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ABSTRACT 

The increasing size of datasets is particularly evident in the field of bioinformatics. It is 

unlikely that analyzing these large datasets with a single model will produce an accurate 

solution. This has led to the ensemble approach, where many models are averaged to 

give a consensus representation of the data. Taking a weighted average of the individual 

models has improved the accuracy of both classification and regression ensembles. 

However, weighting models within a cluster ensemble has remained relatively 

undeveloped because there is no gold standard available for comparison.  

 

This thesis explores a technique of weighting cluster ensembles. A regression technique, 

multivariate regression trees, is shown to produce an accurate clustering solution. Each 

solution (tree) is then weighted purely in terms of its predictive accuracy. Various 

weighting strategies are trialed to determine the superior technique. After each 

individual tree is assigned a weight, the trees’ co-occurrence matrices are obtained. The 

co-occurrence matrices are then aggregated together, weighted according to the trees’ 

predictive weights. The final result is a single weighted co-occurrence matrix.  

 

A new technique, similarity-based k-means, is developed in order to partition the 

weighted co-occurrence matrix. Similarity-based k-means is demonstrated to produce 

accurate partitions of similarity matrices. The resulting clusters agree with the known 

groups in the investigated datasets. 

 

Furthermore, this thesis develops two other techniques so that maximal information can 

be obtained in conjunction with the weighted cluster ensemble. The first method 



suggests an estimate of the natural number of clusters in a dataset, by assessing the 

predictive performance and variability of similarity-based k-means for various numbers 

of clusters. The estimates agree with the known numbers of groups within the 

investigated datasets. The second method elucidates the variables that define the 

clusters. These variables have high classification power within the studied datasets.  

 

Therefore, this thesis presents a holistic cluster analysis: clusters are accurately 

unearthed within large datasets; an estimate of the natural number of clusters is 

obtained; and the variables important in defining the clusters are also established. The 

weighted cluster ensemble technique is applied to a variety of small and large datasets. 

All results demonstrate the power of weighting the individual models within the 

ensemble: the developed weighted cluster ensemble technique consistently outperforms 

the other techniques. The results of analyzing two DNA microarray datasets are 

particularly promising. The discovered clusters overlap with the known diagnoses in the 

datasets, and the variables deemed important in defining the clusters have previously 

been suggested as biomarkers.  

 

Whilst the size of contemporary datasets presents unique statistical challenges, the 

potential information within them is immense. Statistical techniques must be developed 

in order to accurately analyze these datasets. Motivated by the success of weighted 

regression and classification ensembles applied to large datasets, this thesis suggests a 

technique of weighting models within a cluster ensemble. The results highlight the 

potential of weighted cluster ensembles in high dimensional settings, such as the 

analysis of DNA microarrays.  
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Large datasets are becoming more commonplace, as technology continues to improve. It 

is unlikely that a single statistical model will capture all the inherent information when 

applied to a large dataset. This has led to the ensemble approach. Ensembles combine 

many individual models in order to represent the dataset effectively. To ensure that the 

individual models within the ensemble are different to each other, the models are 

usually created by either: 

(a) Supplying different input parameters such as starting seeds to the model 

(Greene, Tsymbal, Bolshakova and Cunningham 2004, Hadjitodorov, Kuncheva 

and Todorova 2006). 

(b) Sampling the observational units and/or variables and growing the models on the 

subsampled datasets. Commonly used sampling schemes are bootstrapping, 

random features and random projection. 

(c) Using different statistical models within the ensemble. 

(d) Or any combination of the first three strategies. 

 

Once enough individual models are obtained, it is then necessary to combine them into 

an ensemble. In the regression and classification settings, the “simple average” 

approach is very common. Here the average of the predictions of the M  models is taken 

as the ensemble prediction for regression; and the majority vote of the classifications of 

the M  models is taken as the ensemble classification. Simple average ensembles are 

known to be more stable and accurate than a single model for regression and 

classification problems (Krogh and Vedelsby 1995, Breiman 2001). 

 

Recently, it has been shown that even greater accuracy is attainable if the models within 

the regression or classification ensemble are weighted more intelligently than the 
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“simple average” (Friedman and Popescu 2003). Post processing is the name given in 

this thesis to the process of suggesting weights for each model in the ensemble to reflect 

the model’s importance and relevance. The post processing paradigm is intuitive: by 

dampening the influence of the bad models and enhancing the influence of the good 

models the ensemble’s accuracy is ultimately improved. In the classification and 

regression sense, a model can be defined as “good” or “bad” by comparing its 

predictions or classifications to the actual response (the “gold standard”) via some loss 

criterion. The post processing technique will assign weights on the basis of the loss 

criterion.   

 

Cluster ensembles have also proved to be more stable and accurate than a single 

clustering solution (Strehl and Ghosh 2002, Dudoit and Fridlyand 2003, Topchy, Jain 

and Punch 2003, Weingessel, Dimitriadou and Hornik 2003, Greene, et al. 2004, Hu 

and Yoo 2004). A single clustering solution attempts to partition the observational units 

into groups or clusters so that observational units within a cluster are more similar to 

each other than to observational units in another group (Hastie, Tibshirani and Friedman 

2001). A single clustering solution may be erroneous or unstable when obtained from a 

very large dataset, because some variables within the dataset are superfluous and serve 

only to distort the true structure by creating noise. Consequently, cluster ensembles are 

well suited to clustering high dimensional datasets, because the ensemble approach is 

robust against large amounts of noise.  

 

There are numerous methods of combining individual models to create a cluster 

ensemble. The simplest technique involves the creation of a co-occurrence matrix. The 

co-occurrence matrix is an n *n  matrix where the th(i,j) element of the matrix is the 
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number of times observational units i  and j  are clustered together over the set of base 

clusterings divided by the number of models within the ensemble (Dudoit and Fridlyand 

2003, Greene, et al. 2004). Fred and Jain (2003) suggest using a smaller co-occurrence 

matrix to reduce the computational complexity. The authors replace the traditional n *n  

co-occurrence matrix with an n *p  matrix where the th(i,j)  element is the percentage of 

times observational unit i  has been clustered with its thj , j=1,...,p  nearest neighbour. In 

contrast, Al-Razgan and Domeniconi (2006) define the elements of a co-occurrence 

matrix more probabilistically. Each observational unit in a base clustering solution has a 

vector of posterior probabilities associated with it. Each element of the vector gives the 

probability the observational unit belongs to a particular cluster. The similarity between 

two observational units i  and j  is the cosine similarity between their probability 

vectors. The similarities are averaged over the base clusterings to give the th(i,j)  

element of the co-occurrence matrix.  

 

The co-occurrence matrix is then clustered by a suitable clustering algorithm: Greene, et 

al. (2004) and Fred and Jain (2002, 2003) use hierarchical algorithms. Hadjitodorov, et 

al. (2006) stated that using single linkage hierarchical clustering on the co-occurrence 

matrix and cutting the dendrogram at similarity θ  was equivalent to thresholding the 

co-occurrence matrix (setting all values of the co-occurrence matrix greater than θ  as 

one and all others as zero). Dudoit and Fridlyand (2003) convert the co-occurrence 

matrix to a dissimilarity matrix by subtracting each element from one, and then apply 

partitioning around medoids (PAM) (Kaufman and Rousseeuw 1987).  

 

The co-occurrence matrix approach is not the only technique of creating cluster 

ensembles. Leisch (1999), in one of the original papers involving cluster ensembles 
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combines the cluster centres obtained from each base clustering solution into one 

overall dataset. This dataset is then split using hierarchical clustering. Each 

observational unit is assigned to the cluster that contains the centre that the 

observational unit is closest to (over all centres). Topchy, et al. (2003) convert the 

cluster labels of the individual solutions to binary variables and perform k-means 

clustering on the new variables.  

 

Another cluster ensemble combination technique of Dudoit and Fridlyand (2003) 

permutes the cluster labels of each clustering solution (obtained by applying the 

clustering algorithm to a bootstrap learning set). The objective is to find maximum 

overlap between the individual clustering solutions’ labels and the labels obtained by 

clustering the entire dataset. The final ensemble labels are decided by a majority vote of 

the permuted labels of each clustering solution. Similarly, Weingessel, et al. (2003) 

implement a sequential voting technique, albeit slightly more complex than Dudoit and 

Fridlyand’s (2003) bagging. Frossyniotis, Pertselakis and Stafylopatis (2002)  iteratively 

permute the cluster labels so that there is maximum agreement with the previous cluster 

solution, and then takes a majority vote to obtain the overall partition. 

 

Strehl and Ghosh (2002) in a seminal paper formally demonstrated how cluster 

ensembles could be expressed as an optimization problem. The optimal cluster 

ensemble labels shared maximal average mutual information with the individual 

solutions’ labels. However, solving this optimization criterion is computationally 

infeasible. By converting the cluster labels to a hypergraph model, three methods of 

combining cluster labels were produced. Fern and Brodley (2006) also introduced 

another formulation of the cluster combination problem as a graph partitioning problem. 
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Similarly, both Hu and Yoo (2004) and Al-Razgan and Domeniconi (2006) used graph 

partitioning to split their “co-occurrence” matrices. 

 

Topchy, Jain and Punch (2004) present a more statistical approach to cluster ensembles. 

The dataset is clustered M  times and M  cluster labels are obtained for each 

observational unit. A mixture model is fit to the cluster labels. The components of the 

mixture model are considered to be multivariate multinomial. Each observational unit is 

assigned to the component for which it has the highest posterior probability of 

belonging. Topchy, et al. (2004) highlight the low computational complexity of the 

mixture model approach. 

 

Whilst techniques of creating cluster ensembles are multiplying, techniques of post 

processing cluster ensembles have remained relatively unexplored. The post processing 

technique should assign high weights to accurate partitions and zero weights to poor 

partitions and the consensus across the weighted partitions should then be found 

(Topchy, Jain and Punch 2005). However, it is difficult to assess the accuracy of an 

individual partition, thereby rendering post processing virtually impossible, because of 

the lack of a “gold standard” (actual response) associated with cluster analysis (Topchy, 

et al. 2003, Frossyniotis, Likas and Stafylopatis 2004, Al-Razgan and Domeniconi 

2006). The few techniques of creating weighted cluster ensembles have been suggested 

by Kaufman and Rousseeuw (1990), He, Xu and Deng (2002), Modha and Spangler 

(2000), and Frossyniotis, et al. (2004). 

 

Kaufman and Rousseeuw (1990) initially suggest taking a weighted sum of dissimilarity 

matrices created from different sources, using weights chosen in a “subjective way” but 
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do not investigate the topic further. He, et al. (2002) convert the mixed type clustering 

problem into a cluster ensemble, where the labels obtained from clustering the 

categorical variables only must be combined with the labels obtained from clustering 

the numerical variables only. The two sets of labels are clustered using a weighted 

categorical clustering algorithm where the weights correspond to the proportion of 

categorical and numerical variables. It is suggested that this approach could be used as a 

generic weighted cluster ensemble technique where labels from different solutions are 

combined using a weighted categorical clustering algorithm. However, the method of 

calculating the weights when the sets of labels do not correspond to simply clustering 

different attributes of a dataset is not further explicated.  

 

Modha and Spangler (2000) also introduced an algorithm that clusters observational 

units using weighted sets of variables simultaneously. The weights are calculated by 

maximizing the product of the resulting average within cluster coherence divided by the 

average between cluster coherence using each set of variables. The methodology could 

theoretically be extended to cluster ensembles, where each clustering solution is 

equivalent to a set of variables; however it becomes computationally infeasible as the 

number of clustering solutions increases. 

 

A major advancement in weighting cluster ensembles was made by Frossyniotis, et al. 

(2004). Frossyniotis, et al. (2004) produce both boosted and bagged cluster ensembles. 

To generate the boosted cluster ensembles, boosted classification ensemble 

methodology is followed closely. At each iteration, a training set is selected, where 

samples which have previously been clustered poorly have a higher chance of being 

selected (boosted sample). The clustering algorithm is applied and the labels permuted 
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such that they have the highest overlap with the previous labels. For each observational 

unit, ix , a degree of cluster membership to each cluster k  is calculated using the 

Euclidean distance, 
ri S( , )dist x x : 

 
k

r

i,k K
i S

r 1 i S

1h ( , )
( , )

dist x x
dist x x=

=

∑
 

where 
rSx  is the mean vector of the thr cluster. The i,kh  are then analyzed to update the 

sampling weights of each observational unit: higher weights are given to observational 

units that have been clustered poorly. A weight is also given to the current clustering 

solution: a high weight is given to a solution that produces a “good” partition measured 

by a function of the i,kh 's . The final partition is obtained by the weighted vote of the 

base clustering solutions. The boosted method outperforms the studied bagged 

clustering ensemble method, providing evidence that intelligently weighted cluster 

ensembles outperform simply averaging clustering solutions.  

 

Whilst Frossyniotis, et al. (2004) offer a technique of weighting cluster ensembles, the 

strategy requires Euclidean distances. It is unlikely that this weighting strategy will 

produce accurate results in the high dimensional setting, where distances between any 

two points are relatively similar (Beyer, Goldstein, Ramakrishnan and Shaft 1999). 

However: 

• the empirical evidence presented by Frossyniotis, et al. (2004) and  

• the increased accuracy evidenced when weighting regression and classification 

ensembles and 

• the ideology that within a cluster ensemble there will be both “good” and “bad” 

partitions (Fern and Brodley 2006)  
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all motivate further research into weighting cluster ensembles. 

 

This thesis suggests a methodology for creating post processed cluster ensembles 

suitable for high dimensional data via the following steps:  

• Finding individual clustering solutions using a regression technique. This 

will ensure that clusters are predictable and create a makeshift gold standard. 

• Weighting the individual solutions using regression post processing 

techniques. 

• Partitioning the weighted cluster ensemble to obtain an overall clustering 

solution. 

These points are elaborated below. 

 

FINDING INDIVIDUAL CLUSTERING SOLUTIONS USING A REGRESSION 

TECHNIQUE  

This thesis conjectures that if the cluster solutions could be obtained as a by-product of 

a regression technique, the inherent “lack of gold standard” problem could be solved. 

Traditional regression loss criteria (such as residual sums of squares) could be utilized 

to measure the accuracy of the individual models. Cluster quality will then be measured 

in terms of predictive error as has been suggested by Yeung, Haynor and Ruzzo (2001), 

Dudoit and Fridlyand (2002), and Tibshirani, Walther, Botstein and Brown (2005). 

Therefore, this thesis first shows that a recent regression technique, multivariate 

regression trees (Segal 1992), can double successfully as a clustering technique in both 

the low and high dimensional settings.  
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Univariate regression trees were first introduced by Breiman, Friedman, Olshen and 

Stone (1984), as a technique of predicting a continuous response variable. In the 

beginning, all the data are contained in a single node. Regression trees recursively seek 

a binary partition of the dataset: at each stage a node is divided into two nodes. At each 

partition, the dataset is divided on the basis of the value of an explanatory variable, so 

as to make the new subsets as homogeneous as possible with respect to the response 

variable (Ploner and Brandenburg 2004). Observational units are dropped down the tree 

until they fall into a terminal node. Terminal nodes are a point at which a further 

partition of the data would result in only a very small improvement in the predictive 

ability of the tree and can be considered predictable by a single mean. Each terminal 

node contains a constant predicted value for the observational units falling into that 

node.  

 

Multivariate regression trees are analogous to univariate regression trees. The predicted 

value at each terminal node is the mean response vector of the observational units in the 

learning sample that fall into that node.  The notion of multivariate regression trees was 

first mooted by Segal (1992). The concept of multivariate regression trees was further 

explored by De’Ath (1999), who examined the splitting criterion of each node, and 

widened their scope to incorporate dissimilarity response matrices. De’Ath (1999) also 

found that multivariate regression trees are robust to noisy response and explanatory 

variables.  A more theoretical explanation of multivariate regression trees can be found 

in the Supporting Theory appendix. 

 

Regression trees have many advantages. Firstly, variables are not assumed to follow a 

particular distribution (Yohannes and Hoddinott 1999). Secondly, regression trees allow 
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for mixed data types in the explanatory dataset (Yohannes and Hoddinott 1999). 

Finally, regression trees have the ability to assess the “importance of variables” and use 

these “important variables” to make the splits at each node.  

 

The observational units in the terminal nodes are homogenous about the mean response 

vector. Therefore, it can be assumed that the observational units in each of the terminal 

nodes form a cluster, which can be characterised by the node’s mean response vector. 

Thus, multivariate regression trees present a visually interpretable cluster analysis, and 

the investigator can see intuitively which explanatory variables are the most important.  

 

A typical dataset designated for cluster analysis consists entirely of explanatory 

variables. However, multivariate regression trees find groups within response variables 

based on predictor variables. This thesis proposes two modifications that enable 

multivariate regression trees to be applied to datasets containing only explanatory 

variables. Firstly, the explanatory variables are replicated as response variables to create 

an “auto-associative multivariate regression tree” (Questier, Put, Coomans, Walczak 

and Vander Heyden 2005). In this way terminal nodes will be homogeneous about the 

mean of the explanatory variables. Secondly, to facilitate the application of the 

technique to high dimensional data, the response set is reduced using either principal 

components analysis or factor analysis (see Supporting Theory – Dimension Reduction 

Techniques appendix for more information). The resulting principal component scores 

or factor scores are used as the response set. 

 

This thesis is the first investigation into the capability of multivariate regression trees as 

a clustering technique. It exploits multivariate regression trees so that clusters are 
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produced by performing a regression analysis on the dataset. Each observational unit 

will have an associated predicted value (the mean of its terminal node). By sampling the 

dataset, many regression trees can be grown, and thereby many cluster solutions 

obtained. Because the multivariate regression trees are regression models, regression 

post processing methods can be applied to weight the clustering solutions within the 

ensemble. 

 

WEIGHTING THE INDIVIDUAL SOLUTIONS USING REGRESSION POST 

PROCESSING TECHNIQUES  

Each regression tree within the ensemble must then be weighted according to its 

accuracy. This is commonly referred to as post processing the ensemble. Post 

processing (regression ensembles) aims to assign large weights to models with low 

prediction error and small weights to inaccurate models, in order to increase the 

performance of the ensemble. This thesis investigates the forward stagewise 

approximation to the lasso, Bayesian linear regression, quadratic programming and 

evolutionary algorithms as potential post processing techniques.  

 

Assume the regression ensemble (here an ensemble of regression trees) to be given 

by:  

 
M

ens m m
m 1

ˆ ˆ( ) ( )f x f xω
=

= ∑  

where m̂ ( )f x  is the prediction of an observational unit x  by the thm  model; mω  is the 

weight assigned to m̂ ( )f x ; and M  is the number of models. An obvious choice for ω , 

the vector of all weights, is to choose ω  to minimize a generic loss criterion: 
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n M

i m m i
i 1 m 1

ˆˆ min , ( )L y f x
ω

ω ω
= =

 =  
 

∑ ∑   

where n  is the number of observational units. If the generic loss criterion is given by 

the squared error loss, the post processing process reduces to an ordinary least squares 

problem. However, the ordinary least squares weights are prone to overfitting. The 

problem of overfitting is mitigated by the addition of a penalty function λ ( )P ω⋅  to the 

squared error loss: 

 
n M

i m m i
i 1 m 1

ˆˆ min , ( ) λ ( ).L y f x P
ω

ω ω ω
= =

 = + ⋅ 
 

∑ ∑   

The above equation has its origins in regularized regression. The parallels between 

regularized regression and post processing are obvious; the data matrix is replaced by 

the predictions matrix1 and the regression coefficients are replaced by the ensemble 

weights.  

 

The penalty function:  

 

M

m
m 1

( )P ω ω
=

= ∑
       

is referred to as the lasso (Tibshirani 1996). The lasso is well known, it produces sparse 

estimates of coefficients and increases accuracy. For these reasons it is used as a 

“benchmark” in this thesis to compare other common post processing techniques 

against.  

 
This thesis implements the forward stagewise estimate as an approximation to the 

solution of the lasso because if offers considerable computational savings2. The forward 

stagewise estimates are remarkably similar to the true solution of the lasso objective 
                                                 
1 The predictions matrix is an n *M  matrix with each column containing the predictions of the n  
observational units for a single model.  
2 The estimates are often referred to in this thesis as the “lasso” estimates. 
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function, and this similarity has been quantified using the least angle regression (LARS) 

(Efron, Hastie, Johnstone and Tibshirani 2004) algorithm. Indeed the forward stagewise 

algorithm has been shown to be a very successful post processing technique by 

Friedman and Popescu (2003). The algorithm (specifically for regression) is as follows 

(Hastie, et al. 2001): 

1) Set all weights to zero.  Choose ε  as a small number greater than zero, and 

choose the number of iterations, its , to be quite large. 

2)  For j 1: its=  

 
( )

n M
* *

i m m i δ i
,δ i 1 m 1

M

i m m i δ i
m 1

ˆ ˆ,δ arg min ( ) ( )

ˆ ˆ                                 ( ) ( ) .

T

y f x f x

y f x f x

ω

ω

β = =

=

 
β = − −β  

 
 − −β  
 

∑ ∑

∑
       

 * *
*

δ δ
ˆ ˆ ( ).signω ω= + ε ⋅ β                                                    

3)  Finally,  

 
M

ens m m
m 1

ˆ ˆˆ( ) ( ).f x f xω
=

= ∑                                     

 

Using Bayesian linear regression theory (see Supporting Theory – Bayesian Linear 

Regression appendix), the lasso coefficients are equivalent to the modes of the 

conditional posteriors for the regression coefficients given independent double 

exponential prior distributions for each coefficient. This thesis also trials different priors 

(multivariate normal, multivariate t, and Weibull) to ascertain if other priors can give 

results superior to the lasso.  
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It was initially proposed to solve the lasso using the optimization technique “quadratic 

programming” (Tibshirani 1996). Quadratic programs solve a quadratic loss subject to a 

set of constraints. The lasso can be reformulated as a quadratic program:  

 ( ) ( )lasso ˆ ˆarg min
T

y y
ω

ω ω ω= − −Y Y                               

subject to 

 
M

m
m 1

sω
=

≤∑                                                          

where Ŷ  is the predictions matrix (an n *M  matrix with each column containing the 

predictions of the n  observational units for a single model); and the loss function is the 

squared error loss. Quadratic programs are described in more detail in the Supporting 

Theory appendix. 

 

Quadratic programming is obviously not restricted to the lasso however, and in this 

thesis quadratic programming is trialed as a potential post processing technique using 

different quadratic loss functions and constraints to ascertain if other loss functions and 

constraints can give results superior to the lasso. Quadratic programs (and also linear 

programs) have previously been used successfully as a post processing technique for 

regression and classification ensembles (Krogh and Vedelsby 1995, Heskes 1997, 

1998).  

 

To contrast to the more formal optimization techniques, purely stochastic procedures, 

evolutionary algorithms, are also explored in this thesis. Evolutionary algorithms 

encode a potential set of weights via a chromosome (see Supporting Theory – 

Evolutionary Algorithms appendix). The resulting ensemble is assessed via a fitness 

function and the best chromosomes reproduce into the next generation. Over 
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generations, all chromosomes begin to approach the best set of weights. Evolution 

strategies have previously been used successfully as a post processing technique for 

regression ensembles (Zhou, Wu, Jiang and Chen 2001).  

 

PARTITIONING THE WEIGHTED CLUSTER ENSEMBLE TO OBTAIN AN 

OVERALL CLUSTERING SOLUTION  

 After post processing the ensemble of regression trees, each tree will have an 

associated weight. To create the post processed cluster ensemble, each tree’s resulting 

co-occurrence matrix is multiplied by the tree’s weight, and the weighted co-occurrence 

matrices are aggregated to give an overall co-occurrence matrix. The weighted co-

occurrence matrix approach was chosen here because it does not require an optimization 

algorithm to permute the cluster labels of individual solutions (Dudoit and Fridlyand 

2003, Hadjitodorov, et al. 2006). Furthermore, the assumption that observational units 

in a “natural” cluster will commonly be grouped together by the individual solutions 

(Greene, et al. 2004) is intuitively appealing. 

 

The weighted co-occurrence matrix must then be divided into clusters. This thesis 

suggests a new technique for clustering the co-occurrence matrix with a focus on 

predictability: similarity-based k-means (SBK). SBK takes a similarity matrix as input 

(see Supporting Theory – Similarity-Based K-Means appendix). The notion of SBK was 

inspired by the sums of squares splitting criterion (SSR) of multivariate consensus trees 

(Hancock 2006). SBK enforces the predictability of the solution by explicitly predicting 

the group structure found within the entire similarity matrix (including the covariance 

submatrices) shown to be important by Hancock (2006). The algorithm incorporates a 

validity criterion to ensure that clusters are meaningful. Previous similar efforts reported 
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in the literature include splitting a dissimilarity matrix using k-means (Nguyen and 

Worring 2004, Lai, Huang, Wibowo and Tanaka 2005, Jacobs 2006) and applying k-

means to the eigenvectors of a co-occurrence matrix (Jonasson, Hagmann, Thiran and 

Wedeen 2005).  

 

By predicting the co-occurrence matrix, SBK allows for an estimate of the natural 

number of clusters in a dataset, based on figures of merit (FOMs) (Yeung, et al. 2001). 

FOMs (see Supporting Theory – Determining the Natural Number of Clusters appendix) 

use the ensemble ideology to assess the number of clusters and this point is elaborated 

below. Before describing FOMs, other techniques that exploit the ensemble ideology to 

assess the number of clusters are described briefly. 

 

EXPLOITING THE CLUSTER ENSEMBLE METHODOLOGY TO ASSESS 

THE NATURAL NUMBER OF CLUSTERS  

Cluster ensemble methodology can be used to assess the number of clusters in a dataset 

and to validate clustering results. In fact, some of the first forays into cluster ensembles 

focussed on these two goals rather than finding an overall partition. For example, 

Levine and Domany (2001) obtain base solutions by subsampling the data and then 

constructing base co-occurrence matrices for each solution. Each base co-occurrence 

matrix is compared via an appropriate function to the single co-occurrence matrix 

obtained when the entire dataset is clustered. This process is repeated for different 

values of parameters to ascertain which parameter gives rise to the most stable solution.  

 

Similarly, Smolkin and Ghosh (2003) suggest a technique for assessing the stability of 

clusters. Smolkin and Ghosh (2003) cluster the dataset into K  clusters. Then, they take 
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a random subset of variables and re-cluster the observational units into K  clusters using 

only these variables. This process is repeated. The stability of an original cluster 

(obtained from the entire dataset) is the proportion of times it is found as a cluster using 

the reduced subsets of variables.  

 

The stability of the solution can also elude to the correct number of clusters. For 

example, Monti, Tamayo, Mesirov and Golub (2003) compared the cumulative 

distribution functions of the K  co-occurrence matrices obtained by clustering the data 

into k 1,...,K=  clusters. In a similar fashion, Ben-Hur, Elisseeff and Guyon (2002) 

computed the pairwise similarity between two base co-occurrence matrices created by 

clustering two subsamples of the data. The process was repeated to obtain a cumulative 

distribution function of pairwise similarities. This cumulative distribution function was 

computed for each k , k 1,...,K=  and these were investigated to assess the optimal 

number of clusters.  

 

Monti, et al. (2003) and Ben-Hur, et al., (2002) both assume that by assessing the 

stability of the cluster solutions within an ensemble, the number of clusters can be 

deduced. An alternative assumption is that by assessing the “predictability” of the 

individual solutions the number of clusters can be found or the clustering results can be 

validated. Dudoit and Fridlyand (2002) randomly divide the observational units into two 

distinct sets. A clustering algorithm is applied to the first and second subsets to obtain 

k  clusters for each subset. The resulting labels of the first subset are used to form a 

classifier. The classifier is applied to the second subset and the similarity between its 

classifications and the cluster labels is calculated. The procedure is repeated to obtain a 

set of similarities for each number of clusters. The median similarity for each k  is 
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compared to the average median similarity using a null distribution and an estimate of 

the number of clusters is obtained.  

 

Tibshirani, et al. (2005) suggest a similar procedure to Dudoit and Fridlyand (2002). 

The authors randomly divide the dataset in two and cluster both subsets to k  clusters. 

The centroids of the first set are used to assign the observational units of the second 

subset to clusters. The minimum overlap of the actual cluster labels and predicted 

cluster labels of the second subset gives the “prediction strength”. The process is 

repeated and an average prediction strength for each k  is obtained. The maximum 

prediction strength over k 1,...,K=  is deemed to give the optimal number of clusters.  

 

Yeung, et al. (2001) also take a predictive approach to validating cluster results with a 

figure of merit. The authors leave out a variable, cluster the data into k  clusters, then 

calculate the root mean square deviation of the left out variable within each cluster. By 

summing over all variables an average estimate of the predictive power (figure of merit) 

of the algorithm can be obtained for each k . The performance of clustering algorithms 

can be compared by comparing their predictive powers at each k . Also the “elbow” of 

the figure of merit (FOM) curve is shown to often coincide with the known number of 

clusters in the dataset. This thesis extends Yeung, et al.’s (2001) FOM methodology in 

conjunction with the SBK algorithm to provide an estimate of the number of clusters in 

a dataset.  

 

AN EXAMPLE 

The size of datasets is increasing dramatically as technology improves (Ribarsky 2003), 

and this is particularly evident in the field of bioinformatics. For example, with the 
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recent advent of DNA microarrays, measurements on the expression levels of tens of 

thousands of genes can be made on numerous samples (Jinang and Zhang 2004).  

 

Recently, cluster analysis has been applied to DNA microarray data (Alon, et al. 1999, 

Alizadeh, et al. 2000, Segal, Taskar, Gasch, Friedman and Koller 2001) and it is one of 

the most commonly applied techniques to such data (Ben-Hur and Guyon 2003). 

Clustering genetic data has an important role to play in the discovery, validation, and 

understanding of various diseases (Do, McLachlan, Bean and Wen 2002). The aim of 

clustering DNA microarray data is to understand how genes and samples are organized. 

It is often of interest to cluster both genes and samples to answer questions such as: 

• Which samples are most similar to each other in terms of their expression 

profiles across genes? (Hastie, et al. 2001) 

• Which genes are most similar to each other in terms of their expression profiles 

across samples? (Hastie, et al. 2001) 

 

A DNA microarray data set typically has a large number of variables (genes), a small 

number of observational units (samples) and possibly overlapping clusters (Do, et al. 

2002). Traditional clustering algorithms are not effective when applied to datasets with 

these characteristics for numerous reasons. Firstly, with a large number of variables, 

some may be irrelevant and/or redundant, and only serve to obscure the “true clusters” 

(Milligan 1980). Secondly, as the number of variables (genes) is greater than the 

number of observational units (samples) it is a non-standard problem in cluster analysis 

(McLachlan, Bean and Peel 2002) and hence suffers the “curse of dimensionality”. 

Finally, most clustering algorithms are “effective in unmasking global structure”, but 

they are much less effective when the dataset contains complex cluster shapes, such as 
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overlapping clusters (Do, et al. 2002, Pollard and van der Laan 2002). Therefore, the 

necessary characteristics of algorithms used to cluster genetic data include: robustness 

against large amounts of noise and outliers; the ability to handle high dimensional data; 

and the ability to detect irregular shapes (Jinang and Zhang 2004). 

