the series contains multiple zero counts.  

The seasonal ENSO index used in the analysis was obtained from a four-month 

average of the Southern Oscillation Index (SOI), the normalised surface pressure 

difference between Darwin and Tahiti, for the period August to November.  This 

pressure difference is a measure of the strength of the trade winds from regions of 

high pressure in the eastern Pacific to regions of low pressure in the western Pacific.  

Monthly values of the SOI used in the regression model were obtained from the BoM 

(http://www.bom.gov.au/climate/current/soihtm1.shtml).  A four-month SOI average 

is used in preference to a single monthly value because the SOI is known to contain 

significant variability that is unrelated to the ENSO phenomena itself (Trenberth 

1997).  Use of the four-month average filters out some of this noise.  The SOI time 

series is shown in Figure 4.3. 

 

Due to the relatively short length of the instrumental record available for fitting a 

Poisson GLM it is again important to adopt a suitable methodology that uses 

historical records.  In fitting a similar model to tropical cyclone counts in the entire 

Australian region, Solow and Nicholls (1990) adopted an approach to reconstructing 
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the incomplete record of basin-wide counts.  An alternative approach that is 

employed here follows Elsner and Jagger (2004) in adopting a Bayesian strategy to 

fitting the GLM with historical counts used to obtained informative prior 

distributions on the regression parameters. 
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Figure 4.3  SOI time series for the period 1910/11-2004/05, derived from an 
average of August-November monthly values. 

 

 

 

 

The model structure for seasonal counts conditional on ENSO takes the form: 
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This particular structure represents a three-stage hierarchical Bayesian model (see 

e.g. Wikle and Anderson 2003).  At the first stage a Poisson process with rate 

parameter λ  is specified for the data x.  At the second stage a GLM is used to relate 

the log-transformed rate parameter to an index of ENSO, with parameters 

),( 10 ββ=β  describing the strength of the association.  Note that the natural 

logarithm is the canonical link function for the Poisson GLM (McCullagh and Nelder 

1989).  Finally, at the third stage a multivariate normal prior distribution with mean 

vector φ and covariance matrix Σ is assigned to the model parameters.  In fitting this 

particular model the seasonal SOI values were divided by a factor of 10 to allow for 

a more convenient representation of results. 

 

Following Elsner and Jagger (2004) a bootstrap resampling procedure is used to 

estimate the values for φ and Σ from historical counts.  This is accomplished by 

fitting a GLM of the form, SOI)(ln 10 ββ +=λ , individually to 1,000 bootstrap 

samples of the historical counts.  Fitting is done through maximum likelihood.  The 

purpose of using the bootstrap resampling procedure is again to allocate a likely 

range of uncertainty to estimating model parameters from historical records.  For 

each bootstrap sample the parameter estimates ),(
*

1

*

0 ββ=∗
β  are retained, allowing 

φ and Σ to be calculated from the series 
∗∗
10001 ,..., ββ . 

 

Bayesian inference for this model is fairly straightforward with the use of Markov 

chain Monte Carlo (MCMC) techniques such as the Gibbs sampler (Gelfand and 

Smith 1990).  MCMC techniques offer an efficient way of obtaining an empirical 

estimate of the Bayesian posterior distribution, avoiding the need for direct 
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numerical integration in cases where the posterior has no analytical solution. The 

basic principle of MCMC methods is to produce a Markov chain whose state space is 

the parameter space and whose limiting distribution is the target posterior 

distribution )( xθπ .   

 

A Markov chain refers to a model for a system which moves randomly between 

various states in such a way that the transition to the next value in the sequence 

depends only on the current value.  Starting with values to initialise the sampling 

algorithm, the chain is run for a specified length of time, referred to as ‘burn in’, after 

which it will be approximately distributed as )( xθπ .  Features of the posterior 

distribution are then summarised with reference to the sequence after convergence 

has been reached.  Determining the appropriate length of ‘burn-in’ is a particularly 

important component of this process.   

   

The MCMC scheme used here is based on a Gibbs sampler, which successively 

updates the individual parameters of the model conditionally on the current values of 

the other parameters (Gelfand and Smith 1990).   Elsner and Jagger (2004) provide 

an overview of its application to fitting Bayesian GLM’s.  The sampling scheme here 

utilised a 5,000 iteration burn-in period with 10,000 subsequent updates used to 

summarise posterior distributions of the GLM parameters.  Convergence was verified 

by visual inspection of the simulated chains for apparent stability and by repeating 

the process with several different initial values.  Further, autocorrelation functions 

for each chain showed negligible correlations for lags greater than 3 iterations. 
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Figure 4.4  Posterior densities of the GLM parameters using noninformative and 
informative priors. (a) intercept term, and (b) SOI term.  Note that the 
SOI was divided by a factor of 10 in model fitting to approximately 
scale it with the intercept term. 

 
 
 
 
 

Posterior density estimates for the regression parameters are plotted in Figure 4.4.  

These were obtained by applying a standard normal kernel density estimator to the 

post-convergence MCMC samples using the Gaussian reference bandwidth of 
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Silverman (1986).  The posterior density for 1β , representing the influence of the 

SOI, is seen to have a mass largely greater than zero. 

 

To check the sensitivity of the results to the prior specification, the Bayesian GLM 

was also fit with a noninformative prior, thus placing emphasis on the reliable 

sample information (i.e. instrumental record) in the estimation process.  The resulting 

posterior distributions obtained using this noninformative prior are also plotted in 

Figure 4.4.  They indicate that inclusion of historical data as prior information shifts 

the posterior density for 1β  slightly towards zero, suggesting the role of ENSO was 

possibly weaker during the historical era.  The posterior mean for 1β  with the 

historical prior is 0.4059, while for the noninformative prior case the mean is 0.5191.  

Again it can be seen that posterior distributions are less diffuse after inclusion of 

historical information, suggesting that uncertainty in parameter estimates is reduced. 

 

In order to examine the model’s predictive capacity two scenarios representing 

extremes of ENSO were considered.  Predictive distributions for the model are 

readily computed using the post-convergence sequence of the MCMC output.  Figure 

4.5 gives predictive distributions showing the probability of observing a certain 

number of events in a given season conditional on SOI values of –20 and 20.  These 

correspond respectively to a major El Niño and a major La Niña event.  As expected 

these show a marked increase in the probability of observing one or more events 

during a major La Niña event than during a major El Niño event.  For instance, the 

probability of observing two or more landfalls in a season when the SOI = 20 is 

about 43% higher than when the SOI = -20.   
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Figure 4.5  Predictive distributions showing the probability of observing tropical 
cyclone landfalls under two ENSO states as defined by extremes of the 
SOI. 

 

 

 

 

 

 

4.5 Trend Analysis 

 

Traditionally, the simulation of tropical cyclones for the purposes of generating an 

event series is undertaken without regard to possible temporal changes in the 

observed time series of storm events.  In this section landfall counts are analysed to 

detect the presence of trends.  At the outset it is important to acknowledge the 

limitations of the trend analysis due to the less reliable nature of historical counts.  

Nevertheless, it is instructive to identify any trends even if they are the result of 
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artificial causes.  Firstly, an examination of serial correlation in the record is 

provided.  Then, a methodology for the identification of both linear and nonlinear 

trends in the series is presented.  Finally, an investigation into possible temporal 

variability in the relationship between tropical cyclone activity and ENSO is 

addressed. 

 

4.5.1 Trends in Storm Counts   

 

Independence of the seasonal counts was first examined by calculating sample 

autocorrelations for the time series.  The autocorrelation function is a commonly 

used tool for describing the temporal dependence structure of a time series.  It 

graphically highlights how much correlation is present between successive 

observations by plotting correlation coefficients for consecutive lags.   

 

Figure 4.6 shows autocorrelation functions (ACF) and partial autocorrelation 

functions (PACF) for time series of storm counts.  The partial autocorrelation 

function filters out the effect of correlation at shorter lags from the correlation 

estimates at longer lags.  Also shown on these plots are confidence bands for white 

noise or randomness.  These bands give ranges of two standard errors based on the 

sample size.  Inspection of the plots shows insignificant correlations for lags of 1-10 

seasons, suggesting independence in counts from season to season.  This is consistent 

with other tropical cyclone basins (see e.g. Parisi and Lund 2000; Chu and Zhao 

2004), and is not surprising here given the high interannual variability in storm 

numbers that results from the influence of ENSO. 
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Figure 4.6  Serial correlation in storm counts. (a) autocorrelation function for 

seasonal counts, and (b) partial autocorrelation function.  Both plots 
show pointwise 95% confidence bands. 

 

 

 

 

In order to then test for the possibility of a trend over time in seasonal counts, a 

linear trend in the Poisson rate parameter was firstly considered: 
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)(exp 10 taat +=λ ,                 (4.6) 

 

where tλ  is the rate in season mt ,...,1= , with t = 1 corresponding to the 1910/11 

season, and 0a  and 1a  are unknown coefficients.  The exponential function ensures 

λ  is nonnegative.  In fitting this model, interest centres on testing the hypothesis that 

01 =a  (i.e. constant rate over time) against the hypothesis 01 ≠a  (i.e. nonconstant 

rate).  The maximum likelihood estimates of 0a  and 1a  are determined with the 

trend tλ  plotted in Figure 4.7.  The form of this particular trend shows that storm 

activity has apparently increased over time.  This is consistent with results 

summarised in Table 1 where the historical rate is seen to be lower than the 

instrumental rate.  However, the p-value for this fit, as measured by the likelihood 

ratio statistic, is 0.390, which implies the null hypothesis 01 =a  cannot be rejected 

and thus the trend is not statistically significant.    

 

An alternative approach that is perhaps more suitable for examining any underlying 

trend in storm activity is local likelihood estimation (Solow 1989).  Local likelihood 

estimation is a semi-parametric regression technique that offers greater flexibility by 

supposing that the Poisson rate parameter λ  varies smoothly with time, rather than 

being constrained to a specific parametric form such as that given in equation 4.6.  

Fitting involves estimating the function tλ  at each value of t , using observations 

that fall within the neighbourhood of each point.  The value of tλ  is then obtained 

by fitting a low-order polynomial to these neighbouring observations, which are also 

weighted by their proximity to the estimation point.  A local linear model is assumed 
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here with the number of neighbouring observations and their weights determined 

using a bandwidth and a symmetric weight function. 

 

Choice of bandwidth is obviously crucial to this process as too small a bandwidth 

may result in an overly variable fit and too large a bandwidth may give a biased fit.  

Due to the difficulties associated with bandwidth selection in such applications, it 

was decided here to use a range of bandwidths and examine the resulting fits for any 

major differences.  Figure 4.7 shows an estimate of tλ  obtained using nearest 

neighbour bandwidths of 0.25 and 0.40.  These give window widths covering 25% 

and 40% of the data respectively.  The underlying pattern was fairly similar for these 

bandwidths, with an underlying trend of decadal to multi-decadal variability in 

evidence.  

 

A notable feature from the local fits is the rather abrupt increase in the rate at around 

the late 1960s that extends into the late 1980s.  This follows a period of lower 

activity in the 1920s through 1940s.  Given the point at which the increase occurs, a 

possible explanation is one of observational bias.  As the trend is only indicative of 

storms with intensities below ≤990 hPa, there is the possibility of a bias in the record 

caused by the general underestimation of storm intensities in the pre-satellite era.  If 

this were indeed the case, then a number of tropical cyclones in this era would 

actually have attained a maximum intensity of ≤990 hPa, however their recorded 

intensity was given as >990 hPa due to insufficient information.  Holland (1981) 

demonstrated that in the absence of surface observations from the tropical cyclone 

core, storm intensities in the Australian region were likely to be consistently 

underestimated during the pre-satellite era.  Thus, the possibility that the observed 
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drop in activity over the 1920-1940 period is simply an artefact of removing 

observational bias in the series cannot be ruled out. 
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Figure 4.7  Trend in the Poisson rate parameter over the period 1910/11-2004/05.  

Plot shows local linear fits with nearest neighbour bandwidths of 0.25 
and 0.40 as well as global linear fit. 

 

 

 

 

An alternative explanation to the observed pattern is one of natural climate 

variability.  In this case the 1920-1940 period would be characterised as a period of 

reduced tropical cyclone activity along the Queensland coast.  This is in contrast to 

the period 1970/71-1990/91 where activity was evidently much higher.  Activity 
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during the post-1990/91 period was comparatively lower than during the 1970/71-

1990/91 period.  Figure 4.7 also shows that the first decade of the record was fairly 

active in comparison to the following two decades.  Ultimately, it is likely that the 

observed trend reflects the influence of both natural and artificial factors, although 

the degree to which either has influence is difficult to ascertain.   

 

4.5.2 Temporal Variability in the ENSO Relationship 

  

The results of the regression analysis in section 4.4.1 indicated that the relationship 

between ENSO and tropical cyclone activity was possibly weaker during the 

historical era than during the instrumental era.  This raises the possibility of variation 

in the ENSO relationship with tropical cyclone landfalls over time.  A relatively 

simple approach adopted here to examine this was to fit the Bayesian GLM to a 

moving window of the tropical cyclone counts.   

 

Figure 4.4 shows that the mass of the posterior distribution of the regression 

parameter 1β  is greater than zero in both informative and noninformative prior cases.  

A suitable test of significance can therefore be established by requiring 95% of the 

posterior samples generated from the MCMC scheme to be greater than zero for 1β  

to be a significant term at the 05.0=α  level of significance.  By applying this 

criterion to the GLM fit to a moving window of the record, variation in the strength 

of the relationship over time can be examined.  This approach is similar to Elsner et 

al. (2001) who used maximum likelihood fitting of a Poisson GLM to United States 

hurricane counts and ENSO over a 50-year moving window to examine secular 

variability in the relationship over the 20
th
 century.   
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Figure 4.8 shows the application of this approach with a 40-year moving window of 

the tropical cyclone record from 1910/11 to 2004/05.  The p-values on the y-axis 

measure the significance of 1β  as a term in the model, with values greater than 0.05 

indicating that the SOI term is not significant.  This amounts to implying that the 

inclusion of an index of ENSO offers no improvement over a null model (i.e. the 

climatological mean rate). 
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Figure 4.8  Strength of the association between tropical cyclone landfalls and 

ENSO over a 40-year moving window of the record.  Significance is 
established when the curve falls below the dashed line. 

 

 

 

Each p-value in Figure 4.8 corresponds to a successive fit of the model in equation 

4.5 using a noninformative prior.  The first point plotted in the figure gives the p-
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value for the fit to the period 1910/11-1949/50, the second for the period 1911/12-

1950/51, and so on up to 1965/66-2004/05.  Interestingly, the plot highlights a 

pattern whereby there is an absence of a significant association between the SOI and 

Queensland landfall activity over much of the early half of last century.   

 

 

4.6 Summary  

 

The analysis presented in this chapter has demonstrated that the Bayesian 

methodology provides a useful framework for incorporating historical information 

when analysing the frequency of tropical cyclone landfalls in Queensland.  Results 

show that inclusion of historical counts led to parameter estimates for a model of 

seasonal activity that has a lower level of statistical uncertainty than a model based 

on only the instrumental record.  Similar conclusions apply for a regression model 

incorporating an index of ENSO as a predictor for seasonal activity.  The regression 

analysis confirmed the importance of ENSO’s influence on tropical cyclone landfalls 

in the region.  The Bayesian approach also facilitates predictive inferences on future 

landfall activity within a probabilistic framework.  Example predictions are plotted in 

Figures 4.2 and 4.5. 

 

A trend analysis highlighted no evidence of temporal dependence in storm counts as 

well as no indication of a significant upward or downward trend in activity over time.  

A Poisson local likelihood fit to the time series did indicate the presence of decadal 

variability in storm activity.  It should be noted though that because of the relatively 

small number of observed landfalls, sampling variability is likely to influence the 
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results of the trend analysis.  Random fluctuations in small samples may either mask 

the presence of a trend, or alternatively, result in mistakenly interpreting the presence 

of a trend.  This combined with both the assumptions of the analysis and the 

uncertain nature of historical records makes trend identification difficult.  For these 

reasons it is not possible to conclusively state whether the observed pattern of 

decadal variability solely reflects natural causes.  

 

The results of an analysis into temporal variability in the relationship between ENSO 

and tropical cyclone counts shows the lack of a significant association between these 

variables during the early half of last century.  Whether this reflects an actual trend 

of decadal variability in the relationship, or is simply indicative of the less precise 

nature of storm counts in the historical era is again difficult to decipher.  It is known, 

however, that the strength of ENSO teleconnections with climate patterns in the 

northeast Australian region are modulated on decadal time scales (Power et al. 1999).     
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CHAPTER 5 

 

QUEENSLAND LANDFALLING TROPICAL 

CYCLONES: INTENSITIES 

 

 

5.1 Introduction 

 
While knowledge of the frequency with which landfalling tropical cyclones occur is 

an essential component of the climatology, it is also important to have an 

understanding of the frequency with which extreme events occur.  Clearly though, 

the relatively short time period over which reliable observations are available in the 

region combined with the rarity of major landfalling events over recent decades 

complicates any analysis of the statistical properties of extremes.  The historical 

record of landfalling events again provides a useful source of information on such 

events for the period before the era of satellite monitoring.  Furthermore, during this 

era there were several storms with landfall intensities greater than that observed in 

the recent satellite record.   

 

This chapter constitutes an analysis of Queensland landfalling tropical cyclone 

intensities and follows along similar lines as that presented in the previous chapter.  

It focuses primarily on approaches for incorporating historical observations.  After a 

description of the data, the first part of the chapter deals with the application of a 

Bayesian approach to make use of historical observations obtained before 1960/61 as 
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prior information in fitting an extreme value model to a time series of minimum 

central pressures.  The emphasis here is on examining the ways that historical 

information can assist predictions of the probability of major landfall events.  An 

alternative methodology based on a censoring procedure is then presented as means 

to verify results obtained from the Bayesian analysis.  An investigation into detecting 

trends in storm intensities over the 20
th
 century is then conducted by fitting simple 

trend functions in the extreme value model.  This approach is also employed to 

examine any possible effect of ENSO on storm intensities.   

 

 

5.2 Data 

 

The best-track database of tropical cyclone observations in the Australian region 

again forms the basis of the data used in this analysis.  Following the approach taken 

in the previous chapter storms that did not attain a minimum central pressure of 990 

hPa or lower at some stage were firstly removed.  A separation of the record into an 

instrumental era (1960/61-2004/05) and an historical era (pre-1960/61) was again 

adopted.  In addition, the historical record was extended to include events dating 

back to the 1898/99 season so as to make use of all major recorded landfall events.  

Historical records of storm intensities extracted from the best-track database were 

also supplemented with accounts of major tropical cyclones impacting Queensland 

documented by Callaghan (2004), which includes information on landfall central 

pressures not recorded in the best-track database.   
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In the main, observations of storm intensity in the historical era would be expected to 

be less reliable than for storms sampled in the instrumental era.  An examination of 

the quality of the Australian best-track database by Holland (1981) indicates that the 

chief cause of this lower reliability was a lack of surface measurements from the 

inner region of the tropical cyclone.  This often resulted in minimum central 

pressures for a number of storms being overestimated (i.e. storm intensities being 

underestimated).   
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Figure 5.1  Time series of minimum central pressures for Queensland landfalling 

tropical cyclones over the period 1898/99-2004/05. 
 

 

 

As with the previous chapter, it is assumed here that historical landfall observations 

are more reliable than observations for the Coral Sea region as a whole due to the 



 75 

increased likelihood of obtaining a direct surface measurement at coastal locations.  