 

Consequently, cluster ensembles are well suited to clustering large DNA microarray 

datasets because the ensemble approach is robust against large amounts of noise. In fact, 

cluster ensembles have been applied with success to DNA microarray datasets (Dudoit 

and Fridlyand 2003, Grotkjaer, Winther, Regenberg and Nielsen 2006). Thus, as an 

illustration the methods created in this thesis are also trialed with two well known 

microarray datasets.  

 

BIOMARKERS 

Finding the variables that best discriminate clusters within the DNA microarrays 

warrants investigation. The ultimate outcome is the discovery of ‘biomarker’ variables 

that define clusters (such as aggressive and non-aggressive cancer). For example, if two 

clusters correspond to early stage cancer and healthy patients, genes that define the 

clusters could be investigated as potential ‘early detection’ biomarkers. In the future 

biomarkers (genes or proteins) may answer: 

(a) Can the disease be detected early in its onset? 

(b) How far has the disease progressed at its time of detection? 

(c) What is the best course of treatment for the individual patient? (Wadsworth, et 

al. 2004) 

(d) What is the likelihood of recurrence? 
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(e) What is the nature of any recurrence (for example, aggressive)? (Duggan, et al. 

2003) 

 

The multivariate regression trees used in this thesis give variable importance measures. 

A weighted variable importance measure can be obtained over the ensemble. Variables 

that are deemed ‘important’ by the ensemble have been used by the trees to distinguish 

accurate clusters. Those variables that are found to have high importance when the 

technique is applied to DNA microarrays could warrant further investigation as 

biomarkers.  

 

OVERVIEW OF THESIS LAYOUT  

The following three sections in this thesis are devoted to introducing and testing the 

various components of the post processed cluster ensemble methodology. The first 

section introduces multivariate regression trees, shows how they can double 

successfully as a clustering technique, and illustrates the extension that makes them 

successful in the high dimensional setting. The next section trials regression post 

processing methods and attempts to identify a superior technique. The following section 

takes the weighted co-occurrence matrices given by the post processed multivariate 

regression trees on various small datasets and splits them using SBK. The variable 

importance lists and cluster number curves are also illustrated. The post processed 

cluster ensembles are also demonstrated on two large DNA microarray datasets using 

the modification required to make multivariate regression trees successful in the high 

dimensional setting.  
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Each section contains two manuscripts submitted for publication in chosen journals. 

This implies that nomenclature is not consistent across manuscripts, because it is 

specific to the designated journal. However, all nomenclature is explained within the 

manuscript. For the same reason, formatting is not consistent across manuscripts 

because it complies with the specific journal. 

 

The manuscripts are summarized at the beginning of the section and additional 

information is given at the end of each section. The major results from all sections are 

recapitulated in the “Concluding Summary” section. Potential avenues of future 

research are given in the “Future Work” section. Although each manuscript contains all 

the necessary theory, some theory is elaborated in the “Supporting Theory” appendix.   
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MULTIVARIATE REGRESSION TREES FOR CLUSTER 

ANALYSIS 
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OVERVIEW 

To allow solutions within a cluster ensemble to be weighted according to their 

relevance, each solution’s accuracy must be ascertained. Because there is no “gold 

standard” associated with cluster analysis, assessing the accuracy of an individual 

clustering solution is difficult. This thesis suggests that if the clustering solution were 

obtained as a result of performing a regression analysis on the data, the solution could 

be evaluated in terms of its prediction error. This section shows that multivariate 

regression trees can double successfully as a clustering technique and compares them to 

other successful clustering algorithms. The first manuscript explores auto-associative 

multivariate regression trees (AAMRTs) in the low dimensional setting and also 

illustrates figures of merit for cluster number selection.  

 

AAMRTs cluster a dataset by replicating the explanatory variables of the dataset as the 

response variables. The trees recursively split the dataset to maximize the homogeneity 

of the observational units in the nodes about their means. As the dataset becomes larger 

(the number of variables increases), the distances between any two points are relatively 

similar (Beyer, et al. 1999) so searching for clusters that minimize their within sums of 

squares becomes pointless. Therefore, the second manuscript extends multivariate 

regression trees such that they are a suitable clustering technique for large, noisy 

datasets. The dataset is reduced via principal components analysis or factor analysis to 

mitigate the “curse of dimensionality” and clustering is performed in the reduced 

dimension space via the original variables. The trees are trialed on datasets increasingly 

perturbed by noise and are shown to outperform other clustering techniques. Although 

each manuscript contains the necessary theory, some theory is elaborated in the 

“Supporting Theory” appendix.  
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SUMMARY 

Multivariate Regression Trees, an intuitive and simple regression technique, 

intrinsically produce homogenous subsets of data. These characteristics imply that 

Multivariate Regression Trees have the potential to be utilised as an easily interpretable 

clustering method. The suitability of Multivariate Regression Trees as a clustering 

technique is investigated with two real datasets containing only explanatory variables. 

The preliminary results show that Multivariate Regression Trees as a clustering 

algorithm produce clusters of similar quality to the well-known K-means technique, and 

more recent approaches to Cluster Analysis including Mixture Models of Factor 

Analysers and Plaid Models. The study also evaluates the suitability of various criteria 

used to describe cluster solutions.   

1. Introduction 

Multivariate Regression Trees [1] are  a multivariate extension of Classification and 

Regression Trees [2] and have typically been used in the regression context. After 

growing the tree, an observational unit is dropped down the tree, following the binary 

decision functions at each split, until it comes to rest in a terminal node. Each terminal 

node contains a predicted value for all observational units falling into that node.  

 

Multivariate Regression Trees are a relatively intuitive and simple technique that 

produces constrained clusters via the terminal nodes [3]. The clusters are homogenous 

with respect to the response variables and are defined by the explanatory variables that 

form the tree [3-5]. Questier et al. [3] used identical explanatory and response variables 

to create an Auto-Associative Multivariate Regression Tree (AAMRT). The authors 

investigated AAMRT as an unsupervised variable selection technique and indicated that 
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AAMRT can be considered a “non-constrained” clustering technique. Here, we 

investigate further the capabilities of AAMRT as a clustering method.  

 

We explore the suitability of the proposed technique using two real datasets 

underpinned by biological phenomena. To help benchmark the capabilities of this 

extended approach of Multivariate Regression Trees, we employ three other clustering 

techniques, K-means, Mixture Models of Factor Analysers [6, 7], and Plaid Models [8]. 

  

K-means is deemed the “reference technique” because it is a widely-used, traditional 

clustering method. Moreover, Milligan [9], studying the effects of error perturbation on 

clustering algorithms, found K-means accompanied with “rational starting procedures” 

to be the technique most resilient to the addition of spurious noise variables.  

 

The recent Mixture Models of Factor Analysers is a statistical approach to Cluster 

Analysis. The model is a sum of component density functions. Each component 

represents a cluster, and observational units have an associated probability of belonging 

to each cluster. Mixture Models of Factor Analysers extend Normal Mixture Models by 

incorporating Factor Analysis. The dimensionality reducing property of Factor Analysis 

implies that this clustering technique lends itself to analysing high dimensional data.  

 

Similarly, the recent Plaid Models were designed for use with large datasets such as 

DNA microarrays. This technique is a novel form of two-way cluster analysis: variables 

and observational units are clustered simultaneously. Observational units are not 

restricted to being in exactly one cluster. The model is a sum of “layers”, and each layer 

represents a cluster.  
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One of the main issues associated with Cluster Analysis is estimating the true number of 

clusters in a dataset [10, 11]. To address this issue, Tibshirani et al. [12] have proposed 

the Gap Statistic. The Gap Statistic outperforms the traditional Silhouette Statistic [11] 

and the Hartigan [13] Statistic  [12]. The Gap Statistic has also been shown to perform 

well against more recent techniques, such as a stability based method [14], and a 

prediction-based resampling method [15]. Because of its apparent success, we used the 

Gap Statistic to estimate the number of clusters in the datasets using each of the 

clustering methods. These estimates were then compared to the known numbers of 

classes within the datasets.  

 

The Gap Statistic supplemented the statistic commonly used in association with each 

technique to select the number of clusters. The relative error curve of a multivariate 

regression tree is a monotonically decreasing function that shows the homogeneity of 

the terminal nodes within a tree as it is successively split. The size of the decrease in 

relative error between a tree with k splits and 1k + splits is proportional to the amount of 

heterogeneity removed by the addition of the new split. As the decrease in relative error 

becomes less obvious, any additional split will result in only a small decrease in the 

heterogeneity of the terminal nodes, and at this point the clusters are sufficiently 

homogeneous. Therefore, we suggest using the elbow of the relative error curve as a 

heuristic to choose the number of clusters (similar to the heuristic of using the elbow of 

a scree plot to choose the number of principal components). 

 

The Bayesian Information Criterion (BIC) is useful when estimating the number of 

components required in a mixture model, although regularity conditions do not hold 
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[16]. These estimates are also included to supplement the estimates of the Gap Statistic. 

The Plaid Models program incorporates a regularisation technique at each stage, to 

determine if addition of a further layer to the model is warranted [8]. This essentially 

allows an estimate of the optimal number of layers for the model. 

 

A second challenge surrounding cluster analyses entails gauging the quality of the 

derived clusters. Here we incorporate External and Internal Criteria and Figure of 

Merits [17] to assess the quality of the derived clusters. Known class memberships 

allow the incorporation of an External Criterion. An External Criterion provides an 

estimate of the quality of the derived clusters by using information obtained outside the 

clustering process to ascertain the degree of correct class recovery [9]. The External 

Criterion used in this study was the Adjusted Rand Index [18]. 

 

An Internal Criterion requires no prior knowledge of class membership and is a 

“measure of the goodness of fit between the data and the obtained solution” [9]. 

Because an Internal Criterion only uses information obtained from the clustering 

process, it complements an External Criterion [9]. The  Internal Criterion used was a 

Point Biserial Correlation. 

 

Figure of Merits (FOMs) are a means of authenticating clusters by assessing the 

“predictive power” of a clustering technique. They are a balance between an External 

and Internal Criterion: FOMs require no a priori knowledge, nor rely on information 

obtained entirely from the clustering process. 
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2. Theory 

2.1. Multivariate Regression Trees 

Multivariate Regression Trees were originally designed to simultaneously predict 

several continuous response variables using explanatory variables [1]. Initially, all 

observational units are contained in a single node. Regression Trees recursively 

partition the dataset. At each stage, a node is divided into two using a binary decision 

function that makes the two new subsets as homogenous as possible with respect to the 

response variables [19].  

 

Regression Trees partition a node, t , into two subsets, Lt  and Rt , on the basis of the 

value of an explanatory variable. All possible splits of each explanatory variable are 

considered. The optimal split is saved for each node. The node with the split that 

maximises the decrease in ( )R T is partitioned.  ( )R T  is given by: 

21( ) ( ( ))
i

i
tt T

R T t
n ∈∈

= −∑∑
x

y y  

where ix  is the vector of measurements of p explanatory variables for the 

thi observational unit; iy is the vector of measurements of the response variables for the 

thi observational unit; T  is the set of all nodes and; ( )ty  is the average response vector 

of node t .  

 

We replicate the explanatory variables as the response variables. This allows a 

Multivariate Regression Tree, which requires response variables, to be grown using a 

dataset containing only explanatory variables. The observational units in each of the 

terminal nodes constitute the clusters of the dataset. By using identical response and 

explanatory variables the clusters will be as homogenous as possible with respect to all 
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the variables. The variables that determine the split at the nodes will be the “important 

variables”: that is, the variables that best define clusters of the dataset.  

 

2.2. K-means 

K-means is a partitioning clustering method. The method requires both the number of 

clusters, k , and initial estimates of cluster centres to be specified a priori. Each 

observational unit, ix ,  is visited in turn and assigned to the cluster whose centroid is 

closest, using a Euclidean distance metric. Cluster centroids are then updated. The 

process repeats until no more reassignments of the observational units occur.  

 

2.3. Mixture Models of Factor Analysers 

Mixture Models of Factor Analysers are an extension of Normal Mixture Models, a 

probability based clustering method. Mixture Models of Factor Analysers decrease the 

number of parameters that are estimated in a Normal Mixture Model, by performing 

dimension reduction (Factor Analysis) in each component.  

 

The probability density function of an observational unit arising from a Mixture Model 

of Factor Analysers is taken to be a mixture of k  multivariate normal component 

density functions in unknown proportions. The probability density function of x is given 

by 

1 1

( , ) ( , , )            0 1    1
k k

j j j j j
j j

f π φ π π
= =

= ≤ ≤ =∑ ∑x xψ µ Σ  

where jπ  is the mixing proportion of the thj component; ( , , )j jφ x µ Σ is the multivariate 

normal density function of the thj component; jµ is the thj component mean; jΣ is the 
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thj component covariance matrix;ψ  is the vector of unknown 

parameters , ,      1,....,j j j j kπ =µ Σ . 

 

Factor Analysis is performed within each component. This allows each component 

covariance matrix to be modelled by T
j j j j= + D∑ Λ Λ where q is the number of factors 

(taken to be the same for each component); jΛ  is a p q× matrix of factor loadings for 

the thj  component; jD  is a diagonal matrix. 

 

The parameters are estimated using the Expectation-Maximisation (EM) algorithm [20]. 

Each component describes one of the clusters. An outright clustering of the data into 

k groups is achieved by assigning each observational unit to the component for which it 

has the highest posterior probability of belonging [16].  

 

The number of factors, q , here was varied to alter the degree of dimension reduction for 

the model. Using each chosen number of factor analysers, the model was fit twice to 

allow for different solutions obtained because of random starts. 

 

2.4. Plaid Models 

Plaid Models, a form of two-way, overlapping Cluster Analysis were first introduced by 

Lazzeroni and Owen [8]. Plaid Models represent the dataset as a sum of k  terms, called 

“layers”. Each layer represents a cluster, and observational units and variables can exist 

in more than one cluster or none at all. The ( , )thi j element of the data matrix, X , is 

represented algebraically as: 
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0

k

ij ig jg ijg
g

X ρ κ θ
=

=∑  

where ijgθ represents an ANOVA fit to the rows and columns in a layer - we used the 

fourth ANOVA type suggested by Lazzeroni and Owen [8]; { }, 0,1ig jgρ κ ∈ 1igρ = if 

observational unit i  is in layer g  1jgκ =  if variable j  is in layer 

g ; , 0ig jgρ κ = otherwise. 

 

A layer is sought at each stage. The Plaid Algorithm searches for a layer,G , in the 

current residual matrix, Z , where Z is defined by: 

1

0
1

G

ij ij ij ig jg ijg
g

Z X θ ρ κ θ
−

=

= − −∑ . 

The layer found minimizes the sum of squared errors, ( )
2

1 1

1
2

pn

ij iG jG ijG
i j

Z ρ κ θ
= =

−∑∑ . The 

parameters of the layer can be estimated iteratively using Lagrange Multipliers.  

 

As Plaid Models extract layers that may be overlapping and/or not cover the entire 

dataset, the division of the dataset into k  clusters had to be defined. Because this 

definition could be made arbitrarily, it was decided to make use of the known group 

memberships via the Adjusted Rand Index. It is hoped that this ensured Plaid Models 

were depicted fairly amongst the other techniques. Various definitions were trialled, and 

the cluster assignment rule was chosen as the rule that maximised the Adjusted Rand 

Index for each dataset. This resulted in different cluster assignment rules for the 

datasets. For the Vietnam dataset, observational units were assigned to the first layer 

they appeared in. For the Thyroid dataset, observational units were assigned to the last 

layer they appeared in.  
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There are various “preferences” available when finding a layer using the Plaid Models 

program [8]. We used the “unisign options” when clustering the Vietnam dataset, and 

the default parameters for the Thyroid dataset. Again, these preferences were chosen to 

maximise the External Statistic for each dataset (data not shown).  

 

2.5. Gap Statistic 

The Gap Statistic “compares the change in within cluster dispersion to that expected 

under an appropriate reference null distribution” [12]. The Gap Statistic chooses the 

optimal number of clusters as the value for which the within cluster dispersion curve 

falls farthest below a reference curve. The algorithm is discussed in more detail in 

Tibshirani et al. [12]. 

 

2.6. External Criterion: Adjusted Rand Index 

The Adjusted Rand Index is an extension of the Rand Index [21] such that its expected 

value when comparing two random partitions is zero [18]. The maximum value of the 

Adjusted Rand Index is one, indicating perfect agreement between the classes and the 

clusters [18]. The Adjusted Rand Index is given by: 

2 2 2 2

1
2 2 2 2 2 2

ij i j
ij i j

i j i j
i j i j

n n n n

ARI
n n n n n

• •

• • • •

        
−         

        =
            

+ −            
            

∑ ∑ ∑

∑ ∑ ∑ ∑
 

where ijn =  number of observational units in class i and cluster j ; in • =  number of 

observational units in class i ; jn• = number of observational units in cluster j ; n =  

number of observational units. 
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2.7. Internal Criterion: Point Biserial Correlation 

The Point Biserial Correlation is the Pearson Correlation between two variables with 

one of the variables being binary [9]. The dichotomous variable is the concatenated 

columns of the matrix that has its ( , )thi j  element set to zero if the observational units 

,i jx x  are clustered together by the algorithm. The non-dichotomous variable contains 

the values of the dissimilarity matrix. Large positive values close to one indicate a good 

fit between the data and the obtained clusters.  

 

2.8. Figure of Merits 

Figure of Merits (FOMs) assess the “predictive power” of a clustering algorithm by 

leaving out a variable, j , clustering the data (into k  clusters), then calculating the Root 

Mean Square Error (RMSE) of j relative to the cluster means:  

( )2

1

1( , ) ( )
r

i r

k

ij C
r C

RMSE j k x j
n

µ
= ∈

= −∑ ∑
x

 

where ijx is the measurement of the thj variable on the thi observational unit; n is the 

number of observational units; rC is the set of observational units in the 

thr cluster; ( )
rC jµ  is the mean of variable j for the observational units in the thr cluster. 

 

Each variable is omitted and its RMSE calculated. These RMSE are summed over all 

variables to give an aggregate FOM (AFOM), 
1

( ) ( , )
p

j

AFOM k RMSE j k
=

= ∑ . The AFOM 
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is calculated for each k , and adjusted for cluster size. Here the AFOM was also divided 

by the number of variables “left out”:  

 

1( ) ( )adjAFOM k AFOM k
n kp

n

=
−

 

 

Low values of a clustering algorithm’s AFOM indicate that the algorithm has high 

predictive power [17]. In this way, different clustering algorithms can be compared, by 

comparing their AFOM values at each k . However, Yeung et al. [17] comment that 

clustering algorithms should only be compared to one another using AFOMs if the 

algorithms’ similarity metrics are identical. Therefore, we use AFOMs to compare K-

means and AAMRTs to each other, and to illustrate how all four techniques are 

performing as the number of clusters increases.  

 

3. Datasets and Analysis 

3.1. Vietnam dataset 

This dataset [22] consists of measurements of chemical elements in hair samples of six 

different groups of Vietnamese. There are 17 variables that have been log transformed 

and z-standardised: Ti, V, Cr, Mn, Ni, Cu, As, Se, Sr, Mo, Cd, Sn, Ba, Pb, Th, U, Hg. 

The groups differ in their amount of exposure to coal: 

(1) Control Adults (C-A): 31 males with low exposure to coal 

(2) Control Children (C-C): 31 children with low exposure to coal 

(3) Miner Adults (M-A): 56 males employed at a coal mine 

(4) Miner Children (M-C): 47 children of male coal miners 
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(5) Burner Adults (B-A): 18 females using coal for cooking 

(6) Burner Children (B-C): 41 children with exposure to coal through its use for 

cooking 

This group membership is used in the calculation of the Adjusted Rand Index. The six 

classes are well classified using a Classification Tree (Figure 1).  

Figure 1. 

Classification Tree of the Vietnam dataset 
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B – A (16/18) 

M – C (44/47) 
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C – C (29/31) 
C – A (1/31) 
B – C (1/41) 

B – C (36/41) 
M – C (3/47) 
C – C (1/31)   

M – A (56/56) 
B – A (2/18) 
C – A (1/31) 
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3.2. Thyroid dataset 

This dataset [23] consists of measurements of five hormones (z-standardised) in patients 

with differing thyroid functions. The five hormones are T4, T3, RT3U, TSH, DTSH. 

The three classes are: 

(1) Normal thyroid function (eu): 150 patients 

(2) Hyperthyroid function (he): 35 patients  

(3) Hypothyroid function (ho): 30 patients 

These classes are shown in a Classification Tree (Figure 2). In contrast to the Vietnam 

dataset, the classes are overlapping in the two-dimensional Fisher’s linear discriminant 

space (data not shown). The eu cluster is dense and spherical, the other two clusters are 

elliptically shaped.  

Figure 2. 

Classification Tree of the Thyroid dataset 
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3.3. Procedure 

For the Vietnam dataset, two to twenty clusters were extracted using the four techniques 

of interest, AAMRTs, K-means, Mixture Models of Factor Analysers and Plaid Models. 

The clusters obtained using each of the techniques were compared to each other using 

the comparative criteria. Because the Thyroid dataset is known to contain only three 

classes, the number of clusters extracted using each technique ranged from two up to 

ten.  

4. Results 

4.1. Vietnam dataset 

The results of the criteria are shown in Table 1. When using the AAMRT, the Gap 

Statistic selected seven clusters as optimal. Interestingly, the “elbow” of the relative 

error curve occurred at 5k = (Figure 3). The Gap Statistic selected six clusters when 

used in conjunction with K-means, but not using the Mixture Models of Factor 

Analysers or the Plaid Model. The BIC selected two or three clusters as optimal on the 

multiple runs of Mixture Models of Factor Analysers. The regularization procedure of 

Plaid Models indicated that fourteen layers were needed to describe the data.  
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Table 1. 

Results using the Vietnam dataset 

 Gap Max ARI ARI (k=6) Max PBC PBC (k=6) Other Criteria

AAMRT 7 0.6523 (7) 0.5751 0.4393 (5) 0.4119 Elbow -5 

Min+1SE -14 

K-means 6 0.8159 (6) 0.8159 0.5430 (3) 0.5137  

MMFA (q=2) 2 0.5991 (7) 0.4578 0.4639 (5) 0.4188 BIC – 3 

MMFA (q=2) 4 0.6075 (5) 0.5806 0.4476 (5) 0.4113 BIC – 3 

MMFA (q=3) 1 0.4877 (7) 0.4877 0.4594 (6) 0.4594 BIC – 3 

MMFA (q=3) 2 0.6921 (6) 0.6921 0.4735 (2) 0.4631 BIC – 2 

MMFA (q=4) 2 0.6322 (9) 0.4823 0.4457 (9) 0.4128 BIC – 2 

MMFA (q=4) 1 0.6025 (8) 0.4108 0.4736 (8) 0.4105 BIC – 3 

PLAID  3 0.5431 (5) 0.5309 0.5294 (3) 0.4168 REG - 14 
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Figure 3. 

Relative error curve for the Auto-Associative Multivariate Regression Tree grown on 

the Vietnam dataset1 
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The maximum value of the Adjusted Rand Index is shown in the third column of the 

table. The number of clusters associated with this value is in parentheses. The result of 

using a AAMRT was comparable to those obtained using Mixture Models of Factor 

Analysers. The values of the Adjusted Rand Index at 6k = clusters (the known number 

of classes) are shown in the following column of the table. The values associated with 

Mixture Models of Factor Analysers, the Plaid Model and the AAMRT were similar to 

each other but less than that of the K-means technique. 

 

The maximum value of the Internal Criterion is shown in the fifth column of Table 1; 

the number of clusters associated with this value is in parentheses. The maximum value 

                                                 
1 See Ref [2] for an explanation of the complexity parameter (cp). The size of tree axis represents the 
number of terminal nodes.  
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of the Internal Criterion using a tree was comparable to the values obtained using 

Mixture Models of Factor Analysers. However, the Plaid Model and K-means values 

were higher than the Tree. The Internal Criterion values at 6k =  clusters are shown in 

the sixth column. Again, the value obtained using a AAMRT was comparable to those 

obtained using Mixture Models of Factor Analysers, but these values were not as high 

as the K-means Point Biserial Correlation.  

 

Figure 4 shows the Figure of Merits for each of the four techniques. For clarity, 

repeated runs of the Mixture Models are not shown, nor are the results for more than ten 

clusters. Most lines plateau at 5 or 6 clusters. K-means achieved lower AFOM values 

(and therefore higher quality clusters) than the AAMRT. This complemented the results 

shown in Table 1.   

Figure 4. 

AFOM graphs for the Vietnam dataset 
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The variables used in the AAMRT were Cd, Se, Hg and Mo (Figure 5). These variables 

and Sn were also used in the Classification Tree (Figure 1). The first split used Cd and 

separated the control groups and some of the miner (adults) group from the other 

groups. This is in contrast to the Classification Tree (Figure 1), which initially used Se 

to separate the adults and children. The numbers of each group are shown at each of the 

terminal nodes of the tree.  

Figure 5. 

Auto-Associative Multivariate Regression Tree of the Vietnam dataset grown to six 

terminal nodes 
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4.2. Thyroid dataset 

The Gap Statistic only selected one cluster using K-means, the AAMRT and the Plaid 

Model (Table 2). However, the Gap Statistic selected three clusters when using Mixture 

Models of Factor Analysers with one factor in each component. Although the cross-

validated estimate of tree size was high, the relative error curve’s “elbow” occurred at 

3k =  (Figure 6). The BIC’s estimates were varied.    

Table 2. 

Results using the Thyroid dataset 

 

 
 
 
 
 
 
 

 

 Gap Max ARI ARI (k=3) Max PBC PBC (k=3) Other Criteria 

AAMRT 1 0.5832 (3) 0.5832 0.7950 (5) 0.7829 Elbow - 3 

Min+1SE - 19

K-means 1 0.5832 (3) 0.5832 0.7877 (3) 0.7877  

MMFA (q=1) 3 0.8149 (5) 0.7496 0.7175 (4) 0.7093 BIC – 7 

MMFA (q=1) 3 0.8231 (5) 0.7823 0.7079 (3) 0.7079 BIC – 10 

MMFA (q=2) 1 0.8763 (3) 0.8763 0.6759 (2) 0.6629 BIC – 3 

MMFA (q=2) 1 0.8578 (4) 0.5936 0.7138 (3) 0.7138 BIC – 4 

PLAID  1 0.8373 (3) 0.8373 0.6522 (3) 0.6522 REG – 2 



 46

Figure 6. 

Relative error curve for the Auto-Associative Multivariate Regression Tree grown on 

the Thyroid dataset 
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The values of the Adjusted Rand Index at 3k =  clusters (the known number of classes) 

obtained with the AAMRT and K-means were the lowest of the techniques (Table 2). 

The values obtained using the Plaid Model and Mixture Models of Factor Analysers 

were very high, indicating that these techniques found clusters very similar to the 

known groups of the data. The highest values of the Internal Criterion for 3k =  clusters 

occurred in conjunction with K-means and the AAMRT.  

 

Figure 7 shows the Figure of Merits for each of the techniques. Four of the five lines 

decrease noticeably until three clusters. For 3k >  clusters, the Plaid Model’s AFOM 

curve increases dramatically. This increase can be explained by the choice of cluster 
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definition employed for the Plaid Model with the Thyroid dataset. After four or more 

layers were extracted, the predictive capability of the model decreased.   

Figure 7. 

AFOM graphs for the Thyroid dataset 

 

The variables of the Thyroid dataset used as splitting criteria in the corresponding 

AAMRT (with three terminal nodes – Figure 8) were TSH and RT3U. The root node 

was initially split on the variable TSH. Conversely, the Classification Tree (Figure 2) 

was split using only the variable T4. Although the AFOM graphs indicated that five 

clusters might exist in the data, the tree (not shown) became no more homogenous with 

respect to its terminal nodes. This result supports the Adjusted Rand Index which 

peaked at three clusters for the AAMRT.  
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Figure 8. 

Auto-Associative Multivariate Regression Tree of the Thyroid dataset grown to three 

terminal nodes 
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5. Discussion 

This study presented an opportunity to illustrate various descriptive and comparative 

criteria employed with cluster analyses whilst simultaneously investigating the 

capabilities of Auto-Associative Multivariate Regression Trees. The results were mixed. 

It is known that the Thyroid dataset contains overlapping clusters. The results of the 

Gap Statistic applied with the Thyroid dataset may indicate that the Gap Statistic has 

underestimated the true number of clusters in the dataset because of their overlapping 

nature, see for more information Tibshirani et al. [12].  

 

The BIC and regularisation procedure also gave estimates of cluster number that 

differed from the “gold standard”. However, for the Vietnam dataset with six groups, 

eu (150/150) 
he (19/35) 
ho (8/30)

ho (22/30) 

he (16/35) 
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the elbow of the AAMRT’s relative error curve occurred at five clusters; for the Thyroid 

dataset the elbow coincided with the known number of groups. 

 

AFOM graphs generally indicated the “correct number” of clusters for both datasets. 

However, the AFOM graph for the AAMRT indicated there may have been five clusters 

within the Thyroid dataset. Again, closer inspection of the tree showed its terminal 

nodes to be no more homogenous than those of the tree with three terminal nodes.  

 

The External and Internal Criteria tended to peak at the known number of clusters for 

the Vietnam and Thyroid datasets. Because the External Criterion relies on known class 

membership, and the Internal Criterion uses the same information that forms the clusters 

to authenticate the clusters [17], these criteria should not be used individually as 

estimates of cluster quality. 

 

Therefore, this study highlighted the necessity for a collection of criteria in order to 

estimate the number of clusters and cluster quality. No criterion could be used 

individually with these datasets and ensure a comprehensive explanation of the derived 

clusters. Using these criteria, we note that K-means outperformed the other techniques 

with regard to the Vietnam dataset. However, this was not the case with the Thyroid 

dataset. Here, the AAMRT performed similarly to K-means, but the Plaid Model and 

Mixture Models of Factor Analysers were the “winners” when considering the Adjusted 

Rand Index. The conclusion to be drawn from these results is that there was neither an 

identifiably superior nor inferior method, but that AAMRTs presented a viable 

clustering solution. 
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6. Conclusions 

This was a preliminary investigation assessing the suitability of AAMRTs as a 

clustering method using datasets containing only explanatory variables. The “cluster 

trees” were compared to other successful clustering techniques, K-means, Mixture 

Models of Factor Analysers and Plaid Models. The results showed the Trees produced 

clusters of similar quality to the other techniques. The advantages of AAMRTs as a 

clustering technique include their capabilities to present a visually interpretable and 

intuitive cluster analysis. This study has shown that AAMRTs produce a sensible cluster 

analysis in the low dimensional setting. Investigations of the suitability of AAMRTs as 

a clustering technique in the high dimensional setting are in progress. The study also 

highlighted the need for a “panel” of criteria in order to estimate the number of clusters 

and cluster quality.  