The time series of minimum central pressures used in the analysis is shown in Figure 

5.1.  Note that a few landfall storms during the historical era did not have central 

pressure measurements at or near the time of landfall and hence were not used in the 

subsequent analysis. 

 

 

5.3 Distribution of Storm Intensity 

 

Tropical cyclone intensity is typically characterised by either the lowest central 

pressure or maximum wind speed.  Measurements of maximum wind speeds in 

tropical cyclones are far less complete in the best-track database, and as such 

minimum central pressures are more commonly used as an indicator of severity 

(Holland 1981).  The analysis conducted here is based on fitting a probability 

distribution to the lowest observed central pressure series shown in Figure 5.1.   

 

5.3.1 Extreme Value Analysis 

 

When interest is in modelling the extremes of a given process, classical extreme 

value theory offers a suitable framework for estimating event probabilities including 

those beyond the range of the observed sample.  The fundamental basis of the theory 

is that for a sufficiently long sequence of independent and identically distributed 

random variables, their maxima (or minima) are described by one of three basic 

families; Gumbel, Fréchet or Weibull types.  As these extreme values distributions 

are formally justified as limiting distributions for the maxima (or minima) of random 
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variables they have theoretical motivation for examining the statistical properties of 

physical processes at high levels.  The three types are more conveniently combined 

into a single family, known as the Generalised Extreme Value (GEV) distribution 

(Coles 2001): 
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In this model ξ, σ and κ are location, scale and shape parameters respectively.  

Importantly, the value of the shape parameter determines the nature of the upper tail 

of the distribution.  Specifically, the case κ > 0 corresponds to the heavy-tailed 

Fréchet type, κ < 0 to the Weibull type with bounded upper tail, and in the limit as κ 

→ 0 the Gumbel distribution is obtained.  Note that the model given in equation 5.1 

applies to the distribution of maxima.  To fit the model to sample minima (e.g. 

minimum central pressures) requires a transformation of the observed values 

),,( 1 mxx …  to their negatives ),,( 1 mxx −− … .  

 

In practical applications the GEV distribution has been widely used to model the 

extremes of various processes like floods, sea levels, rainfall, wave heights and wind 

speeds (see e.g. Coles 2001; Martins and Stedinger 2001; Katz et al. 2002).  The 

model is particularly suitable for most environmental time series because of its 

asymptotic basis and flexible range of tail behaviours. 
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The GEV distribution provides a model for the behaviour of block maxima, wherein 

a block refers to a fixed period of time (e.g. year, season) for which the maximum 

observed value is used in the analysis.  This is particularly important when results are 

interpreted in terms of return periods that are typically presented on an annual scale.  

Due to both the infrequent nature and high interannual variability of tropical cyclone 

landfalls, however, use of a seasonal block consisting of the lowest central pressure 

value for each season results here in a series containing missing values.  Over the 

period of record there were several seasons in which no tropical cyclones, that 

reached central pressures of at least 990 hPa at some stage, crossed the Queensland 

coast.  One strategy that could be implemented in this instance is to increase the 

block size and use the largest value from, for instance, every two consecutive 

seasons.  However, this approach leads to the loss of valuable information in an 

already data scarce series. 

   

Another potential drawback of the block maxima approach is that only the largest 

value from each block (in this case each season) is utilised and other large events in 

the season are discarded regardless of their magnitude.  In the present case, the 

occurrence of more than one extreme landfall event in a particular season is not 

common, although there have been several active seasons (e.g. 1917/18, 1970/71) in 

which multiple severe tropical cyclones made landfall.   

 

For these reasons the use of an alternative extreme value model based on 

exceedances over high thresholds is preferred here.  The primary motivation for 

implementing a threshold approach is that it does not require a value for each season 

to conduct the analysis and also because it makes use of all available data on 
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extremes.  In its most common form the threshold exceedances approach 

incorporates two components: 

 

• The number of exceedances of a given threshold (u) follows a Poisson 

distribution with rate parameter λ , and; 

• The excesses follow a Generalised Pareto Distribution (GPD). 

 

The GPD is the asymptotic distribution used to describe the behaviour of 

independent events exceeding a sufficiently high threshold.  With a Poisson process 

describing the annual exceedance rate, the Poisson-GPD model is closely related to 

the GEV distribution for annual maxima (Davison and Smith 1990; Coles 2001).  

Defining a threshold exceedance as uxuxy iii >−= , , the GPD with shape (κ) and 

scale (σ) parameters is given by:  
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As with the GEV distribution the shape parameter in equation 5.2 gives 3 cases; 

when κ > 0 the distribution of excesses is unbounded, when κ < 0 the distribution 

has an upper bound at κσ− /u , and in the limit as κ → 0 the exponential 

distribution is obtained.  The motivation for equation 5.2 as a model for extremes is 

that it arises as a limiting distribution for the excesses over high thresholds if the 

parent distribution is in the domain of attraction of the GEV distribution.  As such, 
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the GPD shape parameter κ is equivalent to that of the corresponding GEV 

distribution (Coles 2001).   

 

Common methods of the parameter estimation for the GPD, for known threshold, 

include those based on maximum likelihood (ML), moments and L-moments.  Due to 

its asymptotic properties and general flexibility, the maximum likelihood approach is 

initially employed here.  Given the sequence of independent observations of a 

random variable ),,( 1 mxxx …= , which is assumed to belong to a specific 

parametric family )( θxf  with the parameter vector θ , the maximum likelihood 

estimator of θ , given x, is obtained by maximizing the likelihood (or log-likelihood) 

function:  
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The maximum likelihood procedure for the GPD requires an iterative solution for 

),( κσ=θ  by maximising the log-likelihood of equation 5.2.  Given the sequence of 

m excesses (i.e. myy ,...,1 ), this is given by (Coles 2001): 
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In this case estimation of the threshold crossing rate component can be separated 

from estimation of the GPD parameters.  An estimate of the T-year return level is 

then given by: 
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where u, σ, κ and λ  are substituted by their sample estimates. 

 

Also crucial to the application of this Poisson-GPD model is the estimation of the 

threshold level (u).  Ultimately, there is a need to compromise between selecting a 

sufficiently high threshold so as to conform to the asymptotic basis of the model, yet 

at the same time obtain a sufficiently large sample to minimise sampling error.  A 

useful property of the GPD is that of ‘threshold stability’, where if the GPD 

assumption is valid for the threshold 0u , it should equally be valid for all thresholds 

0uu >  (Coles 2001).  It also follows that for 0uu >  the expectation of the excesses, 

( )uxux >−E , is a linear function of u.  Thus, a common method of threshold 

selection is the mean excess plot, comprising a plot of a range of thresholds against 

their mean observed excess to identify approximate linearity (Davison and Smith 

1990; Coles 2001).   

 

In Figure 5.2 a mean excess plot for the instrumental portion (1960/61-2004/05) of 

the time series of minimum central pressures is given.  This shows approximate 

linearity across the threshold range.  The downward trend evident in the plot is 

consistent with a distribution bounded from above (i.e. κ < 0).  Hence, the GPD was 

fit to this series with a threshold of 1002 hPa so as to include all events, conditional 

on them having obtained a minimum central pressure of 990 hPa or lower at some 

stage.  Parisi and Lund (2000) also used this threshold when fitting the GPD to 

United States landfalling hurricane central pressures.  Subsequent maximum 
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likelihood estimates of the GPD parameters are σ̂  = 39.9, κ̂  = -0.679, and for the 

threshold exceedance rate, λ̂  = 0.822 (37 events in 45 seasons).    

 

 

 

995 980 965 950

Threshold (hPa)

0

5

10

15

20

25

M
e
a
n
 E
x
c
e
s
s
 (
h
P
a
)

a

Return Period (Years)

990

970

950

930

910

10 100 1000

b

C
e
n
tr
a
l 
P
re
s
s
u
re
 (
h
P
a
)

0.0 0.2 0.4 0.6 0.8 1.0

Empirical

0.0

0.2

0.4

0.6

0.8

1.0

M
o
d
e
l

c

1000 990 980 970 960 950

Model

1000

990

980

970

960

950

E
m
p
ir
ic
a
l

d

 

 
Figure 5.2  Plots of GPD fit to landfalling central pressures for the period 1960/61-

2004/05 (a) Mean excess plot, (b) return period plot, (c) probability 
plot, and (d) quantile plot. 

 

 

Figure 5.2 also shows a return period curve for the fitted model as well as probability 

and quantile plots.  As detailed by Coles (2001), the probability and quantile plots 
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are diagnostic tools for assessing the goodness-of-fit between the model and raw 

observations.  These plot exceedance probabilities and quantiles for the model 

against a ‘distribution-free’ empirical estimate of these quantities.  The empirical 

distribution function )(ˆ xF  used to estimate these quantities is defined by the rank 

mean plotting positions, )1(/ +mi , where i is a rank for each ordered observation 

and m is the sample size.  This is an unbiased, nonparametric estimate with no 

assumption made regarding the distribution type.  The plots shown in Figure 5.2 

highlight that a reasonable fit is obtained with the adopted threshold. 

 

5.3.2 Incorporation of Historical Information 

 

Given the utility of the Bayesian approach for incorporating historical observations 

of storm counts, it seems natural to extend this approach to the case of modelling 

landfall intensities.  The ability to incorporate prior information sources is recognised 

to offer an advantage over conventional techniques in estimating extreme value 

distributions from small samples (Coles and Powell 1996).  The approach adopted 

here is analogous to that presented in the previous chapter, whereby historical 

observations are incorporated through the specification of prior distributions for the 

model parameters.   

 
 

With a fixed threshold, estimation of the GPD parameters ),( κσ  can be assumed 

independent from estimation of the threshold exceedance rate, which is governed by 

a Poisson process with rate parameter λ .  As the analysis here uses the entire series 

of landfall events, the threshold crossing rate is equivalent to the seasonal rate of 



 83 

tropical cyclone occurrence, estimation of which was discussed in the previous 

chapter.   

 

In the Bayesian context, the GPD parameters are considered random variables with 

prior distributions assigned.  The choice of prior structure is an important step in a 

Bayesian analysis, although there are relatively few examples in the literature for the 

GPD case.  Coles and Powell (1996) adopted a multivariate normal distribution as a 

prior for parameters of the GEV distribution fit to wind speed data in the United 

States.  In their study wind speed records from multiple sites were aggregated to 

construct an informative prior.  Adopting a similar prior distribution, the model 

structure used here is summarised as follows: 

 

{ }

{ } ,),(MVN~,)(ln

,)(logGPD~

Σκσ

κσ

φ

iy
                (5.6) 

 

where φ and Σ are respectively a vector of means and covariance matrix for the 

multivariate normal distribution.  Log-transformation of the scale parameter σ, 

constrains it to positive values in the estimation process.  Like the analysis presented 

in the previous chapter, the values of φ and Σ are determined empirically by using the 

maximum likelihood procedure to estimate },)ln({ κσ  from 1,000 bootstrap samples 

of the historical series (1898/99-1959/60) of minimum central pressures.  

 

Histograms of the GPD shape and scale parameters based on the bootstrap samples 

are shown in Figure 5.3.  Also shown are bootstrap sampling distributions obtained 

from applying the same procedure to the instrumental series.  Of note is the tendency 
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for estimates of the shape parameter from the historical series to be less negative than 

for instrumental series, indicative of a longer-tailed distribution. 
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Figure 5.3  Bootstrap sampling distributions of GPD parameters. (a) shape 

parameter for instrumental series, (b) scale parameter for instrumental 
series, (c) shape parameter for historical series, and (d) scale parameter 
for historical series. 

 

 

Bayesian inference for the model given in equation 5.6 is made possible with the use 

of Markov chain Monte Carlo (MCMC) methods.  As outlined in the previous 
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chapter, this involves simulation from a Markov chain whose equilibrium 

distribution is the target posterior distribution.  The adopted procedure employs a 

Gibbs sampler, which successively updates individual parameters conditional on the 

current values of the other parameters (Gelfand and Smith 1990).  An additional step 

in the Gibbs sampling algorithm is further necessary to account for the conditional 

distributions not being of standard form, and hence not directly available for 

sampling.  This can be overcome by including a Metropolis-Hastings step with 

random-walk proposals at each parameter update of the Gibbs sampler (see e.g. 

Coles and Tawn 1996).  

  

A 100,000 burn-in period was used with 200,000 subsequent updates of the MCMC 

algorithm used to summarise posterior distributions.  The sampling process 

incorporated a thinning interval of 10 iterations to reduce dependence between 

successive parameter updates.  Visual inspection of the chains and the use of 

multiple starting values indicated stability was reached and that the chains were 

exploring parameter space sufficiently.  The resulting posterior densities for ),( κσ  

are plotted in Figure 5.4.  The posterior distribution for κ  gives convincing evidence 

for this parameter to be negative { )0(Pr >κ  < 0.001) and thus for the distribution of 

excesses to have an upper bound.  Combining the posterior distributions for ),( κσ  

with an estimate of the threshold exceedance rate gives posterior densities of return 

periods under the Poisson-GPD model.  Figure 5.5 shows examples for 50 and 100-

year return periods.   

 

When interest is in predictive inference, the Bayesian approach also allows an 

estimate of the probability of future events reaching extreme levels through the 
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posterior predictive density.  Specifically, the probability of the level z not being 

exceeded during a year (season) is given by: 
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Figure 5.4  Posterior distributions of GPD parameters as estimated using Bayesian 
statistical approach. (a) scale parameter, and (b) shape parameter. 
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Substitution of the parameter values ),( iiiθ κσ=  at each update from the MCMC 

output (post-convergence) into equation 5.7, and subsequent averaging across the 

sequence allows a predictive distribution to be obtained.  Figure 5.6 shows 

predictions for the probability of observing landfalling tropical cyclones covering a 

range of intensities over 5 and 10-year periods.  Taking the cases of tropical cyclone 

Mahina (914 hPa) and the 1918 Innisfail (926 hPa) and Mackay (930 hPa) events as 

the three most intense in the record, this plot shows that there is respectively a 3.7%, 

13.6% and 19.5% chance of a future landfalling event reaching similar intensities in 

the next 10-years.  These events could be expected to occur on average once within a 

period of around 254-years (914 hPa), 66-years (926 hPa), and 44-years (930 hPa). 
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Figure 5.5  Posterior distributions of 50-year and 100-year return periods under 

Poisson-GPD model fit to landfall minimum central pressures. 
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Figure 5.6  Predictive distributions showing probability of tropical cyclones of 
various intensities occurring in five and ten-year periods. 

 

 

 

 

5.3.3 Validation 

 

In order to investigate the suitability of the Bayesian model for incorporating 

historical observations an alternative approach is considered in this section for the 

purposes of verification.  This approach is based on treating the combined historical 

and instrumental record as a censored dataset.  As discussed in Chapter 3, application 

of this approach has been extensive in the field of flood frequency analysis where the 

value of historical and palaeoflood information has long been recognised (see e.g. 

Kuczera 1999; Martins and Stedinger 2001).  This procedure relies on the definition 

of a fixed magnitude threshold Mu , above which historical data on event magnitudes 

are available, but below which historical data are unknown.  As shown in Figure 5.7 
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this case is commonly referred to as type I censoring, whereby the unobserved 

historical values below Mu  are censored. 
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Figure 5.7  Outline of type I censoring for fitting threshold exceedances to 

instrumental and historical records. 
 

 

 

 

In the context of this analysis, events that fall below Mu  are treated as unknown in 

the context that they do not necessarily have reliable measures of intensity.  Thus, in 

addition to having a complete series of reliable sample values  (i.e. the instrumental 

series), there is also an historical record that is complete only in the sense that it 

contains all sample values above some fixed magnitude threshold.  The historical 
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storms of particular relevance here are tropical cyclone Mahina (914 hPa) and the 

two tropical cyclones of 1918 that struck Innisfail (926 hPa) and Mackay (930 hPa).  

It is likely due to both the severity and impact of these storms that their recorded 

intensities are relatively accurate measures of their magnitudes.  The censoring 

procedure used here is based on the assumption the historical record is complete in 

its recording of major events above Mu .    

 

Based on the situation depicted in Figure 5.7, an historical period of 62-seasons 

(1898/99-1959/60) was assumed, in which three tropical cyclones with known 

intensities exceeded a value of Mu  equal to 935 hPa.  The value of Mu  was selected 

arbitrarily, although was set high so as to minimise the possibility that a greater 

number of historical storms could have exceeded this threshold.  This amounts to 

treating the historical record as complete for tropical cyclones with central pressures 

lower than 935 hPa.  Martins and Stedinger (2001) give the maximum likelihood 

procedure for estimating a Poisson-GPD model that implements the type I censoring 

approach.   

 

Figure 5.8 compares the fitted Poisson-GPD models using the Bayesian and 

censoring approaches considered in this study.  The return period curve for the 

Bayesian analysis is seen to compare relatively well with that based on the censoring 

approach.  The curve for the Bayesian analysis plots the posterior predictive 

distribution for a 1-year period, which has the advantage of implicitly accounting for 

parameter uncertainty.  Maximum likelihood estimates are σ̂  = 32.3 and κ̂  = –0.307 

for the censoring approach, which compares favourably with the Bayesian posterior 

mean estimates of σ̂  = 35.4 and κ̂  = –0.362. 



 91 

Figure 5.8 also plots the return period curve for the model fit to only the instrumental 

record.  Both Bayesian and censoring approaches indicate the importance of using 

historical information in the analysis as a means to predict the frequency of extreme 

events.  Both approaches also show how model estimation is most sensitive to the 

largest events in the series.  Thus, an analysis that only makes use of the information 

available in the instrumental record would lead to comparatively lower predictions 

on the frequency of major tropical cyclone events making landfall in the Queensland 

region. 
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Figure 5.8  Comparison of return period curves based on fitting GPD to tropical 

cyclone intensities. 
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5.4 Trends and the Effect of ENSO  

 

The identification of trends in the frequency of extremes is problematical given the 

limited amount of data on such events.  A cursory examination of the time series of 

minimum central pressures (Figure 5.1) highlights periods of both heightened and 

reduced activity in intense storm occurrences.  A peak in the incidence of severe 

tropical cyclones occurred early in the time series with a secondary peak around the 

early 1970s.  Notable inactive periods are apparent over the 1920-1940 period and in 

the more recent post-1990/91 period.   

 

Serial correlation in the time series of minimum central pressures was firstly 

examined in this section using autocorrelation plots similar to those presented in the 

previous chapter.  The analysis proceeds by then fitting a linear trend in the 

probability model for minimum central pressures to investigate the presence and 

significance of any underlying temporal pattern.  Finally, an investigation into the 

effect of ENSO on extremes is conducted. 

 

Figure 5.9 shows autocorrelation and partial autocorrelation functions for the raw 

time series plotted in Figure 5.1.  The autocorrelation and partial autocorrelation 

plots provide a graphical indication of the temporal dependence structure of the 

series by highlighting correlation between successive observations at various lags.  

Inspection of the plots highlights no indication of temporal dependence in the series 

with correlations for lags of 1-10 observations falling within the 95% confidence 

bands for randomness. 
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Figure 5.9  Serial correlation in storm intensities. (a) Autocorrelation function for 

seasonal intensities, and (b) partial autocorrelation function for the 
series.  Both plots also show 95% confidence bands. 