 

7. Software 

R (available from http://www.R-project.org.) was used to implement the K-means 

algorithm. MATLAB 6.1 (The MathWorks, Inc.) code created by Ghahramani and 

Hinton [6] (available at ftp://ftp.cs.toronto.edu/pub/zoubin/mfa.tar.gz) was used to fit 

the Mixture Model of Factor Analysers. This algorithm fits a common diagonal matrix 

D  (that is,   for 1,....,j j k= =D D ). Plaid™, available from http://www-

stat.stanford.edu/~owen/clickwrap/plaid.html, was used to fit the Plaid Models. 

TreesPlus [5], an add-in module for S-PLUS 2000, was used to obtain the Multivariate 

Regression Trees. The module is a wrapper of the R-PART [24] code for Trees. 

MATLAB 6.1 (The MathWorks, Inc.) and R were used to generate the Gap Statistic and 

other comparative criteria.  
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ABSTRACT 

Cluster Analysis is sensitive to noise variables intrinsically contained within high 

dimensional datasets. As the size of datasets increases, clustering techniques robust to 

noise variables must be identified. This investigation gauges the capabilities of recent 

clustering algorithms applied to two real datasets increasingly perturbed by superfluous 

noise variables. The recent techniques include Mixture Models of Factor Analysers and 

Auto-Associative Multivariate Regression Trees. Statistical techniques are integrated to 

create two approaches useful for clustering noisy data: Multivariate Regression Trees 

with Principal Component Scores and Multivariate Regression Trees with Factor 

Scores. The tree techniques generate the superior clustering results.  

 

Keywords: Cluster Analysis, Noise Variables, Multivariate Regression Trees, 

Dimension Reduction 
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1. Introduction 

A characteristic common to many datasets is “noise variables”. Noise variables contain 

no relevant information and mask the underlying structure of the dataset. The 

prevalence of noise variables in datasets is increasing: an unavoidable consequence as 

the size of datasets increases.  

 

It is known that care must be taken when clustering large noisy datasets because 

including superfluous variables may induce spurious clusters or blur existing cluster 

boundaries. The researcher must use a clustering algorithm suitable for noisy high 

dimensional datasets. These clustering algorithms will intrinsically incorporate 

dimension reduction. 

 

Here we trial auto-associative multivariate regression trees [1] using noisy data. We 

further extend multivariate regression trees as a clustering technique by incorporating 

dimension reduction, and demonstrate their capabilities when clustering noisy data. We 

reduce the dimension of the dataset globally using either factor or principal components 

analysis, and subsequently cluster in the reduced factor or principal components space 

via the regression tree. The capabilities of mixture models of factor analysers [2,3], a 

clustering technique featuring local dimensionality reduction, are also investigated.  

 

We assess the potential of these algorithms when clustering noisy datasets, by 

perturbing two datasets via the introduction of superfluous variables. Clustering 

techniques are applied to the perturbed dataset and their capabilities to recover the 

known clusters are gauged. This error perturbation experiment has been used previously 

by Milligan [4]. We extend Milligan’s experiment to include real-life datasets, whilst 
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benchmarking to the classical K-means technique. Our results show the superiority of 

multivariate regression trees with principal component scores and/or factor scores when 

clustering noisy data.  

 

2. Theory 

2.1. Principal Components Analysis and Factor Analysis 

Both principal components analysis and factor analysis are dimension reduction 

techniques. Principal components analysis attempts to model the total variance of the 

original dataset, via new uncorrelated variables called principal components [5]. The 

principal components are linear combinations of the original variables: 

TAy = x  

where x is a vector of the original variables; y is a p element vector of principal 

component scores; and A  is obtained from the spectral decomposition of Σ . 

 

There are p principal components. However, the first q principal components usually 

account for most of the variation within the dataset. Dimension reduction is achieved by 

discarding the latter p q−  principal components. Then Σ  is approximated by its first 

q eigenvectors. Observational units are represented in the q dimensional subspace via 

the first q  principal component scores. 

 

Factor Analysis attempts to explain the variables by assuming that they can be 

generated as a linear combination of q unobservable common factors (usually q p<< )  

plus a unique factor [5]. The factor analysis model is given by 

F= + +x zµ ε            (1.1) 
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where µ  is a mean vector; F  is a p q×  matrix of factor loadings; z  is a q dimensional 

vector of hypothetical common factors; and ε  is a unique factor. Because the z  are 

hypothetical, imposing assumptions ~ (0, )qN Iz  and ~ (0, )N Dε  allows the estimation 

of F .  

 

We see that unlike principal components analysis, factor analysis distinguishes between 

common and unique variance. The factor analysis model implies that TFF DΣ = + . The 

p q×  matrix F  contains the factor loadings. The factor loadings are the correlations of 

a variable with a common factor z  [6].  D , a diagonal matrix, contains the specific 

variances of each variable: the unique variance of each variable that is not associated 

with the other variables. Therefore, the p p×  covariance matrix Σ  is modelled by a 

p q×  matrix F and a diagonal matrix D , implying a substantial amount of dimension 

reduction if q p<< . 

 

Unlike principal components analysis, equation (1.1) shows that factor analysis does not 

provide a unique transformation from factors to variables. In fact, the solution can be 

rotated to make it more interpretable. Observational units can be represented in the 

q dimensional factor space by the estimated values of the hypothetical common factors, 

called “factor scores”. 

 

As a dataset increases in size, the factor analysis solution is likely to approach the 

principal components solution [5]. Despite this fact, we use both factor scores and 

principal component scores as response variables in the multivariate regression trees 

and investigate any differences. 
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2.2. Multivariate Regression Trees and Auto-Associative Multivariate Regression Trees 

Regression Trees begin with all the data contained within a single node. The root node 

is then split in two on the basis of the value of an explanatory variable so as to make the 

two new nodes more homogenous with respect to the response variables. The splitting 

process is continued until the terminal nodes (nodes not split in two) are sufficiently 

homogenous. 

 

Mathematically, the binary decision function that spits a node is chosen such that it 

maximises the decrease in ( )R T  [7]. ( )R T  is given by: 

21( ) ( ( ))
i

i
tt T

R T t
n ∈∈

= −∑∑
x

y y
          

(1.2) 

where ix  is the vector of measurements of p explanatory variables for the 

thi observational unit; iy is the vector of measurements of the response variables for the 

thi observational unit; T  is the set of all nodes and; ( )ty  is the average response vector 

of node t . 

 

Observational units within a terminal node are similar to each other with respect to the 

response variables. By replicating the explanatory variables as the response variables 

(that is, using identical response and explanatory variables) an auto-associative 

multivariate regression tree can be used as a divisive clustering technique.  

 

We suggest a relaxed criterion for selecting the natural number of clusters found by an 

auto-associative multivariate regression tree: the “elbow” of the tree’s relative error 

curve. This tree will not attain optimal predictive performance, but any further splitting 
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will result in only a small decrease in the heterogeneity of the terminal nodes. 

Therefore, at the number of nodes indicated by the location of the elbow, the clusters 

are sufficiently homogenous. 

 

The location of the elbow is questionable. We deemed the elbow as the point, k , where 

the gradient of the relative error curve changed from being steep to gentle. Specifically, 

we chose k as the k  that minimised 

( 1) ( )
( ) ( 1)

RE k RE kabs
RE k RE k

 + −
 − − 

 

where ( )RE k is the value of the relative error curve at k . 

 

2.2.1. Multivariate Regression Trees with Principal Component Scores and Factor 

Scores 

Clustering via an auto-associative multivariate regression tree by replicating the 

explanatory variables as response variables is computationally intensive if the dataset is 

large. Moreover, including redundant variables as response variables may induce 

suboptimal results. Reducing the dimension of the response variables may produce 

more stable results. We propose two techniques for reducing the dimension of the 

response space: 

(1) Using principal component scores for q  principal components as 

response variables. The reader will remember that these are essentially a linear 

transformation of the original data. 

(2) Using factor scores for q  factors as response variables. Factor scores are 

estimated after obtaining a factor loadings matrix, such that they “explain” the 

observational units. 
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A variety of q (see procedure section) are trialled to investigate the effect of amount of 

dimension reduction on the results. 

 

The algorithm splits nodes so that the new nodes are homogenous with respect to the 

scores. Therefore, if q is taken to be smaller than p , the clustering is achieved in the 

reduced dimension factor/principal component space. It must be noted that unlike 

mixture models of factor analysers (see section 2.3.1), where the dimension reduction 

occurs locally within a cluster, here the dimension reduction occurs globally (that is, 

over the entire dataset). 

 

Finally, the factor scores were generated using maximum likelihood factor analysis. 

Maximum likelihood factor analysis assumes that the data are multivariate normally 

distributed. The superfluous noise variables used to perturb the dataset are not all 

multivariate normal. Therefore, to avoid violating an assumption of maximum 

likelihood factor analysis, the multivariate regression tree with factor scores technique is 

tested only with the noise variables (type II) specifically generated to be multivariate 

normal (see procedure section). 

 

2.3. Mixture Models 

The probability density function of an observational unit arising from a mixture model 

is 

1

( , ) ( , )
k

j j
j

f
=

Ψ = Π Φ Ψ∑x x
          

(1.3) 

Equation (1.3) shows that the overall density function ( , )f Ψx  is the sum of density 

functions ( , )jΦ Ψx  in proportions jΠ . Each ( , )jΦ Ψx  is commonly referred to as a 
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component density function. Mixture models assume that each component density 

function describes a cluster. Observational units are assigned to the component for 

which they have the highest posterior probability of belonging to achieve an outright 

clustering of the data [3]. Therefore, mixture models are a probability based clustering 

method. 

 

Parameters of the model,  jΠ  and Ψ , are estimated using the Expectation 

Maximisation (EM) algorithm [8]. Component density functions can be of various 

forms, but most commonly they are assumed to be multivariate normal. Therefore, the 

elements of Ψ include jµ , the component (cluster) means and jΣ , the component 

covariance matrices. 

 

2.3.1. Mixture Models of Factor Analysers 

Mixture models of factors analysers [2,3] incorporate factor analysis into each 

component density function, ( , )jΦ Ψx , of a mixture model. Each component (cluster) 

covariance matrix is represented by T
j j j jF F DΣ = +  where jF  is a p q× factor loadings 

matrix for that component. Therefore, dimensionality reduction is performed locally 

within a cluster. In a normal mixture model there are ( 1) / 2p p +  parameters to be 

estimated for each component covariance matrix, whereas a mixture model of factor 

analysers requires only pq p+ parameters for each component covariance matrix. This 

reduces the overfitting problem associated with normal mixture models. A variety of 

q (see procedure section) were trialled to investigate the effect of amount of dimension 

reduction on the results. 

 



   

 62

The Bayesian Information Criterion (BIC) is useful when estimating the number of 

components (clusters) required in a mixture model, although regularity conditions do 

not hold [3]. These estimates are also included to supplement the estimates of the 

silhouette statistic (section 2.5). 

 

Mixture models of factor analysers require a random start. It is very possible that an 

optimal model will not be found using a single random start. We used 50 random starts. 

The adjusted rand index values (see section 2.6) reported are the average of the top ten 

adjusted rand index values attained by the 50 random starts. The estimates of the BIC 

and the silhouette statistic (see section 2.5) reported are those most frequently occurring 

over the 50 random starts. 

 

2.4. K-means 

K-means is a partitioning clustering method. The method requires both the number of 

clusters, k , and initial estimates of cluster centres to be specified a priori. Each 

observational unit, ix , is visited in turn and assigned to the cluster whose centroid is 

closest, using a Euclidean distance metric. Cluster centroids are then updated. The 

process repeats until no more reassignments of the observational units occur. 

 

2.5. Silhouette Statistic 

The silhouette statistic [9] can be used to assess the optimal number of clusters within a 

dataset. The silhouette statistic for observational unit ix  is given by 

( )
( ) ( )( )

max ( ), ( )
i i

i
i i

b x a xs x
a x b x
−

=  
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where ( )ia x is the mean distance between ix and all the observational units within the 

same cluster; ( )ib x is the mean distance between ix and all observational units in the 

next nearest cluster (the nearest cluster is the cluster with the minimum ( )ib x ). The 

optimal number of clusters is the number of clusters that maximises the average ( )is x  

for the entire dataset. 

 

2.6. External Criterion: Adjusted Rand Index 

An external criterion uses known class membership to provide an estimate of the quality 

of the obtained clusters [4]. The external criterion used in this study was the adjusted 

rand index [10]. The adjusted rand index is an extension of the Rand [11] Index such 

that its expected value when comparing two random partitions is zero. The maximum 

value of the adjusted rand index is one, indicating perfect agreement between the classes 

and the clusters [10]. The adjusted rand index is given by: 

2 2 2 2

1/ 2
2 2 2 2 2

ij i j
ij i j

i j i j
i j i j

n n n n

ARI
n n n n n

• •

• • • •

        
−         

        =
            

+ −            
            

∑ ∑ ∑

∑ ∑ ∑ ∑
 

where ijn =  number of observational units in class i and cluster j ; in • =  number of 

observational units in class i ; jn• = number of observational units in cluster j ; n =  

number of observational units. 

 

3. Procedure 

Two real datasets (the “Vietnam dataset” and the “Thyroid dataset”) underpinned by 

biochemical phenomena were used in this analysis. The datasets are described in more 

detail in sections 3.1 and 3.2. There were 12 additions of noise variables in total for 
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each dataset. Four types of noise variables were appended to these datasets in three 

increments. The three increments were: p , 50, and 100 (where p is the number of 

“real” variables in the dataset) variables. The four types of noise variables were: 

(I) The variable was uniformly distributed between the minimum and maximum 

of the true dataset.  

(II) The variable was normally distributed with mean zero and standard 

deviation one.  

(III) The variable was uniformly distributed between the minimum and maximum 

of the dataset. However, there existed an interval [ ],a b  between which the 

observational units were not allowed to lie. The parameters, ,a b  were 

chosen randomly with the conditions 2b a− ≥ , and 

min( ) , max( )dataset a b dataset< < . 

(IV) Combination set of types I, II, and III.  

 

After each addition of noise variables to the datasets, clusters were extracted using the 

techniques. The quality of the clusters was assessed using the criteria outlined in the 

previous section.  

 

3.1. Vietnam dataset 

This dataset [12] consists of measurements of chemical elements in hair samples of six 

different groups of Vietnamese. There are 17 variables that have been log transformed 

and z-standardized: Ti, V, Cr, Mn, Ni, Cu, As, Se, Sr, Mo, Cd, Sn, Ba, Pb, Th, U, Hg. 

The groups differ in their amount of exposure to coal: 

(1) Control Adults (C-A): 31 males with low exposure to coal 

(2) Control Children (C-C): 31 children with low exposure to coal 
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(3) Miner Adults (M-A): 56 males employed at a coal mine 

(4) Miner Children (M-C): 47 children of male coal miners 

(5) Burner Adults (B-A): 18 females using coal for cooking 

(6) Burner Children (B-C): 41 children with exposure to coal through its use for 

cooking 

Using this dataset, the values of the parameter q  (required for mixture models of factor 

analysers, multivariate regression trees with principal component scores, and 

multivariate regression trees with factor scores) are 2,3,4,5,6,7,9,12 . 

 

3.2. Thyroid dataset 

This dataset [13] consists of measurements of five hormones (z-standardized) in patients 

with differing thyroid functions. The five hormones are T4, T3, RT3U, TSH, DTSH. 

The three classes are: 

(1) Normal thyroid function (eu): 150 patients 

(2) Hyperthyroid function (he): 35 patients  

(3) Hypothyroid function (ho): 30 patients 

Using this dataset, the values of the parameter q  are1,2,3,4,5,6 . 
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4. Results  

4.1. Vietnam Dataset 

The algorithms’ adjusted rand index values at 6k = clusters (the known number of 

classes) after the three additions of type I noise are illustrated in Fig. 1. Results are 

reported for the dimension (q=2) resulting in the highest adjusted rand index values for 

the mixture models of factor analysers (MMFA). The multivariate regression trees with 

principal component scores (MRTPCS) tended to produce similar adjusted rand index 

values across all dimensions of the principal component space. We show the most 

frequently occurring adjusted rand index value for these trees.  

 

 

 

 

 

 

 

 

Fig. 1. Adjusted rand index values at k=6 clusters for the Vietnam dataset perturbed by type I noise 

variables. 

The figure indicates that as the amount of noise increases, K-means and mixture models 

of factor analysers are adversely affected. Both tree techniques (AAMRT and 

MRTPCS) produce more stable results than K-means and the mixture models of factor 

analysers. The tree techniques maintain their adjusted rand index values, despite the 

increase in the number of superfluous noise variables.  
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Fig. 2 shows the algorithms’ adjusted rand index values at 6k = clusters when the 

dataset was perturbed by type II noise variables. Results are reported for the dimension 

resulting in the highest adjusted rand index values for the mixture models of factor 

analysers (q=2) and multivariate regression trees with factor scores (q=3) (MRTFS). 

The adjusted rand index values plotted for the multivariate regression trees with 

principal component scores are those most frequently occurring. The figure again 

indicates the ability of the tree techniques to recover the known clusters despite large 

error perturbation of the dataset. All tree techniques produce stable results. Multivariate 

regression trees grown using factor scores produce the highest quality clusters of the 

data. Conversely, K-means and mixture models of factor analysers are again adversely 

affected by the larger numbers of noise variables.  
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Fig. 2. Adjusted rand index values at k=6 clusters for the Vietnam dataset perturbed by type II 

noise variables.  

Table 1 augments Fig. 2. Here, only the adjusted rand index values of the techniques 

using dimension reduction are reported. The effect of the amount of dimension 

reduction on an algorithm’s capabilities to recover the known clusters is different for 

each technique. Mixture models of factor analysers attain optimal results by using two 

factors within each component. The multivariate regression trees with factor scores 

attain optimal results by clustering in the three-dimensional factor space. The 

multivariate regression trees with principal component scores are impervious to the 

amount of dimension reduction, attaining stable results across the range of numbers of 

principal components. The table highlights the superiority of the multivariate regression 

tree with factor scores technique. Their adjusted rand index values are the highest and 

show that these trees produce consistent results regardless of the number of extraneous 

noise variables.  
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Table 1. Adjusted rand index values at k=6 clusters using the Vietnam Dataset 

Number 
of Type II 
Noise 
Variables 

Number of 
Factors 

MMFAa MRTPCS MRTFS 

2 .5346 .5719 .6848 
3 .5020 .5751 .7242 
4 .3962 .5768 .6285 
5 .4212 .5768 .5151 
6 .4042 .5768 .6775 
7 .3890 .5694 .6606 
9 .3104 .5694 .6661 

17 

12 .3049 .5694 .5660 
2 .4150 .6103 .6711 
3 .3360 .5690 .8078 
4 .2523 .5690 .6725 
5 .2141 .5690 .6791 
6 .2113 .5690 .6629 
7 .1884 .5690 .6661 
9 .1864 .5690 .6661 

50 

12 .1615 .5690 .4709 
2 .2891 .5035 .6711 
3 .2410 .5656 .8185 
4 .1662 .5656 .6255 
5 .1432 .5705 .6796 
6 .1250 .5705 .6595 
7 .1291 .5035 .6646 
9 .0998 .5035 .5079 

100 

12 .1071 .5002 .5050 
 

The estimates of the silhouette statistic are shown in Table 2. The estimates are stable 

across all techniques. The multivariate regression trees with factor scores produce 

clustering results that the silhouette statistic deems closest to the natural number of 

clusters. The BIC indicates that only one cluster is necessary to describe the data (Table 

2). The elbows of the tree techniques mostly occur in the same position as the number 

of clusters indicated by the silhouette statistic.  

 

 

                                                 
a Average of top ten adjusted rand index values from 50 random starts 
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The results using type III noise variables and the combination sets were similar to those 

already presented. For clarity, we have not reported these results. 

Table 2. Estimates of cluster number for the Vietnam dataset. 

Silhouette Statistic BIC/ELBOWb  
Number of Type II Noise 
Variables 

17 50 100 17 50 100 

K-means 2 2 2 / / / 
AAMRT 2 2 2 2 2 2 

2 2 2 2 2 1 1 
3 2 2 2 1 1 1 
4 2 2 2 1 1 1 
5 2 2 2 1 1 1 
6 2 2 2 1 1 1 
7 2 2 2 1 1 1 
9 2 2 2 1 1 1 

MMFAc 
 

12 2 2 2 1 1 1 
2 2 2 2 2 2 2 
3 2 2 2 2 2 2 
4 2 2 2 2 2 2 
5 2 2 2 2 2 2 
6 2 2 2 2 2 2 
7 2 2 2 2 2 2 
9 2 2 2 2 4 2 

MRTPCS 

12 2 2 2 2 4 2 
2 4 4 4 3 3 3 
3 4 4 4 4 4 4 
4 4 3 4 4 4 4 
5 4 4 4 5 4 4 
6 4 4 4 4 4 4 
7 3 4 4 4 4 4 
9 4 4 2 4 4 4 

MRTFS 

12 5 3 4 4 4 4 
 
 
 
 
 
 
 
 
 

                                                 
b BIC estimates for the mixture models of factor analysers. Elbow estimates are for the multivariate 
regression trees with principal component scores and factor scores 
c Most frequently occurring estimate from 50 random starts 
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4.2. Thyroid dataset 

Fig. 3 shows the algorithms’ adjusted rand index values at 3k =  clusters (the known 

number of classes) after the Thyroid dataset was increasingly perturbed by type I noise. 

The results for the mixture models of factor analysers are reported for the number of 

factors (q=1) that produced the highest adjusted rand index values. The multivariate 

regression trees with principal component scores tended to produce similar adjusted 

rand index values across all dimensions of the principal component space. We show the 

most frequently occurring adjusted rand index value for these trees. The figure shows 

that the mixture models of factor analysers initially recover the known clusters better 

than the other techniques. However, as the amount of noise introduced into the dataset 

increases, the mixture models of factor analysers are unable to maintain their 

superiority. K-means is also adversely affected by the perturbation of the dataset. The 

tree techniques are stable: the adjusted rand index values do not decrease for either 

technique.  

 

The results using Type II noise variables are shown in Fig. 4. The multivariate 

regression tree with factor scores is also shown. The results are similar to those in Fig. 

2. Clearly, the multivariate regression tree with factor scores is the superior technique.   

 

Table 3 shows trends similar to Table 1. The adjusted rand index values for the mixture 

models of factor analysers decrease as the amount of dimension reduction in a 

component decreases. The multivariate regression trees with principal component scores 

produce stable adjusted rand index values irrespective of the dimension of the response 

space. The multivariate regression trees with factor scores produce optimal results using 
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only a single dimension response space. As the dimension of the factor space increases, 

the adjusted rand index values decrease.  

 

 

 

 

 

 

 

 

 

 

Fig. 3. Adjusted rand index values at k=3 clusters for the Thyroid dataset perturbed by type I noise 

variables.  
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Fig. 4. Adjusted rand index values at k=3 clusters for the Thyroid dataset perturbed by type II 

noise variables. 
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Table 3. Adjusted rand index values at k=3 clusters using the Thyroid dataset 

Number 
of Type II 
Noise 
Variables 

Number 
of 
Factors 

MMFAd MRTPCS MRTFS 

1 .8635 .6167 .7848 
2 .8782 .6167 .5832 
3 .8781 .6167 .6118 
4 .8988 .6167 .4240 
5 .8819 .6167 .0817 

5 

6 .8513 .6167 .0815 
1 .7003 .6167 .7848 
2 .7353 .6167 .7663 
3 .5939 .6167 .4240 
4 .5619 .6167 .4240 
5 .4136 .6167 .4240 

50 

6 .3320 .6167 .4240 
1 .5804 .6167 .7663 
2 .5815 .6167 .7663 
3 .4212 .6167 .6573 
4 .3446 .6167 .5999 
5 .2275 .6167 .5999 

100 

6 .2131 .6167 .5999 
 

The BIC estimates are initially in agreement with the known number of clusters in the 

dataset (Table 4). However, as the amount of error perturbation increases, the BIC 

indicates that the mixture models of factor analysers only require one cluster to describe 

the data. The elbow estimates increase for the auto-associative multivariate regression 

tree as the amount of noise increases. However, the elbow estimates are fairly stable and 

usually reflect the known number of clusters for the trees grown using either principal 

component scores or factor scores. The silhouette statistic estimates were stable for all 

techniques, excluding K-means (Table 4).  

 

 

 

                                                 
d Average of top ten adjusted rand index values from 50 random starts 
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Table 4. Estimates of cluster number for the Thyroid dataset. 

Silhouette Statistic BIC/ELBOWe  
Number of Type II Noise 
Variables 

5 50 100 5 50 100 

K-means 2 10 10 / / / 
AAMRT 2 2 2 3 3 10 

1 2 2 2 >4 2 1 
2 2 2 2 3 2 1 
3 2 2 2 3 2 1 
4 2 2 2 3 2 1 
5 2 2 2 3 1 1 

MMFAf 
 

6 2 2 2 3 1 1 
1 2 2 2 3 3 3 
2 2 2 2 3 3 4 
3 2 2 2 3 3 3 
4 2 2 2 3 3 3 
5 2 2 2 3 3 3 

MRTPCS 

6 2 2 2 3 3 3 
1 2 2 2 2 5 5 
2 2 2 2 3 10 2 
3 3 2 2 7 3 3 
4 2 2 2 7 3 3 
5 2 2 2 6 3 3 

MRTFS 

6 2 2 2 3 3 3 
 

 

5. Discussion 

K-means was substantially affected by the error perturbation of these datasets, 

consistent with the results of Milligan [14]. The results of the Vietnam dataset were 

marginally better than the Thyroid dataset. This can be attributed to the natural clusters 

of the Vietnam dataset being spherical; a shape more easily found by K-means than the 

Thyroid dataset’s elliptical clusters. We used a large number of iterations to counteract 

the random start employed by the K-means algorithm, however it is possible that the 

algorithm did not iterate to convergence. 

                                                 
e BIC estimates are for the mixture models of factor analysers. Elbow estimates are for the multivariate 
regression trees with principal component scores and factor scores 
f Most frequently occurring estimate from 50 random starts 
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Mixture models of factor analysers were also affected by the large numbers of 

superfluous variables. Despite performing local dimensionality reduction, which offers 

several advantages over global dimensionality reduction [2], mixture models of factor 

analysers did not perform as successfully as the tree techniques using these datasets. 

Additionally, the results using these datasets show the sensitivity of the algorithm to the 

amount of dimension reduction chosen within a component. Previously this parameter 

was indicated to be fairly insensitive [3].  

 

Normal mixture models can also be used to remove variables prior to fitting a mixture 

model of factor analysers. A normal mixture model is fit to a variable, and the variable 

is retained if the log likelihood ratio statistic for testing one versus two components is 

large enough. The test lacks the power of a multivariate selection criterion, because 

each variable is assessed individually. However, incorporating this variable selection 

step may improve the results of the mixture models of factor analysers. We did not 

incorporate variable selection, because the aim of the investigation was to ascertain the 

capabilities of the algorithms when explicitly clustering noisy data.  

 

Using these two datasets, the results indicated that the tree techniques were the most 

stable amongst those studied. The auto-associative multivariate regression trees and 

multivariate regression trees with principal component scores performed almost 

identically. Because the principal component scores are essentially a re-representation 

of the dataset in a different basis system, it is not surprising that these techniques 

produced similar results.  
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The multivariate regression tree with factor scores was the superior technique amongst 

those studied. However, it has associated limitations. Firstly, we used maximum 

likelihood factor analysis, which assumes multivariate normality. If the dataset cannot 

be assumed to be multivariate normal, either the technique of factor analysis must 

change or the maximum likelihood results must be interpreted with caution. Secondly, 

these results show that the dimension of the factor space must be carefully chosen. A 

technique for assessing the optimal dimension of the factor space for clustering via a 

multivariate regression tree is not known. Maximum likelihood factor analysis provides 

a test for the correct number of factors. However, this test did not suggest the number of 

factors that provided the optimal adjusted rand index results for either dataset.  

 

The tree techniques have additional advantageous characteristics. Firstly, trees are 

visually interpretable. Secondly, and possibly most importantly, the tree techniques 

have an automatic, variable importance measure [1]. This variable importance measure 

is multivariate. The splitting variables of the tree are the important variables, and their 

positions in the tree denote their relative performance. It is possible to use this variable 

importance measure as a variable selection step, and re-grow the tree using only the 

variables initially deemed important. Finally, the trees offer an intrinsic estimator of 

cluster size: the elbow of the relative error graph. However, we realise that this 

estimator is relatively ad-hoc, and requires fine-tuning to be considered as a viable, 

accurate estimator of cluster size.  

 

Future work may involve determining a method to assess the optimal dimension of the 

factor (response) space for the multivariate regression trees with factor scores; and 

deriving a more complicated method to locate the elbow of the relative error curve. 
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However, overall the results show that the tree techniques provide stable, high-quality 

results when clustering noisy data.  

 

6. Conclusion 

We used an error perturbation study to demonstrate the capabilities of recent clustering 

algorithms. The results have shown that not all techniques are robust to superfluous 

noise. K-means and mixture models of factor analysers failed to find the natural clusters 

as the datasets were increasingly perturbed by noise.  

 

We also introduced two integrated techniques of cluster analysis: multivariate 

regression trees with principal component and factor scores. The tree techniques offer 

an automatic, multivariate variable importance measure.  All tree techniques produced 

stable, high-quality clusters after the datasets were perturbed by different types of 

extraneous variables. The multivariate regression tree with factor scores generated 

superior results amongst the tree techniques. These results indicate the potential of the 

tree techniques to cluster datasets with superfluous noise, for example high dimensional 

datasets.   

 

7. Implementation  

MATLAB 6.1 (The MathWorks, Inc.) code created by Ghahramani and Hinton [2] 

(available at ftp://ftp.cs.toronto.edu/pub/zoubin/mfa.tar.gz) was used to fit the mixture 

models of factor analysers. R (available from http://www.R-project.org.) was used to 

implement the K-means algorithm, auto-associative multivariate regression trees, 

multivariate regression trees with principal component and factor scores, and the 
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silhouette statistic. MATLAB 6.1 (The MathWorks, Inc.) was used to calculate the 

adjusted rand index.   
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SYNOPSIS 

This section initially showed that AAMRTs could successfully double as a clustering 

algorithm in the low dimensional setting. Furthermore, multivariate regression trees 

integrated with dimension reduction techniques (principal components analysis and 

factor analysis) produced accurate clusters with large, noisy datasets.  

 

By growing many trees, many clustering solutions can be obtained and each solution 

can be assessed in terms of “prediction error”. The predictive gold standard allows 

regression post processing techniques to calculate the weights of an ensemble of 

regression trees, implying that predictable clustering solutions are assigned high 

weights. The next section investigates post processing techniques for regression 

ensembles (combining regression trees and simple linear regression models) with the 

objective of finding a superior weighting strategy (applicable within the tree-based 

cluster ensemble framework). 
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POST PROCESSING REGRESSION ENSEMBLES 
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OVERVIEW 

Ensembles combine many models to give an overall solution. Some models within the 

ensemble will naturally be better than others. An ensemble’s accuracy can be increased, 

if the poor models are assigned low (or zero) weights by a post processing technique. 