 

 

5.4.1 Time Trends 

 

One common approach to modelling a trend in extremes is to allow the parameters of 

the model to vary with time according to a specific parametric function.  Both Coles 
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(2001) and Katz et al. (2002) give examples of fitting such trend functions to 

parameters of extreme value distributions.  Here a linear trend in the log-transformed 

scale parameter (σ) of the GPD distribution for minimum central pressures is 

considered: 

 

taa 10)(ln +=σ  ,                 (5.8) 

       

where t is an index for time.  Estimating the parameters of this model by maximum 

likelihood leads to a log-likelihood of –295.9.  The log-likelihood for the standard 

model without a trend (i.e. 1a  = 0) is –303.2.  Comparison of the models is possible 

using the deviance statistic )(D , defined by Coles (2001) as: 

 

})()({2 01 xθxθD ℓℓ −= ,                    (5.9) 

 

where )(0 xθℓ  and )(1 xθℓ  are respectively the maximised log-likelihood of the 

standard model with no trend and the maximised log-likelihood of the model with a 

trend.  This statistic is used to compare nested models to determine if there is strong 

evidence for favouring the more complex model structure.  A large value of D would 

imply that the trend model explains significantly more variation in the data than a 

model in which parameters are fixed.  Formally, the standard model )(0 xθℓ  is 

rejected by a test at the α-level of significance if α> CD , where αC  is the (1- α) 

quantile of the 2χ  distribution (Coles 2001).   
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The value of D obtained by testing the linear trend model against the standard model 

is 14.6.  The critical value of αC  for the test of significance is 3.84, which indicates 

strong evidence (p-value < 0.01) for a linear trend in extremes.  The form of this 

particular trend indicates that storm intensities have decreased over time.  Figure 

5.10 shows the median of the fitted GPD with the trend in the scale parameter given 

by equation 5.8.  This shows minimum landfall central pressures increasing from 

about 967 hPa to about 984 hPa over the period of record.  The possibility of a 

quadratic trend in the scale parameter was investigated and also found to be 

significant (p-value < 0.01), although offered no real advantage over the linear trend 

model.  

 

While there is statistical evidence to suggest that the trend is significant, it is 

apparent from Figure 5.10 that there is considerable scatter in the series.  Ultimately 

there is no physical reason here to suppose that a linear trend will describe the 

underlying process well.  Moreover, given both the relatively small number of 

sample exceedances available and the less reliable nature of the historical 

observations it is difficult to draw conclusions on the practical significance of the 

trend.  It is likely though that the downward trend in storm intensities over time is not 

an artificial feature given that the largest three events occurred in the first portion of 

the series and have relatively accurate estimates of their intensities.   

 

5.4.2 ENSO Effects 

 

Chapter 4 showed that the El Niño Southern Oscillation (ENSO) has a dramatic 

effect on year-to-year landfall numbers in Queensland.  These results are consistent 
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with previous studies demonstrating a significant relationship between ENSO and 

tropical cyclone activity in Australia (e.g. Nicholls et al. 1998) and in Queensland 

(e.g. Grant and Walsh 2001).  The effect of ENSO on storm intensities has, however, 

not been quantified in previous studies. 
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Figure 5.10  Estimate of median of the fitted GPD for storm intensities incorporating 

a linear trend in scale parameter for (a) time, and (b) the SOI. 
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In order to investigate the influence of ENSO on landfalling intensities the following 

model was considered: 

 

SOI)(ln 10 bb +=σ                (5.10) 

 

where SOI is the Southern Oscillation Index averaged over the period August to 

November (Figure 4.3) for the season in which each event occurred.  This amounts to 

replacing time (t) as a covariate term in equation 5.8 by an index of ENSO in the 

trend function for the log-transformed GPD scale parameter.  Using the significance 

test described in the previous section, the value of the deviance statistic obtained for 

this model is 1.6 (p-value = 0.211), which indicates that a model without the SOI 

trend (i.e. 1b  = 0) is acceptable.  Figure 5.10 shows the effect of the SOI on the 

median of the fitted GPD distribution, and indicates that any such effect is very 

weak.   

 

 

5.5 Summary 

 

There is a clear indication from the analysis presented in this chapter, as well as in 

the previous chapter, that there are advantages to considering historical information 

when investigating the frequency and intensity of Queensland landfalling tropical 

cyclones.  The results show that combining historical and instrumental records leads 

to a greater level of certainty in describing the statistical properties of landfalling 

storms.  The inclusion of historical observations of storm intensities through the 

Bayesian approach is also seen to result in markedly different predictions on the 
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frequency of extremes than would be expected from an analysis based solely on the 

instrumental record.  This was subsequently confirmed with the application of a 

censoring-based methodology to incorporate major historical events.  This difference 

appears to reflect predominantly the influence of the largest few events occurring 

prior to the beginning of satellite detection and monitoring techniques.  The location 

of these events at the beginning of the time series is also suggestive of a significant 

downward (upward) trend in storm intensities (minimum central pressures) over 

time.   

 

The results of the trend analysis indicated that ENSO appears not to have a 

significant effect on the intensity of landfalling tropical cyclones.  It is likely that the 

slight tendency for more extreme events to occur under La Nina conditions (see 

Figure 5.10) simply reflects the influence of ENSO on tropical cyclone activity.  This 

is consistent with Nicholls et al. (1998), who regarded the role of ENSO as important 

in dictating the broad environmental conditions leading to tropical cyclone genesis in 

the Australian region, but as having little or no influence on the intensity of a storm 

once developed. 

 

It is important to note that the results obtained here apply to landfalls along the entire 

Queensland coast.  Spatial variability in landfall event characteristics due to 

environmental conditions is likely to be an important factor.  For instance, the 

northern-most latitudes of the Queensland coast appear less likely to experience a 

major landfall event due to the inherent polewards movement of tropical cyclones 

combined with few having origins within 5-10
0
 of the equator.  Similarly, at 

subtropical latitudes a combination of lower sea surface temperatures and an 
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increasingly sheared environment means that most events crossing the coast here are 

naturally weaker than those crossing the tropical coast.  It should also be noted that a 

tropical cyclone’s central pressure does not alone necessarily provide a good 

indicator of potential impacts, with other factors such as the tropical cyclone’s spatial 

scale and forward speed also being important (Callaghan and Smith 1998). 
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CHAPTER 6 

 

A SIMULATION MODEL DERIVED FROM CORAL 

SEA REGION TROPICAL CYCLONES 

 

 

6.1 Introduction 

 

Through the combination of historical and instrumental records a greater insight into 

the statistical properties of Queensland landfalling tropical cyclones has been gained.  

The intent of this chapter is to provide a basis for testing the representativeness of the 

regional Coral Sea record over the period 1960/61-2004/05 against this landfall 

climatology.  This is approached through the development of a simulation scheme 

from the Coral Sea record that can be employed to generate a series of landfalling 

events and thus serve as a means to facilitate a comparison with the observed record.   

 

By considering a wider geographical region for which to develop a climatology an 

attempt is made to overcome the limited amount of data directly available in the 

landfall record.  This, however, comes at a cost of having to shorten the time period 

for analysis, because historical observations from the pre-satellite era are far less 

reliable over the entire Coral Sea region than for landfall events.  For this reason it is 

essential to assess the representativeness of this shortened temporal record to ensure 

it provides a reasonable basis for simulating events.  This chapter outlines details of a 

simulation model that was developed for this purpose.  This analysis makes use of 
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only Coral Sea observations from the instrumental era covering the period 1960/61-

2004/05.   

 

The chapter begins with an overview of available data for Coral Sea tropical 

cyclones.  The identification of trends and the effects of ENSO on tropical cyclone 

frequency and intensity are then addressed.  Details of a simulation model for 

generating tropical cyclone tracks and central pressures from this record is then 

described.  The simulation model described herein attempts to capture the observed 

spatial and temporal characteristics of Coral Sea events by combining a relatively 

simple model for simulating track paths with an extreme value model for minimum 

central pressures with parameters that depend on the simulated track.  

 

 

6.2 Data 

 

The analysis again utilises the best-track database of tropical cyclone observations in 

the Australian region.  From this database all tropical cyclones originating in the 

Coral Sea region and reaching their maximum intensity while tracking west of 165
0
E 

were extracted.  Only events recorded during the instrumental period 1960/61-

2004/05 were included in the model development.  Furthermore, to be consistent 

with the analysis in previous chapters only tropical cyclones that reached a minimum 

central pressure of at least 990 hPa at some stage during their lifetime were retained.  

The data takes the form of locational fixes of the storm’s track (longitude and 

latitude) at six-hourly intervals along with the corresponding central pressure.  The 

dataset comprises 108 tropical cyclones with 37 landfalling events and 71 
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nonlandfalling events.  The maximum number of tropical cyclones in a season was 

nine, with three seasons recording no events.  Figure 6.1 shows the time series of 

storm counts and minimum central pressures for the sample period. 
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Figure 6.1  Time series of Coral Sea tropical cyclones over the period 1960/61-
2004/05. (a) storm counts and, (b) minimum central pressures. 
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6.3 Trends and Climate 

 

Before proceeding with the development of the regional simulation model, an 

investigation into trends and climate effects on the time series plotted in Figure 6.1 is 

firstly undertaken.  This employs similar techniques used in Chapters 4 and 5 for the 

landfall record.  Temporal dependence is firstly checked using autocorrelation plots.   

Linear and nonlinear time trends in the series are then investigated by fitting trend 

functions in the parameters of the adopted models for these variables.  Lastly, the 

effect of ENSO on both seasonal activity and intensity is examined.  

 

6.3.1 Counts 

 

Over the 45 season instrumental era (1960/61-2004/05) a total of 108 regional 

tropical cyclone events were recorded, giving a mean rate of 2.4 events per season 

with a sample variance of 2.7.  Application of the goodness-of-fit test for a Poisson 

process described in Chapter 4 indicated that the Poisson distribution was a suitable 

candidate for the series.  Sample autocorrelation and partial autocorrelation plots for 

the series are graphed in Figure 6.2 against pointwise confidence limits for white 

noise.  These demonstrate how much correlation is present between lagged 

observations with the confidence limits used to assess independence.  Inspection of 

these plots indicates that storm counts are not serially correlated.   

 

Under the assumption that counts follow a Poisson distribution, the possibility of a 

linear trend in the Poisson rate parameter over time, tλ , was considered.  The form 

of this model is given by equation 4.6 in which the mean rate is specified as a 
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function of time.  The resulting fit obtained using the method of maximum likelihood 

is plotted in Figure 6.3.   

 

Nonlinear trends were also investigated using the local likelihood estimation 

procedure described in Chapter 4.  This is a semi-parametric regression technique for 

exploring any underlying trend in the process.  This method basically supposes that 

the model parameters, in this case λ , can be approximated locally by fitting a low-

order polynomial using data within the neighbourhood of each time point, t, with 

those values closest to t given greater weighting.  Figure 6.3 plots the variation in the 

Poisson mean rate for nearest neighbourhood bandwidths of 0.25 and 0.40, which 

correspond to estimating tλ at each time point in the series using 25% and 40% of 

the data respectively. 

 

Inspection of Figure 6.3 suggests no evidence for a linear trend in the Poisson rate 

parameter.  The plot shows a slight increase in the number of storms per year from 

2.23 in 1960/61 to 2.58 at 2004/05, which based on a likelihood ratio test was not 

significant (p-value = 0.662).  This implies tropical cyclone frequency has not 

substantially increased or decreased over time.  The local likelihood fits plotted in 

Figure 6.3 show evidence of decadal variability with a peak in activity occurring 

during the early 1970s and again during the mid-1980s.  The peak during the 1970s 

appears to be largely influenced by the active 1971/72 season in which nine tropical 

cyclones were recorded.  Inactive periods are apparent during the 1960s and during 

the post-1995 period.  During the 1960s the mean arrival rate was around 1.5 events 

per season, which is well below the mean arrival rate of 2.4 events per season for the 

entire series.   
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Figure 6.2  Serial correlation in Coral Sea storm counts. (a) Autocorrelation 

function (ACF) for seasonal counts, and (b) Partial autocorrelation 
function (PACF) for the series. 

 

 

 

 

 

The effect of ENSO on Coral Sea activity was then examined by fitting a generalised 

linear model (GLM) of the form, SOI)(ln 10 ββ +=λ , to seasonal counts.  This 

model is similar to that presented in Chapter 4 for analysing the effect of ENSO on 

landfall counts.  The index of ENSO is an average of the August-November monthly 
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values of the Southern Oscillation Index (SOI) as shown in Figure 4.3.  Fitting of the 

model is conducted using the method of maximum likelihood (McCullagh and 

Nelder 1989) to estimate the parameter vector ),( 10 ββ=β .   

 

 

 

1960 1970 1980 1990 2000

Year

0

1

2

3

4
a

1.00

0.25

0.40

-20 -10 0 10 20

SOI

0

1

2

3

4

5

R
a
te
 (
e
v
e
n
ts
 /
 y
e
a
r 
)

b

R
a
te
 (
e
v
e
n
ts
 /
 y
e
a
r)

 

 

Figure 6.3  Variation in Poisson rate parameter for seasonal counts in the Coral Sea 
region. (a) temporal variability based on global linear fit and local 
likelihood fits, and (b) variation in relation to ENSO as measured by the 
SOI. 
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An analysis of deviance for this model shows that the SOI is a significant term in the 

model (p-value = 0.01), indicating that seasonal activity in the Coral Sea region is 

strongly influenced by ENSO.  Figure 6.3 graphically illustrates how the Poisson rate 

parameter varies with the SOI.    In particular, this demonstrates that during an 

extreme El Niño event (SOI = -20) the expected seasonal rate in the Coral Sea region 

is around 1.4 tropical cyclones per season, whilst during an extreme La Niña event 

(SOI = 20) the expected rate is about 4.0 events per season.   

 

6.3.2 Intensities 

 

Serial correlation in the time series of minimum central pressures was initially 

examined using autocorrelation plots similar to those presented in the previous 

section.  These are graphed in Figure 6.4 against 95% confidence limits.  

Interestingly, these highlight a significant correlation for the lag-1 observation.  

Application of the Ljung–Box portmanteau test for independence (Ljung and Box 

1978), further indicated that the lag-1 correlation was significant (p-value = 0.015).  

This suggests some evidence of dependence in the time series through the presence 

of clustering.  A full understanding of this would require a more detailed 

investigation though, which is beyond the scope of the present study.  

 

As described later in this chapter, the probability model adopted for the minimum 

central pressure of Coral Sea tropical cyclones is the Generalised Extreme Value 

(GEV) distribution.  This model was introduced in Chapter 5 as an extreme value 

distribution for the maxima (or minima) of random variables.   To test for a trend in 

minimum central pressures over time, the GEV distribution was fit to the observed 
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series allowing a linear trend for time in the GEV location parameter.  This is similar 

to the approach used in Chapter 5 for assessing the significance of a trend in landfall 

intensities.  This amounts to modeling variation over time in the time series by 

linearly relating the GEV location parameter to an index of time.   
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Figure 6.4  Serial correlation in Coral Sea storm intensities. (a) Autocorrelation 
function (ACF) for minimum central pressures, and (b) Partial 
autocorrelation function (PACF) for the series. 
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Figure 6.5  Estimate of median of the fitted GEV distribution for storm intensities 

incorporating a linear trend in location parameter for (a) time, and (b) 
the SOI. 

 

 

 

 

Fitting of this model is undertaken using the method of maximum likelihood (see e.g. 

Coles 2001; Katz et al. 2002).  The results are shown graphically in Figure 6.5 where 

the median of the GEV distribution is plotted against time.  An assessment of the 
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significance of this time-dependent model using the likelihood ratio test described in 

Chapter 5 (equation 5.9), indicates that the trend is borderline significant (p-value = 

0.073).  The form of the trend highlights that minimum central pressures have 

apparently decreased over time, and thus storms have become more intense over the 

period of record.  Specifically, median central pressures are seen to have increased 

from about 976 hPa at the beginning of the time series to 968 hPa at the end of the 

series.   

 

The effect of ENSO on Coral Sea tropical cyclone intensities was investigated using 

a similar methodology.  This involved fitting the GEV distribution with the location 

parameter linearly related to an index of ENSO (the SOI) instead of an index for 

time.  The trend in the median of the fitted distribution is also plotted in Figure 6.5.  

The results of a likelihood ratio test indicate no dependence of storm intensity on the 

SOI (p-value = 0.842).  For an SOI value of –20 (strong El Niño event) the median 

central pressure under this model is 972.9 hPa, while for an SOI value of 20 (strong 

La Niña event) the median value is 971.9 hPa.  Hence, it can be assessed that ENSO 

has no significant effect on the intensity of tropical cyclones in the region. 

 

 

6.4 Simulation Scheme 

 

In this section the development of a model for simulating a landfall series of storm 

events from the Coral Sea regional dataset is outlined.  As discussed in Chapter 3 

there are several models described in the literature that make use of basin-wide data 

for similar purposes.  One example is the approach of James and Mason (2005), 
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which aims to generate Coral Sea storm events on the basis of autoregressive models 

for storm tracks and intensities.  This appears to be the only previous attempt to 

develop a basin-wide simulation model for the Coral Sea region.   

 

The model employed here broadly follows the approach developed by Casson and 

Coles (2000) for simulating hurricanes in the North Atlantic region.  The advantages 

of the Casson and Coles (2000) approach are twofold.  First, it limits the number of 

assumptions made about the underlying process by making use of empirical 

relationships, derived from the observed sample, where practical.  Second, it employs 

an extreme value modelling approach to simulate storm intensities, which provides a 

rational basis for quantifying the likelihood with which major events occur.  The 

model described herein consists of two components, one governing the simulation of 

tropical cyclone tracks and another specifying the intensity of the simulated event.  

 

6.4.1 Track Generation 

 

Tropical cyclone motion is a complex process that depends on the storm’s interaction 

with the surrounding environment in which it is embedded as well as various internal 

dynamics.  Figure 6.6 shows the sample of Coral Sea tropical cyclone tracks from the 

period 1960/61-2004/05.  As mentioned in Chapter 2, tropical cyclone motion in this 

region can be best summarised as erratic in nature.  In the case of landfalling systems 

the general pattern is for storms to form north of about 15
0
S and track 

southwestwards towards the Queensland coast.  Overall, however, there is a strong 

tendency for many storms to follow an easterly trajectory, which directs their path 
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away from the coast.  There is also a trend for some tropical cyclones to form 

relatively close to the coast and initially track offshore in an eastwards direction. 
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Figure 6.6  Coral Sea tropical cyclone tracks from the period 1960/61-2004/05. 
 

 

 

Due to the highly variable and complex pattern of observed tropical cyclone tracks it 

is considered more appropriate to adopt a largely empirical approach to simulating 

track events.  The strategy employed here follows that of Casson and Coles (2000) in 
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utilising the tracks of existing storms as a means to simulate new events.  This 

involved randomly selecting an existing track from the 108 events recorded in the 

Coral Sea region over the period 1960/61-2004/05.  These tracks, 

},...,1:),({ Ttyx tt = , comprise a series of longitude (xt) and latitude (yt) fixes of 

the system’s centre at time intervals ),...,1( Tt = , typically six-hourly, over the 

lifetime of the event T.   

 

Given the random selection of a track event, the process of generating new tracks 

involved simply applying a random shift uniformly to each fix ),( tt yx  along the 

entire track ),...,1( Tt = .  Following Casson and Coles (2000) a normal distribution 

with a mean of zero and standard deviation σ is adopted to define the shift 

component.  A value of σ equal to 1
0
 (latitude and longitude) was initially selected on 

the basis that this represents a sufficiently small enough value for simulating tracks 

that are physically consistent with those observed historically (i.e. similar in terms of 

forward speeds and directional bearing), whilst large enough to allow for the 

simulation of the full spatial array of possible track events.  This track generation 

process naturally defines the landfall point (or the closest point of approach to the 

coast for a nonlandfalling event), the track’s directional bearing, as well as its 

forward speed. 

 

In order to provide some verification for the adopted value for σ of 1
0
, a comparison 

of observed track characteristics of landfalling storms over the period 1960/61-

2004/05 with a simulated series of landfall tracks was undertaken.  Figure 6.7 shows 

histograms of the forward speed and approach direction of the observed sample of 

landfalling tracks.  These values were defined over the 12-hour period up to landfall.  
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These are plotted alongside histograms of the forward speed and approach direction 

of a 1,000 simulated events series obtained using the track generation procedure.  

The plots show relatively good agreement between observed and modelled track 

characteristics suggesting the value for σ of 1
0
 is producing tracks that are reasonably 

consistent with the observed sample. 
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Figure 6.7  Histograms comparing observed landfall tropical cyclone tracks against 
simulated tracks. (a) Observed forward speed, (b) simulated forward 
speeds, (c) observed approach direction, and (d) simulated approach 
direction. 

 

 

 

The process of track generation thus involved a random selection of an individual 

storm track from the 108 events recorded in the Coral Sea region.  Each event was 
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assumed to have equal probability of occurrence and was therefore selected with 

probability 1/108.  A new track event was then generated by randomly selecting a 

shift distance from a normal distribution with mean of zero and standard deviation of 

1
0
.  This shift distance is then added to each fix along the original storm’s track 

},...,1:),({ Ttyx tt = to define the new track event.   

 

6.4.2 Simulated Intensities 

 

The second part of the simulation scheme involved developing a strategy for 

generating the intensity of an event conditional on its simulated track.  First, a model 

for simulating the minimum central pressure attained during the event is outlined.  

Second, the timing of the pressure minimum for simulated landfalling storms is 

modelled. 

 

6.4.2.1 Pressure Minimum 

 

Following Casson and Coles (2000) minimum central pressures are modelled using a 

Generalized Extreme Value (GEV) distribution.  As shown in Chapter 5 this model 

has the distribution function:   
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where ξ, σ and κ are location, scale and shape parameters respectively.  This 

distribution has support as a model for extremes on the basis of asymptotic argument.  

Fitting the GEV distribution given in equation 6.1 to sample minima requires a 
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transformation of the observed values to negatives.  Casson and Coles (2000) 

considered separate models for landfalling and nonlandfalling events in fitting 

equation 6.1 to minimum central pressures for North Atlantic hurricanes.  For this 

study, however, the sample is not of sufficient size to enable such a separation.  

Hence, the model is fit here to the combined record of landfalling and nonlandfalling 

events.  

 

Figure 6.8 shows scatter plots of the minimum central pressure for each event against 

the longitude (xt) and latitude (yt) at which the minimum is reached.  Also shown is a 

plot of the minimum central pressure versus the time to which the minimum is 

reached (tp).  Two main features stand out from these plots.  First, there is an evident 

association between peak storm intensity and time taken to reach that peak, which 

indicates that more intense tropical cyclones generally take longer to reach their peak 

intensity.  The second aspect likely to be of importance is the tendency for minimum 

central pressures to cluster between latitudes of about 12
0
S and 23

0
S.  There is no 

apparent relationship between minimum central pressure and longitude of the 

pressure minimum. 

 

The trend for few storms to reach peak intensity north of about 12
0
S is likely to be a 

consequence of track behaviour.  In general, few tropical cyclones are observed to 

form within 5
0
 latitude of the equator and many initially follow polewards tracks 

(Emanuel 2003).  Hence, by the time maximum intensity is reached few tropical 

cyclone tracks are observed at low latitudes.  The scarcity of storms reaching peak 

intensity at latitudes south of 23
0
S is likely to be a consequence of environmental 

conditions such as SSTs limiting tropical cyclone intensification in the southerly 
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region.  It is well recognized that there exists an upper bound on tropical cyclone 

intensity, referred to as the maximum potential intensity (MPI), for the available 

energy in the ocean and atmosphere (Henderson-Sellers et al. 1998).  Harper et al. 

(2001, Figure 3.6, p. 22) presents an MPI curve for the Queensland region showing 

latitudinal variations in MPI.  This curve shows the MPI being constant at 895 hPa 

for latitudes north of about 21
0
S.  South of this latitude the MPI rises relatively 

sharply reaching a value of 940 hPa at about 27
0
S. 
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Figure 6.8  Spatial and temporal characteristics of minimum central pressures. (a) 
latitude, (b) longitude, and (c) time taken to reach peak intensity. 
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In order to account for the patterns observed in Figure 6.8 several models linearly 

relating the GEV location parameter (ξ) to longitude (xt), latitude (yt) and time to 

peak intensity (tp) were considered.  Given the size of the available sample, models 

incorporating trends in the scale (σ) and shape (κ) parameters of the GEV 

distribution were not considered due to an expected difficulty in estimating these 

parameters with precision.  The results of this analysis are summarised in Table 6.1 

where the significance of each term’s inclusion is assessed using a likelihood ratio 

test (equation 5.9).  In this case each model is tested against a base model where the 

GEV location parameter is fixed (ξ0).  Of the models considered, only that 

incorporating a linear trend in the GEV location parameter for time to peak intensity 

(tp) was found to be significant.  Models incorporating linear specifications for 

longitude and latitude were not found to explain significantly more of the variability 

in the data than the base model with fixed-value parameters. 

 

 

 

 

Table 6.1  Summary of models for minimum central pressures with covariates in 
GEV location parameter (ξ) for longitude (xt), latitude (yt), and time to 
peak intensity (tp). 

 

Base Model Extended Model     p-value 

ξ = ξ0 ξ = β0 + β1 (xt) 0.939 

ξ = ξ0 ξ = β0 + β1 (yt) 0.879 

ξ = ξ0 ξ = β0 + β1 (tp)    <0.001 

ξ = β0 + β1 (tp) ξ = β0 + β1 (tp) +  β2 (yt) +β3 (yt
2
) 0.217 
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Also shown in Table 6.1 are the results of a significance test for a model 

incorporating a quadratic term for latitude in the location parameter (yt).  This model 

is tested against a base model that includes the dependence on tp.  A likelihood ratio 

test indicated this offered no clear advantage over the model incorporating only the 

specification for time (p-value = 0.217).  However, while statistical evidence for 

keeping the latitudinal dependence was not definitive, it was decided to retain this 

specification because it provides some way of limiting the intensity reached by 

events in the southerly regions. 

 

Figure 6.9 shows trends in the median of the fitted GEV distribution incorporating 

the dependence of maximum intensities on time and latitude.  The inclusion of time 

is seen to be quite strong with minimum central pressures lower for storms taking 

longer to reach maximum intensity.  The specification incorporating a dependence on 

latitude is seen to have a less pronounced effect on the median curve, although it 

does impose a tendency for the distribution of minimum central pressures to be 

higher at the southern-most latitudes. 

 

Given the range of specifications incorporated into the model for minimum central 

pressures it is necessary to assess the model’s performance in representing the 

observed process.  In Chapter 5 the application of probability and quantile plots were 

discussed as useful diagnostic techniques for evaluating the goodness-of-fit for an 

extreme value model of landfalling storm intensities.  Because the fitted model here 

is non-standard, in that it incorporates covariates for time and space, model 

parameters are not fixed but vary according to the value of these covariates.   
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Figure 6.9  Trend in median of fitted GEV distribution incorporating covariates in 
location parameter for (a) time to peak intensity, and (b) latitude of peak 
intensity. 

 

 

 

According to Coles (2001) in such cases a modification to the observed series is 

necessary to enable the use of such diagnostic checks.  For data following a GEV 

distribution, this involves a transformation to the standardised variable: 
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which is identically distributed and follows a standard Gumbel distribution.  In this 

formulation, ξ*, σ* and κ* denote GEV parameters that are functions of covariates.  

In the present case only the location parameter ξ* was modelled with covariates (tp 

and yt), so σ* and κ* would be replaced by σ and κ in equation 6.2.  Denoting the 

ordered values of z* by 
**

)()1( ,...,
m

zz , the probability and quantile plots of the 

transformed variables then respectively consists of the pairs (Coles 2001); 
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Figure 6.10 shows the resulting residual probability and quantile plots for the fitted 

GEV distribution.  These highlight no immediate cause for concern with linearity of 

the plots suggesting the model is performing reasonably well for most of the data 

range.  From examination of the quantile plot though, there is some evidence to 

suggest the model is overpredicting the most extreme events.  The parameter 

estimate for the GEV shape parameter here is positive ( κ̂ =0.156), which is 

indicative of a distribution with an unbounded upper tail. This may partly explain the 

discrepancy of modelled and observed values at the upper-most portion of the 

quantile plot in Figure 6.10.  A likelihood ratio test of this model against a base 

model in which κ = 0 (i.e. a reduction to a Gumbel form) gave a p-value of 0.048, 

indicating that the current model in which κ ≠ 0 probably represents the preferred 

option.  
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Figure 6.10  Model diagnostics for GEV distribution fit to minimum central 
pressures with covariates in the location parameter. (a) probability plot, 
and (b) quantile plot. 

 

  

 

6.4.2.2 Timing of Pressure Minimum 

 

Having derived a model for minimum central pressures that incorporates 

specifications for latitude and time, it is necessary to model the point where the 
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minimum occurs on the simulated track },...,1:),({ Ttyx tt = .  As the ultimate aim 

is only in simulating landfall events, the modelling strategy used here is restricted to 

defining this point for such events.  The adopted approach again broadly follows that 

developed by Casson and Coles (2000).  Of the 37 landfalling tropical cyclones in 

the dataset 12 storms attained their minimum central pressure exactly at landfall.  

The remaining 25 tropical cyclones reached peak intensity at some stage prior to 

landfall.   For these 25 events, Figure 6.11 shows a density estimate of the ratio of 

time to landfall (tlf) against the time to minimum central pressure (tp).  The density 

estimate is a smoothed approximation, obtained by applying a kernel density 

estimation procedure using a standard normal kernel function with the Gaussian 

reference bandwidth of Silverman (1986). 
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Figure 6.11  Empirical density estimate of tlf / tp; the proportion of time to landfall 

spent before Coral Sea landfalling tropical cyclones (1960/61-2004/05) 
reached their minimum central pressure.  
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The process of deriving the time point along the simulated track where the pressure 

minimum occurs is as follows.  Given a simulated landfall track, the probability that 

the minimum central pressure is reached at landfall is taken to equal 12/37 (0.324).  

This represents an empirical estimate of the probability that Coral Sea landfalling 

tropical cyclones reach peak intensity at landfall.  For these storms this completes 

their simulation by specifying both the time and location of the event’s landfall 

intensity.   

 

For events randomly sampled with a probability of 25/37 (0.676; the empirical 

probability that Coral Sea tropical cyclones reach peak intensity prior to landfall), a 

random selection from the empirical density shown in Figure 6.11 is used to obtain 

the point on the simulated track where the minimum occurs.  The density in Figure 

6.11 plots the proportion of time to landfall spent before a storm reaches its 

minimum central pressure (tlf / tp).  Hence, by calculating the time to which a 

simulated storm track makes landfall (tlf), combined with a randomly selected value 

of tlf / tp , allows the point on the simulated track where the pressure minimum is 

reached to be defined. 

 

For these storms that do not reach peak intensity at landfall it is necessary to 

incorporate an additional step to complete the simulation of their landfall intensity.  

Specifically, this involved the modelling of a pressure series from tp to tlf.  To 

accomplish this an empirical strategy is again preferred.  This firstly involved a 

random selection from the 25 events that reached peak intensity prior to landfall to 

obtain a pressure series from tp to tlf , },...,:{ lfpt tttp = .  This series serves as a 

template governing the rate of pressure change from the point at which the minimum 
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central pressure is attained to the point of landfall.  The pressure series template 

},...,:{ lfpt tttp =  is then simply transferred to the simulated event as a basis for 

defining its corresponding pressure series from peak intensity to landfall.  In doing so 

it is necessary to rescale in time the randomly selected pressure series so that it 

matches that of the simulated event.  This is because the time scale of the randomly 

selected series ),...,( lfp ttt =  is not necessarily equivalent to that of the simulated 

pressure series.   

 

 

6.5 Summary 

 

This chapter constituted an analysis of tropical cyclone events in the Coral Sea 

region, largely for the purposes of developing a simulation model capable of 

generating landfall events.  A preliminary investigation into the presence of trends in 

the time series of Coral Sea storm counts showed no evidence of either an increase or 

decrease in activity over the period 1960/61-2004/05.  There is, however, some 

suggestion of decadal variability in storm activity over this period, particularly given 

that an inactive period during the 1960s was followed by an active period during the 

1970s.  As with landfalling counts, ENSO plays a significant role in varying Coral 

Sea storm activity from season to season.   

 

An examination of the time series of minimum central pressures reveals some 

evidence of temporal dependence as well as an upward trend in storm intensities over 

the period 1960/61-2004/05.  Under the adopted probability distribution for this 

variable, median minimum central pressures were found to decrease over the period 
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of record, suggesting storms have generally become more intense.  However, it 

should be noted that this apparent trend is only of borderline significance.  There is 

no evident effect of ENSO on the minimum central pressures attained by Coral Sea 

tropical cyclones.   

 

The simulation scheme developed in this chapter from the regional Coral Sea record 

can be summarised as follows: 

 

1. A random selection from the observed tropical cyclone tracks in the region, 

followed by a random shift applied uniformly to each fix along its path 

},...,1:),({ Ttyx tt =  to generate a new track event.  Of the generated track 

events, only those that make landfall are retained. 

 

2. Conditional on the landfalling storm’s simulated track, the time (and thus 

location) of the pressure minima is identified using the empirical probabilities 

of the time to which peak intensity (tp) and landfall (tlf) occur. 

 

3. A random selection of the minimum central pressure is obtained for each 

simulated event from a GEV distribution.  Time (tp) and latitude of the 

pressure minima (yt) (defined by step 2) are used as inputs at each random 

selection, with the location parameter of the GEV distribution varying 

according to these values. 

 

4. For storms not reaching maximum intensity at landfall, a random selection of 

a pressure series template from the observed landfall events (not including 
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those attaining minimum central pressure at landfall) is made.  This is 

subsequently rescaled and used to derive a pressures series from the time of 

peak intensity to landfall },...,:{ lfpt tttp = . 

 

The application of the simulation model presented in this chapter to the generation of 

a series of landfall events is addressed in Chapter 8.   This includes a comparison 

against results obtained in Chapters 4 and 5 from the observed record of landfall 

tropical cyclones.  Prior to this, a review of another major source of information on 

tropical cyclones in the Queensland region, the prehistorical record, is presented in 

the following chapter.  
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CHAPTER 7 

 

GEOLOGICAL RECORDS OF PAST STORM 

ACTIVITY 

 

 

7.1 Introduction 

 

The role of tropical cyclones as important agents in modifying coastal and reef 

environments is well established (e.g. Hopley 1974; Scoffin 1993).  Furthermore, in 

certain settings distinct geological traces of these storms are preserved, which can 

allow for inferences on the nature of these events.  Sedimentary deposits of particular 

relevance to the study of past tropical cyclones take the form of wave deposited 

features including washover fans and storm ridges.  At several locations along the 

Queensland coast the presence of coral shingle ridges has been inferred to be a 

product of elevated water levels associated with severe tropical cyclones (Nott and 

Hayne 2001).  At a number of these sites, ridge sequences have gradually prograded 

over the late Holocene (i.e. approximately the last 5,000 years), thus documenting 

the passage of multiple depositional events.   

 

In this chapter methods to extract a long-term history of storm events from this 

record are assessed.  The chapter initially reviews some recent developments in the 

study of past tropical cyclones from geological records.  Then follows a description 

of several sites in the Queensland region where such evidence, namely in the form of 
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storm ridge deposits, has been documented.  A brief introduction to the methodology 

for reconstructing palaeostorm intensity from storm ridge features is subsequently 

provided.  An evaluation of the robustness of this methodology is then undertaken.  

The chapter ends with a discussion on the merits and limitations of this prehistoric 

record.   

 

 

7.2 Palaeotempestology  

 

An emerging field of research, recently termed palaeotempestology (Liu and Fearn 

2000; Nott 2004), whereby past unobserved storm events are reconstructed on the 

basis of evidence preserved in the geological record, has offered a means to gain an 

insight into the long-term behaviour of tropical cyclones.  A variety of sedimentary 

and erosional forms have archived this unique record within the coastal landscape.  

To date though, few studies have offered a reliable means to estimate the magnitude 

of depositional storms.  Some success has, however, been recently reported with 

reconstructions based on overwash deposits found in coastal lake sediments of the 

United States (e.g. Liu and Fearn 1993) and storm ridges located in the Great Barrier 

Reef (GBR) region of Queensland (e.g. Nott and Hayne 2001).   

 

7.2.1 Overwash Deposits 

 

Overwash deposition occurs when the height of tropical cyclone forced water levels 

overtops a shoreward sand barrier.  The wave activity erodes and transports coarse 

sand from the barrier and deposits it in adjacent inland areas in the form of a 
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washover fan (Liu and Fearn 1993; 2000).  Common depositional sites, where sand 

layers can be preserved, are across sheltered coastal lakes as well as back barrier 

marshes.  These layers are often interbedded with muddy, organic or fine-grained 

sediments that normally accumulate in these environments.  Assuming the 

geomorphic setting at a particular site to remain relatively stable, Liu and Fearn 

(1993) first hypothesised that the lateral extent and thickness of an overwash layer is 

a proxy for the intensity of the depositional hurricane.  Thus, individual events can 

potentially be reconstructed on the basis that storms of greater magnitude are likely 

to deposit more extensive sand layers at a particular site. 

 

Several recent studies have compiled a history of major United States hurricanes by 

examining the stratigraphy and chronology of these sand layers.  Liu and Fearn 

(1993; 2000) sampled overwash layers in non-tidal coastal lakes of Alabama and 

Florida.  Donnelly et al. (2001a; 2001b) identified sand layers from cores in the 

backbarrier marshes of New England and New Jersey.  More recently, Scott et al. 

(2003) used offshore foraminifera as a tracer for overwash deposits when examining 

marsh sediments along the South Carolina coast.   

 

In each of these studies the magnitude of depositional events was estimated by a 

comparison to recent storms that also deposited layers in the sampled area.  For 

instance, Liu and Fearn (2000) utilised the sedimentary layer of Hurricane Opal as a 

base event to reconstruct a history of major hurricane landfalls in northwest Florida 

from sediment cores taken in Western Lake.  Deposited layers corresponding to 

prehistoric events were inferred to be from storms of greater severity than Opal, a 
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category 3 system at landfall, on the basis of their layers exhibiting greater spatial 

extent and thickness.   

 

Nott (2004) recently raised some concerns regarding the veracity of extending this 

approach over long time periods.  These concerns were based on the absence of a 

detailed chronostratigraphy of the overwashed barriers to establish that their height 

and position had remained relatively stable over time.  Nott (2004) cited field 

evidence of several major tropical cyclones impacting the Western Australian coast 

in recent years where overtopping of coastal dunes had resulted in their complete 

removal.  Consequently, it can be inferred that any significant erosion to barrier 

dunes during a storm event would increase the vulnerability of the site to overwash 

deposition by subsequent storms of lesser intensity.  Furthermore, the susceptibility 

of a site to overwash deposition can also be influenced by the formation of tidal 

inlets in the barrier dunes, which would also promote the transportation of sediment 

during events of lesser intensity.   