The manuscripts of this section are dedicated to comparing regression post processing 

techniques with the objective of finding a superior weighting strategy. The first 

manuscript trials the lasso, Bayesian linear regression, and Bayesian linear regression 

with genetic algorithms. The second manuscript assesses the lasso, quadratic 

programming, quadratic programming with genetic algorithms and evolution strategies. 

Although each manuscript contains the necessary theory, some theory is elaborated in 

the “Supporting Theory” appendix.  
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1. Abstract 

An ensemble of regression models predicts by taking a weighted average of the 

predictions made by individual models. Predictions based on ensembles have been 

shown to be very effective on large datasets. Calculating the weights such that they 

reflect the accuracy of individual models (post processing the ensemble) has been 

shown to increase an ensemble’s accuracy. The success of previous research motivates 

the study of other strategies as potential post processing techniques. This paper 

introduces post processing techniques and demonstrates the improvements attained by 

using more parsimonious ensembles of linear regression models and regression trees. 

2. Introduction 

An ensemble learner combines the predictions from many regression models to give on 

average a more stable and accurate prediction for an observational unit. Mathematically, 

the ensemble is given by: 

 
1

( ) ( )
M

i i
i

F x f xω
=

=∑� �
 (1.1) 

where ( )if x
�

 is the prediction of an observational unit x
�

 by the thi  model; iω  is the 

weight assigned to ( )if x
�

; and M  is the number of models. 

The ( )if x
�

 are usually of the same family of models but this is not mandatory. They are 

individualized by using randomized operators within the model (Friedman and Popescu 

2003). The randomness intrinsic to each ( )if x
�

 implies that some models are better than 

others. However, this is not often reflected in the weights of an ensemble, which can be 

a simple average of the models, 1/ M . Post processing is a process that suggests choices 

of iω   that reflect the relevance of each ( )if x
�

 (Friedman and Popescu 2003).  
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The most obvious intelligent choice for ω
�

, the vector of all weights, is to choose ω
�

 to 

minimize a generic loss criterion: 

 
1 1

min , ( )
n M

j i i j
j i

L y f x
ω

ω ω
= =

 =  
 

∑ ∑
�

�
� �

 (1.2) 

where n  is the number of observational units. If 
1

, ( )
M

j i i j
i

L y f xω
=

 
 
 

∑ �
 is the simple 

squared error loss given by: 

 
2

1 1 1

, ( ) ( )
M n M

j i i j j i i j
i j i

L y f x y f xω ω
= = =

   = −   
   

∑ ∑ ∑� �
 (1.3) 

post processing the weights is identical to an ordinary least squares regression problem. 

The ω̂
�

 are given by: 

 1ˆ ( )T TX X X yω −=
� �

 (1.4) 

where X  is an n M×  matrix where each column represents the predictions for n  

observational units for a single model; and y
�

 are the observed data. 

However, it is well known that ordinary least squares coefficients are prone to 

overfitting, and Friedman and Popescu (2003) suggested a regularized regression 

approach: 

 
2

1 1 1

ˆ arg min ( )
n M M

j i i j i
j i i

y f x
ω

ω ω λ ω
= = =

 = − + 
 

∑ ∑ ∑
�

� �
 (1.5) 

The minimization criterion (1.5) is known as the lasso criterion. Because the parameter 

λ  ranges from 0  (giving the least squares estimates of ω
�

 (1.4)) to ∞  (giving the 

weights as equivalently zero) the solution space to (1.5) is massive and its solution 

cumbersome. Friedman and Popescu (2004) suggest fast forward search algorithms for 

solving (1.5), for the squared error loss and other loss functions.  
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It can be shown that the coefficients given by the lasso criterion can be viewed as those 

given by Bayesian linear regression with independent double exponential priors on the 

regression coefficients (Hastie, Tibshirani and Friedman 2001). Therefore, 

implementing different priors on the coefficients will induce different minimization 

criteria, and thereby different sets of weights. The aim of this paper is to introduce 

“Bayesian-orientated” post processing techniques and compare them to Hastie et al.’s 

(2001) forward stagewise algorithm over several real datasets. 

This paper illustrates four different priors: multivariate normal, multivariate t, Weibull 

and the double exponential. Genetic algorithms, intelligent random search techniques, 

are used in parallel with the Bayesian linear regression models to reduce the number of 

models within the ensemble. It is expected that this enforced parsimony will invoke 

more accurate ensembles.  

3. Theory 

3.1 Lasso Criterion 

The solution to (1.5) is approximated with a forward stagewise algorithm (Hastie et al. 

2001) which is henceforth referred to as the “lasso heuristic”. The algorithm is as 

follows: 

1. Set all weights to zero. Choose ε  as a small number greater than zero, and 

choose the number of iterations, its , to be quite large.  

2. for 1:l its=  

2.1. ( )
2

* *

, 1 1

, arg min ( ) ( )
n M

j i i j k j
k j i

k y f x f x
β

β ω β
= =

 = − − × 
 

∑ ∑ � �
 

2.2. * *
*ˆ ˆ ( )

k k
signω ω ε β= + ×  

3. 
1

ˆ( ) ( )
M

i i
i

F x f xω
=

=∑� �
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In step one all weights are zero, and this is analogous to λ = ∞ in (1.5). The parameter 

its  is inversely related to λ  in (1.5). After the set number of iterations, many weights 

will still remain zero. 

3.2 Genetic Algorithm Theory 

A genetic algorithm can be used to calculate which models are the most relevant in the 

ensemble. Each potential solution is encoded via a chromosome and the set of all 

chromosomes at any iteration is referred to as the population (Davis 1991). Each 

chromosome represents important models by a '1'  in the corresponding bit position and 

superfluous models with a '0 '  in the corresponding bit position.  

The initial generation is randomly generated by setting bits to zero with high probability 

and bits to one with low probability. This reflects the notion that it is likely most models 

contain no relevant information.  

To calculate the fitness values of each chromosome, the set of models deemed to have a 

non-zero weight by the chromosome ( '1'  in corresponding bit position) are parsed to a 

Bayesian linear regression model. The Bayesian linear regression model calculates the 

weights for these models only, and parses this information back to the fitness evaluation 

module of the genetic algorithm. The fitness of each chromosome is given by the 

inverse of the root mean square error: 

 ( )21 ˆi i iRMSE y X
n

ω= −
��

 (1.6) 

where ˆiω�
 is the vector of weights calculated by the Bayesian linear regression model for 

chromosome i ; iX  is the predictions matrix of the set of models chromosome i  

indicates to have non-zero coefficients.  
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The genetic algorithm used here implements roulette wheel selection with one point 

crossover (Davis 1991). The selection and reproduction process is repeated until enough 

offspring are produced to replace the entire generation.  

The offspring are mutated by setting bits with value '1'  to '0 '  if too many bits in any 

chromosome are '1' . This ensures that the expectation that only a few models are 

relevant is met. 

The current generation is then replaced by the offspring generation and the process 

iterates until the chromosomes converge. The genetic algorithm only allows a small 

number of models to have non-zero weight coefficients. Also, the genetic algorithm 

only allows sets of all positive weights. These conditions are enforced within the 

mutation and fitness evaluation modules of the algorithm. The genetic algorithm will 

eventually converge to the set of models that give the lowest root mean square error.  

The genetic algorithm should improve upon results obtained using only Bayesian linear 

regression on the basis of parsimony. The genetic algorithm is run five times for each 

proposed prior and the best and worst results reported. The algorithm is programmed in 

R (R Development Core Team 2004). 

3.3 Bayesian Linear Regression 

Bayesian theory incorporates exogenous knowledge (“prior distribution”) to estimate 

the (posterior) distribution of population parameters θ
�

. Using Bayes’ Rule, we obtain 

the posterior density ( | )p yθ
� �

: 

 
( , ) ( ) ( | )

( | )
( ) ( )

p y p p y
p y

p y p y
θ θ θ

θ = =� � �� �� �
� �

 (1.7) 

where ( ) ( ) ( | )p y p p y
θ

θ θ=∑
�

� �� �
 for discrete θ

�
; ( ) ( ) ( | )p y p p y d

θ

θ θ θ= ∫
�

� � �� �
 for continuous 

θ
�

; ( )p θ
�

 is the prior probability distribution of the parameters; ( | )p y θ
��

 is the sampling 
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distribution (likelihood function) dependent on the parameters θ
�

; and ( | )p yθ
� �

 is the 

posterior probability distribution of the parameters given the observed data.  

Because ( )p y
�

 is independent of θ
�

 and can therefore be considered constant for fixed 

y
�

, we arrive at the unnormalized posterior density: 

 ( | ) ( | ) ( )p y p y pθ θ θ∝
� � �� �

 (1.8) 

Bayesian Theory can be applied to ordinary linear regression by imposing prior 

distributions on the parameters of the regression model, the regression coefficients, ω
�

 

and the variance of the error term, 2σ  (Gelman, Carlin, Stern and Rubin 1995). The 

likelihood function ( | )l yθ
� �

 where ( | ) ( | )l y p yθ θ=
� �� �

 is given by: 

 ( )2 2 2 2 2 1( , | ) (2 ) ( ) exp (2 ) ( ) ( )n n Tl y y X y Xω σ π σ σ ω ω− − −= − − −
� � �� � �

  (1.9) 

Here, we use Bayesian linear regression in a manner such that the regression 

coefficients can be considered as the vector of weight coefficients for our ensemble. 

3.3.1 Double Exponential Prior 

The prior for each regression coefficient is assumed to be an independent double 

exponential distribution with hyperparameters ,i iτ µ : 

 ( ) ( , )i i ip dexpω τ µ∼  (1.10) 

Each hyperparameter iµ  is specified a priori as zero. The prior probability distribution 

of a single regression coefficient is then peaked at zero. The hyperparameter iτ reflects 

the certainty that a weight iω  is equal to zero. Here, all iτ  are identical. 

The prior distribution of the error variance, 2σ , is taken to be inverse gamma for 

conjugacy reasons discussed later. The inverse gamma distribution for the error variance 

is used in conjunction with all the different priors on the regression coefficients. The 
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parameter, 2σ , is not of interest, and therefore the inverse-gamma prior is used 

throughout: 

2( ) ( , )p Inv gammaσ α β−∼  (1.11) 

The joint prior probability density function is given by: 

 2 2 ( 1) 2

1
( , ) ( ) exp | |

M

i
i

p αω σ σ β σ τ ω− +

=

 
∝ − − 

 
∑�

 (1.12) 

The joint unnormalized posterior distribution is given by: 

( )2 2 2 ( 1) 2 2 1

1
( , | ) ( ) exp | | exp (2 ) ( ) ( )

M
n T

i
i

p y y X y Xαω σ σ β σ τ ω σ ω ω− − + −

=

 
∝ − − − − − 

 
∑� � �� � �

 

  (1.13) 

The conditional distribution of the vector of regression coefficients given 2σ  is: 

2 2 1

1

( | , ) exp (2 ) ( ) ( ) | |
M

T
i

i
p y y X y Xω σ σ ω ω τ ω−

=

 
∝ − − − − 

 
∑� � �� � �

   (1.14) 

By consideration of (1.14) it can easily be seen that using independent double 

exponential prior distributions for each of the regression coefficients is analogous to the 

regularized regression (1.5) where 22λ σ τ=  (Hastie et al. 2001).  

3.3.2 Weibull Prior 

The prior of each regression coefficient is assumed to be an independent Weibull 

distribution: 

( ) ( , )i i ip Weibω α β∼  (1.15) 

The Weibull prior ensures all coefficients are greater than zero. Here, for computational 

convenience, iα  is always two. The hyperparameter iβ  is varied according to the prior 

belief that the regression coefficient is equal to zero. Here, all iβ  are identical.  

The joint prior is then given by: 

 



 91
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MM

i i i
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= =

 
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 
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 (1.16) 

The joint posterior is given by: 
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 (1.17) 

Conditioning on 2σ  we can easily see that this is another regularized regression where 

the hyperparameters iβ  have a direct influence on the set of weights selected: 

 ( ) ( ) ( )2 2 1 2

1

( | , ) exp (2 ) ln
MT

i i i
i

p y y X y Xω σ σ ω ω β ω ω−

=

 
∝ − − − − − 

 
∑� � �� � �

 (1.18) 

3.3.3 Multivariate Normal Prior 

The prior of the coefficients is taken to be multivariate normal: 

 0 0( ) ( , )Mp ω µΝ Σ∼
� �

 (1.19) 

The hyperparameters, 0µ
�

 and 0Σ , are specified a priori. The vector, 0µ
�

 is specified as a 

vector of zeros, reflecting that prior to analysis all regression coefficients (models) are 

expected to be non-informative. The matrix 0Σ , varies according to the certainty that 

the weights are all equal to zero. The matrix is a diagonal matrix where all elements are 

identical. The combination of the multivariate normal prior on the ω
�

 and the inverse 

gamma for the error variance is considered the conjugate prior for regression analysis. 

The joint prior is: 

 ( ) ( )2 1/2 1 2 ( 1) 2
0 0 0 0( , ) | | exp 1 2( ) ( ) ( )( ) expTp α αω σ ω µ ω µ β α σ β σ− − − +∝ Σ − − Σ − Γ −

� � �� �
 (1.20) 

The posterior of the parameters is: 
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  (1.21) 

Conditioning (1.21) on 2σ , shows the conditional distribution of the weights is normal: 

 ( ) ( )( )1 12 2 1 1 2 1 2 1 1
0 0( | , ) ( ) ( ) , ( )T T T

Mp y X X X y X Xω σ σ σ σ
− −− − − − −Ν +Σ +Σ∼

� � �
(1.22) 

The multivariate normal prior with 0 0µ =
��

 will induce estimates of the regression 

coefficients similar to the ordinary least squares estimates for large prior variance. 

However, as we decrease the prior variance, greater emphasis is placed on prior beliefs 

(that is 0ω =
� �

) than the data itself.  

3.3.4 Multivariate T Prior 

The final prior on the weights is taken to be multivariate t: 

 0 0( ) ( , )p tνω µ Σ∼
� �

 (1.23) 

The hyperparameters 0 0,µ Σ
�

 are specified to reflect prior belief regarding the regression 

coefficients in a manner identical to that of the multivariate normal prior. The 

multivariate t prior with these hyperparameters anticipates that most of the weights are 

zero. However, the longer tails of a t distribution prior allow larger weights than the 

multivariate normal prior. 

The joint prior is given by: 

( ) ( ) ( )
( ) 2

2 1/2 1 2 ( 1) 2
0 0 0 02 2

(( )/2) 1( , ) | | 1 ( )( ) exp ( )
( /2)

M
T

M M

Mp
ν

α ανωσ ω µ ω µ β α σ β σ
ν ν π ν

− +
− − − +Γ +  = Σ + − Σ − Γ − Γ  � � �� �

  (1.24) 

The joint posterior is given by: 

( ) ( )
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2 2 2 ( 1) 2 2 1
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 (1.25) 
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3.3.5 Sampling from the posterior distribution 

To obtain an estimate for the parameter of interest, a draw is taken from the posterior 

distribution. Often, when the parameter vector θ
�

 is very large, it is necessary to 

approximate or simulate the posterior distribution. Here, the posterior distributions are 

simulated using a Gibb’s sampler in Winbugs 1.4 (Spiegelhalter, Thomas, Best and 

Lunn 2003). The parameter vector θ
�

, is subdivided into 1 2( , ,......, )kθ θ θ θ=
� � � �

 such that 

the conditional distributions 1 1 1( | ,..., , ,..., , )i i i kp yθ θ θ θ θ− +� � � � � �
 are easily recognized or 

approximated for all iθ�
. Initial values are assigned to each , 1,...,i i kθ =

�
, to give 

(0) (0) (0)
1( ,..., )kθ θ θ=

� � �
. The algorithm then iterates through each iθ�

 updating it with a draw 

from its conditional distribution given the current estimates of ,  for all j j iθ ≠
�

. That is, 

( )t
iθ�

 is a draw from ( ) ( ) ( ) ( 1) ( 1)
1 2 1 1( | , ,..., , ,..., )t t t t t

i i i kp θ θ θ θ θ θ− −
− +� � � � � �

. Each full iteration gives values 

for all parameters, ( )tθ
�

, where ( ) ( ) ( )
1( ,..., )t t t

kθ θ θ=
� � �

. After a large number of iterations 

called a “burn-in”, ( )tθ
�

 converges to a draw from the joint posterior distribution. 

4. Datasets and Procedure 

4.1 Procedure 

Each dataset was partitioned into three subsets (Table I) to allow for an estimate of the 

true accuracy of the ensemble via a test set. The first training set was used to grow the 

models. The weights for the ensembles were derived using the second training subset. 

The third subset, the “test set”, was used to obtain the 2R  of the ensembles.  

M linear regression models (each using a few randomly selected variables) and M  

regression trees (where the M  trees were the individual trees of a single random forest 

(Breiman 2001)) were obtained for each dataset using R (R Development Core Team 

2004). The linear regression models and regression tree models were combined using 
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various weighting strategies. The weighting strategies were: the lasso heuristic (referred 

to in the results as LASSO) and Bayesian linear regression with four different priors: 

independent double exponential (DE), independent Weibull (W), multivariate normal 

(N), and multivariate t (T).  

Furthermore, for each prior type (DE, W, N, T) the Bayesian linear regression model 

was run in four different ways:  

(1)  Allowing all models to have non-zero weights. The numeral ‘1’ follows the prior 

type in the results. For example, DE1 refers to weights obtained using Bayesian 

linear regression with independent double exponential priors. 

(2&3) Reducing the number of models using two different iterative schemes.  

The first iterative scheme progressively shaved off the models with the smallest 

weights (setting these weights to zero) and recalculated the weights of the 

remaining models. This shaving process was repeated three times until only five 

percent of the models had non-zero weights. Weights obtained using this 

iterative scheme have a ‘2’ following the respective prior type in the results 

section. For example, W2 refers to weights obtained using Bayesian linear 

regression with independent Weibull priors and the first iterative scheme. 

The second iterative scheme selected the models with the largest weights over 

five simultaneous runs of the Bayesian linear regression model, and re-estimated 

the weights using only these models (all other weights were set to zero). 

Weights obtained using this iterative scheme have a ‘3’ following the respective 

prior type in the results section. For example, N3 refers to weights obtained 

using Bayesian linear regression with a multivariate normal prior and the second 

iterative scheme. 
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In both iterative schemes as the number of models with non-zero weights 

decreased, the hyperparameters changed to allow the non-zero weights to vary 

more significantly from zero.  

(4) Reducing the number of models by using a genetic algorithm. Weights obtained 

using a Bayesian linear regression model with a genetic algorithm have a ‘4’ 

following the appropriate prior type in the results. For example, T4 refers to 

weights obtained using a genetic algorithm plus Bayesian linear regression with 

a multivariate t prior.  

As a benchmarking tool, the linear regression and regression tree models were also 

combined using identical weights, 1/ 2M . The 2R  of these simple, non-informative 

ensembles using the test subset of each dataset is given in Table II under the “SA” 

column. The 2R  of both the single best linear regression model (REG) and single best 

tree (TREE), chosen on the basis of the second training set and applied to the test set, 

are also reported. 

4.2 Datasets 

The weighting schemes were tested using five datasets. The datasets are summarized in 

Table I and the reader is directed to the references for more detailed explanations. The 

partition of each dataset into independent subsets and the choice of M were chosen to 

best mimic previous analyses. The table shows the number of terminal nodes of a tree 

within the forest, TN: chosen to either mimic previous analyses or diversify the size of 

the trees across the datasets. 
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Table I. Description of the Datasets.  

Dataset Name and Response Dimension 
(N*p1) 

Train/Train/Test M TN 

Boston Housing (available from 
http://www.ics.uci.edu/~mlearn/ML
Repository.html).  
Median house values.  

506*13 350/100/56 200 4 

Fat (available from 
http://stat.cmu.edu/datasets/).  
Fat content of food measured by 
Tecator Infratec Food and Feed 
Analyzer. 

215*22 129/43/43 100 19 

Body Fat (available from 
http://stat.cmu.edu/datasets/). 
Percentage of body fat of males. 

252*13 143/59/50 100 21 

Prostate (available from http:// 
www-stat.stanford.edu/ 
ElemStatLearn). Prostate Specific 
Antigen levels of prostate cancer 
patients. 

97*8 67/672/30 100 10 

Friedman (Friedman 1991). 
Generated. 

500*10 200/200/100 100 29 

5. Results and Discussion 

The results using each weighting strategy on each dataset are displayed in Table II. The 

results are separated into two rows for each dataset. The first row shows the 2R  

obtained using each weighting strategy. Any negative 2R  values were set to zero, for 

ease of interpretation. The second row shows the number of models with non-zero 

weights found by each weighting technique. 

The table shows that the single best linear regression model or tree (or both) is better 

than the SA for all five datasets. This reinforces the notion that many models are 

redundant and their inclusion in an ensemble decreases its accuracy. This is obvious 

when considering the body fat dataset. The body fat dataset is a simple dataset and can 

                                                 
1 Where p is the number of predictor variables 
2 Training set one=training set two 
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be predicted remarkably well using a single linear regression model. We notice that by 

combining too many predictors the accuracy of the model is decreased.  

The overwhelming trend of the table is that the single best models and simple average 

ensembles can be improved significantly by intelligently combining models. This is 

particularly evident with the Friedman, fat and Boston housing datasets. The 

improvements are most noticeable using the lasso heuristic and genetic algorithm 

approaches.  

As a general rule, using the lasso heuristic tends to improve significantly upon the 

results of the single best models and the simple average ensembles. Instead of searching 

the entire solution space given by (1.5), using the lasso heuristic produces results that 

are very good in a very short period of time. Also, the double exponential prior results 

validate the lasso criterion as an excellent form of penalized regression. There is some 

degree of overlap between the models selected by the lasso heuristic and the double 

exponential prior. The models are not identical, but this is expected. 

The genetic algorithms applied with the different priors produce results that are equally 

as good as those of the lasso heuristic. The genetic algorithm approaches create more 

parsimonious ensembles than the lasso heuristic. These results are reflected in Figure I 

and Figure II. Figure I shows the 2R  of the REG, TREE, and SA models well below 

the 2R  of the standout techniques: LASSO, DE4, W4, N4, and T4. Figure II shows that 

the genetic algorithm approaches combine far fewer models than the lasso heuristic. 

However, the genetic algorithm approaches are more computationally intensive than the 

lasso heuristic.  

The iterative schemes DE2, DE3, W2, W3, N2, N3, T2, and T3 tend to produce 

mediocre models. These strategies could effectively be viewed as a form of stepwise 

model elimination, and it is possible that the important models are removed too early in 
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the elimination process. The genetic algorithm approaches avoid this eventuality 

because they allow models to reenter the ensemble via crossover and mutation. Analysis 

of the models selected by the genetic algorithm and the iterative techniques (data not 

shown) indicates that this may have been the case: there is little overlap between the 

sets of models. 

The W1 strategy does not perform as well as the DE1, N1, and T1 strategies. Because 

the Weibull weights can never be zero, it is possible that the inclusion of many models 

with very small positive weights obscure the better models. The DE1, N1, and T1 

strategies allow negative weights and may outperform the W1 strategy for this reason. 

The small negative weights may “cancel” with small positive weights, allowing the 

better models to dominate. 
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Figure I. R2 values of the different weighting strategies applied to each dataset. 
Figures generated using MATLAB 7.0.4 (The MathWorks, Inc. 2005). 
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Figure II. Number of models required by each weighting strategy. 
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Table II. Results of the various weighting schemes over the five datasets. Both the best and worst genetic algorithm results are presented. 

Dataset 

R
E

G
 

T
R

E
E

 

SA
 

L
A

SS
O

 

D
E

1 

D
E

2 

D
E

3 

D
E

4 

D
E

4 

W
1 

W
2 

W
3 

W
4 

W
4 

N
1 

N
2 

N
3 

N
4 

N
4 

T
1 

T
2 

T
3 

T
4 

T
4 

R2 .22 .15 0.02 .45 .21 .17 .16 .38 0 .04 .09 .22 .42 .16 0 0 0 .38 .15 0 0 0 .36 .14 

H
ou

si
ng

 

Models 1 1 2M 9 2M 20 34 2 2 2M 20 62 3 6 2M 20 25 2 1 2M 20 24 2 2 

R2 .54 .67 .60 .85 .80 .82 .83 .84 .62 .60 .76 .54 .83 .81 .89 .78 .62 .85 .67 .90 .80 .69 .83 .76 

Fa
t Models 1 1 2M 14 2M 10 17 4 4 2M 10 46 5 9 2M 10 15 5 4 2M 10 13 4 4 

R2 .73 .51 .59 .69 .65 .68 .69 .73 .62 .59 .69 .58 .72 .65 .68 .65 .67 .72 .67 .72 .66 .67 .74 .67 

B
od

y 
Fa

t 

Models 1 1 2M 11 2M 10 28 3 6 2M 10 46 3 8 2M 10 15 5 3 2M 10 13 3 3 

R2 .45 .47 .46 .51 .51 .56 .49 .57 .40 .46 .39 .46 .52 .28 .45 .49 .50 .53 .07 .46 .48 .57 .45 .32 

Pr
os

ta
te

 

Models 1 1 2M 18 2M 10 28 7 6 2M 10 47 10 7 2M 10 16 8 5 2M 10 16 6 4 

R2 .50 .51 .47 .72 .81 .73 .72 .72 .63 .50 .73 .72 .71 .64 .83 .71 .71 .71 .57 .85 .71 .70 .74 .60 

Fr
ie

dm
an

 

Models 1 1 2M 15 2M 10 25 5 3 2M 10 30 9 5 2M 10 13 4 3 2M 10 12 6 3 
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6. Conclusion 

This paper highlighted that parsimonious ensembles perform more accurately than 

ensembles which include all available models. Additionally, a parsimonious ensemble is 

more easily interpreted than a large ensemble. The genetic algorithm combined with 

Bayesian linear regression approaches and the lasso heuristic outperformed other tested 

weighting strategies. The genetic algorithm approaches are computationally intensive 

but produce more parsimonious models than the lasso heuristic. 
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ABSTRACT 
The inclusion of inaccurate models within a regression ensemble undoubtedly detracts 

from its performance. Post processing a regression ensemble involves finding a 

parsimonious subset of “good” models that give rise to a higher level of accuracy. This 

paper reviews well known post processing techniques: the lasso, quadratic programming 

and evolution strategies. Genetic algorithms are also employed in conjunction with the 

quadratic programs in an aggressive bid to further reduce the size of the ensemble and 

ensure solutions to the quadratic program are global. Four benchmark datasets are 

analysed and the results are reported using independent test sets. The results indicate 

that finding a parsimonious ensemble using post processing techniques usually 

increases the accuracy of a large simple average ensemble.  

 
 
KEYWORDS: regression ensembles, quadratic programs, lasso, evolutionary 

algorithms, post processing 

 

1 INTRODUCTION 

An ensemble of regression models is mathematically given by: 

 
1

( ) ( )
M

i i
i

F x f xω
=

=∑� �
 (1.1) 

where ( )if x
�

 is the prediction of an observational unit x
�

 (vector) by the thi  model - the 

( )if x
�

 are usually of the same family of models but this is not mandatory; iω  is the 

weight assigned to ( )if x
�

; and M  is the number of models. 

 

The merits of ensembles of regression models are particularly evident when considering 

large datasets.  Here, a single regression model may fail to capture all information 
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inherent in the dataset or be particularly unstable, and as such regression ensembles 

hold a distinct appeal. Each predictive model within an ensemble is individualized by 

using randomized operators (Friedman and Popescu, 2003). The use of these 

randomized operators implies that some models within the ensemble are better than 

others and some may have no predictive capability at all. Post processing is a procedure 

which suggests choices of iω   that reflect the relevance of each ( )if x
�

 (Friedman and 

Popescu, 2003). Generally, post processing removes redundant models from a large 

ensemble via penalization or creates a small ensemble via stagewise addition of models. 

In short, post processing achieves a higher predictive accuracy by enforcing parsimony. 

 

Penalization post processing methods create parsimonious ensembles by seeking 

weights that minimize some generic loss function, 
1

, ( )
M

j i i j
i

L y f xω
=

 
 
 

∑ �
 plus a penalty 

function, ( )Pλ ω⋅
�

:  

 
1 1

ˆ arg min , ( ) ( ).
n M

j i i j
j i

L y f x P
ω

ω ω λ ω
= =

 = + ⋅ 
 

∑ ∑
�

� � �
 (1.2) 

   
where jy  is the response of the thj  observational unit and jx

�
 is the vector of 

explanatory variables for the thj  observational unit. 

 
Obviously, different weights will be produced by imposing different penalty functions. 

Two well known penalty functions are ‘ridge regression’ (Hoerl and Kennard, 1970): 

 ( ) 2

1

M

i
i

P ω ω
=

=∑�
 (1.3) 

and the ‘lasso’ (Tibshirani, 1996): 
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1

( ) .
M

i
i

P ω ω
=

=∑�
 (1.4) 

 
Ridge regression tends to produce similar estimates for all the non-zero weights 

whereas the lasso tends to produce more diverse estimates between non-zero weights. 

Obviously, the choice of penalty can be made on the basis of prior belief regarding the 

diversity of the weights. The parameter λ  in (1.2) ‘tunes’ the estimates. The parameter 

ranges from zero, giving the least stable estimates of the weights, to ∞ , giving the most 

stable estimates of the weights by setting them all as equivalently zero. As a result the 

solution space to (1.2) is massive. The lasso solution is approximated here by a forward 

stagewise algorithm detailed in section 2. 

 

The lasso (and indeed equation (1.2)) can be formulated as a quadratic program: 

( ) ( )arg min
Tlasso y X y X

ω
ω ω ω= − −

�
� � �� �

                           (1.5) 

subject to 

 
1

M

i
i

sω
=

≤∑                                                      (1.6) 

where X  is an *n M matrix with each column containing the predictions of the n  

observational units for a single model; and the loss function is the squared error loss.  

 

It is then easy to see that changing the objective function and constraints of the above 

quadratic program will suggest different weights for the ensemble. Quadratic 

programming (and also linear programming) has previously been used to calculate 

“optimal” weights of ensembles with commendable results (Krogh and Vedelsby, 1995; 

Heskes, 1997; Heskes, 1998). Section 2 describes further how post processing an 

ensemble can easily be formulated as a quadratic program, and the different objective 

function and constraints that are used in this study. 
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Furthermore, we employ genetic algorithms (section 2) in conjunction with the 

quadratic programs. Previously, it has been shown that integrating genetic algorithms 

with penalized Bayesian post processing techniques (such as the Bayes estimate of the 

lasso) has improved predictions (Smyth and Coomans, 2006). Here, the genetic 

algorithms induce greater parsimony and thereby ensure the solutions to the quadratic 

programs are global.  

 

To contrast with the forward stagewise algorithm and quadratic programs which create a 

path in the solution space close to the true solution in an intelligent fashion, we also use 

a purely random technique, evolution strategies, to create a random walk in the solution 

space. Evolution strategies have previously been used as a post processing technique 

and were shown to outperform other post processing techniques (Zhou, Wu, Jiang and 

Chen, 2001). Evolution strategies are detailed in section 2. 