 

Liu and Fearn (2000) argued that the similarity of long-term washover records 

reconstructed from multiple sites, located some distance apart and fronted by 

different barrier dune systems, demonstrates that inferences on major United States 

hurricane activity made from these sites are legitimate.  However, lacking knowledge 

of both the temporal and structural changes associated with erosion and rebuilding 

phases of the regularly overwashed barrier dunes, the credibility of this approach has 

yet to be fully shown. 
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7.2.2 Storm Ridge Deposits 

 

Storm ridges form when tropical cyclone wind-waves superimposed on the storm 

tide entrain and transport coarse marine sediment onshore and deposit it, as a ridge, 

at sites beyond the range of regular wave and tidal action (Hayne and Chappell 2001; 

Nott and Hayne 2001; Nott 2004).  Along the east Queensland coast such features are 

preferentially located on the inner continental shelf at island sites in the Great Barrier 

Reef (GBR).  Shore-parallel sequences of these ridges often form when new ridges 

are emplaced on the shoreward side of older deposits.  As a result, where a sequence 

of ridges occurs at a particular location the ages of individual ridges are often found 

to progressively increase inland (Hayne 1997; Nott and Hayne 2001).  In many cases 

individual ridges represent a distinct unit, although it is possible for two or more 

deposits to be reworked into a composite unit.  In this case a careful examination of 

the stratigraphy of each unit combined with radiocarbon dating of multiple samples 

is necessary to identify whether a particular ridge can be assigned to a single 

depositional event (Hayne 1997).   

 

The storm ridge sequences identified in this region have not been observed to form 

under normal meteorological conditions, but are episodically emplaced by high wave 

action associated with tropical cyclones.  This is supported by contemporary 

observations of ridge development during tropical cyclone events in other regions 

(e.g. Maragos et al. 1973; Bayliss-Smith 1988; Scoffin 1993).  While the formation 

of these features is known to occur under stormy conditions, the actual processes 

involved in their formation are less clear.  Maragos et al. (1973) suggested that the 

deposition of the near-continuous 19km long storm ridge on Funafuti Atoll during 
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tropical cyclone Bebe in 1972 was in parts indicative of a single depositional event, 

but in other areas may also have formed by the progressive accretion of a series of 

sediment units.   

 

Hayne and Chappell (2001) describe several elements as indicative of storm ridge 

deposits.  Beachface and berm facies are porous, clast-supported, shingle deposits 

that are usually structureless and generally show little or no clastic imbrication, but 

occasionally dip seawards.  Crest facies are horizontally bedded, matrix-supported, 

finer-grained shingle.  Washover facies are bedded, typically dip landwards, and 

sometimes contain imbricated clasts.  The bulk of their material is usually coral 

fragments derived from the reef crest and reef front between depths of 0 and 20 m 

(Hopley 1982; Scoffin 1993).  Although, depending on their location, shell or other 

material may dominate their composition.  The coarse nature of the material 

comprising these ridges is indicative of the high-energy conditions associated with 

their formation.     

 

The development of storm ridge sequences is dependent on the availability of a 

sufficient sediment supply.  If the period of time taken for source material to 

replenish were overly long, then it may be that insufficient sediment is available for 

each tropical cyclone event to deposit a ridge.  The effects of storms on coral reefs 

are variable at both spatial and temporal scales and thus reefs have time scales of 

recovery that reflect such variability.  In many cases it would appear that there is 

sufficient coral regrowth in the surrounding reef to provide enough sediment for each 

successive event to deposit a ridge.  Hayne and Chappell (2001) estimated that the 

fringing reef at Curacoa Island supplying coral material for its ridges had a 



 134 

regeneration time that was much less than the average time between ridge forming 

events.  Furthermore, the similar frequency of ridge forming events at multiple sites 

in the GBR region (Nott and Hayne 2001) suggests that the availability of source 

material is not a limiting factor.   

 

 

7.3 Regional Sequences 

 

Storm ridge deposits have been identified at several sites along the east Queensland 

coast (Figure 7.1).  At many of these sites, however, vulnerability to wave action 

reworking unconsolidated material post-depositionally limits the preservation of 

extensive ridge sequences.  Storm ridges at such sites are often gradually reworked 

into more protected locations to form a more stable landform.  Only those locations 

that are afforded a relatively high degree of shelter from such processes (e.g. sites on 

the leeside of islands) favour the formation of extensive ridge sequences.  

Cementation of the initial unconsolidated deposits occurs more readily at these sites 

and thus allows ridge features to stabilise.   

 

The distribution of sites where storm ridges have been documented is fairly dense in 

the northern and central regions of the Great Barrier Reef (see Figure 7.1).  In some 

cases it would also appear that sites located in close proximity are likely to record the 

impact of the same events.  Nott (2003) identified several sites in the vicinity of 

Cairns that record the passage of several intense tropical cyclones over the century 

prior to European settlement in the region.  This includes Fitzroy and Double Islands, 

which each contain a series of storm ridges of coral shingle along their northern 
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shorelines.  Red Cliff Point comprises a uniquely different feature in that it consists 

of 4 terraces eroded into a raised gravel beach deposit.  Nott (2003) hypothesised that 

tropical cyclone generated waves were responsible for the formation of these 

terraces, rather than other potential triggers such as sea-level oscillations or tsunamis.   
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Figure 7.1  Some locations where geological indicators of past tropical activity 

have been identified along the east Queensland coast. 
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Chappell et al. (1983) describes several low reef islands in the northern GBR 

including Low Wooded and West Hope Islands, which each contain several storm 

built ridges.  These sites are typical of many of the low wooded islands on platform 

reefs in the northern GBR, which according to Scoffin (1993) have characteristic 

ridges of coral shingle with steep, landward-facing slopes and gentle seaward-facing 

slopes that have planar or convex profiles.  The ridges at these sites are often located 

on the island’s windward side where the lack of any high-standing protection results 

in the continual redistribution of shingle and modification to the initial units by wave 

activity.  Ridge heights and ages at many of these sites are thus generally quite 

variable (Chappell et al. 1983).   

 

Hopley (1971) describes several additional sites in the central GBR region including 

the high continental islands of Curacoa, Rattlesnake, and Camp.  These sites are 

characterised by the presence of spits on their leeward sides that are often infilled 

with a series of coral shingle ridges.  Some prominent regional examples where ridge 

sequences have been extensively studied include Lady Elliot Island, Curacoa Island, 

and Princess Charlotte Bay.   

       

7.3.1 Lady Elliot Island 

 

Lady Elliot Island is a 0.54 km
2
 shingle cay located on a platform reef at the 

southernmost end of the GBR.  As described by Chivas et al. (1986) the cay is 

constructed largely from a series coral and shell shingle ridges.  According to Flood 

et al. (1979), dating of the older ridges indicates that the island formed over a 

shallow reef platform some 3,200 years ago following a slight drop in sea levels.  
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The ridges form a unique, near-concentric arrangement with the lower portions of the 

inner ridges being cemented through phosphatisation.  The ridges are elevated up to 

about 2.5 m above highest astronomical tide (HAT) and have prograded at fairly 

uniform rates on both leeward and windward sides of the island.  Based on this 

observation, Chivas et al. (1986) inferred that the frequency of ridge forming events 

showed no significant variation over time. 

 

7.3.2 Curacoa Island 

 

Curacoa is a high continental island located on the innershelf of the central GBR in 

the Great Palm Island Group north of Townsville.  It contains a series of storm ridges 

that lie on a cuspate spit between the shoreline and the leeside of a large, protective 

boulder embankment that extends from the northwest corner of the island (Hopley 

1971; Hayne and Chappell 2001).  The ridges are composed of coarse sediment, 

mainly coral shingle with variable amounts of beach gravel, and are elevated up to 3 

m above HAT.   

 

Hayne and Chappell (2001) found that ‘groundsurfaces’ separated many of the 

Curacoa storm ridges.  These comprise lenses of pebble-sized pumice and a weak 

earthy palaesol that developed when the ridge surface had originally been exposed.  

Furthermore, because ridge heights and sediments become progressively smaller 

towards the eastern end of the spit, this indicates longshore transport of ridge 

material from the western tip of the spit.  A comprehensive stratigraphic and dating 

analysis reported by Hayne and Chappell (2001) identified 22 separate ridges in the 
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sequence (Figure 7.2).  They also inferred that the frequency of ridge formation had 

remained statistically constant at this site over the last 5,000 years.  

 

 

 

 

 

Figure 7.2  Storm ridge sequences at Curacoa Island (top) and Princess Charlotte 
Bay (bottom) (Source: Nott and Hayne, 2001, p. 509).  Mean reservoir-
corrected, uncalibrated, radiocarbon ages are labelled for each ridge. 

 

 

 

7.3.3 Princess Charlotte Bay  

 

Princess Charlotte Bay is a shallow, northward facing embayment situated towards 

the northern end of the GBR.  The bay is partly protected by several reefs and islands 

to the north and northeast.  Its coastal plain is fronted by a narrow tract of mangrove 
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forest behind which rests a series of long, shore-parallel chenier ridges that overlay a 

broad supratidal mud-flat (Chappell and Grindrod, 1984).  To the northeast of this 

plain, the chenier ridge system passes into what Chappell and Grindrod (1984) 

describe as a separate beach ridge system.  These beach ridges sit on a similar 

substrate as the cheniers but differ in that that have been deposited at greater 

frequency over the late Holocene and coalesce with no intervening muddy swales.  

The site is analogous to Curacoa and Lady Elliot Islands in that coarse marine 

sediment has been deposited as a series of ridges with crests that are elevated well 

above HAT.  Recent surveys and sampling conducted by Hayne (1997) identified a 

series of 12 storm ridges forming over about the last 2,500 years at this site (Figure 

7.2). 

 

 

7.4 Reconstructing Palaeostorm Intensity 

  

According to Nott and Hayne (2001) storm ridge sequences at sites such as Lady 

Elliot Island, Curacoa Island and Princess Charlotte Bay form to an elevation that is 

governed by the level of tropical cyclone marine inundation.  These levels are 

determined by the combined height of the storm surge, astronomical tide as well as 

wave set-up and run-up levels.  In a pioneering study, Nott and Hayne (2001) 

adopted an at-site relationship between water level height and tropical cyclone 

intensity to reconstruct the magnitude of ridge forming events at several sites in the 

GBR.  This methodology rests on the assumption that the height of a particular ridge 

is a direct function of the height of water levels generated by the depositional storm.   
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As the prevailing meteorological and tidal conditions are unknown at the time when 

a particular ridge was emplaced, the methodology of Nott and Hayne (2001) actually 

seeks to obtain a lower bound on the intensity of ridge building storms.  That is, by 

effectively considering a ‘worst case scenario’ in terms of the storm’s path, speed of 

movement and size, a lower bound on the intensity of a storm capable of depositing a 

ridge is estimated.  More specifically, by assuming values for these parameters that 

maximise the at-site water level response, the lowest possible storm intensity (i.e. 

highest central pressure) necessary to build a ridge is obtained.  Uncertainty margins 

can also be incorporated within this process and thus allow for the uncertainty 

associated with unknown tidal conditions to be quantified (Nott and Hayne, 2001; 

Nott 2003).  In this study an investigation into the site response to tropical cyclone 

forcing at one particular ridge sequence location, Lady Elliot Island, was undertaken 

in order to evaluate the robustness of this methodology.   

 

7.4.1 Site Description 

 

Lady Elliot Island is an exposed reef system located in deep water near the edge of 

the continental shelf at the southernmost end of the GBR.  As shown in Figure 7.3 

the island comprises a near-concentric system of storm built ridges composed mainly 

of coral shingle, Tridacna clam shells, and bioclastic sand bound together with a 

guano-derived phosphate cement (Chivas et al. 1986).  The unique arrangement of 

these ridges is largely governed by the shape and size of the surrounding reef and its 

role in influencing local wave conditions.  According to Hopley (1982) shingle cays 

like Lady Elliot develop from the coalescence of several coral shingle ridges, with 

the initial focal point being a hammerhead spit or tongue of shingle in the rubble 
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zone of the reef flat.  The ridges at Lady Elliot are fairly uniform in height and range 

from approximately 1.5 m to 2.5 m above HAT with ages that indicate they become 

younger closer to the shore (Chivas et al. 1986). 

 

 

 

 

 
Figure 7.3  Lady Elliot Island and edge of surrounding platform reef (adapted from 

Flood et al. 1979).   
 

 

 

The Lady Elliot cay is situated towards the leeward margin of a platform reef (Figure 

7.3).  The windward reef is relatively wide and extends out continuously to 500 m at 

points on the eastern side.  The leeward reef is much narrower, extending out 
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continuously to less than 70 m at some points.  A wide, gently seaward sloping reef 

rim adjoins the reef flat on the windward side.  The reef crest is elevated slightly 

above the level of the reef flat.  The reef rim separates the reef flat from a steep 

subtidal reef slope on the windward side.  On the leeward side the reef flat directly 

adjoins the reef slope.  A large portion of both the reef flat and reef rim is exposed 

for several hours during the daily low tide. 

 

According to Chivas et al. (1986) there are from one to four uncemented shingle 

ridges between the beach and the older cemented ridges on Lady Elliot.  The most 

seaward cemented ridge dated by Chivas et al. (1986) was found to be about 770 

years of age.  In the more recent, and unconsolidated foreshore deposits, several 

samples collected and radiocarbon dated by Chivas et al. (1986) were found to be 

post-bomb in age.  This indicates that material had recently accumulated at elevation 

on the cay at sometime between the mid-1950s and early 1980s.  During this period 

there were several tropical cyclone events to affect the southern GBR region.   

 

Here the water level response at Lady Elliot to two of these tropical cyclones, Dinah 

(1967) and David (1976), was investigated.  Severe tropical cyclone Dinah in 

particular is known to have caused extensive flooding at Lady Elliot Island in late 

January 1967.   During this event heavy swells persisted for several days at Lady 

Elliot and as Dinah tracked close to the site on the 29
th
 January, the combined effects 

of a high tide, storm surge and extreme waves temporarily inundated the cay.  The 

effect of tropical cyclone David at Lady Elliot is less well documented, although it is 

known that this event generated high water levels that were responsible for 

inundating other coral cays in the region (see e.g. Gourlay and McMonagle 1989).  
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Because no direct measurements of water-level heights at the site are available, an 

attempt to reconstruct these levels is undertaken using a modelling approach. 

 

7.4.2 Tropical Cyclones Dinah and David 

 

Tropical cyclone Dinah developed near the Solomon Islands late on the 22
nd
 January 

1967 and moved southwestwards towards the Queensland coast.  It continually 

intensified over this time and later recurved eastwards (Figure 7.4).  The centre of the 

system passed just to the west of Lady Elliot Island at approximately 0330 UTC on 

the 29
th
 January.  The eye made landfall over Fraser Island where its peak central 

pressure of 945 hPa was recorded at Sandy Cape at about 0700 UTC.  Between 2300 

UTC on the 27
th
 and 2300 UTC on the 29

th
 satellite imagery showed that Dinah had 

a circular eye about 40 km in diameter.  Dinah was an unusual event in that it 

maintained high intensity at subtropical latitudes.  This combined with its relatively 

large circulation contributed to the generation of heavy seas, which caused extensive 

coastal impacts over a large swathe to the south of its path.  Figure 7.5 shows a 

synoptic map of the storm near landfall.  During the event a strong pressure gradient 

developed between the cyclone and a high-pressure system located to the south.  

 

Tropical cyclone David (Figure 7.4) originated near Vanuatu early on the 14
th
 

January 1976 and tracked in a general west-southwesterly direction towards the 

Queensland coast.  The storm was intensifying right up to the time of landfall, which 

occurred at about 1200 UTC on the 19
th
 January south of Mackay.  Its lowest central 

pressure was estimated to be 961 hPa just prior to landfall, before it decayed 

relatively slowly overland.  The radius of maximum winds was estimated to be 
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between 60 and 70 km at landfall (Gourlay and McMonagle 1989).  While tropical 

cyclone David passed some distance to the north of Lady Elliot Island, a feature of 

this storm was its large circulation with gale force winds produced over an extensive 

area.  Figure 7.5 shows a synoptic map of the system just prior to landfall.  As with 

tropical cyclone Dinah, the presence of a strong pressure gradient between the 

cyclone and a high-pressure system to its south contributed to strong winds and large 

waves being generated during the storm’s approach. 
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Figure 7.4  Tracks of tropical cyclone’s Dinah and David.  Boundaries of coarse 
and fine grid model domains are also shown.   
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Figure 7.5  Synoptic features of severe tropical cyclone Dinah (left) at 1100 UTC 

on 29
th
 January 1967 and David (right) at 2300 UTC on 18

th
 January 

1976. 
 

 

 

Other than using positional and intensity estimates of these storms from the best-

track recordings, as well as an estimate of their radius of maximum winds, no 

attempt has been made to extensively reconstruct the wind fields of tropical cyclones 

Dinah and David.  This is due, in part, to the limited amount of direct observations 

for these events, but more so because the adopted methodology for palaeostorm 

reconstruction uses a relatively simple parametric model of the tropical cyclone wind 

field.  This is a necessary consequence of unknown meteorological conditions at the 
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time of storm ridge deposition.  As such, it is more relevant in this case to assess the 

methodology on a similar basis.   

 

7.4.3 Modelling Water Levels 

 

A series of storm simulations were conducted to determine the height of water levels 

generated by these tropical cyclones at Lady Elliot Island.  Several models were 

employed to simulate this response.  This included the two-dimensional storm tide 

model GCOM2D (Hubbert and McInnes 1999), and the third generation spectral 

wind-wave model SWAN (Booij et al. 1999).  Tropical cyclone forcing was provided 

from the parametric model of Holland (1980), with surface wind and pressure fields 

derived in the manner described by Hubbert et al. (1991).  These are interpolated 

both spatially and temporally to the numerical surge and wave model grids.   

 

Inputs to cyclone model are the time history of the parameters specifying the storm’s 

position (i.e. latitude, longitude), central and peripheral pressures, radius to 

maximum winds and radial profile shape.  The basic form of the Holland (1980) 

model has been extensively utilised in tropical cyclone wind, storm surge and wave 

modelling in the Queensland region (e.g. Hubbert et al. 1991; McInnes et al. 2000).  

With adequate tuning of the radial wind profile parameters, this model is generally 

capable of reproducing the peak conditions during tropical cyclones quite well.  One 

potential limitation is that the model only considers the influence of the vortex 

winds, while the winds resulting from the background synoptic flow are not taken 

into account.   
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Both the SWAN and GCOM2D ocean models are run over an outer coarse grid and a 

nested fine grid with a higher spatial resolution.  The spatial extents of these grids are 

shown in Figure 7.4.  The water level elevations from the coarse grid simulations are 

transferred to the boundaries of the fine grid.  The SWAN model is an arbitrary scale 

model that simulates wind-wave growth, propagation and dissipation for specified 

wind forcing, bathymetry and currents.  It can be applied in both deep and shallow 

water environments.  A spatial resolution of 0.05
0
 (~5.6 km) was used for the SWAN 

coarse grid with a total of 48 directional bins and 25 frequencies.  A spatial 

resolution of 0.005
0
 and a similar spectral resolution were used for fine grid 

simulations.   

 

The storm tide model GCOM2D solves the depth-averaged hydrodynamic equations 

for specified atmospheric forcing and tides over an arbitrary region defined by 

bathymetric and topographic information to provide water-level heights, currents, 

and coastal inundation levels.  An advantage of the model is that it can be applied in 

most settings with little calibration.  Here a spatial resolution of 5 km was employed 

for the coarse grid simulations and a resolution of 0.5 km for the fine grid.  Tidal 

forcing is implemented in this model as a change in water levels at the open water 

boundaries of the coarse grid from the amplitudes and phases of the dominant 

constituents (M2, N2, K2, S2, O1, P1, and K1).    