 

2 THEORY 

 

2.1 Lasso Heuristic 

The solution to  (1.2) and (1.4) is approximated by a stagewise algorithm (Hastie, 

Tibshirani and Friedman, 2001; Friedman and Popescu, 2004). Because of its similarity 

to the lasso, we refer to this stagewise algorithm as the “lasso heuristic” and in the 

results as “LASSO”. The algorithm is as follows (Hastie, Tibshirani and Friedman, 

2001): 

1. Set all weights to zero. Choose ε  as a small number greater than zero, and 

choose the number of iterations, its .  
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2. for 1:l its=  

2.1. ( )
2

* *

, 1 1

ˆ, arg min ( ) ( )
n M

j i i j k j
k j i

k y f x f x
β

β ω β
= =

 
= − − × 

 
∑ ∑ � �

 

2.2. * *
*ˆ ˆ ( )

k k
signω ω ε β= + ×  

3. 
1

ˆ( ) ( )
M

i i
i

F x f xω
=

=∑� �
 

In step one all weights are zero, and this is analogous to λ = ∞  in (1.2). The parameter 

its  is inversely proportional to λ  in (1.2). Only one weight is updated on any iteration 

and after the set number of iterations many weights will remain zero. 

 

2.2 Quadratic Programs  

A quadratic program refers to a constrained optimization problem, where the function to 

be maximized/minimized is quadratic and the constraints are linear. The function to be 

optimized is referred to as the objective function, ( )q ω
�

, and the solution as *ω
�

. The set 

of constraints can contain both equality and inequality constraints. A quadratic program 

can be written as 

 1min  ( )
2

T Tq G d
ω

ω ω ω ω= +
� � � � � �

 (1.7) 

subject to  

 
    

    

T
i i
T
i i

a b i

a b i

ω

ω

= ∈Ε

≥ ∈Ι
� �
� �

 (1.8) 

where Ε  and Ι  are finite sets of indices that reference the equality and inequality 

constraints respectively; G  is a M M×  symmetric Hessian matrix; ,d ω
� �

 and 

{ },  ia i∈Ε Ι∪
�

 are 1M ×  dimensional vectors. 
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The quadratic program may be infeasible (no feasible point) or unbounded ( ( )q ω → −∞
�

 

for ω
�

 in the feasible region) and has no solution. However these two situations are 

easily exposed. If the quadratic program can be solved, the uniqueness of the solution is 

dependent on the nature of the Hessian matrix,G . If G  is indefinite, the solution is a 

local solution and the quadratic program is a “non-convex problem”. If G  is positive 

semi-definite, the solution is a global solution, and if G  is positive definite the solution 

is global and unique. In these instances, the quadratic program is called a convex 

quadratic program. 

 

As mentioned previously, the lasso can be formulated as a quadratic program (1.5) and 

(1.6). Obviously changing the objective function and constraints will suggest different 

sets of weights for the ensemble. Specifically, here we wish to minimize the loss of 

using the weighted sum of models to predict the response. If the loss is the squared error 

loss function, the problem becomes 

 min    q( )=( ) ( )Ty X y X
ω

ω ω ω− −
� � � �� �

                                   (1.9) 

where X  is the *n M  predictions matrix, subject to  

 

1

0 for all 

1.

i

M

i
i

iω

ω
=

≥

=∑
 (1.10) 

 

This is easily converted to a quadratic program  

 min    ( ) T Tq G d
ω

ω ω ω ω= +
� � � � � �

 (1.11) 

subject to (1.10); where TG X X=  and 2 Td X y= −
� �

. 
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The solution to this quadratic program is referred to as QP1. A number of other 

quadratic programs were formulated to calculate weights of an ensemble and are 

detailed below: 

Quadratic Program 2 (QP2) 

The second quadratic program is given by: 

 
,

min    ( , ) Tq
ω ε

ω ε ω ω ε= − +
� � � �

 (1.12) 

subject to  

 

1

1
M

i
i

X y

X y

ω ε

ω ε

ω
=

≥ −

≤ +

=∑

� ��
� ��

 (1.13) 

where ε
�

 is a vector of 1's  multiplied byε . 

The objective function of the quadratic program selects simultaneously 

1. weights that are not a simple average of the models (that is, weights giving a 

dominant model) 

2. the smallest tolerance rectangle around the observed predictions that the 

weighted predictions must fall within.  

The reader will notice some similarities with support vector regression, see for example 

(Hastie, Tibshirani and Friedman, 2001) . 

Quadratic Program 3 (QP3) 

The third quadratic program is given by: 

 2
1 2 1 3,

min    ( , ) ....Tq
ω ε

ω ε ω ω ωω ωω ε= − + + + +
� � � �

 (1.14) 

subject to (1.13). This quadratic program is designed to select simultaneously 
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1. a few models with large weights. Quadratic Program 3 encourages this diversity 

more than Quadratic Program 2, by virtue of the addition of the “cross products” 

of the weights 

2. smaller values of ε  (if possible) than Quadratic Program 2, by minimizing the 

square ofε . 

Quadratic Program 4 (QP4) 

The final quadratic program is given by:  

 1 2 1 3,
min    ( , ) ....q
ω ε

ω ε ωω ωω ε= + + +
� �

 (1.15) 

subject to (1.13). This objective function is designed to favor only a few models with 

non-zero weights. The rectangular constraint boundary is broader than Quadratic 

Program 3, because the objective function no longer minimizes the square of ε . 

 

Many algorithms exist to solve various types of quadratic programs. We used the 

Optimization Toolbox in MATLAB (2005) which employs the active set method. The 

active set method can be used with both convex and non-convex quadratic programs. In 

this context, if the number of models is greater than the number of observational units, 

G  is indefinite and the active set method for non-convex problems is employed. The 

readers are directed to (Fletcher, 1987; Nocedal and Wright, 1999) for further 

information regarding the active set method. 

 

2.3 Genetic Algorithms 

A genetic algorithm can be used to calculate which models are the most relevant in the 

ensemble. Each potential solution is encoded via a chromosome and the set of all 

chromosomes at any iteration is referred to as the population (Davis, 1991). Each 
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chromosome represents important models in the ensemble by a '1'  in the corresponding 

bit position and superfluous models with a '0 '  in the corresponding bit position.  

 

The initial generation is randomly generated by setting bits to zero with high probability 

and bits to one with low probability. This reflects the notion that it is likely most models 

contain no relevant information.  

 

To calculate the fitness values of each chromosome, the set of models deemed to have a 

non-zero weight by the chromosome ( '1'  in corresponding bit position) are parsed 

through a quadratic program (QP1:QP4). The solution to the quadratic program gives 

the weights for these models only, and this information is parsed back to the fitness 

evaluation module of the genetic algorithm. The fitness of each chromosome is given by 

the inverse of the root mean square error: 

 ( ) ( )1 ˆ ˆ
T

k k k k kRMSE y X y X
n

ω ω= − −
� �� �

 (1.16) 

where ˆkω�
 is the vector of weights given by the solution of the quadratic program for 

chromosome k ; kX  is the predictions matrix of the set of models chromosome k  

indicates to have non-zero coefficients.  

 

Offspring are then created via roulette wheel selection with one point crossover (Davis, 

1991). The selection and reproduction process is repeated until enough offspring are 

produced to replace the entire generation. The offspring are mutated by setting bits with 

value '1'  to '0 '  if more than a pre-specified number of bits in any chromosome are '1' . 

This ensures that the expectation that only a few models are relevant is met. 
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The current generation is then replaced by the offspring generation and the process 

iterates until the chromosomes converge to the set of models that give the lowest root 

mean square error - all chromosomes become virtually identical.  

 

The genetic algorithm should improve upon results obtained using only quadratic 

programs on the basis of parsimony. By restricting the quadratic program to only a few 

models the Hessian matrix is no longer potentially indefinite, the quadratic program 

becomes convex and therefore its solution is global. Owing to its stochastic nature the 

genetic algorithm is run 100 times using each objective function. The results of these 

100 runs are averaged and presented as “GAQP1:GAQP4”. The best result over all the 

100 runs for each objective function is also presented as “GAQP1*:GAQP4*”. The 

algorithm is programmed in MATLAB (2005). 

 

2.4 Evolution Strategies 

The main conceptual difference between genetic algorithms and evolution strategies is 

that the chromosomes of genetic algorithms contain 0 's  and 1's , and the chromosomes 

of evolution strategies can contain any real number. Thus, an evolution strategy can be 

used to calculate the weights of an ensemble directly.  

 

Each chromosome is a possible set of weights. Explicitly, each element of a 

chromosome contains the weight assigned to the corresponding model. The initial 

generation is created by setting a few bits of each chromosome as a draw from a random 

uniform distribution on [0,1]. Each chromosome is then standardized so that the sum of 

its elements equals one.  
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The fitness of the thk  chromosome is the inverse of the root mean square error, kRMSE : 

 ( ) ( )1 ˆ ˆ
T

k k kRMSE y X y X
n

ω ω= − −
� �� �

 (1.17) 

where ˆkω�
 is the thk  chromosome (weights are given directly by the chromosome).  

 

To prevent premature convergence during the early iterations and to engender 

convergence to optimal solutions during the later iterations, the fitness values of the 

evolution strategies are scaled using the simple rank scaling function (Davis, 1991). 

 

Parent chromosomes are selected via roulette wheel selection and produce offspring via 

line recombination (Mühlenbein and Schlierkamp-Voosen, 1993). Line recombination 

is attractive in this instance as it indirectly enforces the condition that the elements of 

the offspring chromosomes sum to one.  

 

Over time, the evolution strategy may assign non-zero weights to all models, and would 

not be as appropriate as other post processing techniques if the goal is to find the best, 

smallest set of non-zero weights. Therefore, we “mutate” the offspring by randomly 

setting weights to zero if too many weights (more than the number found by the lasso 

heuristic) are non-zero. The chromosomes are then renormalized such that the elements 

of each chromosome sum to one.  

 

The offspring replace the current generation (generational replacement) and the process 

is iterated until the chromosomes converge to the set of weights that minimize the root 

mean square error. Again owing to the stochastic nature of evolution strategies, the 

algorithm is run 100 times on each dataset. The results are averaged and are presented 
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as “ES”. The best result over all the runs is presented as “ES*”. The algorithm is 

programmed in R (2004).  

 

3 PROCEDURE AND DATASETS 

 

3.1 Procedure 

Each dataset was partitioned into three subsets (table 1) to allow for an estimate of the 

true accuracy of the ensemble via a test set. The first training set was used to grow 

2M individual models. The models included both M  linear regression models and M  

regression trees. Both linear regression and regression tree models were selected 

because of their simplicity and complementary nature. The M  trees were the individual 

trees of a single random forest (Breiman, 2001). The models were obtained for each 

dataset using R (2004).  

 

Each regression model used randomly selected variables as predictors. For the datasets 

with only a small number of predictor variables (Boston Housing and Friedman 

datasets) there was no restriction placed upon the number of randomly selected 

predictors. For the dataset with a larger number of predictor variables (Fat dataset) each 

regression model was restricted to only a small number of randomly selected variables. 

For all datasets (excluding the Ozone dataset) each variable was included on its own as 

a potential linear regression model.  The Ozone dataset contained categorical variables 

and hence the linear regression models were not estimated using this dataset.  

 

In a simple ensemble, the predictions of these 2M  models would be averaged. 

However, here the post processing techniques (LASSO, QP1-QP4, GAQP1-GAQP4, 
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ES) were employed to find more parsimonious ensembles. The post processing 

techniques were applied to the second training subset. For the smaller datasets, the first 

and second training subsets were identical. The third subset, the “test set”, was used to 

obtain the 2R  of the post processed ensembles.   

 

As a benchmarking tool, the linear regression models were combined using identical 

weights, 1/ M  and similarly for the regression tree models. The 2R  of these two 

simple, non-informative ensembles using the test subset of each dataset are given in 

table 2 in the “SAREG” and “SARF” rows respectively. The linear regression and 

regression tree models were also combined into a single simple ensemble using 

identical weights, 1/ 2M  (denoted by SAREGRF). The 2R  of both the single best linear 

regression model (REG) and single best tree (TREE) in the ensembles, chosen on the 

basis of the second training set errors and applied to the test set, are also reported. 

3.2 Datasets 

The post processing schemes were tested using four datasets. The datasets are 

summarized in table 1 and the reader is directed to the references for more detailed 

explanations. The datasets varied considerably in size and composition structure. The 

Ozone dataset originally contained missing values; these were removed prior to 

analysis.  

 

The partition of each dataset into independent subsets was chosen to best mimic 

previous analyses. In the situation where similar previous studies were either 

irreproducible or non existent, the partition was chosen such that approximately twenty 

percent of the data was set aside as an independent test set. If, after the removal of a test 

set, the dataset was still considerably large, two independent training subsets were 
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employed. Otherwise the two training subsets were identical (Ozone, Fat and Boston 

Housing datasets). 

 

The choice of M  was also chosen on the basis of previous analyses. In the situation 

where similar previous analyses were unavailable, the point where the error 

convergence plot of the random forest leveled off was taken as a rough estimate for M . 

Finally, the table also shows the number of terminal nodes of a tree within the forest, 

TN. If possible, this parameter was also chosen to mimic previous analyses, otherwise it 

was chosen such that terminal nodes remained relatively large, creating a stable tree.  

Table 1. Description of the Datasets. 

Dataset Name and Response Dimension 
(N*pa) 

Train/Train/Test M TN

Ozone (Breiman and Friedman, 
1985) available from (Leisch 
and Dimitriadou, 2005). Ozone 
concentration. 

203*12 163/163/40 300 6 

Fat (Borggaard and Thodberg, 
1992) available from 
(http://stat.cmu.edu/datasets/). 
Fat content of food measured by 
Tecator Infratec Food and Feed 
Analyzer. 

215*22 172/172/43 300 6 

Boston Housing (Harrison and 
Rubinfeld, 1978) available from 
(Leisch and Dimitriadou, 2005). 
Median house values.  

506*13b 406/406/100 500 4 

Friedman (Friedman, 1991) 
available from (Leisch and 
Dimitriadou, 2005). Generated. 

1000*10 400/400/200 500 10 

4 RESULTS AND DISCUSSION 

The results of applying each post processing technique to each dataset are summarised 

in tables 2 and 3, and figs. 1 to 4. Table 2 shows the 2R  values obtained using each post 

processing technique (rows) for the four datasets (columns). Table 3 contains the 

                                                 
a Where p is the number of predictor variables. 
b Note that the Charles river dummy variable was included in the analyses. 
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number of models selected as non-zero by each post processing technique (rows) for 

each dataset (columns). The more interesting information from table 3 is expanded upon 

in the figures. Each figure depicts the models selected as non-zero by the best 

performing post processors for a single dataset. The post processing techniques are 

printed on the left hand axis, and their corresponding 2R  are printed on the right hand 

axis (table 2). The bottom axis shows the number of models, and the top axis indicates 

the partition of the models into linear regression and tree models (table 1). If a model is 

deemed to have a non-zero coefficient by a post processing technique, a vertical line is 

drawn at the coordinates of (model number, post processing technique). The colour of 

the line indicates the size of the coefficient. Blue lines represent coefficients of one or 

almost one, green lines represent smaller coefficients, and yellow lines represent the 

smallest coefficients.  

 

The Ozone dataset is analysed using only tree models. The SARF has a higher 2R  than 

the  TREE (table 2). The LASSO and QP1:QP4 give 2R  similar to the SARF despite 

removing some of the redundant tree models. The advantages of removing poor models 

are emphasized with the GAQP1:GAQP4 post processors. These post processing 

techniques remove the largest number of models from the ensemble (table 3). The 

averages (over 100 runs) are on par with the LASSO and QP1:QP4 techniques, with far 

fewer models. However, the best performing GAQP1:GAQP4 and ES produce 2R  

values noticeably higher than the other techniques (table 2).  
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Table 2. 2R  values for the four datasets using each post processing technique. 
          Dataset 
Post Proc. 

Ozone Fat  Boston 
Housing 

Friedman  

REG - .92  .73  .73  
TREE .66 .66 .76 .52 
SAREG - .29 .69 .60 
SARF .70 .66 .75 .62 
SAREGRF - .51 .74 .63 
LASSO .67 .92 .84 .72 
QP1 .69 .92 .84 .77 
QP2 .68 .90 .77 .73 
QP3 .68 .88 .78 .73 
QP4 .68 .88 .78 .73 
GAQP1 .69 .92 .83 .77 
GAQP1* .76 .93 .85 .78 
GAQP2 .67 .92 .84 .73 
GAQP2* .78 .93 .85 .77 
GAQP3 .67 .92 .84 .73 
GAQP3* .75 .93 .85 .77 
GAQP4 .68 .91 .84 .73 
GAQP4* .80 .93 .86 .77 
ES .69 .90 .82 .77 
ES* .79 .94 .85 .79 

 

Table 3. Number of models selected as non-zero by each post processing technique. 
          Dataset 
Post Proc. 

Ozone Fat  Boston 
Housing 

Friedman  

REG - 1 1 1 
TREE 1 1 1 1 
SAREG - 300 500 500 
SARF 300 300 500 500 
SAREGRF - 600 1000 1000 
LASSO 18 13 23 19 
QP1 20 14 18 19 
QP2 14 13 16 11 
QP3 14 19 18 11 
QP4 14 18 16 11 
GAQP1 6.66 4.44 5.69 5.57 
GAQP1* 6 5 6 6 
GAQP2 5.9 3.11 4.07 3.79 
GAQP2* 4 3 4 4 
GAQP3 4.94 3.27 4.24 3.68 
GAQP3* 4 3 4 3 
GAQP4 4.31 3.2 4.18 4.06 
GAQP4* 5 3 5 3 
ES 17.25 12.16 21.27 16.26 
ES* 20(7) 15(2) 19(7) 20(6) 
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Fig.1. Models selected by the post processing techniques for the Ozone dataset. 
The best TREE model is picked by the LASSO and GAQP1* (fig. 1). GAQP1* 

combines the TREE model with five other models to improve upon the TREE 2R . 

There is a large degree of overlap between the LASSO and QP1 models. The quadratic 

programs QP2:QP4 tend to pick very similar models irrespective of the choice of 

objective function.  The best performing genetic algorithms for each objective function 

tend to contain a subset of the corresponding quadratic program. The ES* picked a large 

number of models to be non-zero. However closer analysis revealed that seven of these 

were substantially larger than the others.  

 

The Fat dataset can be predicted better by linear regression models than tree models, 

because the 2R  of the TREE model is much smaller than the 2R  of the REG model 

(table 2). However, the reader will also note that not all regression models are predictive 
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because 2R  of the SAREG is particularly small. Surprisingly the TREE 2R  is not 

improved upon by creating a SARF. The LASSO and QP1:QP4 post processors produce 

results similar to REG. Again, by reducing the size of the ensembles via genetic 

algorithms we attain on average results similar to the LASSO and QP1:QP4 techniques, 

and fractionally better for the best performing runs.  

 

Fig.2. Models selected by the post processing techniques for the Fat dataset. 

Not surprisingly the post processors all pick the best REG model (fig. 2). However, the 

techniques usually do not pick any other linear regression models. The LASSO and 

QP1:QP4 post processing techniques combine similar regression tree models. Again, 

the best performing quadratic programs contain a subset of the corresponding quadratic 
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program. The evolution strategy picked a large number of models; however, on closer 

inspection of the best performing chromosome, only two models were particularly large.  

 

The results for both the Boston Housing and Friedman datasets are included in the 

tables and figures (figs. 3-4). The results follow the same general trends as those 

previously discussed for the Ozone and Fat datasets.  

 

Fig.3. Models selected by the post processing techniques for the Boston Housing 

dataset. 
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Fig.4. Models selected by the post processing techniques for the Friedman dataset. 
The reader will have noticed that while large, simple average ensembles can improve 

upon the predictive performance of a single model this is not always the case. 

Obviously, by including “bad” models, the ensemble’s performance can remain on par 

with the single best model or even decrease dramatically. However, post processing 

improves the predictive performance of the large ensembles as evidenced by the 

presented results. Overall, QP1 always gave (with one exception) an 2R  value equal to 

or higher than the best single model or simple ensemble. QP1 fractionally outperformed 

the LASSO post processing technique, which in turn fractionally outperformed the other 

quadratic programming techniques. Furthermore, enforcing very small ensembles via 

genetic algorithms and evolution strategies marginally improved upon the lasso and 
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quadratic programming results. However, it must be noted that the genetic algorithms 

and evolution strategies are computer intensive, and the increase in predictive 

performance may not be worthwhile if speed is important.  

 
Other evidence supporting post processed ensembles over simple average ensembles 

includes the colours on the figures. The colours are not uniform: some models are given 

higher weights within the reduced ensembles. It is quite possible that even using a 

simple average of entirely “good” models will not attain optimal predictive 

performance. 

 

Further investigation of the figures show there was an amount of overlap between the 

models selected by each post processing technique. The reader will have noticed the 

similarity of the quadratic programs QP2, QP3, and QP4 to each other, and therefore 

will not be surprised by the results. QP1 has a different objective function to the other 

quadratic programs and hence its selected models did not agree entirely with the other 

quadratic programs’ selected models. The QP1 results agreed quite closely with the 

LASSO results. This is explained by the fact that both the QP1 and the LASSO 

techniques were endeavouring to minimize the same function, with slightly different 

constraints. The evolution strategies are a random technique guided by minimizing the 

same function as the QP1 and the LASSO. However, their random nature induced 

different subsets to the LASSO and QP1 techniques.  

 

The ensembles tended to combine more trees than linear regression models. It is 

reasonable to assume the tree models (weak learners) would not have been as predictive 

as the linear regression models. It is possible that the greater proportion of trees selected 

indicates that a few linear regression models can predict the data well, but in places of 
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the dataset the predictions need to be slightly “jiggled” up or down. Further 

investigation would determine if this were indeed the case.  

5 CONCLUSION 

Realistically, not all models in a regression ensemble are predictive. Post processing can 

be employed to create a parsimonious ensemble where a subset of accurate models 

remains and the poor models are removed. Parsimonious regression ensembles can be 

considered a balance between predictive accuracy and stability. Parsimonious 

ensembles facilitate the discovery of underlying trends within a dataset, especially if the 

ensemble combines different modelling methods, and also increase the interpretability 

of the ensemble. The results of this research supported the notion that parsimonious 

regression ensembles can achieve higher predictive accuracy than the single best models 

or simple average ensembles measured using the 2R  of an independent test set. Such 

findings are in agreement with other studies. Here, in terms of speed, the lasso heuristic 

was much faster than the other techniques. However, the best post processing 

techniques in terms of predictive accuracy were quadratic programming combined with 

genetic algorithms and evolution strategies. Future work could incorporate other base 

models such as support vector machines and neural networks into the ensemble. Also, 

common feature selection techniques could be trialled as potential post processors.  
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SYNOPSIS 

These manuscripts combined different regression models using various post processing 

techniques. The results of both manuscripts show that parsimonious weighted 

ensembles are more accurate than simple average ensembles or single best models. The 

results were measured using the 2R  of an independent test set. Some further results that 

were not included in the manuscripts are explicated below. 

 

It is known that the lasso coefficients are equivalent to the modes of the conditional 

posterior distributions if a double exponential prior for each regression coefficient is 

used. In “Parsimonious Ensembles for Regression”, the reported estimates are the 

expectations of the posterior distributions, not the modes. The difference between the 

expectations and the modes was minimal.  If the mode had been used the post processed 

weights would have been much sparser, because the estimates would have been 

absolutely zero. This explains why the first iterative scheme gives results that are almost 

identical to the lasso heuristic. The iterative scheme uncovers the largest weights using 

a double exponential prior: these correspond to the weights that would have been non-

zero if the posterior mode had been employed. These results also illustrate the similarity 

of the lasso heuristic and the true lasso (Bayesian linear regression with double 

exponential priors). 

 

The manuscript, “Parsimonious Ensembles for Regression” used a hybrid post 

processing strategy, where genetic algorithms were run in conjunction with Bayesian 

linear regression. Figure A shows that there is only a small difference between the 

models selected using the four prior types (double exponential, Weibull, multivariate 

normal, and multivariate t) when combined with a genetic algorithm. The left hand y-
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axis shows the prior type, and the right hand y-axis shows the test set 2R  value. A line 

is drawn if a weight coefficient is non-zero. The color of the line corresponds to the size 

of a coefficient: large coefficients are blue, small coefficients are yellow. The priors do 

induce slightly different models, indicating that they may be performing some selection. 

However, it is more likely that the large degree of overlap amongst priors is indicative 

that there is only minimal model selection being performed by the priors and the brunt 

of selection is being performed by the genetic algorithm. This suggested that a purely 

stochastic strategy may produce accurate results without the need for Bayesian linear 

regression. Therefore, in “Post processing regression ensembles: imposing parsimony to 

improve predictions”, evolution strategies were trialed as a potential post processing 

technique.  

 

Figure A.  Models selected as non-zero for the Friedman dataset using Bayesian 
linear regression with genetic algorithms.  
 

The manuscript, “Post processing regression ensembles: imposing parsimony to 

improve predictions” presented the “best” regression models as those with the highest 
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predictive accuracies within the ensembles. The models were generated with random 

inputs so there was no guarantee that the “best” regression model of the ensembles was 

indeed the optimal predictive model. To calculate a more predictive model, stepwise 

linear regression was performed on the datasets. It was found that the test set 2R 's  using 

stepwise linear regression did not increase noticeably as shown in Table A. 

Table A. Comparison of the best regression models with the stepwise linear 
regression models.  

Dataset 2R  of Best Regression 
Model of “Post processing 
regression ensembles: 
imposing parsimony to 
improve predictions”  

2R  of Stepwise Linear 
Regression Model  

Fat  0.92 0.93 
Friedman 0.73 0.73 
Boston Housing 0.73 0.73 
 

In “Post processing regression ensembles: imposing parsimony to improve predictions” 

the evolution strategies produced excellent results. Similarly, the quadratic programs 

with genetic algorithms also produced commendable results. However, the evolutionary 

algorithms are particularly computer intensive. The lasso heuristic was much faster than 

any of the other techniques. In both manuscripts, the lasso produced weighted 

ensembles with accuracies approaching the best solutions. Additionally, the lasso is well 

known to produce sparse estimates of the weight coefficients, thereby enforcing the 

desired parsimony over the ensemble. Therefore, it was decided to henceforth post 

process the regression trees using the forward stagewise approximation to the lasso.  

 

By weighting regression trees, the implicit cluster solutions are also weighted according 

to their predictability. Weighting cluster solutions should improve the cluster 

ensemble’s accuracy on the basis of parsimony: by removing redundant or inaccurate 

models, the overall ensemble quality is increased. In the next section, the regression 
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trees’ cluster solutions are post processed using the lasso heuristic (extended for the 

multivariate case) and the overall result is a weighted co-occurrence matrix which is 

partitioned using a novel technique, SBK. The objective is to ascertain if the predictive 

weighting of cluster ensembles improves their accuracy.  
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PREDICTIVE WEIGHTING FOR TREE-BASED CLUSTER 

ENSEMBLES 
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OVERVIEW 

Recently, improved accuracy and stability have been obtained by combining the results 

of many clustering solutions. However, weighting individual solutions within the 

ensemble has remained relatively unexplored because it is difficult to assess the 

accuracy of an individual solution. This section shows how the clustering solutions 

within a tree-based ensemble can be weighted according to their predictive accuracies 

using the research of the previous two sections.  

 

It has been shown in this thesis that AAMRTs, MRTPCs, and MRTFSs find stable 

group structure within large datasets. Obviously, many trees could be grown to obtain 

an ensemble of clustering solutions. A post processing technique can be applied to the 

ensemble by momentarily disregarding the grouping structure and focusing on the 

ensemble as a pure regression ensemble, where each tree is trying to predict a 

multivariate response: either the explanatory variables (AAMRT); the principal 

component scores (MRTPC); or the factor scores (MRTFS). The superior technique of 

the previous section, the lasso, can be extended such that it finds the trees that best 

predict the multivariate response, and assigns these trees a high weight. This process 

will unearth an ensemble that describes predictive group structure. The focus is returned 

to the cluster ensemble rather than the tree-based regression ensemble via the creation 

of a weighted co-occurrence matrix.  

 

Each tree’s co-occurrence matrix is multiplied by the tree’s assigned weight and 

aggregated. The weighted co-occurrence matrix represents the predictive group 

structure over the entire ensemble in a manageable form. This section also illustrates an 
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innovative technique of splitting the weighted co-occurrence matrix, similarity-based k-

means.  

 

Furthermore, the modified figures of merit are also demonstrated; and the ensemble’s 

weighted variable importance list is also established. The first manuscript, “Predictive 

Weighting for Cluster Ensembles” uses ensembles of AAMRTs on three small datasets 

and establishes the entire methodology.  

 

The second manuscript, “Clustering Microarrays with Predictive Weighted Ensembles”, 

applies the developed methodology to two DNA microarray datasets. Ensembles of all 

tree types (AAMRTs, MRTPCs, MRTFSs) are illustrated and potential biomarkers are 

presented. Although each manuscript contains the necessary theory, some theory is 

elaborated in the “Supporting Theory” appendix.  
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Predictive Weighting for Cluster Ensembles 
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SUMMARY 

An ensemble of regression models predicts by taking a weighted average of the 

predictions made by individual models. Calculating the weights such that they reflect 

the accuracy of individual models (post processing the ensemble) has been shown to 

increase the ensemble’s accuracy. However, post processing cluster ensembles has not 

received as much attention because of the inherent difficulty in assessing the accuracy 

of an individual cluster model. By enforcing the notion that clusters must be 

“predictable”, this paper suggests a means of implicitly post processing cluster 

ensembles by drawing analogies with regression post processing techniques. The 

product of the post processing procedure is an intelligently weighted co-occurrence 

matrix. A new technique, similarity-based k-means, is developed to split this matrix into 

clusters. The results using three real life datasets underpinned by chemical and 

biological phenomena show that splitting an intelligently weighted co-occurrence 

matrix gives accuracy that approaches supervised classification methods. 

 

KEYWORDS: post processing, cluster ensembles 
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1. INTRODUCTION 

Ensembles are becoming accepted within the field of Chemometrics, see for example 1-

3. Ensembles of regression models usually average the predictions from individual 

models grown on bootstrap datasets to give an ensemble prediction 4. Ensembles of 

classification models usually classify an observational unit using the majority vote of 

the individual models grown on bootstrap datasets 4. However, within the ensemble 

there are some “good” models and some “bad” models. Post processing, the process of 

suggesting a weight for each model which reflects its relative accuracy, has been shown 

to give improvements over simple average regression ensembles and majority vote 

classification ensembles 5. 

 

Cluster models can also be combined to create a cluster ensemble 6, 7. Often, this 

involves the creation of a “co-occurrence matrix”. The co-occurrence matrix indicates 

how often observational units have been clustered together by the individual cluster 

models. The matrix is then split to give an ensemble clustering solution, see for example 

6, 8. Other techniques of creating cluster ensembles involve applying optimization 

techniques over the cluster labels, see for example 9. 

 

Fern et al. 10 state that “There is no doubt that some of the base clusterings may be 

better than others.”. By removing redundant models and using a more parsimonious 

solution, the accuracy of the ensemble should ultimately be increased. However, post 

processing cluster ensembles is relatively unexplored because it is impossible to assess 

the accuracy of an individual model. This is a well known problem of cluster analysis: 

there is no “gold standard”. 
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This paper uses a regression technique (auto-associative multivariate regression trees 11) 

that doubles as a clustering technique to create individual clustering solutions. The 

individual models are combined using regression post processing methodology (lasso 

12). Therefore, the post processed ensemble does not rely on any definition of a cluster 

to calculate the weights. It focuses only on improving the predictability of the ensemble. 

“Predictability” in cluster analysis is gaining respect. Grotkjaer et al. 13 states that “a 

good clustering has predictive power”. Yeung et al. 14 and Tibshirani et al. 15 both assert 

that by assessing the predictability of a clustering solution, the quality of the clusters 

can be determined. 

 

Auto-associative multivariate regression trees (AAMRTs) are an extension to 

multivariate regression trees. Multivariate regression trees are a common method of 

predicting a multivariate response. At each stage, the dataset is recursively split in two 

on the basis of an explanatory variable, such that the two new nodes are more 

homogeneous with respect to the response variables. Nodes that are deemed sufficiently 

homogenous are “terminal nodes”. It has been shown that by duplicating the 

explanatory variables as the response variables (referred to as an AAMRT), a regression 

tree can be grown on a dataset consisting of only explanatory variables, and the 

observational units in the terminal nodes can be regarded as the clusters of the dataset 11, 

16. Obviously, each regression tree can give an individual co-occurrence matrix. The 

( , )thi j element of the matrix is one if the two observational units fall into the same 

terminal node and zero otherwise. These co-occurrence matrices are an integral part of 

this research. 
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It is possible to assess the accuracy of an AAMRT by considering it entirely in the 

regression context. Each node contains a predicted value: the mean of the observational 

units in the training sample that fall within that node. By using the squared error loss 

between the observational units and their predicted values, the accuracy of the tree can 

be assessed. After growing an ensemble of trees, regression post processing 

methodology can be applied, and trees with the highest predictive accuracy are given 

the highest weights. The post processing strategy used here is the lasso technique 12. 

The ensemble co-occurrence matrix is obtained by multiplying each tree’s co-

occurrence matrix with its corresponding lasso weight and summing the weighted 

matrices together. One major difference between this work and others is that the 

similarity matrix is a weighted sum of individual co-occurrence matrices. 

 

The weighted co-occurrence matrix could be split by converting it to a dissimilarity 

matrix and then using any clustering technique that takes a dissimilarity matrix as input 

(e.g. partitioning around medoids). However, we propose a new technique of clustering 

the co-occurrence matrix: similarity-based k-means. Similarity-based k-means (SBK) 

enforces the predictability of the solution by explicitly predicting the group structure 

found within the entire similarity matrix (including the covariance submatrices) shown 

to be important in 17. 

 

To gain an estimate of the natural number of clusters in the dataset, Figure of Merits 

(FOMs) 14 are modified such that they can be used in conjunction with SBK. A variable 

importance measure is also produced using the individual models’ variable importance 

lists. 
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We compare across three datasets, benchmarking to a single cluster solution and a 

“simple average” cluster ensemble. The results show that post processed ensembles give 

a marked improvement over simple average ensembles, with accuracy approaching a 

classification tree. 

2. THEORY 

2.1. Auto-Associative Multivariate Regression Trees 

Regression trees 18, 19 begin with all the data in one node. At each stage, the regression 

tree partitions a non-split node in two. Regression trees partition a node, t , into two 

subsets, Lt  and Rt , on the basis of the value of an explanatory variable. At each node all 

possible splits of each explanatory variable are considered. The optimal split is saved 

for each node. The node with the split that maximizes the decrease in ( )R T is 

partitioned at each stage.  ( )R T  is given by: 

( ) ( )1( ) ( ) ( )
i

T
i i

tt T

R T t t
n ∈∈

= − −∑∑
x

y y y y       (1.1) 

where ix  is the vector of measurements of P explanatory variables for the 

thi observational unit; iy
 
is the vector of measurements of the response variables for the 

thi observational unit; T  is the set of all terminal nodes and; ( )ty  is the mean response 

vector of terminal node t .  

 

After growing the tree, the non-split nodes are deemed “terminal”. The predicted value 

for a terminal node, termt , is: 

1ˆ ( )
i termterm

term i
tt

t
n ∈

= ∑
x

y y           (1.2) 

where the sum is over all iy such that i termt∈x  and 
termtn  is the total number of cases in 

the terminal node. 
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The observational units in each of the terminal nodes are the clusters of the dataset: the 

terminal nodes are as homogeneous as possible reflecting the intuitive definition of a 

cluster. The clusters are found in the response space and the explanatory variables that 

form the tree are deemed to be important in determining the clusters. To allow 

multivariate regression trees to be applied in the traditional clustering framework where 

there are no response variables, AAMRTs were suggested 11, 16. AAMRTs replicate the 

explanatory variables as response variables and grow the tree using identical response 

and explanatory datasets. This implies that the clusters will be as homogenous as 

possible with respect to all the explanatory variables. 

2.1.1. Algorithm for creating ensembles of AAMRTs 

Algorithm 1 shows the process used to grow an ensemble of regression trees such that 

they can be used to create a cluster ensemble. 

Algorithm 1: Growing an ensemble of trees 

1. Choose the number of individual trees in the ensemble, M . 

2. Replicate the original dataset as the response dataset, Y . 

3. Create M  explanatory datasets by randomly sampling variables with percentage 

vp  from the original dataset. Here we use 0.33vp = . We stress that although the 

variables may be sampled to create the explanatory datasets, the response for 

each tree is always the entire dataset. 

4. Grow an AAMRT using each explanatory dataset to predict Y  to k  terminal 

nodes (clusters). Create a co-occurrence matrix for each AAMRT ( )mC . Create 

a variable importance list for each tree using Algorithm 5. 

2.2. Lasso Heuristic 

A regression ensemble can be represented by: 
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1
( ) ( )

M

m m
m

F fω
=

=∑x x   (1.3) 

where ( )mf x  is the prediction of an observational unit x  by the thm  model - the ( )mf x  

are usually of the same family of models but this is not mandatory; mω  is the weight 

assigned to ( )mf x ; and M  is the number of models. 

 

The individual regression solutions are combined to form an ensemble by taking a 

weighted sum of the individual solutions. Usually, the weights are an average of the 

number of models, 1/ M , see for example 4. Post processing is a procedure which 

suggests choices of mω   that reflect the relevance of each ( )mf x  5. Post processing 

usually achieves greater accuracy by enforcing parsimony. The lasso 12 post processing 

procedure finds the weights that minimize 

1 1 1 1

ˆ arg min ( ) ( )
Tn M M M

i m m i i m m i m
i m m m

f fω ω λ ω
= = = =

   = − − +   
   

∑ ∑ ∑ ∑y x y x
ω

ω  (1.4) 

 

Here, the solution to the lasso is approximated with a forward stagewise algorithm 4 

which is henceforth referred to as the “lasso heuristic”. The algorithm is as follows: 

Algorithm 2: The lasso heuristic 

1. Set all weights to zero. Choose ε  as a small number greater than zero, and 

choose the number of iterations, its , to be quite large. 

2. for 1:l its=  

2.1. ( )* *

, 1 1 1
, argmin ( ) ( ) ( ) ( )

Tn M M

i m m i h i i m m i h i
h i m m

h f f f f
β

β ω β ω β
= = =

   = − − × − − ×   
   

∑ ∑ ∑y x x y x x

 

2.2. * *
*ˆ ˆ ( )

h h
signω ω ε β= + ×  
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3. 
1

ˆ( ) ( )
M

m m
m

F fω
=

=∑x x  

In the first step all weights are zero, and this is analogous to λ = ∞  in equation (1.4). 

The parameter its  is inversely related to λ  in (1.4). After the set number of iterations, 

many weights will still remain zero. 

2.2.1. Algorithm for creating a weighted co-occurrence matrix 

Algorithm 3 shows the process used to create a weighted co-occurrence matrix. 

Algorithm 3: Producing a weighted co-occurrence matrix 

1. Create an ensemble of trees using Algorithm 1. 

2. Post process the ensemble of regression trees to find the weights using 

Algorithm 2. 

5. Create an overall co-occurrence matrix, C  by taking a weighted sum of the 

individual co-occurrence matrices: 
1

ˆ ( )
M

m
m

mω
=

=∑C C  

Taking a weighted sum of dissimilarity matrices created from different sources (where 

the weights were chosen in a “subjective way”) was suggested previously by Kaufman 

et al. 20.  

2.3. Similarity-based k-means 

Similarity-based k-means is a divisive clustering algorithm that takes a co-occurrence 

matrix, C , (similarity matrix) as input. Formally, SBK seeks clusters to minimize either 

of the objective functions: 

( ) ( )'

'

2 2

( , ), ,
1 , 1 '

' 1

min r r

r r
r

k k k

S Si j r i j
r i j S r r r i S
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or 
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where k  is the number of clusters; ,i j  index observational units i and j ; rS is the set 

of observational units in the thr cluster; ,i jC  is the ( , )thi j  element of the co-occurrence 

matrix; rC  is the mean similarity of the thr cluster; and '( , )r rS SCOV  is the mean 

similarity of the (covariance) matrix where the rows are given by the observational units 

in cluster r and the columns are dictated by the observational units in the 'thr cluster. 

The covariance submatrices should be considered the number of times that 

observational units in one cluster are grouped with observational units in another cluster 

during the ensemble creation. 

 

Because of the mean squared and absolute error terms in the objective functions (1.5) 

and (1.6), SBK can be viewed almost entirely in the prediction sense. The algorithm 

seeks to predict the entire co-occurrence matrix using the cluster and covariance means. 

In doing so, observational units with high similarity are grouped together. A validity 

criterion 17 is imposed to ensure that the clustering ideology prevails over the prediction 

ideology. The validity criterion dictates that clusters must have higher mean similarities 

than their covariance matrices. The SBK algorithm is given by Algorithm 4. 

Algorithm 4: SBK 

1. Choose the number of clusters and an initial partition of the data. Here, we use 

initial partitions given by both hierarchical clustering of the co-occurrence 

matrix and entirely random partitions. Choose the objective function; either the 

mean squared error (1.5) or absolute error (1.6). 

2. Visit each observational unit and assign it to the cluster which will result in the 

largest decrease of the objective function. Before moving the observational unit 

ensure that the validity criterion is upheld. 

3. Update the mean similarity of:  



 144

a. the cluster the observational unit has left  

b. the cluster the observational unit has joined 

c. and all appropriate covariance means. 

4. Repeat steps two and three until no more reassignments of the observational 

units take place. 

2.4. Cluster number estimation 

SBK allows for an estimate of the number of clusters in the dataset by considering the 

average predictive capability of the algorithm, for any number of clusters, k . The 

estimate closely resembles the Figure of Merit (FOM) method proposed by Yeung et al. 

14. FOMs are a method of authenticating clusters by assessing the “predictive power” of 

a clustering technique. FOMs require no a priori knowledge. FOMs have been shown to 

provide an accurate estimate of the natural number of clusters 14, 16. FOMs assess the 

“predictive power” of a clustering algorithm by leaving out a variable j , clustering the 

data (into k  clusters), then calculating the Root Mean Square Error (RMSE) of 

j relative to the cluster means: 

( )2

1

1( , ) ( )
i r

k

ij r
r S

RMSE j k x x j
n = ∈

= −∑ ∑
x

      (1.7) 

where ijx is the measurement of the thj variable on the thi observational unit; n  is the 

number of observational units; rS  is the set of observational units in the thr cluster; 

( )rx j  is the mean of variable j for the observational units in the thr cluster. 

 

Each variable is omitted and its RMSE calculated. These RMSE are summed over all 

variables to give an aggregate FOM (AFOM): 

 
1

( ) ( , )
P

j
AFOM k RMSE j k

=

= ∑ .          (1.8) 



 145

The AFOM is calculated for each k , and adjusted for cluster size to give ( )adjAFOM k . 

 

It is simple to expand the above AFOM theory to the results obtained by SBK. Here, no 

variables are removed from the dataset; the random nature of SBK introduces enough 

variability. Simply, if the dataset is clustered into k  clusters and this process is repeated 

P  times, then the ( )AFOM k  is defined as 

( )2

,2
1 1 , ( )

1( ) ( )
r

P k

i j r
p r i j S p

AFOM k C C p
n= = ∈

= −∑ ∑ ∑  (1.9) 

where ( )rS p  is the set of observational units in cluster r  on the thp  run; ( )rC p  is the 

mean similarity of the observational units in cluster r  on the thp  run; ,i jC  is the ( , )thi j  

element of the co-occurrence matrix; and 2n is the dimension of the similarity matrix. 

Here, the adjusted figure of merit is given by 

2

2

( )( )adj
AFOM kAFOM k

n kP
n

=
−

  (1.10) 

The adjAFOM  is obtained for varying levels of k  and the “elbow” of the graph is 

selected as the optimal number of clusters. 

2.5. Variable Importance 

One advantage of using multivariate regression trees as the ensemble clustering 

technique is that they allow for an easy calculation of a variable importance list. Most 

other clustering techniques do not have this capability. When considering multivariate 

regression trees, many definitions of variable importance exist, such as those that only 

consider surrogate splits. We apply a very simple (but naive) definition of variable 

importance. Our definition of variable importance, if applied to only one tree grown on 

the entire dataset would over-inflate the importance of some variables and 
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underestimate the importance of others. However, our reasoning is that the random 

sampling of variables to build each tree will give some stability to our variable 

importance list that would otherwise not exist.  We calculate a variable importance list 

for each tree in the ensemble using Algorithm 5. The variable importance list for the 

entire ensemble is then the weighted sum of the variable importance lists for each tree, 

using the weights given by the lasso heuristic of Algorithm 2. 

Algorithm 5: Variable importance list for a single tree 

1. For each variable, sum the ( )R t∆  for all splits made by that variable within the 

tree to obtain the variable importance of ( )x j , ( )x jVI . Mathematically, ( )x jVI  is 

given by: 

( )
 where 

the node is 
split by ( )

( )x j
t T

x j

VI R t
∈

= ∆∑   

where ( ) ( )( ) ( ) ( )
i

T
i i

t

R t t t
∈

= − −∑
x

y y y y   

and ( ) ( ) ( ( ) ( ))L RR t R t R t R t∆ = − + ;  

and t  designates the parent node; and Lt   and Rt  designate the left and right 

nodes respectively. 

If a variable is not included in the predictor set of a particular tree, its 

corresponding variable importance for the tree is zero. 

2. Standardize the variable importance for the tree such that the individual 

importances sum to one. 

2.6. Cluster Evaluation 

Assessing the validity and accuracy of clustering algorithms is not a straightforward 

task. Various algorithms have been suggested in the recent literature, see for example 14 

and 21. However, in this paper we use datasets with known classifications and we 
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assume these to be the gold standard. As such, we report only the number of 

“misclassifications” (similar to 13 and 6), but recognize that in real world settings this is 

not possible. 

3. PROCEDURE AND DATASETS 

3.1. Datasets 

Three datasets are analysed: the well known Iris 22 dataset and two datasets, Vietnam 23 

and Thyroid 24, underpinned by chemical and biological phenomena. The Vietnam 

dataset consists of measurements of chemical elements in hair samples of six different 

groups of Vietnamese. There are 17 variables that have been log transformed and z-

standardised: Ti, V, Cr, Mn, Ni, Cu, As, Se, Sr, Mo, Cd, Sn, Ba, Pb, Th, U, Hg. The 

groups differ in their amount of exposure to coal. The Thyroid dataset consists of 

measurements of five hormones (z-standardized) in patients with differing thyroid 

functions. The five hormones are: T4, T3, RT3U, TSH, DTSH. Further information 

surrounding the datasets is included in Table I. All of the datasets have known 

groupings which were used as “gold standards” to compare the obtained clusterings 

against. The parameters used in the ensemble creation are also described in Table I.  
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Table I. Explanation of the three datasets used in the analyses. 

Dataset 
name 

Number of observational 
units * number of 
variables 

Group sizes Number of 
trees, 
M 

Iris22 150*4 Setosa: 50 
Versicolor: 50 
Virginica: 50 

200 

Thyroid24 215*5 Normal thyroid function (eu): 
150 patients 
Hyperthyroid function (he): 35 
patients  
Hypothyroid function (ho): 30 
patients 

200 

Vietnam23 224*17 Control Adults: 31 males with 
low exposure to coal 
Control Children: 31 children 
with low exposure to coal 
Miner Adults: 56 males 
employed at a coal mine 
Miner Children: 47 children of 
male coal miners 
Burner Adults: 18 females using 
coal for cooking 
Burner Children: 41 children 
with exposure to coal through its 
use for cooking 

200 

3.2. Procedure 

To illustrate the advantages of cluster ensembles, we benchmark them to the following 

techniques: 

1. K-means (average misclassification rate over 100 random starts is reported) 

2. Classification Trees 18. Classification Trees are a supervised classification 

technique and the reader is directed to the reference for more information. 

3. AAMRT 

4. Average co-occurrence matrices split with SBK. 

 

An ensemble is constructed by employing Algorithm 1 to create M  co-occurrence 

matrices. The individual AAMRT models require specification of the number of 
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terminal nodes and the minimum terminal node size. To assess the sensitivity of the 

results to varying values of these parameters, we ran Algorithm 1 with either (5,10,15) 

minimum terminal node size and either (3,6,10) terminal nodes. There were 3*3=9 

choices of parameters and an ensemble of trees was grown for each choice. The M co-

occurrence matrices for a set of parameters were then averaged to give a simple average 

co-occurrence matrix, or weighted using Algorithms 2 and 3. The average and weighted 

co-occurrence matrices were then split using SBK. 

 

When splitting co-occurrence matrices the minimization criteria (1.5) and (1.6) of SBK 

were used and both results are shown. The results reported were the most frequently 

occurring using 15 different starting points. The datasets were split to a maximum of 10 

clusters so that the AFOM graphs could be obtained. However, the reported results are 

those when the co-occurrence matrix is split to the known number of groups in the data. 

A sample variable importance list is also included. The AFOM results are also reported 

for the post processed cluster ensembles. 

3.3. Software 

R 25 was used to implement the lasso heuristic, SBK and AFOM algorithms. The 

AAMRTs and classification trees were created using the mvpart 26 package of R.  

 

4. RESULTS AND DISCUSSION 

Firstly a weighted co-occurrence matrix for the Iris dataset is presented on the left hand 

side of Figure 1. Areas of high similarity are yellow, areas of low similarity are red. The 

matrix has been reordered according to its groups. There are clearly three groups in the 

dataset. The average co-occurrence matrix is presented on the right hand side of Figure 

1. There is clearly less definition in the average co-occurrence matrix. 
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Figure 1. Left to right: weighted co-occurrence matrix for the Iris dataset using an 
ensemble of AAMRTs with three terminal nodes and minimum terminal node size 
of five; average co-occurrence matrix for the Iris dataset using an ensemble of 
AAMRTs with three terminal nodes and minimum terminal node size of five. 

 

The results are presented for the three datasets in the following tables. The Iris dataset is 

considered first. Table II shows the mean number of misclassifications using k-means 

over 100 random starts. Table II also shows the number of misclassifications of both the 

AAMRT and classification tree when grown to three terminal nodes (the known number 

of clusters). Varying the minimum terminal node size (columns) does not have an affect 

on the number of these misclassifications. The co-occurrence matrices were produced 

using a variety of minimum terminal node sizes (columns) and number of terminal 

nodes (rows) of the individual AAMRT models. The co-occurrence matrices are split 

using SBK to three clusters using both criteria. The top number shows the number of 
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misclassifications using (1.5). The bottom number shows the number of 

misclassifications using (1.6). 

 

The results show that the simple average co-occurrence matrices created by AAMRTs 

with three terminal nodes and split with SBK produce results similar to the AAMRT 

and k-means. The weighted co-occurrence matrices created by AAMRTs with three 

terminal nodes induce superior results to the simple average co-occurrence matrices, 

and approach the performance of the classification tree. By allowing the number of 

terminal nodes to be too large, the co-occurrence matrices and SBK tend to suffer unless 

the minimum terminal node size is quite high, where the weighted co-occurrence matrix 

again performs better than the average and approaches the classification tree result. 

 

The AFOM graphs indicate that there are actually four groups in the data. (A sample 

AFOM graph is given in Figure 2). We split the AAMRT and classification tree to four 

clusters and report the results in Table III. The classification tree was unable to split to 

four nodes if the minimum terminal node size was set too high, shown by a ‘NP’ in 

Table III. The average and weighted co-occurrence matrices (for all combinations of 

minimum terminal node size and number of terminal nodes) are also split to four 

clusters using SBK. The k-means results are also reported. The results show an 

improvement; again the weighted co-occurrence matrices produce superior results to the 

average co-occurrence matrices and approach the classification tree performance. There 

is still a noticeable difference as the number of terminal nodes increases: unless the 

minimum terminal node size is large enough, the results of the ensemble techniques 

tend to suffer. 
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Table II. Results of the Iris dataset split to three clusters. 

 Misclassifications 
K-means 24.5 

Minimum terminal node size Tree-based techniques 
5 10 15 

AAMRT 19 19 19 
17 17 17 3 
20 20 20 
24 26 18 6 
42 41 24 
24 26 18 

Simple average 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
42 41 24 
9 9 9 3 
5 5 5 
16 39 20 6 
41 30 9 
16 39 20 

Post processed 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
41 30 9 

Classification Tree 6 6 6 
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Figure 2. AFOM graphs obtained by splitting the Iris dataset’s weighted co-
occurrence matrix using SBK to various numbers of clusters. The individual 
AAMRTs were grown to 10 terminal nodes with a minimum terminal node size of 
15. The splitting criterion for the top graph is given by (1.5)  and the splitting 
criterion for the bottom graph is given by (1.6). 
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Table III. Results of the Iris dataset split to four clusters. 

 Misclassifications 
K-means 18.76 

Minimum terminal node size Tree-based techniques 
5 10 15 

AAMRT 19 19 19 
17 17 17 3 
20 20 20 
17 17 20 6 
32 34 20 
17 17 20 

Simple average 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 
 10 

32 34 20 
7 7 7 3 
4 4 4 
18 19 6 6 
18 19 9 
18 19 6 

Post processed 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
18 19 9 

Classification Tree 4 NP NP 
 

Figure 3 shows how SBK splits the weighted co-occurrence matrix into two (top right), 

three (bottom left) and four (bottom right) clusters. The top left graph shows the three 

known groups of the Iris dataset. All of the graphs have been projected onto the two-

dimensional discriminant plane. 



 155

 

Figure 3. Clockwise from top left: three known groups of the Iris dataset projected 
onto the discriminant plane; two clusters found by SBK using criterion (1.5) on the 
weighted co-occurrence matrix; four clusters found by SBK using criterion (1.5) 
on the weighted co-occurrence matrix; three clusters found by SBK using criterion 
(1.5) on the weighted co-occurrence matrix. The individual AAMRTs were grown 
to 10 terminal nodes with a minimum terminal node size of 15. 

 
 

Finally, to conclude with the Iris dataset analysis we show the splits generated by the 

SBK algorithm (using the absolute deviations criterion (1.6)) applied to the co-

occurrence matrices shown in Figure 1. The matrices are split to three clusters and the 

resulting splits are shown in Figure 4. 
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Figure 4. Left to right: weighted co-occurrence matrix for the Iris dataset using an 
ensemble of AAMRTs with three terminal nodes and minimum terminal node size 
of five split to three groups using the SBK algorithm with absolute deviation 
criterion; average co-occurrence matrix for the Iris dataset using an ensemble of 
AAMRTs with three terminal nodes and minimum terminal node size of five split 
to three groups using the SBK algorithm with absolute deviation criterion. 

 

Table IV shows the results when applying the clustering algorithms to the Thyroid 

dataset. The AAMRT and the classification tree are grown to three terminal nodes (the 

number of groups) and the results do not depend on the minimum terminal node size. 

Splitting the average co-occurrence matrices using SBK to three clusters gives less 

misclassifications than an AAMRT and k-means, however if the trees of the ensemble 

are grown too large, then the performance is adversely affected. Surprisingly, the 

weighted co-occurrence matrices do not give superior results to the average co-
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occurrence matrices. However, on inspection of the AFOM graphs, the majority indicate 

that the SBK algorithm should split the matrix into four groups. A sample AFOM graph 

is given in Figure 5. 

 

Therefore, the average and weighted co-occurrence matrices are split to four clusters 

using SBK and the results are shown in Table V. The results of growing an AAMRT 

and classification tree to four terminal nodes are also shown. Again, the classification 

tree could not split to four terminal nodes if the minimum terminal node size was too 

high, shown by a ‘NP’ in the table. The weighted co-occurrence matrices produce more 

accurate results than before and a more stable misclassification rate than the average co-

occurrence matrix. Also the weighted co-occurrence matrix produces fewer 

misclassifications than the AAMRT and k-means. There is no longer the effect of 

individual tree size with the weighted-co-occurrence matrix producing stable results as 

long as the individual trees are grown as large or larger than the number of groups in the 

data. 
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Table IV. Results of the Thyroid dataset split to three clusters. 

 Misclassifications 
K-means 27.59 

Minimum terminal node size Tree-based techniques 
5 10 15 

AAMRT 27 27 27 
14 12 12 3 
16 16 15 
34 30 30 6 
32 29 29 
36 30 30 

Simple average 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
34 29 29 
23 38 38 3 
24 37 38 
24 41 18 6 
22 45 45 
31 41 18 

Post processed 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
13 45 45 

Classification Tree 14 14 14 
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Figure 5. AFOM graphs obtained by splitting the Thyroid dataset’s weighted co-
occurrence matrix using SBK to various numbers of clusters. The individual 
AAMRTs were grown to six terminal nodes with a minimum terminal node size of 
10. The splitting criterion for the top graph is given by (1.5) and the splitting 
criterion for the bottom graph is given by (1.6). 
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Table V. Results of the Thyroid dataset split to four clusters. 

 Misclassifications 
K-means 26.61 

Minimum terminal node size Tree-based techniques 
5 10 15 

AAMRT 27 27 27 
20 21 17 3 
18 31 29 
28 16 15 6 
41 16 16 
33 16 15 

Simple average 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
22 16 16 
26 20 23 3 
16 20 20 
23 20 20 6 
20 19 20 
18 20 20 

Post processed 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
19 19 20 

Classification Tree 11 NP NP 
 

Figure 6 shows how SBK splits the weighted co-occurrence matrix into two (top right), 

three (bottom left) and four (bottom right) clusters. The top left graph shows the three 

known groups of the Thyroid dataset. All of the graphs have been projected onto the 

two-dimensional discriminant plane. 
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Figure 6. Clockwise from top left: three known groups of the Thyroid dataset 
projected onto the discriminant plane; two clusters found by SBK using criterion 
(1.6) on the weighted co-occurrence matrix; four clusters found by SBK using 
criterion (1.6) on the weighted co-occurrence matrix; three clusters found by SBK 
using criterion (1.6) on the weighted co-occurrence matrix. The individual 
AAMRTs were grown to six terminal nodes with a minimum terminal node size of 
10. 

 

The results using the Vietnam dataset are reported in Table VI. The AAMRT and 

classification tree are grown to 6 nodes (the known number of groups in the data). The 

average and weighted co-occurrence matrices are split to six groups using SBK. The 

average co-occurrence matrices give superior results to the AAMRT and k-means, as 

long as the individual ensemble trees are grown as large, or larger than the known 

number of clusters. The weighted co-occurrence matrices show even better results with 
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the misclassification rate on par with the classification tree. A sample AFOM graph is 

given in Figure 7. The reader will note that the AFOM graphs suggest splitting the 

weighted co-occurrence matrix to five or six clusters. 

Table VI. Results of the Vietnam dataset split to six clusters. 

 Misclassifications 
K-means 28.87 

Minimum terminal node size Tree-based techniques 
5 10 15 

AAMRT 40 40 40 
54 54 54 3 
59 59 59 
17 14 19 6 
19 20 20 
12 16 15 

Simple average 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
16 16 17 
19 19 19 3 
24 24 24 
13 13 13 6 
12 13 18 
19 7 13 

Post processed 
co-occurrence 
matrix split 
with SBK 

Number 
of 
terminal 
nodes 

10 
10 7 16 

Classification Tree 14 14 14 
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Figure 7. AFOM graphs obtained by splitting the Vietnam dataset’s weighted co-
occurrence matrix using SBK to various numbers of clusters. The individual 
AAMRTs were grown to six terminal nodes with a minimum terminal node size of 
five. The splitting criterion for the top graph is given by (1.5) and the splitting 
criterion for the bottom graph is given by (1.6). 

 

Overall, the weighted co-occurrence matrices split with SBK gave results that 

approached the misclassification rate of a classification tree. The simple average co-

occurrence matrices performed better than the AAMRT and k-means, but not as well as 

the weighted matrices. This mirrors the results found in the regression settings where 

single models can be improved upon using simple average ensembles, and simple 

average ensembles can be further improved by post processing. 
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The weighted co-occurrence matrices produced excellent results as long as the size of 

the AAMRTs in the ensemble were as large, or larger than the known number of 

groups. The only exception occurred with the Iris dataset. Here, as the size of the 

individual trees became too large, the performance decreased. The decrease could be 

mitigated by choosing a large minimum terminal node size. Such results are 

understandable in the context of the datasets. The Iris dataset contains three clusters, all 

with 50 observational units. As the number of the terminal nodes increased with a small 

minimum terminal node size, the individual trees were shaving off subgroups slowly. If 

the minimum terminal node size was increased, this “shaving” was prevented and the 

true groups were found even with far more terminal nodes than groups. This 

dependence on minimum terminal node size was not obvious with the Thyroid and 

Vietnam datasets, because the groups are smaller and therefore setting the minimum 

terminal node size small encouraged the discovery of all the groups even with far more 

terminal nodes than groups. 

 

As is often the case with cluster analysis, if the researcher was unsure about the 

structure of the groups within the dataset it would be advisable to create co-occurrence 

matrices for different values of the tree parameters. The AFOM graphs could then be 

viewed to determine the approximate number of clusters in the dataset, approxk . The 

ensemble co-occurrence matrix could be recreated by growing the trees to approxk , and 

then resplit using SBK. The above results show that splitting a weighted co-occurrence 

matrix created by trees grown to the “right” number of clusters produces excellent 

results irrespective of the minimum terminal node size. 
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The AFOM graphs provided a fairly accurate means of assessing the optimal number of 

clusters in the co-occurrence matrices. These optimal numbers tended to agree with 

known number of groups in the data, however if they differed, growing to the number 

suggested by the AFOM graphs gave superior results. The AFOM graphs have the 

advantage that they do not require a “gold standard” to assess the groups: the graphs 

show purely predictive performance. 

 

Another means of visualizing the clustering solution to determine the number of clusters 

involves re-ordering the co-occurrence matrix according to areas of high similarity. This 

would give the researcher an overview of the structure of the co-occurrence matrix and 

how best to split the matrix.  