 

Lady Elliot Island is located in relatively deep water so any wind setup of the storm 

surge is likely to be negligible.  Hence, the contribution of the storm surge to total 

water level at this site is likely to be relatively small.  The location of this site at the 

southernmost end of the GBR also means that there is little sheltering effect as Lady 
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Elliot is isolated from neighbouring islands and reefs.  The abrupt transition from 

relatively deep to shallow water at the platform reef results in significant 

modification to off-reef wave conditions.  Waves break on the seaward reef margin, 

dissipating much of their energy and generating a set-up of the mean water level.  

Following initial breaking any residual energy is transferred into a breaking ‘surge’ 

that reforms into stable oscillatory waves, which lose further energy propagating 

over the shallow reef top due to surface roughness.   

 

Wave set-up levels are modulated by the storm surge and tide levels, with set-up 

generally larger at lower levels of submergence as well as for higher off-reef wave 

heights (Gourlay 1996).  A semi-empirical model is applied here to estimate the 

magnitude of wave-generated water levels on the Lady Elliot Island reef for off-reef 

wave and water level conditions obtained from the ocean models.  Figure 7.6 

highlights the processes involved with wave transformations on coral reefs. 
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Figure 7.6 Outline of wave process on coral reefs (adapted from Gourlay 1997, 
p.959). 
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On the basis of laboratory and field experiments Gourlay (1996; 1997) derived the 

following formulation for wave setup on a reef-top ( rη ) as a function of offreef wave 

conditions and reef characteristics: 
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where oH  and oT are the off-reef wave height and period, rh  is the still water depth 

on the reef, and PK  is a reef profile coefficient.  

  

The coefficient PK  depends largely on the slope and roughness of the reef at the 

breaking point.  Gourlay (1997, Figure 2, p. 961) gives values for PK  as a function 

of the slope of the reef face.  Given the extreme wave heights likely to accompany 

tropical cyclones it is apparent that waves would break at the seaward reef edge for 

the modelling scenarios considered here.  This is because Lady Elliot Island is 

situated near the edge of the continental shelf in relatively deep water and the 

contribution of the storm surge to the reef top water level is relatively minor, while 

the off-reef wave heights comparatively larger.  It is thus apparent that ro hH 4.0>> , 

where ro hH 4.0~  is approximately the point below which waves pass over a 

horizontal reef top without breaking (Gourlay 1996). 

 

In order to account for the irregular nature of storm waves, oH  is taken as the off-

reef root mean square wave height ( rmsH ).  A value for the reef top water level ( rh ) 

is obtained from the contribution of the storm surge and tide.  Assuming the wave 
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height on a horizontal reef top is depth-limited and taking a reef top wave height-to-

depth ratio of 4.0=rγ , the maximum significant wave height is given by 

)(4.0 rrr hH +η=  (Gourlay 1996).  The reduction in wave height with bottom 

friction is then given as: 
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where x  is the distance from the end of the surf zone to the shore, and wf  is a 

friction factor.  A representative value of wf  on coral reefs is around 0.1-0.2 

(Gourlay 1997).  The maximum value for the surf zone width ( sx ), which represents 

the furthest distance travelled by the breaking surge, is (Gourlay 1997): 

    

eeos hgThHx )/1.12( += ,               (7.3) 

 

where eh  is the water depth at the reef edge.  Finally, run-up of the reformed waves 

reaching the shore of the cay is estimated with the following: 

 

rrB gHTR αtan64.0%2 =                 (7.4) 

 

where %2R  is the run-up height exceeded by 2% of the incoming waves, Bαtan  is 

the beach slope, and rT  is the reef top wave period, which is generally shorter than 

the corresponding off-reef value.   
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7.4.4 Results 

 

Given that relatively reliable meteorological information regarding the intensity and 

track of these tropical cyclones is available, and providing that the adopted models 

for reconstructing water levels are reasonably accurate, the validity of some of the 

assumptions underlying the reconstruction methodology of Nott and Hayne (2001) 

can be more closely examined.  One important assumption is that the depositional 

events were intense tropical cyclones that tracked nearby the site.  On this basis, 

tropical cyclones Dinah and David represent suitable candidates for testing this 

assumption given that they were both severe tropical cyclones that tracked across the 

southern GBR region. 

 

Figure 7.7 gives the results of employing the series of models to predict the height of 

water levels at Lady Elliot Island associated with tropical cyclones Dinah and David.  

The plots give a time series of the maximum water levels and the estimated wave set-

up levels for a 36-hour period during the storm’s passage in the southern GBR 

region.  The hindcast for Dinah indicates that water levels would, at most, reach 

about 2.3 m above HAT.  The maximum water level generated by David was 

estimated to be around 1.0 m above HAT. 

 

The major contributor to the total water level is the wave set-up component, which is 

a consequence of the exposed nature of the site favouring the generation of large off-

reef waves as well as the influence of the reef on local wave conditions.  It is also 

apparent that wave set-up is larger at lower levels of reef submergence during the 

tidal low.  The hindcasts indicate that during the peak of these events, extreme 
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conditions at Lady Elliot persisted for some time, such that similar off-reef wave 

conditions were experienced across the tidal cycle.  This resulted in the larger total 

water levels being experienced during the tidal high.   
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Figure 7.7  Modelled water levels at Lady Elliot Island for tropical cyclones Dinah 
and David, (a) total water levels, and (b) wave set-up levels.  For Dinah 
the time series commences at 0600 UTC on 28

th
 January 1967 and for 

David at 0900 UTC on 18
th
 January 1976. 

 

 

 

The modelled water levels are likely be an underestimation of the maximum 

achieved level, as the instantaneous value of rη  would likely reach levels higher 
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than the mean value ( rη ) due to the presence of wave groups (Gourlay 1996).  

Larger reformed waves and consequently a higher level of wave run-up would likely 

accompany a temporarily higher level of wave set-up.   

 

The results indicate a tropical cyclone similar to Dinah’s severity and path are likely 

necessary to generate water levels comparable to the height of storm ridges at Lady 

Elliot.  Tropical cyclone David, which tracked a greater distance from the site, 

appears unlikely to have produced water levels sufficiently high enough to be 

comparable to the ridge heights.  This suggests that the methodology of Nott and 

Hayne (2001) is relatively robust with respect to its assumptions on reconstructing 

palaeostorm intensities, despite the level of simplification involved with simulating a 

complex series of processes.   

 

The height of water levels generated at Lady Elliot from tropical cyclone Dinah 

indicates a tendency towards lower intensity estimates than were reconstructed by 

Nott and Hayne (2001, Table 2).  The results here show a lower intensity storm, 

indicative of a weak category 4 system, may be a more representative estimate at this 

site.  It is apparent, though, that this difference can largely be explained by 

knowledge of the tidal conditions during tropical cyclone Dinah.  Inspection of the 

uncertainty margins for unknown tidal conditions given by Nott and Hayne (2001, 

Table 2) indicates a similar intensity would be reconstructed under the assumption 

that ridges are emplaced during high tide conditions. 

 

At this stage it remains difficult to further assess the methodology in the absence of 

direct observations of storm ridge formation under tropical cyclone conditions.  In 
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this case it is not known whether tropical cyclone Dinah deposited a storm ridge at 

Lady Elliot.  Although, it is likely that some coarse sediment was deposited at 

elevation with the storm-generated inundation of the cay.  This is consistent with 

observations that indicate the elevated water levels during Dinah initiated the 

onshore transport of coral fragments including existing sedimentary units that rested 

above high water.   

 

 

7.5 Summary and Discussion 

 

It is apparent that a unique set of rarely occurring conditions, most likely triggered by 

severe tropical cyclones, was responsible for the formation of storm ridge sequences 

found throughout the Queensland region.  At several of these sites storm ridges are 

permanent features in the landscape having formed stable landforms over time.  

Individual ridge heights at these sites are therefore likely to act as a reliable indicator 

for the minimum level of site inundation generated by the depositional storms.  The 

approach to reconstructing the intensity of ridge forming events though, is 

necessarily simplistic and conservative given the complex nature of the unknown 

meteorological conditions associated with the depositional storms.     

 

The simulations conducted in this study for tropical cyclones Dinah and David at 

Lady Elliot Island substantiate the methodological framework for reconstructing 

palaeostorm intensities developed by Nott and Hayne (2001).  Moreover, other 

studies have shown that water level responses under known tropical cyclone 

conditions can be reconstructed and compared to sedimentary traces of their 
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occurrence (e.g. Fletcher et al. 1995; Nott 2004).  Given that the geomorphic 

response of these environments to wave action is a complex process, however, there 

are limitations associated with the reconstruction methodology, such as the role of 

wave run-up, that warrant further investigation.  A potentially important limitation of 

the modelling process presented here is the extent to which the unaccounted effects 

of wave refraction and diffraction at Lady Elliot reef would influence water level 

calculations.     

 

One important aspect that underlies the interpretation of past storm events using this 

methodology is the assumption of a relatively stable geomorphic setting over the 

period in which a particular sequence has been constructed.  Most important is the 

relationship of modern sea levels to those when the ridges were actually emplaced.  

Hayne (1997) suggests the reduction in ridge heights by about 50 cm over Curacoa 

ridge sequence (Figure 7.2) reflects the influence of a fall in sea levels over the late 

Holocene.  On the basis of intertidal coral micro-atolls found on fringing reef flats 

across the region, Chappell (1983) reconstructed a peak at about 1 m in postglacial 

sea-level rise at around 5,500-6,000 years BP and thereafter a smooth linear fall to its 

present level.  More recently, Baker and Haworth (2000) suggested a possible 

alternative statistical interpretation of Chappell’s micro-atoll data, opting to fit a 

high-order polynomial curve to the data in view of an oscillatory rather than smooth 

decline in sea levels.   

 

Any potential mis-interpretation introduced by the lack of an accurate understanding 

of late-Holocene sea-levels may be minimised by concentrating on only the more 

recent prehistoric record.  In the case of Lady Elliot Island, it is apparent that the 
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progradation of storm ridges over the last 3,000 years has taken place at sea-levels 

more or less at present levels.  While smaller amplitude changes that are not resolved 

in the available palaeo-sea level indicators may have occurred over this period, it is 

unlikely that they would affect the general results.  Moreover, one factor that 

potentially offsets the need to adjust ridge heights in accordance with sea-level 

changes is the degree to which progressive compaction and settling has reduced their 

original standing (Nott 2004).   

   

One further aspect regards the precision with which a reliable chronology can be 

obtained from the record.  A high temporal resolution record of past tropical cyclone 

activity is not obtainable from the ridges sequences, instead being limited to the 

recording of only the most extreme events at a few sites.  Furthermore, radiocarbon 

dating of individual ridges can only provide ages for depositional events that fall 

within a range, which complicates the identification of trends in the chronology.  In 

addition, a possible sampling bias exists in the dating process due to the fact that 

samples may not have been alive at transport, but had been reworked from existing 

accumulations of rubble on the reef (Nott 2004), or had been reworked between 

ridges.  Due to this potential delay in transport of ridge material, ages given for ridge 

formation actually represent an average maximum age for the deposit.   

 

This bias can be minimised to some extent by examining surface features on corals 

or mollusc shells, such as abrasion or boring, to indicate whether a sample was alive 

at the time of transport  (Hayne 1997).  Chivas et al. (1986) also selected shell 

samples, which would be more resistant to reworking due to their large size.  Nott 

(2004) also points out that the narrow fringing reef at Curacoa Island is not 
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conducive to accumulating a significant amount of coral rubble at shallow depths to 

be subsequently entrained by storm waves.  Hence, most coral fragments found in 

ridges at this site were likely to have been alive at transport.   

 

In any case, given that the time period for when individual ridges were deposited can 

be suitably bracketed, an understanding of the regional frequency of severe tropical 

cyclones can be obtained by collating multiple site records.  Having a greater 

understanding of such limitations then allows for an improved discrimination of the 

merits of this record.  This is particularly important to facilitate comparisons with the 

modern record, which is addressed in the following chapter.   
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CHAPTER 8  

 

COMPARITIVE ANALYSIS OF INSTRUMENTAL, 

HISTORICAL AND PREHISTORICAL RECORDS 

 

 

8.1 Introduction 

 

The purpose of this chapter is to provide a comparison of the landfall climatologies 

presented in previous chapters.  The main emphasis is placed on assessing how 

predictions on the frequency of extreme events differ for each component.  The 

chapter begins by comparing a series of landfall events generated from the Coral Sea 

regional simulation model developed in Chapter 6 against the observed landfall 

record based on historical and instrumental eras that was presented in Chapter 5.  

This initially involved the application of the regional simulation model to generate a 

series of landfall events and a subsequent analysis of that series to determine extreme 

event probabilities.    

 

As with any statistical analysis, predictions of event probabilities are sensitive to the 

size of the available sample, and hence the quantification of uncertainty plays an 

important role.  This is particularly relevant to the practical application of simulation-

based approaches, because the objective of this method is the generation of a series 

of events that exceeds in size the observed series.  For this reason a detailed 

investigation is undertaken to assess the level of uncertainty associated with 



 159 

predictions from the regional simulation model.  These results are subsequently 

compared against uncertainty levels for the observed landfall record.  Finally, a 

comparison of simulated and observed records against the prehistorical record that 

was discussed in the previous chapter is outlined. 

 

 

8.2 Comparison of Simulated and Observed Records 

 

Chapter 6 described the development of a simulation model for generating tropical 

cyclone tracks and intensities in the Coral Sea region based on data from the 

instrumental era (1960/61-2004/05).  This model is employed here to simulate a 

series of landfall events with which to compare against the observed record. Vickery 

et al. (2000) used a similar comparative technique to evaluate their simulation model 

for Atlantic Basin hurricanes.  The observed record here comprises tropical cyclone 

landfalls along the Queensland coast over the historical and instrumental eras 

encompassing the period 1898/99-2004/05.   

 

8.2.1 Analysis of Simulated Series 

 

In total, 3,077 Coral Sea storms were generated using the regional simulation model.  

Each simulated event consisted of the track’s location at 6-hourly intervals along 

with a corresponding minimum central pressure.  With a mean arrival rate of 2.4 

storms per year, the 3,077 event series is equivalent to a simulation period of 

approximately 1,282 seasons.  Of the 3,077 regional storms generated, 1,000 were 

classified as landfall events.  This gives a landfall arrival rate of approximately 0.8 
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storms per year.  The central pressure at landfall was extracted for each simulated 

event and the resulting series is plotted in Figure 8.1. 

 

The analysis undertaken here seeks to compare this simulated dataset against the 

observed landfall record in terms of its capacity to produce similar predictions of 

extreme event occurrences.  To accomplish this, the simulated series shown in Figure 

8.1 was subject to an extreme value analysis consistent with the methodology 

employed in Chapter 5 for the observed record.  Specifically, this involved the fitting 

of a Generalised Pareto Distribution (GPD) (equation 5.2) to the simulated landfall 

central pressures.  When combined with a Poisson distribution for seasonal event 

occurrences, this gives return period levels for landfalling tropical cyclone intensities 

on an annual scale. 
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Figure 8.1  Series of landfall central pressures (hPa) generated from Coral Sea 

simulation model. 
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Figure 8.2 shows a mean excess plot for the simulated central pressure series.  As 

described in Chapter 5 the mean excess plot is a useful diagnostic tool to aid in the 

selection of an appropriate threshold for fitting the GPD to data.  Examination of the 

mean excess plot for linearity above a particular threshold indicates the point where 

the GPD provides a valid approximation to the distribution of excesses.  Confidence 

intervals are also given on the plot, which are derived under the assumption that 

sample means are approximately normally distributed.  Inspection of Figure 8.2 

indicates that the mean excess curve is more or less linear across the threshold range.  

To be consistent with the analysis in Chapter 5, the GPD was fit to the simulated 

series with a threshold of 1002 hPa.  Parameter estimates for the model were 

obtained using the maximum likelihood method, which was outlined in Chapter 5.  

 

In order to provide further confirmation that the adopted threshold is reasonable, a 

threshold stability plot of the GPD shape parameter (κ) is given in Figure 8.3.  As 

explained by Coles (2001) this comprises estimates of the shape parameter (κ), 

together with confidence intervals, for a range of thresholds.  The plot provides a 

way to graphically examine variation in κ across the threshold range, which can aid 

threshold selection by signaling the point where parameter estimates remain 

relatively stable.  Confidence intervals for the maximum likelihood estimate of κ̂  at 

each threshold are obtained using the standard delta method, which assumes 

asymptotic normality of parameter estimates.  The threshold stability plot in Figure 

8.3 highlights some variability across the threshold range, although the selected 

threshold of 1002 hPa appears reasonable when confidence intervals are taken into 

account.   
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Figure 8.2  GPD fit to simulated landfall central pressures. (a) Mean excess plot, 

(b) return period curve, (c) probability plot, and (d) quantile plot. 
 

 

 

 

The return period curve based on maximum likelihood fitting of the GPD to 

simulated landfall intensities is displayed in Figure 8.2.  Also plotted in Figure 8.2 

are probability and quantile plots of the fitted model to assess goodness-of-fit.  These 

indicate that relatively good agreement is obtained between the simulated data and 

the model fit.  Maximum likelihood estimates of the GPD parameters are σ̂  = 33.8 

and κ̂  = -0.286. 
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Figure 8.3  Threshold stability plot of GPD shape parameter (κ) for simulated 
landfall central pressures. 

 

 

 

 

8.2.2 Quantile Comparisons 

 

Figure 8.4 graphs the respective return period curves based on simulated and 

observed records.  The return period curve labeled ‘Instrumental+Historical’ is that 

plotted in Figure 5.7 of Chapter 5. This corresponds to the Bayesian predictive 

distribution for the GPD fit to the combined historical and instrumental records of 

landfall central pressures.  The curve labeled ‘Simulated’ corresponds to that plotted 

in Figure 8.2, which represents the GPD fit to simulated landfall central pressures. 

Also graphed is the return period curve based on the GPD fit to the instrumental 

record (labeled ‘Instrumental’).  This corresponds to that plotted in Figure 5.2 of 
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Chapter 5, which involved fitting the model to observed landfall intensities over the 

period 1960/61-2004/05. 
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Figure 8.4  Comparison of return period curves for simulated and observed records.  
(a) Plots based on a GPD fit to observed landfall central pressures 
(instrumental era, combined historical and instrumental eras), as well as 
the simulated series, and (b) Plots based on GPD fit to simulated series 
and corresponding empirical estimate for the simulated series. 
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Also shown in Figure 8.4 is a nonparametric estimate of the return period curve for 

the simulated output series.  These return period estimates were calculated from the 

empirical percentiles of the output simulated series.  Comparison of the empirical 

quantile curve with that based on the GPD fit to the output series shows close 

agreement.  This suggests that adopting the parametric model for the simulated 

output series, so as to be consistent with techniques used for the observed record, 

should not overly bias subsequent comparisons with the observed record. 

 

Comparison of the return period curves in Figure 8.4 indicates that quantile 

predictions derived from the simulated series are fairly consistent with those from the 

observed record combining instrumental and historical data.  This implies both 

approaches lead to similar predictions regarding the frequency of major landfall 

events in the Queensland region.  The return period curve based on only the 

instrumental record of observed landfall events is seen to give comparatively lower 

estimates, indicative of a shorter-tailed distribution.  As an example comparison, 

Figure 8.4 shows the 100-year return level from the simulated series is 918 hPa, from 

the observed (combined historical and instrumental) record it is 922 hPa, while from 

the observed instrumental series it is 946 hPa.  The corresponding empirical estimate 

of the 100-year return level (Figure 8.4b) from the simulated series is 918 hPa. 