 

The SBK algorithm gives a simple way of dividing a similarity matrix. The results here 

show that there was little difference between the two criteria (1.5) and (1.6). The sums 

of squares criterion may have slightly outperformed the absolute value criterion. As the 

ultimate aim of SBK is prediction, it may be wise to employ the more commonly used 

squared error loss. However, the numbers of a co-occurrence matrix are small and 

therefore there is no real difference between the criteria. Also, initial results (data not 

shown) indicate that SBK is relatively stable to the starting point. However, Figure 6 

suggests that SBK may be biased towards finding “large”, similar-sized clusters. When 

splitting the weighted co-occurrence matrix into two clusters, the algorithm uncovers 

the large dense group in the middle of the discriminant plot, but puts the other two 

smaller groups together. It is not until the data is divided into four clusters, that the two 

smaller groups are uncovered. This bias may explain the relatively poor performance of 
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SBK on the Thyroid dataset. The bias would not have affected the Vietnam or Iris 

datasets because their group sizes are relatively similar. 

 

To illustrate the variable importance lists produced, Table VII shows the weighted 

variable importance list obtained by the trees (with six terminal nodes, minimum 

terminal node size of 10) grown on the Vietnam dataset. Figure 8 shows the 

classification tree grown to six nodes using a minimum terminal node size of 10. There 

is a very high agreement between the variables with large importance and their position 

in the classification tree. 
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Table VII. Sample variable importance list for the Vietnam dataset. 

VARIABLE IMPORTANCE
zlse 0.163 
zlhg 0.106 
zlcd 0.097 
zlsn 0.091 
zlti 0.083 
zlth 0.066 
zlu 0.065 
zlmo 0.054 
zlpb 0.046 
zlni 0.044 
zlsr 0.040 
zlcr 0.035 
zlv 0.033 
zlba 0.028 
zlmn 0.022 
zlas 0.017 
zlcu 0.008 

Figure 8. Classification tree of the Vietnam dataset with minimum terminal node 
size of 10. 

 

5. CONCLUSIONS 

This paper presented a strategy for post processing cluster ensembles. The strategy 

involved growing regression models (AAMRT) which could double as cluster models. 
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Trees were the ideal ensemble members because they produce associated variable 

importance lists and the predictive accuracy of a tree is well defined. The regression 

models were post processed and the most accurate models were retained. This process 

identified the most “predictable” clusters and implicitly post processed the cluster 

ensembles. The result was a weighted co-occurrence matrix. A new technique, SBK was 

suggested to divide the weighted co-occurrence matrix. Again, the emphasis of SBK 

was on predictability of the groups. Figure of merits were further extended to give an 

estimate of the natural number of groups in the data, and “post processed” variable 

importance lists were created. Overall, the results presented here agreed with results 

from the regression ensemble methodology: average ensembles produced more accurate 

results than a single model, and post processed ensembles produced more accurate 

models still. 

 

The dependence on the ensemble’s parameters (minimum terminal node size and 

number of terminal nodes) was not extreme if the base trees were grown to at least the 

number of groups in the data. Growing individual trees past the number of groups in the 

data did not tend to adversely affect the performance of the ensemble, as long as the 

minimum terminal node size was set reasonably. 

 

To make the procedure more amenable for use with large datasets, a partition of the 

datasets could be considered in the manner of Smyth et al. 27. For example, the first 

subset would be used to train the individual trees, the second subset would be used to 

calculate the lasso weights, and the third subset could be used as a test subset. This 

would avoid overfitting the cluster ensemble. Alternatively, the individual trees could 

be cross validated from the outset, and only the cross validated predictions used. Also, 
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future work could incorporate recent advances in the AAMRT methodology. This could 

involve using factor scores as response variables 28. Factor scores are considered to be 

more robust in the large dataset setting. 
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Abstract-Cluster ensembles seek a consensus across many individual partitions 

and the resulting solution is usually stable.  Cluster ensembles are well suited to the 

analysis of DNA microarrays, where the tremendous size of the dataset can thwart 

the discovery of stable groups.  Post processing cluster ensembles, where each 

individual partition is weighted according to its relative accuracy improves the 

performance of the ensemble whilst maintaining its stability.  However, weighted 

cluster ensembles remain relatively unexplored, primarily because there are no 

common means of assessing the accuracy of individual clustering solutions. This 

paper describes a technique of creating weighted cluster ensembles suitable for use 

with microarray datasets.  A regression technique is used to obtain individual 

cluster solutions.  Each solution is then weighted according to its predictive 

accuracy.  The consensus partition is obtained using a novel modification to the 

traditional k-means algorithm which further enforces the predictability of the 

solution.  An estimate of the natural number of clusters can also be obtained using 

the modified k-means algorithm. Furthermore, a valuable byproduct of this 

weighted ensemble approach is a variable importance list.  The methodology is 

applied on two well-known microarray datasets with promising results.   

I. INTRODUCTION 

Cluster analysis plays a vital role in the understanding of large DNA microarrays. 

However, the large number of variables in these datasets can cloud the underlying 

groups, and traditional clustering algorithms may produce inaccurate or unstable results. 

This motivates the application of cluster ensembles to DNA microarrays. Cluster 

ensembles seek a consensus across many individual clustering solutions, often grown on 

smaller subsets of the data, with the aim of finding a stable partition. 
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Cluster ensembles combine individual solutions in various ways. A common approach 

involves the creation of a co-occurrence matrix for each clustering solution.  Basically, 

the ( , )thi j  element of the co-occurrence matrix equals one if observational units i  and 

j  are clustered together by the algorithm and zero otherwise.  The co-occurrence 

matrices of each model within the ensemble are aggregated to give an overall co-

occurrence matrix, where the ( , )thi j  element represents the percentage of times 

observational units i  and j  are clustered together. The overall matrix is a similarity 

matrix and can be split using a variety of clustering techniques, such as hierarchical 

clustering or partitioning around medoids [1].  

However, within a cluster ensemble there will be both “good” and “bad” partitions 

[2].  Assigning low weights to inaccurate co-occurrence matrices, and then taking a 

weighted aggregation of the individual co-occurrence matrices should improve the 

performance of the cluster ensemble.  However, weighting (post processing) individual 

clustering solutions within an ensemble remains relatively unexplored. Unlike 

regression and classification ensembles, where the accuracy of individual models can 

easily be gauged using a loss criterion between the predicted values and the observed 

response, there are no criteria suitable for assessing individual clustering solutions 

within an ensemble.  

Previously, we suggested a technique of weighting cluster ensembles for small 

datasets [3].  The accuracy of each clustering solution was assessed on the basis of its 

predictive error. The weighted cluster ensembles outperformed simple average 

ensembles and individual clustering models.  Here, we apply the technique with some 

modifications for large datasets to DNA microarrays.   

We propose that by using a regression technique, multivariate regression trees, as a 

clustering algorithm, each solution can be assessed according to its predictive accuracy.  
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Previous literature has shown that multivariate regression trees double effectively as a 

clustering technique [4],[5]. If clustering in a low dimensional setting, the explanatory 

variables are replicated as the response variables (auto-associative multivariate 

regression tree), and the clusters are found in the entire variable space. If clustering in a 

high dimensional setting, the dimension is first reduced using principal components 

analysis or factor analysis, and the resulting scores are used as the response variables 

[6].  The response set can be made as small as desired by taking the first q  principal 

components or factors.  Searching in the reduced dimension space for clusters is 

particularly appealing when analyzing DNA microarrays where some variables serve 

only to distort the underlying grouping structure.  

By sampling explanatory variables, many trees can be grown.  Trees with high 

predictive accuracy are then given large weights.  The weighting procedure can easily 

be performed using any well-known regression post processing technique.  Here we use 

the forward stagewise approximation [7] to the lasso [8].   

By taking the co-occurrence matrix given by each tree and multiplying it by the tree’s 

weight, and then summing the weighted co-occurrence matrices together, an overall 

“weighted co-occurrence matrix” is obtained.  This co-occurrence matrix can be 

considered the output of a weighted cluster ensemble approach.  The approach assumes 

that trees with high predictive accuracy produce “good” clusters.  Using predictive 

accuracy to assess cluster quality has previously been suggested [9],[10],[11].   

To partition the weighted co-occurrence matrix we introduce similarity-based k-means 

(SBK) [3].  SBK enforces the predictability of the solution by explicitly predicting the 

group structure found within the entire similarity matrix (including the covariance 

submatrices) shown to be important in [12].  An approximation to the natural number of 
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clusters in the dataset can also be obtained with SBK using a technique modeled on 

[10].   

Furthermore, the underpinning weighted ensemble produces a list of variables (genes) 

that are important in differentiating the clusters.  A variable importance list gives 

experimentalists an idea of genes that may warrant further investigation as potential 

biomarkers particularly if the genes are differentiating between two groups (say cancer 

versus non-cancer).   

We illustrate the weighted cluster ensemble approach on two well-known DNA 

microarray datasets. The clustering results are consistent with others in the literature. 

Some genes in the derived variable importance lists are known to be important in 

classifying the groups within the datasets. The estimates of the natural number of 

clusters tend to agree with the known number of classes in the data.  

II. THEORY 

A. Multivariate Regression Trees 

Regression trees [13],[14] begin with all the data in one node.  At each stage, the 

regression tree partitions a non-split node in two.  Regression trees partition a node, t , 

into two subsets, Lt  and Rt , on the basis of the value of an explanatory variable.  At 

each node all possible splits of each explanatory variable are considered.  The optimal 

split is saved for each node.  The node with the split that maximizes the decrease in 

( )R T  is partitioned at each stage.  ( )R T  is given by: 

 ( ) ( )1( ) ( ) ( )
i

T

i i
x tt T

R T y y t y y t
n ∈∈

= − −∑∑           (1) 

where ix  is the vector of measurements of P  explanatory variables for the thi  

observational unit; iy  is the vector of measurements of the response variables for the thi  
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observational unit; T  is the set of all terminal nodes and; ( )y t  is the mean response 

vector of terminal node t .   

After growing the tree, the non-split nodes are deemed “terminal”.  The predicted 

value for a terminal node, termt , is: 

 1ˆ( )
i termterm

term i
x tt

y t y
n ∈

= ∑                                (2) 

where the sum is over all iy  such that i termx t∈  and 
termtn  is the total number of cases in 

the terminal node. 

The observational units in each of the terminal nodes are the clusters of the dataset: 

the terminal nodes are as homogeneous as possible reflecting an intuitive definition of a 

cluster.  The clusters are found in the response space and the explanatory variables that 

form the tree are deemed to be important in determining the clusters.  To allow 

multivariate regression trees to be applied in the traditional clustering framework where 

there are no response variables, auto-associative multivariate regression trees 

(AAMRTs) were suggested [4],[5].  AAMRTs replicate the explanatory variables as 

response variables and grow the tree using identical response and explanatory datasets.   

If the number of the variables is too large, AAMRTs may be confused by the 

redundant or ‘noise’ variables and may produce inaccurate results.  To overcome this 

flaw, the dimension of the response space can be reduced using either principal 

components or factor analysis.  Principal components analysis attempts to model the 

total variance of the original dataset, via new uncorrelated variables called principal 

components.  Factor analysis attempts to explain the variables by assuming that they 

can be generated as a linear combination of q  unobservable common factors (usually 

q P<< )  plus a unique factor [15].  We use either the principal component scores from 

the first q  principal components or the factor scores from the q  factors as the response 
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variables of the tree [6].  The clustering is obtained in the reduced dimension space as q  

is less than P .  Trees grown using principal component scores are referred to as 

MRTPCs, and similarly, trees grown using factor scores are referred to as MRTFSs.   

 

B. Algorithm for creating ensembles of AAMRTs, MRTPCs, or MRTFSs  

Algorithm 1 shows the process used to grow an ensemble of regression trees such that 

they can be used to create a cluster ensemble. 

Algorithm 1: Growing an ensemble of trees 

1)  Choose the number of individual trees in the ensemble, M . 

2)  If the trees in the ensemble are AAMRTs, replicate the original dataset as the 

response dataset, Y .  If the trees in the ensemble are MRTPCs calculate the first q  

principal component scores as the response dataset, Y .  Or, if the trees in the ensemble 

are MRTFSs, calculate the first q  factor scores as the response dataset, Y .  The choice 

of q  is left to the investigator.   

3)  Create M  explanatory datasets by randomly sampling variables with 

percentage vp  from the original dataset.  Here we use 0.05vp = .  We stress that 

although the variables may be sampled to create different explanatory datasets, the 

response for each tree remains constant. 

4)  Grow a tree using each explanatory dataset to k  terminal nodes (clusters).  

Create a co-occurrence matrix for each tree, ( )C m , where the ( , )thi j  element of the 

matrix is one, if observational units i  and j  are in the same cluster (terminal node).  

Create a variable importance list for each tree using Algorithm 5. 
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C. Lasso Heuristic 

A regression ensemble can be represented by: 

                     
1

( ) ( )
M

m m
m

F x f x
=

= ω∑                              (3) 

where ( )mf x  is the prediction of an observational unit x  by the thm  model - the ( )mf x  

are usually of the same family of models but this is not mandatory; mω  is the weight 

assigned to ( )mf x ; and M  is the number of models. 

The individual regression solutions are combined to form an ensemble by taking a 

weighted sum of the individual solutions.  Usually, the weights are an average of the 

number of models, 1/ M , see for example [7].  Post processing is a procedure which 

suggests choices of mω   that reflect the relevance of each ( )mf x  [16].  Post processing 

usually achieves greater accuracy by enforcing parsimony.  The lasso [8] post 

processing procedure finds the weights that minimize 
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Here, the solution to the lasso is approximated with a forward stagewise algorithm [7] 

which is henceforth referred to as the “lasso heuristic”.  The algorithm is as follows: 

Algorithm 2: The lasso heuristic 

1)  Set all weights to zero.  Choose ε  as a small number greater than zero, and 

choose the number of iterations, its , to be quite large. 

2)  For 1:l its=  

 
( )* *
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1

, arg min ( ) ( )

                                  ( ) ( ) .
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3)  Finally,  

 
1

ˆ( ) ( ).
M

m m
m

F x f x
=

= ω∑                                           (7) 

In the first step all weights are zero, and this is analogous to λ = ∞  in (4).  The 

parameter its  is inversely related to λ  in (4).  After the set number of iterations, many 

weights will still remain zero. 

 

D. Algorithm for producing a weighted co-occurrence matrix 

Algorithm 3 shows the process used to create a weighted co-occurrence matrix. 

Algorithm 3: Producing a weighted co-occurrence matrix 

1)  Create an ensemble of trees using Algorithm 1. 

2)  Post process the ensemble of regression trees to find the weights using 

Algorithm 2.  Here, ( )m if x  is the prediction of observational unit i  using the thm  

regression tree.  The response vector, iy  is given by: ix  if using AAMRTs or; the 

associated vector of q  principal component scores if using MRTPCs or; the associated 

vector of q  factor scores if using MRTFSs. 

3)  Create an overall co-occurrence matrix, C  by taking a weighted sum of the 

individual co-occurrence matrices: 

 
1

ˆ ( ).
M

m
m

C C m
=

= ω∑                                          (8) 

Taking a weighted sum of dissimilarity matrices created from different sources (where 

the weights were chosen in a “subjective way”) was suggested previously by [17].   

 

 

 



 180

E. Similarity-based k-means 

Similarity-based k-means is a divisive clustering algorithm that takes a co-occurrence 

matrix, C , (similarity matrix) as input.  Formally, SBK seeks clusters to minimize 

either of the objective functions: 

 ( ) ( )'

'

2 2

( , ), ,
1 , 1 '

' 1

min r r

r r
r

k k k

S Si j r i j
r i j S r r r i S

r j S
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= ∈ = ≠ ∈

= ∈
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where k  is the number of clusters; ,i j  index observational units i  and j ; rS  is the set 

of observational units in the thr  cluster; ,i jC  is the ( , )thi j  element of the co-occurrence 

matrix; rC  is the mean similarity of the thr  cluster; and '( , )r rS SCOV  is the mean 

similarity of the (covariance) matrix where the rows are given by the observational units 

in cluster r  and the columns are dictated by the observational units in the 'thr  cluster.  

The covariance submatrices should be considered the number of times that 

observational units in one cluster are grouped with observational units in another cluster 

during the ensemble creation. 

Because of the mean squared and absolute error terms in the objective functions (9) 

and (10), SBK can be viewed almost entirely in the prediction sense.  The algorithm 

seeks to predict the entire co-occurrence matrix using the cluster and covariance means.  

In doing so, observational units with high similarity are grouped together.  A validity 

criterion [12] is imposed to ensure that the clustering ideology prevails over the 

prediction ideology.  The validity criterion dictates that clusters must have higher mean 

similarities than their covariance matrices.  The SBK algorithm is given by Algorithm 4. 
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Algorithm 4: SBK 

1)  Choose the number of clusters and an initial partition of the data.  Here, we use 

initial partitions given by both hierarchical clustering of the co-occurrence matrix and 

entirely random partitions.  Choose the objective function; either the mean squared error 

(9) or absolute error (10). 

2)  Visit each observational unit and assign it to the cluster which will result in the 

largest decrease of the objective function.  Before moving the observational unit ensure 

that the validity criterion is upheld. 

3)  Update the mean similarity of: the cluster the observational unit has left; the 

cluster the observational unit has joined; and all appropriate covariance means. 

4)  Repeat steps two and three until no more reassignments of the observational units 

take place. 

 

F. Cluster number estimation 

An approximation to the natural number of clusters in the dataset can also be obtained 

with SBK by considering the average predictive capability of the algorithm, for any 

number of clusters, k .  The estimate closely resembles the figure of merit (FOM) 

method proposed by [10].  FOMs are a method of authenticating clusters by assessing 

the “predictive power” of a clustering technique.  FOMs require no a priori knowledge 

of group membership.  FOMs have been shown to provide an accurate estimate of the 

natural number of clusters [5],[10].  FOMs assess the “predictive power” of a clustering 

algorithm by leaving out a variable p , clustering the data (into k  clusters), then 

calculating the root mean square error (RMSE) of p  relative to the cluster means: 

 ( )2

1

1( , ) ( )
i r

k

ip r
r x S

RMSE p k x x p
n = ∈

= −∑ ∑                  (11) 
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where ipx  is the measurement of the thp  variable on the thi  observational unit; n  is the 

number of observational units; rS  is the set of observational units in the thr  cluster; 

( )rx p  is the mean of variable p  for the observational units in the thr  cluster. 

Each variable is omitted and its RMSE calculated.  These RMSEs are summed over 

all variables to give an aggregate FOM (AFOM): 

 
1

( ) ( , ).
P

p
AFOM k RMSE p k

=

=∑                        (12) 

The AFOM is calculated for each k , and adjusted for cluster size to give 

( )adjAFOM k . 

It is simple to expand the above AFOM theory to the results obtained by SBK.  Here, 

no variables are removed from the dataset; the random nature of SBK introduces 

enough variability.  Simply, if the dataset is clustered into k  clusters and this process is 

repeated P  times, then the ( )AFOM k  is defined as 

 ( )2

,2
1 1 , ( )

1( ) ( )
r

P k

i j r
p r i j S p

AFOM k C C p
n= = ∈

= −∑ ∑ ∑  (13) 

where ( )rS p  is the set of observational units in cluster r  on the thp  run; ( )rC p  is the 

mean similarity of the observational units in cluster r  on the thp  run; ,i jC  is the ( , )thi j  

element of the co-occurrence matrix; and 2n  is the dimension of the similarity matrix.  

Here, the adjusted figure of merit is given by: 

 
2

2

( )( ) .adj
AFOM kAFOM k

n kP
n

=
−

                        (14) 

The adjAFOM  is obtained for varying levels of k  and the “elbow” of the graph is 

selected as the optimal number of clusters. 
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G. Variable Importance 

Multivariate regression trees allow for an easy calculation of a variable importance 

list.  Although many definitions of variable importance exist, such as those that consider 

surrogate splits [13], we apply a very simple (but naive) definition of variable 

importance.  Our definition of variable importance, if applied to only one tree grown on 

the entire dataset would over-inflate the importance of some variables and 

underestimate the importance of others.  However, our reasoning is that the random 

sampling of variables to build each tree will give some stability to our variable 

importance list that would otherwise not exist.  We calculate a variable importance list 

for each tree in the ensemble using Algorithm 5.  The variable importance list for the 

entire ensemble is then the weighted sum of the variable importance lists for each tree, 

using the weights given by the lasso heuristic of Algorithm 2. 

Algorithm 5: Variable importance list for a single tree 

1)  For each variable, p  sum the ( )R t∆  for all splits made by that variable within 

the tree to obtain the variable importance of p , pVI .  Mathematically, pVI  is given by: 

 
 where 

the node is 
split by 

( )p
t T

p

VI R t
∈

= ∆∑                                 (15) 

where  

 ( ) ( )( ) ( ) ( )
i

T

i i
x t

R t y y t y y t
∈

= − −∑                   (16) 

and 

 ( ) ( ) ( ( ) ( ))L RR t R t R t R t∆ = − +                    (17)  

and t  designates the parent node; and Lt   and Rt  designate the left and right nodes 

respectively. 
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If a variable is not included in the predictor set of a particular tree, its corresponding 

variable importance for the tree is zero. 

2)  Standardize the variable importance for the tree such that the individual 

importances sum to one. 

 

H. Cluster Evaluation 

Assessing the validity and accuracy of clustering algorithms is not a straightforward 

task.  Various algorithms have been suggested in the recent literature, see for example 

[10] and [18].  However, in this paper we use datasets with known classifications and 

we assume these to be the gold standard.  As such, we report only the number of 

“misclassifications” (similar to [9] and [19]), but recognize that in real world settings 

this is not possible. 

 

III. DATA 

Two well known microarray datasets were analyzed.  The reader is directed to the 

references for detailed information regarding these datasets.  The first dataset, ‘Alon’ 

[20], contains 62 samples measured on 2000 genes.  There are 22 samples of normal 

colon tissue, and 40 samples of tumor tissue.  The 100 variables with the largest 

variance were used in this analysis.  The dataset, available from the R package ‘dprep’ 

[21], was preprocessed by taking the logarithm (base 10), and standardizing the tissues 

and genes to have zero mean and unit standard deviation.   

The second dataset, ‘Golub’ [22], contains 72 samples measured on 6817 genes.  The 

number of genes was decreased to 3571 using the steps of [23].  There are 47 samples 

of Acute Lymphoblastic Leukemia (ALL) and 25 samples of Acute Myeloid Leukemia 

(AML).  The ALL class can be further divided into two subgroups consisting of 38 B-
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cell ALL and 9 T-cell ALL.  The 100 variables with the largest variance were used in 

this analysis in the same manner as [23].  The dataset, (which has already been log 

transformed and row standardized) available from the R package ‘dprep’, was 

preprocessed by standardizing the genes to have unit standard deviation.   

 

IV. PROCEDURE 

The individual tree models in the ensemble require the specification of the number of 

terminal nodes and the minimum terminal node size.  To assess the sensitivity of the 

results to varying values of these parameters, we ran Algorithm 1 with either (1,5,10) 

minimum terminal node size and either (2,4,6) terminal nodes.  There were 3*3=9 

choices of parameters and an ensemble of trees was grown for each choice.  We also 

grew an ensemble with random inputs to the parameters.  Each tree within the ensemble 

was randomly assigned a minimum terminal node size and number of terminal nodes 

from the above sets.  This resulted in a total of 10 ensembles being grown for each of 

AAMRTs, MRTFSs, and MRTPCs.  There were therefore 30 ensembles created for 

each dataset.  All ensembles were grown to 500 trees.  The parameter q  was taken to be 

10. 

The M  co-occurrence matrices for a set of parameters and response type were 

weighted using Algorithms 2 and 3.  The weighted co-occurrence matrices were then 

split using SBK.  When splitting co-occurrence matrices the minimization criteria (9) 

and (10) of SBK were used and both results are shown.  The results reported were the 

most frequently occurring using 15 different starting points.  The datasets were split to a 

maximum of 10 clusters so that the AFOM graphs could be obtained.  However, the 

reported results are those when the co-occurrence matrix was split to the known number 
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of groups in the data.  Variable importance lists were also obtained.  All analysis was 

conducted using [24]. 

V. RESULTS  

A. Alon Dataset 

The results of applying SBK to the weighted co-occurrence matrices created by each 

of the ensemble types are reported in Table I.  The first row shows the number of 

terminal nodes of the trees in the ensemble.  The second row shows the minimum 

terminal node size of the trees in the ensemble.  The ‘R’ in both the first and second 

rows corresponds to the ensembles of trees grown on random parameter (minimum 

terminal node size and number of terminal nodes) values.  The types of trees in the 

ensemble are shown in the final three rows.  The reader will see that there are ten 

ensembles grown for each response type.  The number of misclassifications using SBK 

with (9) is shown as the top number of the cell, and the number of misclassifications 

using (10) is shown as the bottom number of the cell. 

The results of applying SBK to the co-occurrence matrices created by the ensembles 

of AAMRTs and MRTPCs are fairly consistent across minimum terminal node size and 

number of terminal nodes.  The misclassification rates of SBK applied to the co-

occurrence matrices created by the AAMRT and MRTPC ensembles grown with 

random parameters are a fair compromise of the misclassifications using set parameters.  

The misclassification rates of applying SBK to the co-occurrence matrices created by 

ensembles of MRTFSs are less stable than the other two ensemble types.   

The AFOM graphs tend to indicate that the weighted co-occurence matrices should be 

split to three clusters.  A sample AFOM graph (with error bars) is shown in Fig. 1.  It 

was obtained by applying SBK with (9) to a weighted co-occurrence matrix constructed 

by MRTPCs with random parameters.  Growing to three clusters improves the results 
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considerably as shown in Table II.  There is a high degree of similarity between the 

misclassification rates of applying SBK to the co-occurrence matrices of the ensembles 

of AAMRTs and MRTPCs. Growing these ensembles with random parameters gives a 

compromise of the misclassifications using the set parameters.  On the other hand, using 

random parameters with ensembles of MRTFSs does not give solutions that are 

representative of ensembles with set parameters.   

The top five important variables using each response type are presented in Table III.  

The variables are presented in decreasing order of importance.  There is a degree of 

overlap between the response types, particularly using ensembles of AAMRTs and 

MRTPCs. 
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TABLE I 

NUMBER OF MISCLASSIFICATIONS FOR THE ALON DATASET – TWO 

CLUSTERS 

Number of terminal nodes 2 4 6 R 
Minimum terminal node size 1 5 10 1 5 10 1 5 10 R 

9 9 13 15 15 7 14 15 7 13 AAMRT 
14 14 14 15 15 10 15 15 10 13 
14 14 9 15 16 7 16 6 7 13 MRTPC 
13 13 13 15 15 10 15 13 10 12 
22 22 22 7 22 10 9 6 10 12 MRTFS 
22 22 22 8 13 9 13 6 9 10 

 

TABLE II 

NUMBER OF MISCLASSIFICATIONS FOR THE ALON DATASET – THREE 

CLUSTERS 

Number of terminal nodes 2 4 6 R 
Minimum terminal node size 1 5 10 1 5 10 1 5 10 R 

10 10 10 9 9 6 7 7 6 8 AAMRT 
10 10 10 10 10 10 8 11 10 9 
10 10 10 9 9 7 7 6 7 8 MRTPC 
10 10 10 9 9 10 8 8 10 8 
8 7 10 7 6 7 6 6 7 13 MRTFS 
8 7 8 9 9 10 6 6 10 12 
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Fig. 1. AFOM graph for the Alon dataset. 
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TABLE III 

IMPORTANT VARIABLES FOR THE ALON DATASET 

Ensemble Gene description  
Human 11 beta-hydroxysteroid dehydrogenase type II mRNA, complete 
cds 
ACTIN, AORTIC SMOOTH MUSCLE (HUMAN) 
H. sapiens mRNA for hevin like protein 
P24050 40S RIBOSOMAL PROTEIN 

AAMRT 

Human mRNA for fibronectin (FN precursor) 
Human 11 beta-hydroxysteroid dehydrogenase type II mRNA, complete 
cds 
ACTIN, AORTIC SMOOTH MUSCLE (HUMAN) 
H. sapiens mRNA for hevin like protein 
PUTATIVE 126.9 KD TRANSCRIPTIONAL REGULATORY PROTEIN 
IN YSW1-RIB7 INTERGENIC REGION (Saccharomyces cerevisiae) 

MRTPC 

TRANSLATIONAL INITIATION FACTOR 2 BETA SUBUNIT 
(HUMAN) 
P24050 40S RIBOSOMAL PROTEIN 
Human CO-029 
Human 11 beta-hydroxysteroid dehydrogenase type II mRNA, complete 
cds 
H. sapiens mRNA for novel DNA binding protein 

MRTFS 

SELENIUM-BINDING PROTEIN (Mus musculus) 
 

B. Golub Dataset 

The results of splitting the weighted co-occurrence matrices created by each of the 

tree types are shown in Table IV.  The misclassification rates using SBK on co-

occurrence matrices created by ensembles of AAMRTs and MRTPCs are similar.  

Using these two types of trees with random parameters also gives misclassification rates 

that are representative of the set parameters.  Again, SBK applied to the co-occurrence 

matrices created by MRTFSs does not produce as stable results as with the other two 

types of trees.   

The AFOM graphs indicate splitting to three clusters will produce the optimal results.  

A sample AFOM graph is shown in Fig. 2.  The graph was obtained by applying SBK 
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with (9) to the weighted co-occurrence matrix constructed by AAMRTs with a 

minimum terminal node size of five and two terminal nodes.   

Splitting the weighted co-occurrence matrices uncovers the three known subgroups in 

the data.  The misclassification rates are shown in Table V.  The table may indicate that 

if the minimum terminal node size of the trees is too large, the misclassification rates of 

SBK suffer.  Again, splitting the co-occurrence matrices created by ensembles of 

AAMRTs and MRTPCs produces similar, stable results.  However, splitting the co-

occurrence matrices of ensembles of MRTFSs using SBK produces unstable results 

across set tree parameters. Also, the results are not indicative of the set parameters when 

the trees use random parameters.   

The top five variables using each tree type are shown in Table VI.  Again, there is a 

large degree of overlap amongst the ensembles of AAMRTs and MRTPCs.   

TABLE IV 

NUMBER OF MISCLASSIFICATIONS FOR THE GOLUB DATASET – TWO 

CLUSTERS 

Number of terminal nodes 2 4 6 R 
Minimum terminal node size 1 5 10 1 5 10 1 5 10 R 

9 9 9 10 10 2 10 10 4 9 AAMRT 
9 9 9 10 10 9 10 9 9 9 
9 9 9 10 10 10 10 10 4 9 MRTPC 
9 9 9 10 9 10 10 10 10 9 
13 13 17 7 7 11 10 12 12 10 MRTFS 
13 13 17 19 19 9 10 11 5 10 
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Fig. 2. AFOM graph for the Golub dataset. 