 

 

8.3 Uncertainty Analysis 

 

Coles and Simiu (2003) differentiate between two sources of uncertainty that arise in 

the application of simulation models to the generation of a series of tropical cyclone 

events.  Namely; 
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1. That related to the length of the generated series, which typically comprises 

1,000 or even 10,000 simulated events, and; 

 

2. That related to sampling variability associated with parameter estimates of 

the different components that constitute the regional simulation model.  

 

As mentioned in Chapter 3, while it is common to assess statistical uncertainty based 

only on the simulated output series, this component characterises only a small 

fraction of the level of uncertainty in the overall process.  This is because the 

simulated series comprises a very large dataset of events, such that sampling 

uncertainty is artificially small. 

         

As noted by Coles and Simiu (2003) a potentially greater level of uncertainty arises 

from inference on the observed tropical cyclone events, which form the basis of the 

simulation model.  This is naturally subject to greater sampling variability because 

the size of the observed sample of tropical cyclones is limited.   For this reason it is 

also important to assess uncertainty in terms of this available record.  A relatively 

simple approach proposed by Coles and Simiu (2003) to perform this involves the 

use of bootstrap resampling techniques on the simulated series. 

 

8.3.1 Bootstrap Confidence Intervals 

 

Given a sequence of observations ),...,( 1 mxx , conventional bootstrap techniques 

amount to repeatedly drawing a sample of size m, with replacement, from the 

original sequence to generate B bootstrap replicate series.  In this process each 
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observation is resampled with equal probability.  For each of the B bootstrap samples 

an estimate of the statistic of interest is obtained, which then allows a reliable 

sampling distribution of the statistic to be constructed (providing the number of 

bootstrap samples is sufficiently high).  The basic premise of the approach presented 

by Coles and Simiu (2003) is to apply a bootstrap resampling scheme on the 

simulated series as a means to assess uncertainty in return period estimates.  A 

variant on the conventional nonparametric bootstrap technique is actually used by 

Coles and Simiu (2003), whereby the fitted model for the simulated series is used to 

generate bootstrap samples.  This procedure is referred to as a parametric bootstrap. 

 

A similar approach is applied here to estimate the uncertainty margins in return 

levels that arise separately from the simulated output and from the simulation model 

itself.  The critical distinction between the two components centres on the length (m) 

of each bootstrap sample generated.  For the output component, the size of each 

bootstrap sample is taken to be equivalent to the number of observations used to fit 

the GPD model to the simulated series.  In this case a total of 1,000 landfall events 

were generated from the Coral Sea regional simulation model.  For the simulation 

component, the size (m) of each bootstrap sample is selected to correspond to the 

number of tropical cyclone observations originally used in developing the model.  As 

mentioned in Chapter 6 this was based on a total of 108 tropical cyclone events 

recorded in the Coral Sea region over the period 1960/61-2004/05.   

 

Uncertainty measures are typically expressed in the form of confidence intervals for 

high quantile estimates.  The bootstrapping procedure applied here to obtain these 

intervals can be summarised as follows:   
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• B = 999 samples of size m are randomly generated from a Poisson distribution 

with an arrival rate equivalent to the threshold exceedance rate for the Poisson-

GPD fit to the simulated series (i.e. ~0.8 events per season),  

 

• For each of the 999 generated samples, a mean arrival rate 
*λ̂  is then calculated,  

 

• For each 
*λ̂  in the replicated series 

*

999

*

1
ˆ,...,ˆ λλ , B = 999 samples of size m

*λ̂  are 

then generated from a GPD distribution with parameters ),( κσ .  The parameter 

estimates used here are σ̂  = 33.8 and κ̂  = -0.286, with the threshold (u ) fixed at 

1002 hPa,  

 

• For each of the 999 generated samples, the GPD parameters )ˆ,ˆ(
** κσ  are 

estimated by the method of maximum likelihood,    

 

• T-year quantiles ( 1000...,,5,2,25.1, =TzT ) are then calculated using each set 

of parameter estimates, )ˆ,ˆ,ˆˆ;ˆ,...,ˆ(
*****

999

*

1 κσλ=θθθ , again with the threshold 

(u ) fixed at 1002 hPa 

 

• From this series of bootstrap replicates (
*

)999(

*

)1( ,...,
TT
zz ), the %)1(100 α−  

confidence intervals are obtained as the )1(2/ +α B  and )1()2/1( +α− B  

values in the order sequence of replicates. 

 

This procedure was implemented to estimate two separate sets of uncertainty margins 

for quantiles of the fitted GPD model.  For both the output and simulation model 

components the approach was essentially identical, except that the number of 

observations (m) generated for each of the 999 bootstrap samples was smaller for the 
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simulation model component to reflect the shorter length of the tropical cyclone 

record. This can therefore be viewed as obtaining a smaller subset of the output 

series (Figure 8.1) to assess uncertainty.  
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Figure 8.5  Uncertainty margins (95% confidence intervals) for simulated series of 
landfall central pressures. (a) uncertainty based on 1,000 event 
simulated series, and (b) uncertainty based on a subset of the series that 
is representative of the size of the observed tropical cyclone record. 
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Following Coles and Simiu (2003) it was also necessary to apply a bias-correction to 

the bootstrap estimates of ),( κσ  because of the tendency for bootstrap methods to 

produce samples with shorter tails than the true sampling distribution.  Figure 8.5 

shows 95% confidence intervals (i.e. α  = 0.05) for the return period curve estimated 

by the application of this procedure.  This highlights that uncertainty margins are 

much broader for the simulation model component than for the output component.  

As expected, variability in quantile estimates also increases at higher return periods.  

Importantly, this effect becomes more pronounced for the confidence intervals based 

on the simulation model component. 

 

8.3.2 Simulated versus Observed 

 

As a further comparison of simulated and observed records, Figure 8.6 plots 

histograms of the GPD shape and scale parameter estimates against posterior 

densities of these parameters.  The histograms represent sampling distributions 

derived from the bootstrap procedure described previously and applied to estimate 

confidence intervals for the simulation model (Figure 8.5b).  The posterior densities 

shown in Figure 8.6 (smoothed curves) are derived from the Bayesian analysis 

applied to combined historical and instrumental records of landfall central pressures 

(see Figure 5.4).   

 

Most notably, the plots demonstrate a similar spread in these quantities, suggesting 

both approaches lead to similar levels of variability in parameter estimates.  This 

level of agreement is to be expected in some respects because the Bayesian approach 

made use of more data through the inclusion of historical information, while the 
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simulation-based approach incorporated additional data by considering a wider 

geographical region to develop a model. 
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Figure 8.6  Comparison of uncertainty measures in parameter estimates of 
simulated series and observed record. (a) GPD shape parameter, and (b) 
GPD scale parameter.  Histograms represent sampling distributions of 
the simulated output series of landfall central pressures.  The smoothed 
curves represent Bayesian posterior distributions estimated from the 
combined historical and instrumental record of landfall central 
pressures. 
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8.4 Comparisons with Prehistorical Record 

 

The previous uncertainty analysis showed that predictions of extreme quantiles 

exhibit a large degree of variability, which is a consequence of the short length of the 

available tropical cyclone record.  Moreover, while the adoption of asymptotic 

models for extremes, the use of regional simulation techniques, and the incorporation 

of historical data provide an improved means to derive a landfall climatology, it 

remains difficult to verify the adequacy of subsequent predictions.  As discussed in 

Chapter 7 though, there exists a long-term geological record of extremes that can be 

used for comparative purposes.   

 

A direct comparison is, however, problematical because the chronology of events 

comprising the geological record is limited by both spatial and temporal 

incompleteness.  This is because the storm ridge sequences preserve a record of only 

the most extreme events at only a few sites along the Queensland coast.  

Reconstructing event magnitudes from this record is also subject to some inherent 

limitations.  As discussed in Chapter 7 these are largely associated with the inability 

to reconstruct the tidal conditions at the time of ridge formation.  While the phasing 

of the tide is unrelated to the magnitude of the depositional storm, it does however, 

contribute to total height of water levels associated with the depositional storm.  The 

±1σ and ±2σ uncertainty margins reported by Nott and Hayne (2001, Table 2, p. 510) 

reflect the influence of these unknown tidal conditions. 

 

Due to the spatially incomplete nature of the geological record, only an at-site 

estimate of ridge forming events can be obtained from sites where ridge sequences 
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have been preserved.  For instance, over about the last 2,500 years the average at-site 

frequency of these events (i.e. the average time interval between ridge deposition) 

was 231-years (11 ridges in 2,540 years) and 210-years (12 ridges in last 2,525 year) 

for the Curacoa Island and Princess Charlotte Bay sites respectively.  It has been 

hypothesised that the frequency of ridge forming events has remained relatively 

stable for the past several thousand years in this region (Hayne and Chappell 2001).  

The last 2,500 years captures a period of storm activity recorded by several sites.  It 

is also a period when boundary conditions in the region, especially palaeosea levels, 

were unlikely to have been significantly different than present.   

 

The analysis conducted in this study has been largely focused on the frequency and 

intensity characteristics of landfall events along the entire Queensland coast.  In 

order to facilitate a direct comparison with the geological record requires a 

transformation of these regional models to the at-site level.  This was undertaken by 

firstly estimating separate occurrence rates governing at-site frequencies for a 

particular ridge site.   

 

Here it is assumed that a 100 km sampling radius around a ridge site is a 

representative zone of influence for at-site frequencies.  Thus, an assumption is made 

that an intense storm tracking within this 100 km sampling radius would be likely to 

deposit a ridge.  There is a degree of arbitrariness in adopting this scheme for 

comparison, however, based on the sensitivity analysis of Nott (2003, Figure 2) this 

is seen as a conservative representation.  In reconstructing a history of past major 

storm events in the Cairns region, Nott (2003) also found that two sites located in 
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close proximity to each other, were both likely to have recorded the impact of the 

same events.   

 

Recall that the Poisson-GPD model fit to landfall intensities incorporated two 

components, one governing the occurrence rate as a Poisson process (λ ) and another 

specifying event magnitudes as following a GPD model ),( κσ .  Then, having 

obtained an estimate of the ‘at-site’ occurrence rate of events ( Sλ ), this replaces λ  in 

the Poisson-GPD model for landfall intensities.  Thus, combining this at-site 

occurrence rate estimate ( Sλ ) with the GPD model for event magnitudes 

),( κσ completes the specification of the ‘at-site’ distribution of landfall intensities.   

  

Figure 8.7 shows the results of comparing the prehistorical record with the at-site 

distributions of storm intensity.  The comparison is restricted here to only Princess 

Charlotte Bay and Curacoa Island, as these are the only sites where comprehensive 

sampling of storm ridges has been conducted (Hayne 1997).  The reconstructed 

intensity estimates of Nott and Hayne (2001) for these sites are plotted as a single 

value for all ridges in the sequence along with associated uncertainty margins.  The 

return period for the reconstructed intensity estimates are assigned based on the 

average time interval between radiocarbon dates for the ridge sequence.   

 

The return period curve for model fit to observed data (historical and instrumental 

records), and adjusted to the at-site level, is shown to produce estimates that fall 

below the empirical estimates at both the Princess Charlotte Bay and Curacoa Island 

sites. Similarly, the return period curve for the simulated series of landfall intensities, 
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when adjusted to the at-site level, also falls below the empirical estimates from the 

storm ridge sites. 
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Figure 8.7  Comparison of return period curves for observed (solid curve) and 
simulated (dashed curve) landfall intensities adjusted to the at-site level, 
and plotted against empirical estimates of ridge forming events. (a) 
Princess Charlotte Bay site, and (b) Curacoa Island site.  Reconstructed 
intensity estimates are obtained from Nott and Hayne (2001, Table 2, p. 
510) and show ±1σ and ±2σ uncertainty margins around mean estimated 
represented by filled circle.  
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One feature that is apparent from Figure 8.7, and was mentioned in Chapter 7, is the 

substantial range of uncertainty associated with reconstructed intensity estimates 

from the storm ridge record.  The uncertainty margins plotted in Figure 8.7 are due to 

variability associated with unknown tidal conditions.  Their relatively wide range 

reflects the fact that storm ridges are actually emplaced by tropical cyclones of 

various intensities depending on the prevailing tidal conditions at the time of 

deposition.  In the case of the Princess Charlotte Bay site, the return period curves 

based on both the observed and simulated records are seen to fall just below the 

mean estimate, although within the plotted ±1σ uncertainty margins.  For the 

Curacoa Island site, the return period curves are seen to fall well below the mean 

estimate and at the lower end of the ±2σ uncertainty margins.   

 

 

8.5 Summary 

 

This chapter has comprised a comparative analysis of the major sources of tropical 

cyclone information for Queensland landfalling tropical cyclones.  The evaluation 

has been primarily aimed towards comparing predictions of extremes from each of 

these data sources.  Results demonstrate that relatively good agreement in predicted 

quantiles is found from simulated and observed records that include historical data.  

Predictions derived solely from the observed instrumental record are substantially 

different to those obtained from the Coral Sea region simulation model.  This is 

despite both being derived from data covering the same post-1960 time period.  This 

implies that the record of landfalling storm intensities over recent decades is 
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inconsistent not only with that observed during the historical era, as was established 

in Chapter 5, but also with that in the Coral Sea region over recent decades. 

 

Statistical uncertainty that arises from the application of the regional simulation to 

the generation of an event series is shown to be small, and can be made arbitrarily 

negligible by simulating a large enough event series.   The uncertainty associated 

with these predictions is shown to be more substantial, however, when it is quantified 

in terms of the length of the tropical cyclone record used to develop the simulation 

model.  A subsequent comparison of uncertainty margins for observed and simulated 

records shows similar levels of variability in parameter estimates of the assumed 

probability model for landfall intensities. 

 

Comparisons of simulated and observed model predictions with prehistorical data 

provide an independent means to assess their capability to predict major events.  In 

this case there is evidence to suggest models based on the entire landfall record as 

well as that derived from the regional simulation model are tending to underestimate 

the frequency of major events in the region.  When uncertainties inherent in 

reconstructing storm intensities from geological evidence are taken into account 

though, the differences apparent from the comparison are less straightforward. 
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CHAPTER 9 

 

SUMMARY, DISCUSSION AND CONCLUSIONS 

 

 

9.1 Introduction 

 

The principal objective of this thesis has been to examine ways to maximise use of 

available information in developing an improved statistical description of 

Queensland landfalling tropical cyclones.  This was approached in three main ways.  

First, through the incorporation of historical information to improve understanding of 

the frequency and intensity of landfall events.  Second, through the use of 

regionalisation techniques as a means to make use of additional data from which a 

landfall event series can then be simulated.  Third, through the use of prehistorical 

information to provide an independent basis for comparing predictions from 

instrumental, historical and regional records.  

 

This study represents the first meaningful attempt to obtain a comprehensive landfall 

climatology of Queensland tropical cyclones.  Previous studies have tended to 

examine only isolated aspects of the process such as the effect of ENSO on Coral Sea 

storm activity.  By design, this study has been more holistic in aiming to research not 

only the frequency and intensity of landfall events, but also in investigating temporal 

trends and climate factors.  In addition, the incorporation of historical and 

prehistorical information represents a novel approach in the Queensland context, 
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where such data has largely been ignored in recent studies.  To facilitate the 

incorporation of past data sources various statistical techniques, previously applied in 

other tropical cyclone basins as well as in other fields of natural hazards research, 

have been employed.  This chapter summarises key findings from this research, 

discusses important implications, including those relevant to risk assessment in 

Queensland, and presents several avenues for extensions to the analysis. 

 

 

9.2 Summary of Findings 

 

Modelling of the statistical properties of Queensland landfalling tropical cyclones 

has been based on best-track records compiling observations over the last century.  

Any analysis of this record is complicated by the less reliable nature of observations 

sampled prior to the introduction of satellite monitoring and analysis techniques in 

the 1960s.  In order to address these sampling limitations a separation of the best-

track record into an historical era (pre-1960/61) and an instrumental era (post-

1959/60) was first implemented.   

 

Bayesian statistical techniques were subsequently employed to provide a rational 

means to incorporate less precise historical information by using it to specify 

informative priors for models of seasonal activity and intensity.  In constructing these 

prior distributions, bootstrapping techniques were used to allocate a credible range of 

uncertainty to estimates of model parameters obtained from historical observations.  

This follows a similar approach outlined by Elsner and Bossak (2001) and Elsner and 

Jagger (2004) who examined time series of United States hurricanes.  In the 
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Queensland context, use of the Bayesian approach to combine historical and 

instrumental samples represents a unique contribution.   

 

The results of Chapter’s 4 and 5 demonstrate that the two main advantages of the 

approach are increased model certainty and improved predictions of the frequency of 

extremes.  An inherited outcome of adopting a Bayesian modelling strategy is 

predictive distributions showing the probability of future events reaching specific 

levels.  Bayesian predictive distributions have the advantage of implicitly accounting 

for uncertainty due to randomness and parameter variability.  Example predictive 

distributions for seasonal landfall activity and intensity are given in Figures 4.2, 4.5 

and 5.6.  Furthermore, as more data becomes available posterior and predictive 

distributions presented here can readily be updated.  Likewise, the same applies to 

the specification of informative prior distributions in the event that greater 

quantitative data becomes available from historical and prehistorical sources.     

 

An extreme value analysis applied to records of landfall central pressures indicated 

that a higher frequency of major landfall events is expected under a model that 

incorporates historical information.  This was largely a consequence of the largest 

magnitude events in the series occurring prior to the 1920s, and due to few weak 

major systems being recorded during the instrumental era.  These extreme event 

predictions were subsequently confirmed through a censoring-based procedure that 

incorporated only the largest events recorded during the historical era.  Comparison 

of the results of this approach against those of the Bayesian model highlighted 

similar estimates of the frequency of major landfall events.    
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A regional simulation model was next derived from the Coral Sea record using 

events from the period 1960/61-2004/05.  This model was subsequently applied to 

generate a series of landfall events.  When this simulated series was analysed using 

similar techniques as were employed for the observed series, predictions of extreme 

levels were comparable to those based on the landfall record combining historical 

and instrumental eras.  An analysis conducted to assess and compare uncertainty 

levels in the simulation model with those based on the observed record demonstrated 

that both approaches produce a similar range of variability in parameter estimates. 

 

A trend analysis conducted on landfall central pressures recorded over the last 

century identified the presence of a significant downward trend, largely a 

consequence of the early series peak in the incidence of major storms.  It is this early 

series peak that is responsible for the higher predictions of landfall extremes obtained 

when historical information is incorporated in the analysis.  Hence, this demonstrates 

the importance of using pre-satellite records for developing a statistically robust 

landfall climatology. 

 

When similar trend detection techniques were applied to the regional Coral Sea 

record, an upward trend in storm intensities was identified over the period 1960/61-

2004/05, which is in contrast to the downward trend detected in the landfall record.  

The fact that the increase in tropical cyclone intensity in the Coral Sea region over 

the instrumental period is not reflected in the landfall record over this period remains 

to be explained.  One possible explanation is that this may be related to some 

background mechanism, perhaps linked to ENSO, controlling tropical cyclone track 

patterns in the region.  
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For both landfall storm counts and Coral Sea counts the trend analysis highlighted no 

evidence of either a consistent downward or upward trend in storm activity over 

time.  There is, however, some evidence to suggest the presence of multi-decadal 

variability in both series.   

 

The results of a regression analysis on seasonal counts demonstrates that the El Niño 

Southern Oscillation (ENSO) plays a significant role in influencing tropical cyclone 

activity from season to season for both landfall and Coral Sea records, consistent 

with the results of previous studies (e.g. Grant and Walsh 2001).  Predictive 

distributions showing the probability of seasonal tropical cyclone activity conditional 

on the value of the SOI are given in Chapter 4.  A trend analysis investigating the 

strength of the relationship between ENSO and landfalling storm activity over time, 

highlighting a distinct pattern of multi-decadal variability.   

 

A review of geological records of past tropical cyclones in the Queensland region 

focused on recent work aimed at reconstructing the frequency of major events from 

storm ridge sequences throughout the region.  An analysis into the veracity of the 

reconstruction methodology developed by Nott and Hayne (2001) indicates that the 

assumptions upon which it is based are reasonable.  Limitations to this methodology 

are, however, apparent due to the uncertainties inherent in reconstructing past 

unobserved events from geological evidence.  These stem largely from an inability to 

reconstruct tidal levels associated with ridge forming events, the spatially and 

temporally incomplete nature of the record, and the difficulties associated with 

assigning precise ages to individual ridges.   
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A comparison of return level predictions for observed and simulated landfalling 

storm intensities with prehistoric records from two storm ridge sites (Curacoa Island 

and Princess Charlotte Bay) showed a degree of discrepancy.  In particular, there was 

a tendency for return level estimates to fall well below empirical estimates of the 

frequency of ridge forming events at these sites.     

 

 

9.3 Discussion 

 

One of the principle uses of the tropical cyclone climatology is that it often serves as 

a basis for simulating event responses, which are subsequently employed to assess 

risk levels.  This is most commonly in the form of design levels that guide planning 

and emergency management policy.  Hence, it is instructive to examine the 

implications of the results obtained from this study for the assessment of risk in 

Queensland.  Furthermore, it is of interest to evaluate how results obtained here 

directly compare with those of previous studies.  Also of relevance, are the results of 

the trend analyses previously summarised, which have implication for the assessment 

of risk, but must also be placed in the context of the less reliable nature of the 

historical record. 

 

9.3.1 Comparison with Previous Studies 

 

A direct comparison of the results derived from this research with those of other 

studies conducted in the Queensland region is problematical due to the wide range of 

sampling strategies previously employed. As discussed in Chapter 3, these have 
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largely been based on the use of fixed subregional approaches examining the process 

on small spatial scales around specific target sites.  Ideally, it would be advantageous 

to employ the simulation model developed in Chapter 6 to generate a response series 

of either tropical cyclone wind speeds or sea levels for such sites.   This generated 

response series could then be used to make comparisons with the results from recent 

simulation-based studies such as those reported by Harper (1999) and McInnes et al. 

(2000). 

 

Some limited comparisons are possible with simulation model of James and Mason 

(2005) who utilised observations over the post-1968 period to develop an approach 

for generating tropical cyclone tracks and intensities in the Coral Sea region.  Most 

notably, James and Mason (2005) reported that the application of this model gave a 

probability of observing a landfall event, similar in magnitude to tropical cyclone 

Mahina (914 hPa) (the largest in the observed series), of 6% over a 105-year period.  

Based on the methodology applied in this study to the record of landfall events 

(including historical information), the corresponding result indicates that there is 

around a 26% chance of this level being reached in a 105-year period.   

 

In fact, results here suggest that the length of time associated with a 6% probability 

of the 914 hPa level being equalled or exceeded is actually closer to 17 years.  This 

estimate was arrived at using the Bayesian predictive approach described in Chapter 

5, which implicitly allows for uncertainty in parameter estimates.  When estimates of 

the probability of other major event levels being equalled or exceeded in a future 105 

year period were compared with those given by James and Mason (2005), results 

here consistently indicate a considerably higher frequency of extremes.  This 
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conclusion applies not only to the analysis of the observed record, but also for the 

simulated series generated from the regional simulation model described in Chapter 

6.  Given that both this model and that of James and Mason (2005) was based on a 

similar dataset of tropical cyclone events, it appears likely that simulated event 

characteristics are highly sensitive to the mathematical form of the regional 

simulation model. 

 

As discussed in Chapter 3, the comparison of model predictions with observed data 

represents an integral component of verifying a simulation model developed from a 

basin-wide record.  Typically, this is conducted by comparing a simulated landfall 

event series with the observed record of such events (e.g. Vickery et al. 2000; Casson 

and Coles 2000).  In the Queensland context, James and Mason (2005) present 

comparisons of simulated event characteristics from their Coral Sea simulation 

model with observed values for three subregions of the Queensland coast.   

 

A similar approach was taken in Chapter 8, wherein predictions of the frequency of 

landfall extremes obtained from the observed record were compared against a 

simulated event series.  The advantage of the approach taken here, in contrast to that 

presented by James and Mason (2005) whose comparison was limited to the 

instrumental record, is that the observed dataset here incorporated historical 

information.  This fundamentally represents an improved method of verifying 

simulated event characteristics from a Coral Sea regional simulation model, because 

the historical record contains a number of landfall events more extreme than was 

recorded during the satellite era.   
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9.3.2 Implications for Risk Modelling 

 

Nott (2004) recently argued that because the prehistorical record appears to register 

events larger than that seen in the modern record, this calls for a reappraisal of 

tropical cyclone risk in the Queensland region.  Results reported in Chapter 8 where 

both simulated and observed records were compared with prehistorical evidence lend 

some support this assertion.  This is further supported by the previous discussion 

comparing results obtained from this research with those given by James and Mason 

(2005).  As the models developed here produce estimates of extreme landfall events 

that suggest a much higher frequency, the simulation model developed by James and 

Mason (2005) may in fact be producing conservative estimates of risk.  This is 

especially important when it is considered that the model of James and Mason (2005) 

forms the basis of the most recent attempts to estimate design levels for storm tides 

and wind-waves in the Queensland region (Hardy et al. 2003; 2004). 

 

In Chapter 2 two components of the tropical cyclone hazard, extremes winds and 

coastal flooding, were briefly reviewed from the perspective of their potential for 

impact in Queensland.  To highlight the importance of obtaining accurate design 

level estimates of such variables, it is useful to consider the sensitivity of measures of 

vulnerability to these estimates.  For instance, Zerger (1999) investigated the 

vulnerability of two sites in Queensland to the storm tide inundation hazard.  

According to Zerger (1999) the critical level for storm tides at one of these sites, 

Cairns, occurs at about the 2.2 m AHD level.  Above this level Zerger (1999) found a 

dramatic increase in the number of buildings susceptible to inundation, including 

around 15% of structures in Cairns at the 2.8 m AHD level.  This is a consequence of 
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Cairns having a large number of buildings located at relatively low elevations on a 

low-lying and flat coastal plain.   

 

When these results are placed in the context of typical design levels estimates for 

storm tides in the Cairns region, a clear indication of this sensitivity is highlighted.  

Specifically, estimates of the 100-year design level for Cairns, based on the 

application of simulation-based approaches, generally fall between about 2.0-2.5 m 

AHD (e.g. Hardy et al. 1987; McInnes et al. 2000; Hardy et al. 2004).  While this 

range of estimates is seemingly narrow (largely as a consequence of the small tidal 

range at Cairns), in light of the results obtained by Zerger (1999) it is apparent that 

any variation in the 100-year design level estimate would be accompanied by a 

significantly different quantification of the extent of building vulnerability.   

 

The accuracy of such design level estimates is largely a function of simulation model 

used for generating events as well as the physical models used to simulate wind field 

and water level responses.  Previous comparisons demonstrated that simulated event 

characteristics are highly sensitive to functional form of this model.  Furthermore, 

when the uncertainties due to the limited amount of observed tropical cyclone data 

are taken into account (see e.g. Figure 8.5), it is easy to see how obtaining reliable 

design level predictions represents a difficult task.  When this is combined with 

uncertainties resulting from simulating event responses using parametric and 

numerical models, this further exacerbates the difficulty of this task. 

 

Recently, Harper (1999) advocated the use of observed wind speed from AWS 

(Automatic Weather Station) sites in Queensland to verify wind speed predictions 
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derived from a simulation-based modelling approach.  While such an approach has 

merit as a diagnostic tool, aside from issues of independence, the available data on 

extreme tropical cyclone wind speeds in the Australian region is scarce and thus 

sampling variability likely to be high.  In fact, the extent of this variability is readily 

apparent for several of the comparison presented by Harper (1999).   

 

9.3.3 Trends 

 

An important aspect regarding the assessment of temporal trends in tropical cyclone 

time series is the issue of record accuracy.  Ultimately, this dilemma necessitates 

using limited temporal records in most analyses.  This is readily apparent from recent 

studies examining global trends in tropical cyclone frequency and intensities (e.g. 

Emanuel 2005; Webster et al. 2005).  For this reason, the results of the trend analyses 

presented in this thesis, particularly those including historical data, must be treated 

with some caution.  In particular, no general strategy was taken to address the 

reliability of historical observations in these analyses.  This was because of the need 

to preserve the temporal structure of the observed series.  In this case, techniques 

such as those proposed by Solow and Nicholls (1990) and Solow and Moore (2000) 

for reconstructing incomplete historical records may offer a more practical approach 

to assess trends.  

 

The upward trend in storm intensities found for the Coral Sea region over the period 

1960/61-2004/05 is broadly consistent with what Nicholls et al. (1998) found for 

Australian region tropical cyclones.  Nicholls et al. (1998) found that the number of 

severe tropical cyclones (central pressures ≤ 970 hPa) had increased slightly over the 
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period 1966/67-1994/95.  It is apparent that part of the regional trend found here 

might be the result of an inactive period for major storms at the beginning of the 

instrumental series.  Over the first decade (1960/61-1969/70) there were just four 

tropical cyclones that reached severe intensity (≤ 970 hPa).  This is in contrast to 16 

storms during the 1970s (1970/71-1979/80), 12 during the 1980s (1980/81-1989/90), 

and 16 during the 1990s (1990/91-1999/00).  Thus, whether the upward trend in 

storm intensities represents an actual positive trend or is indicative of multi-decadal 

variability is difficult to establish from the short period of record.  There also remains 

the possibility that the trend partly reflects improvements in the observational 

network. 

 

One interesting feature uncovered during analysis was the possibility of decadal 

variations in the relationship between ENSO and storm landfalls over time.  As a 

physical explanation for such a trend, there is some evidence with other climate 

variables to suggest that their association with ENSO varies over decadal time scales.  

For instance, a significant weakening in the relationship between ENSO and 

northeast Australian rainfall was observed during the 1931 to 1945 period (Cai et al. 

2001).  Furthermore, Hendy et al. (2003) using luminescent banding in Porites coral 

in the central GBR as a proxy for Burdekin river runoff and Queensland summer 

rainfall, found that these variable ENSO teleconnections have been prevalent in the 

region over at least the last 400 years.   

  

While the mechanisms behind this are yet to be fully explored, Power et al. (1999) 

recently showed that the strength of ENSO teleconnections with the eastern 

Australian climate are dependent on low-frequency Pacific SST anomalies associated 
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with the Interdecadal Pacific Oscillation (IPO).   The IPO time series is shown in 

Figure 9.1, which is that derived by Power et al. (1999) from Empirical Orthogonal 

Function (EOF) analyses of 13-year low-pass filtered global SST anomalies.   
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Figure 9.1  IPO time series for the period 1910/11-2004/05. 

 

 

 

The IPO time series is seen to be broadly consistent with the trend pattern exhibited 

in Figure 4.8, whereby the weakening of the relationship between ENSO and 

Queensland landfalls tends to occur during the IPO positive phase.  This is most 

notable for the IPO positive phase of 1924/25-43/44, although less so for the IPO 

positive phase of 1979/80-97/98.  This trend implicates the IPO as a possible factor 
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in modulating the strength of the ENSO relationship with tropical cyclone landfalls, 

although to confirm this link more research is required. 

   

This feature may also partly explain why Nicholls (1992) observed a lower 

correlation between Australian region tropical cyclone activity over the IPO positive 

period 1979/80-1990/91, than over the non-IPO positive period 1959/60-1978/79.  

One additional feature of the IPO effect on ENSO teleconnections is that it 

influences not only the frequency of ENSO events, but also their magnitude (Kiem et 

al. 2003).    It would be advantageous to examine whether this trend in the landfall 

record is also reflected in the Coral Sea record, although the historical record of 

tropical cyclone activity is unlikely be of sufficient accuracy to repeat the analysis on 

the basin-wide scale.  Interestingly though, Elsner et al. (2001) also found a pattern 

of variable strength in the relationship between ENSO and United States hurricanes.  

 

 

9.4 Future Research 

 

There exist several avenues for extension to the analysis presented in this thesis.  One 

general area that offers obvious potential for broadening the scope of the study’s 

objectives is through the use of improved statistical techniques.  Another approach 

that warrants some discussion are ways to better incorporate prehistorical data. 

 

9.4.1 Statistical Approaches   

 

Because of the relatively high number of zero counts (i.e. seasons in which no 

landfall was observed), a zero-inflated Poisson (ZIP) model (Wikle and Anderson 
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2003) may offer a better fit to the available record of storm counts.  This model 

assumes that there is a probability (p) that a count is zero, and a probability (1-p) that 

a count is drawn from a Poisson distribution.  This model could also be extended for 

use in a regression situation incorporating ENSO as a predictor of seasonal activity.  

Moreover, use of a suitable cross-validation procedure would be advantageous to 

assess the predictive performance of the regression model presented in Chapter 4 for 

seasonal activity conditioned on the SOI.   

 

With respect to a trend analysis, it may be that changes in storm frequency occur 

abruptly, in which the record shifts between periods of lower and higher activity.  

Chu and Zhao (2004) describe the application of a hierarchical Bayesian change-

point model to central North Pacific tropical cyclone counts aimed at detecting such 

shifts.  This may prove a useful statistical tool when applied to assessing trends in 

Queensland landfalling and regional storm activity.  For storm intensities, the trend 

analysis could also be extended to incorporate semi-parametric regression techniques 

such as local likelihood estimation.  Although, the availability and reliability of data 

may in practice not permit the use of such an approach. 

 

A further application of the Bayesian approach utilised in this analysis is the ability 

to incorporate systematic error in the recording of storm intensities.  Even with the 

advent of improved observational capabilities through remote sensing technologies, 

their still exists a margin for error in the estimation of tropical cyclone central 

pressures due to the indirect manner in which most storms are sampled.  As 

mentioned in Chapter 2, there is a well-recognised potential for considerable error in 

satellite-based estimates of storm intensity.  In this case it could be assumed that 
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measurement error is centred at the observed value, but has random noise about this 

observation.  This general approach is widely used in the field of flood frequency 

analysis to account for systematic errors in stage-discharge rating curves (e.g. 

Kuczera 1999).   

 

To properly address the issue of representativeness it is apparent that the 

development of a tropical cyclone climatology must encompass a lengthy enough 

time period to capture the substantial range of variability exhibited in the climate 

system.  A comprehensive investigation into the existence and causes of variability in 

tropical cyclone activity in the Australian region, particularly on decadal time scales, 

has been lacking in comparison to other basins.  It is clear from the trend analyses 

presented for Queensland landfalling and regional Coral Sea tropical cyclones that a 

more detailed investigation into aspects such as dependence and stationarity 

properties is also required.   

 

One aspect of the tropical cyclone climatology that has not been considered here is 

the role of anthropogenic climate change.  McInnes et al. (2000) investigated the 

effects of projected increases in cyclone intensity and mean sea-level rise at one site 

in Queensland, and found substantial increases in design level estimates for storm 

tides.  Henderson-Sellers et al. (1998) provide a comprehensive summary of the 

expected effects of global climate change on tropical cyclones.  The main 

conclusions from their study suggests that there is little evidence to indicate a change 

in the frequency of events globally, although the maximum potential intensity (MPI) 

of tropical cyclones may undergo at most a modest increase of about 10-20% for a 

doubled CO2 climate.  
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Recent studies also provide evidence of increases in the frequency of intense tropical 

cyclones over the last few decades (Webster et al 2005; Emanuel 2005).  Although, it 

remains difficult to directly attribute such trends to global warming due to the limited 

time span of reliable data and because of the dependence of storm intensities on a 

range of factors. The full picture is further complicated because of the strong 

dependence of tropical cyclone activity in the Queensland region on ENSO, whose 

behaviour in a warmer world is not yet fully understood.   

 

9.4.2 Incorporation of Prehistorical Records 

 

The lack of a high-resolution chronology of tropical cyclone activity represents an 

obstacle to a greater understanding of tropical cyclone risk in the Queensland region. 

The study of prehistoric tropical cyclones, referred to as palaeotempestology, is an 

emerging field of research that may eventually offer a solution to this predicament.  

As yet there remains much scope for future research into reconstructing past storm 

events from geological evidence.  Nevertheless, the reconstructed record of past 

extremes from a number of storm ridge sites across the region does offer a valuable 

contribution to resolving the issue of representativeness discussed in Chapter 3.   

 

Future research is necessary though, to reduce uncertainties inherent in 

reconstructing palaeostorm intensities from the storm ridge record.  This would 

require a combination of both modelling-based simulations of site responses to 

tropical cyclone forcing accompanied by further geomorphological analyses of 

sediment transport during storm events, including its relationship to ridge 

stratigraphy.  In contrast to the study of other hazards like floods and earthquakes, 

studies of prehistoric tropical cyclones have been rather limited. 
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There are several approaches that may offer an improve means to achieve a better 

comparison with prehistorical data than was attempted in this study.  One way to 

facilitate such a comparison would be to use a regional simulation model of the type 

described in Chapter 6 to generate a series of events to affect a particular ridge 

location.  This simulated record could then be directly compared with the prehistoric 

record of reconstructed intensities to examine more closely how predictions of 

extremes correspond.   

 

An extension to this approach based on a comparative analysis of storm ridge 

elevations, rather than reconstructed intensities, offers perhaps a more sound 

approach.  This is because the elevation of storm ridges is a direct indicator of the 

height of water levels generated by the depositional storms (Nott and Hayne 2001).  

Thus, while ridge height acts only as a proxy for palaeostorm intensity, it is a direct 

indicator of water levels generated by major tropical cyclones.  Thus, a strategy in 

which the regional simulation model is first used to simulate a series of water level 

responses at a particular site, and then compared against return periods of ridge 

forming events, may offer a better basis for evaluation. The advantage of using this 

methodology is that it avoids much of the uncertainty in reconstructing storm 

intensities from ridge elevations. 

 

 

9.5 Conclusions 

 

The increases in population and development along the Queensland coastal margin 

that have taken place over recent decades highlight the importance of mitigating the 

risks from tropical cyclones so as to reduce future loses.  Tropical cyclones are, 
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however, complex phenomena whose dynamics are not fully understood.  The ability 

to reduce such risks is therefore heavily dependent on analysing past records of these 

events to gain an indication of the likelihood of future impacts.   

 

This can best be achieved by maximising the use of all sources of information 

available on tropical cyclones, including historical, prehistorical and regional 

records.  Furthermore, uncovering forms of variability that directly or indirectly act 

to modulate tropical cyclone frequency and intensity over time is a necessary 

component of the risk prediction process.  Clearly, must progress is needed in this 

direction before reliable design level estimates, and hence comprehensive 

assessments of vulnerability, can be acquired.  

 

Finally, based on the results of Nott and Hayne (2001) and of this research, further 

improvement in the landfall climatology is likely to be obtained through the direct 

use of information reconstructed from the geological record.  While there may 

remain some scepticism as to the veracity of event reconstructions from such 

evidence, the opportunity for improvement such data provides far outweighs its 

limitations.   
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