TABLE V 

NUMBER OF MISCLASSIFICATIONS FOR THE GOLUB DATASET – THREE 

CLUSTERS 

Number of terminal nodes 2 4 6 R 
Minimum terminal node size 1 5 10 1 5 10 1 5 10 R 

7 7 6 3 3 3 7 9 8 7 AAMRT 
3 3 6 5 3 3 8 8 8 6 
3 3 6 3 3 3 3 3 7 8 MRTPC 
6 6 6 5 3 5 3 3 9 8 
7 7 18 5 5 17 3 5 16 3 MRTFS 
7 7 18 5 13 4 16 4 13 2 
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TABLE VI 

IMPORTANT VARIABLES FOR THE GOLUB DATASET 

Ensemble Gene description  
MB-1 gene 
LGALS1 Ubiquinol-cytochrome c reductase core protein II.  
PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 PRECURSOR
DFD component of complement (adipsin) 

AAMRT 

Zyxin 
MB-1 gene 
Zyxin 
PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 PRECURSOR
GLUTATHIONE S-TRANSFERASE, MICROSOMAL 

MRTPC 

DFD component of complement (adipsin) 
Growth factor receptor tyrosine kinase (STK-1) mRNA 
AFFX-M27830_5_at (endogenous control) 
GLYCOPHORIN B PRECURSOR 
CAPG Capping Protein (actin filament) gelsolin-like 

MRTFS 

MDK Midkine (neurite growth-promoting factor 2) 
 

VI. DISCUSSION 

Firstly, we noticed no major trends with minimum terminal node size and number of 

terminal nodes.  There may have been a very small effect of minimum terminal node 

size on the misclassification rate of SBK (three clusters) applied to the co-occurrence 

matrices of the Golub dataset.  Because the smallest subgroup contains only nine 

observational units, if the minimum terminal node size was set too high (i.e. 10), this 

group could not be recovered perfectly.   

The two criteria of SBK did not produce remarkably different results: criterion (9) 

could be performing slightly better than criterion (10).  As the ultimate aim of SBK is 

prediction, it may be wise to employ the more commonly used squared error loss 

criterion. 

Splitting the co-occurrence matrices of ensembles of AAMRTs and MRTPCs with 

SBK produced similar misclassification rates.  The variable importance lists of these 
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two ensembles were also alike.  This indicates that the actual AAMRTs and MRTPCs 

were similar.  The similarity between the results of AAMRTs and MRTPCs has been 

noted elsewhere [6].  The misclassifications using these two tree types were fairly 

stable.  Furthermore, using random parameters gave a compromise misclassification rate 

of the ensembles grown using set parameters.   

On the other hand, ensembles of MRTFSs, although capable of creating optimal 

solutions, tended to be fairly unstable and without any discernable pattern across 

minimum terminal node size and number of terminal nodes.  A representative solution 

was not found by using random parameters.   

The poor results obtained using MRTFSs were surprising.  In a previous study these 

trees have been shown to outperform AAMRTs and MRTPCs on datasets perturbed by 

noise variables [6].   

In the previous study the results of MRTPCs were generally stable to the number of 

factors.  Here, we see that the stability of MRTPCs also extends to other parameters: the 

number of terminal nodes and minimum terminal node size.   

The AFOM graphs indicated that there were three clusters within each dataset.  The 

results were improved when the co-occurrence matrices of the Alon dataset were split to 

three clusters.  Splitting the co-occurrence matrices of the Golub dataset unearthed the 

subgroups of the dataset.  Generally, the misclassification rates agreed with other 

studies (see [25] and [19]).  However, it is difficult to make a direct comparison because 

of different standardization (amongst other things).    

The variable importance measures indicated similar genes across tree type.  This was 

particularly evident with the important genes of ensembles of AAMRTs and MRTPCs.  

The genes deemed to be important by the algorithm agreed with those found in 

supervised classification studies.  For example, the Zyxin gene of the Golub dataset is 
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commonly selected in classification rules in [26].  In [22] Zyxin, MB-1, and adipsin are 

illustrated as genes useful in distinguishing AML from ALL.  To highlight the power of 

the variable importance lists, we took the top five variables found by the ensemble of 

AAMRTs in Table VI and grew a single AAMRT using only these variables. For the 

two group case, the number of misclassifications decreased to four; and for the three 

group case, the number of misclassifications decreased to five. The variable importance 

lists here are derived without external knowledge of the grouping structure.  Therefore, 

these important variables may determine not only known groups but also smaller 

subgroups.  The important variables warrant further investigation as biomarkers.   

Finally, because of the stability and dimension reduction associated with the 

ensembles of MRTPCs, we suggest using these trees to create the weighted co-

occurrence matrices.  If suitable parameters of the ensemble were unknown prior to 

analysis, it is advisable to use randomly selected values.  With further research, 

weighted ensembles of MRTFSs could also give accurate clustering solutions.  The 

optimal dimension of the response space deserves further investigation. 

VII. CONCLUSION 

Cluster analysis is an essential exploratory technique, often applied as a first step in 

the analysis of a large microarray dataset [27].  Cluster ensembles have been shown to 

give improved accuracy and stability over individual clustering solutions, in many fields 

[28],[29],[30] including Bioinformatics [19].  The improvements afforded by cluster 

ensembles on large datasets parallel results obtained with regression and classification 

ensembles.  It is mooted that greater accuracy is attainable if the researcher is willing to 

take a weighted aggregation of the individual clustering models to give the ensemble.   

This research suggested a technique of creating a weighted cluster ensemble suitable 

for large datasets.  Each cluster model, a multivariate regression tree, was weighted 
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according to its predictive strength.  The clusters were found in the response space of 

each tree; either the entire dataset, or the reduced dimension space constructed with the 

factor scores or the principal component scores of the dataset.   

The resulting weighted co-occurrence matrix was split using SBK and the clusters 

agreed with the known groupings in the data.  Interestingly, the technique uncovered 

two known subgroups in one dataset.  Weighted co-occurrence matrices created with 

MRTPCs produced the most stable results across the datasets.  Because of their stability 

and dimension reduction we recommend MRTPCs as the preferred tree type.   

A valuable byproduct of the ensemble technique was an indication of the variables 

that were important in determining the clusters.  Growing a single AAMRT on the 

variables selected as important, decreased the number of misclassifications. The 

important variables could warrant further investigation; some variables (genes) could be 

biomarkers of a disease.   
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SYNOPSIS 

The manuscript, “Predictive Weighting for Cluster Ensembles” illustrated the 

superiority of weighted cluster ensembles over simple average ensembles. SBK, an 

extension of the traditional k-means algorithm, accurately partitioned the weighted co-

occurrence matrix. The modified FOMs were demonstrated to accurately approximate 

the natural number of clusters in the datasets. The manuscript also established the 

ensemble’s weighted variable importance lists. Some results that were not included in 

the manuscripts are explicated below.  

 

In “Predictive Weighting for Cluster Ensembles”, the percentage of variables randomly 

chosen to grow each individual tree was 33%. The results were also obtained for both 

50% and 67%. Table A shows the number of misclassifications using SBK on the co-

occurrence matrices created by ensembles of AAMRTs for the Vietnam dataset. The 

results of the other two datasets followed similar trends. The columns show the number 

of nodes and the minimum terminal node size of the individual trees.   The rows show 

the percentage of variables randomly selected to grow the tree. The top number of each 

cell shows the number of misclassifications using the squared error loss function, and 

the bottom number of each cell shows the number of misclassifications using the 

absolute loss function of SBK. The smaller percentage of variables gave less 

misclassification. This was probably because the smaller percentage of variables created 

a larger variety of individual tree models for potential inclusion within the ensemble.    
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Table A. Number of misclassifications using SBK on the co-occurrence matrices 
created by ensembles of AAMRTs with varying numbers of variables.  

Number of Nodes 3 6 10 
Minimum Terminal Node Size 5 10 15 5 10 15 5 10 15 

19 19 19 13 13 13 19 7 13 33%
24 24 24 12 13 18 10 7 16 
29 29 29 19 20 20 21 21 21 50%
29 29 29 20 20 19 15 22 21 
40 40 40 17 17 20 17 17 22 

Percentage of Variables 

67%
34 34 34 21 21 18 21 54 21 

 

“Predictive Weighting for Cluster Ensembles” suggested that “cross-validated” trees 

could be used in the ensemble. This implies that each tree within the ensemble is cross-

validated: a proportion of the observational units are removed, the tree is grown with the 

remaining observational units and randomly selected variables, and the left-out 

observational units are predicted by the tree. The process is repeated until all 

observational units have been predicted. These “cross-validated” predictions are then 

used to assess the predictive accuracy of each tree. The th(i,j)  element of the co-

occurrence matrix of each tree gives the proportion of times observational unit i  and j  

were clustered into the same terminal node when neither was in the left-out subset.  

 

Growing five-fold (20% of observational units removed) cross-validated trees on the 

Vietnam dataset, post processing the trees with the lasso heuristic, and then partitioning 

the weighted co-occurrence matrices using SBK gives misclassification rates shown in 

Table B. The columns show the number of nodes and the minimum terminal node size 

of each individual tree.   The rows show the percentage of variables randomly selected 

to grow the tree. The top number of each cell shows the number of misclassifications 

using the squared error loss function, and the bottom number of each cell shows the 

number of misclassifications using the absolute loss function of SBK. The results show 

almost an opposite trend to those shown in Table A. As the number of variables 
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available to the AAMRT algorithm increases, the number of misclassifications 

decreases in Table B. Here, if the percentage of variables available to the algorithm is 

too low, coupled with the randomness being introduced by cross-validation, there is too 

much instability in the individual trees.  

Table B. Number of misclassifications using SBK on the co-occurrence matrices 
created by ensembles of cross-validated AAMRTs with varying numbers of 
variables. 

Number of Nodes 3 6 10 
Minimum Terminal Node Size 5 10 15 5 10 15 5 10 15 

56 56 28 21 21 21 20 18 19 33%
30 30 30 21 21 20 20 19 18 
27 27 27 13 15 15 20 19 21 50%
27 27 27 14 15 16 21 19 22 
29 29 29 15 13 11 18 21 22 

Percentage of Variables 

67%
29 29 29 15 15 15 17 20 21 

 

“Post processing regression ensembles: imposing parsimony to improve predictions” 

showed that the stochastic procedure, evolution strategies, produced excellent results 

when creating parsimonious regression ensembles. Table C shows the number of 

misclassifications (Vietnam dataset) when the lasso procedure is replaced by evolution 

strategies. Cross-validated trees as in Table B are used. The columns show the number 

of nodes and the minimum terminal node size of each individual tree.   The rows show 

the percentage of variables randomly selected to grow the tree. The top number of each 

cell shows the number of misclassifications using the squared error loss function, and 

the bottom number of each cell shows the number of misclassifications using the 

absolute loss function of SBK. The results of Table B and Table C are fairly similar 

particularly when the trees were grown as large, or larger than the number of clusters in 

the dataset.  However, as previously mentioned the lasso heuristic is much faster than 

the evolution strategies, so it remains the recommended post processing technique. 
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Table C. Number of misclassifications using SBK on the co-occurrence matrices 
created by ensembles of cross-validated AAMRTs weighted with evolution 
strategies.  

Number of Nodes 3 6 10 
Minimum Terminal Node Size 5 10 15 5 10 15 5 10 15 

56 56 56 15 19 21 13 21 19 33%
57 57 37 21 25 24 16 19 20 
26 26 26 15 15 13 20 17 20 50%
27 27 27 15 16 16 15 18 20 
69 69 69 16 12 14 17 19 13 

Percentage of Variables 

67%
62 62 62 16 15 15 9 20 14 

 

 

The results of “Predictive Weighting for Cluster Ensembles” showed that the 

parameters of the individual trees could affect the misclassification rates of SBK. A 

potential solution to this problem is to grow the individual trees with parameters that are 

selected randomly from a suitable set. This should provide results that are a compromise 

solution of the set parameters. Random parameters were trialed in the second 

manuscript “Clustering Microarrays with Predictive Weighted Ensembles”. 

  

In “Clustering Microarrays with Predictive Weighted Ensembles” the developed 

methodology was applied successfully to two DNA microarray datasets. Splitting the 

co-occurrence matrices created with the ensembles of MRTPCs gave the best results.  

 

“Clustering Microarrays with Predictive Weighted Ensembles” commented that the 

presented misclassification rates agreed with other studies. Whilst it is impossible to 

compare directly to the other studies because of slightly different standardization steps 

used and the sheer number of other studies available, here we present a brief 

comparison to two other analyses. The other analyses were chosen because they are 
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both well known; one uses factor analysis for dimension reduction, and the other uses 

an ensemble co-occurrence matrix. 

 

The first analysis, conducted by McLachlan, et al. (2002), applied mixture models of 

factor analyzers to the same two datasets. Mixture models of factor analyzers also rely 

on factor analysis to reduce the dimensionality of the data. The dimension of the factor 

space controls the number of parameters to be estimated in the mixture model 

(McLachlan and Peel 2000). Mixture models of factor analyzers are expected to be 

useful when clustering a small number of observational units on the basis of a large 

number of variables (for example, when clustering genetic data) (McLachlan and Peel 

2000). McLachlan, et al. (2002) have realized the benefits of this technique and have 

developed “EMMIX-GENE”: a computer program that fits a mixture model of factor 

analyzers to a dataset.  

 

In McLachlan, et al. (2002), the authors followed the same standardization procedures 

for both datasets as outlined in “Clustering Microarrays with Predictive Weighted 

Ensembles”, with the exception of the base 10 logarithm transformation. Instead, the 

authors use the natural logarithm transformation. When clustering the Alon dataset, 

EMMIX-GENE selected 446 genes as relevant. Using q 6=  factors, the authors found 

two clusters that had 22 misclassifications when considering the tumor/non-tumor 

partition. However, there was a change in protocol during the experiment and if the 

clusters were compared to an old/new protocol partition, rather than the tumor/non-

tumor partition, there were four misclassifications. When clustering on the basis of the 

top 50 genes selected by EMMIX-GENE, there were 21 misclassifications when 

considering the tumor/non-tumor partition, and 21 misclassifications when considering 
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the old/new protocol partition. The dataset was also clustered using smaller clusters of 

genes, with misclassification rates dependent on the groups.   

 

When considering the Golub dataset, the EMMIX-GENE approach reduced the number 

of variables to 2015 genes. If the top 50 genes were used to cluster the dataset using 

q 8=  factors into two clusters, there were ten misclassifications. Also, when started 

from random and k-means based starts, the EMMIX-GENE approach could cluster the 

dataset into the three groups corresponding to the three subgroups with 15 

misclassifications. The EMMIX-GENE approach can produce slightly superior results 

when it is initialized using the known classifications of the data. However, as this 

information is usually unknown to the investigator, the results are not reported.  

 

The second analysis performed by Dudoit and Fridlyand (2003) used ensemble 

clustering techniques to group the Golub dataset. The dataset was standardized in 

exactly the same manner as “Clustering Microarrays with Predictive Weighted 

Ensembles”, including the base 10 logarithm transformation, with the exception of 

standardizing the genes. The 100 most variable genes were used in the analysis. There 

were two techniques of finding an ensemble partition. The first used plurality voting: 

taking the majority cluster label for each observational unit. The second used a co-

occurrence matrix where the th(i,j)  element denoted the proportion of times 

observational units i  and j  had been clustered together. The co-occurrence matrix was 

converted to a dissimilarity matrix and partitioned. Both techniques misclassified three 

observational units when the dataset was divided into the three known subgroups.  
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In summary, the results showed that weighting the cluster solutions according to their 

predictability improved the ensemble’s accuracy. In this fashion, regression trees were 

shown to be excellent ensemble members for not only regression and classification, but 

cluster analysis as well. The technique, SBK, which further enforces the predictability 

of the solution, was shown to find accurate partitions of the co-occurrence matrix. The 

weighted variable importance list suggested variables which have been identified before 

as capable of differentiating clusters. The modified FOMs produced estimates of the 

natural number of clusters that were very close to the known number of classes.  
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CONCLUDING SUMMARY 



 207

“Super-sized” is not just an adjective used in takeaway stores daily, but also in statistics 

to describe the size of datasets that are occurring with increasing frequency. Analyzing 

data of this dimension presents unique statistical challenges and is a fairly new 

endeavour for statisticians. It is well known that single models will not represent all the 

data available within a large dataset. This has motivated the application of ensembles to 

large datasets. Ensembles combine many models and produce stable and accurate 

representations of the data. 

 

Typically, ensembles average the outputs of the individual models. However, weighting 

(post processing) the individual models in the ensemble according to their relative 

accuracy gives improved performance whilst maintaining the ensemble’s stability. Post 

processing ensembles has been investigated in the regression and classification 

contexts; however it has remained relatively unexplored in the cluster ensemble 

framework. This is because of the lack of a “gold standard” associated with cluster 

analyses. Whilst it is relatively easy to assess the performance of an individual 

classification or regression model by comparing its predictions to the observed values, 

there is no such gold standard associated with cluster models.  

 

This thesis described a technique of creating a weighted cluster ensemble, where the 

weight of each individual clustering solution was based upon its predictability. A 

regression technique, multivariate regression trees, was used to obtain individual cluster 

solutions. Multivariate regression trees were extended to auto-associative multivariate 

regression trees so that they could be applied to datasets consisting entirely of 

explanatory variables. The auto-associative multivariate regression trees were further 

extended for use with high dimensional data. The dataset was reduced using principal 
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components analysis or factor analysis and the resulting principal component scores or 

factor scores constituted the response set. The regression trees were shown to produce 

accurate clusters in both the low dimensional setting, and the noisy, high dimensional 

setting.  

 

Each solution was then weighted according to its predictive accuracy. Each tree within 

the ensemble was aiming to predict its response: either the explanatory variables 

(AAMRT); the principal component scores (MRTPC); or the factor scores (MRTFS). 

Each tree within the ensemble could be weighted in terms of how well it predicted the 

response, that is, its predictive accuracy. Many different weighting strategies were 

trialed in this thesis. The best weighting strategy in terms of speed and predictive 

accuracy was the lasso heuristic. The lasso heuristic found sparse weights, enforcing a 

parsimonious ensemble with high predictive accuracy. The results supported those 

already presented in the literature: weighting models in the ensemble according to their 

accuracy improves the ensemble’s performance.  

 

The co-occurrence matrix of each tree was multiplied by the tree’s assigned weight and 

these matrices were then aggregated together.  The overall result was a weighted co-

occurrence matrix. The weighted co-occurrence matrix represented the grouping 

structure over the ensemble in a manageable form. The structure in a weighted co-

occurrence matrix was clearer than the structure within a simple average co-occurrence 

matrix.  

 

The weighted co-occurrence matrix was partitioned using a novel modification to the 

traditional k-means algorithm. The modified k-means algorithm, similarity-based k-
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means (SBK), further enforced the predictability of the solution. The results of 

partitioning weighted co-occurrence matrices using the new algorithm were excellent. 

 

An estimate of the natural number of clusters could also be obtained using the modified 

k-means algorithm by considering the average predictive capability of the algorithm, for 

any number of clusters, k . The technique is based on figure of merit theory (Yeung, et 

al. 2001). The estimates tended to agree with the known number of clusters in the 

dataset.  

 

A valuable by-product of this weighted ensemble approach is a variable importance list. 

Each individual tree in the ensemble produced a variable importance list. Variables that 

were chosen to partition the observational units were given an associated importance 

based on their position within the tree. The importance list of each tree was multiplied 

by the tree’s weight and the lists were then aggregated. The overall list indicated which 

variables were the most important in determining the clusters.  The variables in the 

overall weighted list had high agreement with variables known to contain grouping 

structure.  

 

This thesis created an integrated approach for clustering large datasets. Not only were 

accurate clusters obtained, but also an estimate of the natural number of clusters in the 

dataset, and a variable importance measure. Therefore, the technique could be applied to 

any continuous dataset and a holistic cluster solution obtained.  

 

The developed techniques were applied in the later stages of this thesis to two DNA 

microarray datasets. The results were comparable to others in the literature. Known 
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subgroups were found accurately in one dataset. The variables selected as important 

have been identified in other studies as potential biomarkers. The estimates of the 

optimal number of clusters in the dataset agreed with the known number of groups. 

 

In conclusion, the technique of creating a weighted cluster ensemble suggested by this 

thesis involved: 

• Obtaining an ensemble of clustering solutions using multivariate regression 

trees. Trees are the ideal ensemble member because the accuracy of trees can 

easily be assessed unlike other clustering techniques.  

• Weighting each tree within the ensemble according to its predictive 

accuracy and viewing the weighted regression ensemble as a weighted 

cluster ensemble via the construction of an overall weighted co-occurrence 

matrix.  

• Splitting the weighted co-occurrence matrix using SBK. SBK accurately 

partitions the dataset by enforcing the predictability of the entire weighted co-

occurrence matrix.  

• Exploiting the cluster ensemble to assess the natural number of clusters and 

obtain variable importance lists. These estimates are accurate because the 

redundant models have been removed from the ensemble. 

Overall, the results illustrated the power of weighting models within a cluster ensemble.   
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FUTURE WORK 
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This section details some potential avenues of future research that have arisen as a result 

of this thesis.  

 

ASSESSING MODEL COMPLEXITY VIA THE ELBOW OF THE RELATIVE 

ERROR CURVE  

The manuscript “Auto-Associative Multivariate Regression Trees for Cluster Analysis” 

proposed the use of the elbow of the relative error curve to determine model complexity 

(similar to using the elbow of a principal components scree plot). In “Clustering Noisy 

Data in a Reduced Dimension Space via Multivariate Regression Trees”, the elbow was 

further examined. AAMRTs may offer an “inbuilt” estimator of cluster number: the 

elbow of the relative error curve. This procedure warrants further investigation.  

 

SEARCHING FOR DIFFERENT SHAPED CLUSTERS 

In this thesis, multivariate regression trees split a node to find two new nodes that are 

more homogeneous using the “sums of squares” criterion. It is likely that this splitting 

criterion facilitates finding clusters that are spherical. Using different splitting criteria, 

such as entropy or kurtosis, may engender the discovery of differently shaped clusters 

when clustering with regression trees. Whilst not investigated in this thesis, this notion 

would be a very interesting avenue to pursue. 

 

LOCAL DIMENSION REDUCTION 

Local dimension reduction (within each cluster) offers several advantages over global 

dimension reduction (Ghahramani and Hinton 1996). MRTPCs and MRTFSs use global 

dimension reduction: the entire dataset is initially reduced and the tree is grown on the 

reduced subset. It may be beneficial to perform local dimensionality reduction by 
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updating scores within each node. However, if the nodes became too small the updates 

would not be possible. This is indeed a potential avenue of future exploration. 

 

OPTIMAL RESPONSE FOR THE FACTOR SPACE 

As stated in “Clustering Noisy Data in a Reduced Dimension Space via Multivariate 

Regression Trees” the degree of dimension reduction directly impacts upon the tree’s 

ability to find the natural clusters. An avenue of investigation may develop a method to 

determine the optimal degree of dimension reduction. The technique could be based 

upon Ben-Hur and Guyon’s (2003) research.  

 

VARIABLE SELECTION APPROACH 

This paper treated the post processing of the regression ensemble as a standard 

regression problem. However, because one objective is finding a small set of models 

with non-zero weights, post processing may be treated as a variable selection technique. 

Applying variable selection techniques to find the optimal models of the ensemble 

could form the basis of future work. 

 

ASSESSING THE IMPORTANCE OF THE SIMPLE AVERAGE ENSEMBLE  

Some members of the statistical community may believe that parsimony of ensembles is 

irrelevant because the ensemble is essentially a black box, and reducing its size will not 

increase its interprebility. Furthermore, some may believe that by removing models 

from the ensemble, the ensemble’s stability and accuracy are destroyed. Whilst the 

results of “Parsimonious Ensembles for Regression” and “Post processing regression 

ensembles: imposing parsimony to improve predictions” show the opposite of the latter 

claim, more research regarding the large, simple average ensemble is warranted. One 
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way of assessing the importance of the simple average ensemble is including its 

predictions as a potential model for the post processing technique. If the post processing 

technique gave the simple average predictions a large weight, then removing too many 

models from the ensemble would possibly induce inferior results. 

 

MODEL SELECTION 

The manuscript “Post processing regression ensembles: imposing parsimony to improve 

predictions” shows that post processing an ensemble can not only produce more 

accurate ensembles, but also indicate which models (either simple linear regression or 

regression trees) are best suited to analyzing a particular dataset. With the addition of 

more model types such as neural networks to the ensemble, careful analysis of the post 

processed weights could indicate complicated trends within the data.  

 

RANDOM RESPONSE VARIABLES 

To introduce further diversity into the ensemble of trees for cluster analysis, each tree 

could be grown using random response variables. Each tree will be modelling different 

regions and this may induce the discovery of clusters that would otherwise be masked in 

the entire variable space. However, this idea would raise complexity issues and the post 

processing procedure would also need to be suitably modified. 

 

CLUSTERING VARIABLES 

The weighted cluster ensemble technique could easily be used to cluster together 

variables as well as the observational units. By transposing the matrix, the variables 

would be clustered together. However, if the number of variables is large, the final 

weighted co-occurrence matrix will be massive. Therefore, future work could involve 
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“approximate” co-occurrence matrices, which only consider nearest neighbors (Fred and 

Jain 2003).  

 

SBK CONVERGENCE 

SBK may benefit from an integrated genetic algorithm to induce convergence to a 

global optimum (Lu, Lu, Fotouhi, Deng and Brown 2004). This will avoid different 

solutions created by different starting partitions.  

 

DIFFERENT STANDARDIZATION  

The preprocessing steps used in “Clustering Microarrays with Predictive Weighted 

Ensembles” have been performed by other researchers analyzing the same datasets. 

However, it must be noted that superior results may be attainable if different 

standardization routines were incorporated. Discovering optimal standardization 

routines could be an avenue of future investigation. 

 

USING A REDUCED SUBSET OF VARIABLES AS INPUT TO A FURTHER 

ANALYSIS  

Traditional statistical procedures such as multiple linear regression may produce 

erroneous and unstable results when applied to very large datasets. These techniques 

may suffer from the collinearity between the variables or some variables may serve only 

to distort the true structure of the dataset by creating unnecessary and uninterpretable 

noise. Therefore, large datasets require a variable selection step before supervised 

and/or unsupervised statistical analyses are performed.  
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The variables designated as important by the weighted cluster ensemble could constitute 

the ‘selected variables’. Such a variable selection step would contrast to those more 

commonly used, which consider known classifications or simple statistics like variance. 

Rather, the selected variables of the weighted ensemble would define groups in the data. 

Future work could assess if using these selected variables as input to other statistical 

analyses results in increased accuracy.  
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SUPPORTING THEORY 
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This section describes in more detail the theory behind the weighted cluster ensemble 

technique. The nomenclature may not agree perfectly with the published manuscripts, 

however nomenclature across this entire section is consistent. As a general guide, 

vectors are lowercase italics with tildes, and matrices are uppercase italics and 

emboldened. 

 

1 REGRESSION TREES 

Regression trees were used extensively throughout this thesis. This section describes the 

multivariate regression tree methodology in more detail.  

1.1 Regression Tree Splitting 

Regression trees, a well known prediction method, recursively partition a dataset, so 

that a “tree” is obtained. In the beginning, all observational units are contained within 

one parent node. The node is partitioned in two, by the value of an explanatory variable, 

such that the two new nodes are as homogeneous as possible with respect to the 

response variables. This process continues, previously non-partitioned nodes are split in 

two, until the non-partitioned nodes are deemed sufficiently homogeneous.  

 

A regression tree partitions a node, t , into two on the basis of the value of an 

explanatory variable. For each independent explanatory variable, pX , p=1,...,P  all 

possible splits of the node, t , into Lt  and Rt  are considered. If the variable, pX , is 

continuous or ordinal, all splits of the following form are considered:  

 { }L i pt t, cx X= ∈ ≤
�

 (1.1) 

 { }R i pt t, cx X= ∈ >
�

 (1.2) 
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where c  is an element of all the values pX  can take. If the variable, pX , is categorical 

with F  categories, all F 12 1− −  subsets must be considered. For each variable, the split 

that maximizes R(t)∆ is calculated and saved. The value R(t)∆ is given by:    

 ( )L RR(t)=R(t) R(t ) R(t )∆ − +  (1.3) 
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where (t)y
�

is the mean of the response of observational units in node t ; i tx ∈
�

 indexes 

those observational units in node t ; and iy
�

 is the response vector of the thi  

observational unit. Then the variable with the maximum R(t)∆  is selected as the node’s 

optimal split, *
ts . 

 

At each stage, it must be decided which node to split. The optimal split, *s , is calculated 

for each node. Then, the best optimal split over the set of all nodes is chosen and the 

corresponding node is partitioned. 

 

At the point where non-partitioned nodes are deemed either small or homogeneous 

enough, the splitting stops and a node that has not been split in two is referred to as 

“terminal”. 
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1.2 Predicting an Observational Unit Using a Regression Tree 

To predict an observational unit, it is dropped down the tree, following the binary 

decision functions at each node, until it comes to rest in a terminal node. Each terminal 

node contains a predicted value for all observational units falling into that node. The 

predicted value for a terminal node, termt  is:  

 
i termterm

term term i
tt

1ˆ(t ) (t )=
n x

y y y
∈

= ∑
�

� � �
 (1.7) 

where the sum is over iy
�

 such that i termtx ∈
�

; and 
termtn is the total number of cases in the 

terminal node. By choosing the predicted value as the average response for all cases of 

i i( , )x y
� �

 falling into termt  the resubstitution estimate for the mean squared error of the 

predictor is minimized (Breiman, et al. 1984).  

1.3 Auto-Associative Multivariate Regression Trees 

The observational units in each of the terminal nodes of a regression tree are intuitively 

the clusters of the dataset. The clusters are found in the response space and the 

explanatory variables that form the tree are deemed to be important in determining the 

clusters. The position of an explanatory variable in the tree denotes its importance in 

determining these homogeneous subsets. The predicted value of a terminal node can 

represent the cluster. 

 

However multivariate regression trees can not be applied in the traditional clustering 

sense, because the trees require response variables and traditional unconstrained cluster 

analysis is performed on datasets consisting entirely of explanatory variables. To solve 

this conundrum, auto-associative multivariate regression trees (Questier, et al. 2005) 

were suggested. Auto-associative multivariate regression trees replicate the explanatory 
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variables as response variables. The regression tree is grown using identical response 

and explanatory variables, and in this way the clusters will be as homogeneous as 

possible with respect to all the explanatory variables. 

1.4 Multivariate Regression Trees with Principal Component Scores and 

Multivariate Regression Trees with Factor Scores  

To allow regression trees to be applied to large, noisy datasets, the dimension of the 

dataset must be reduced. This thesis uses principal components analysis and factor 

analysis as the methods of dimension reduction. The resulting principal component 

scores or factor scores are used as the response dataset. The original dataset is retained 

as the explanatory dataset.  

 

2 DIMENSION REDUCTION TECHNIQUES 

Principal components analysis and factor analysis were used in this thesis as dimension 

reduction techniques. The theory surrounding both techniques is expanded upon here. 

2.1 Principal Components Analysis 

Principal components analysis (Pearson 1901) linearly transforms the variables of a 

dataset to a set of uncorrelated variables called principal components and is a commonly 

used data reduction technique (Dunteman 1989). The full principal components analysis 

model is given by: 

 T xϕ =
��

Γ  (2.1) 

where x
�

 is a observational unit measured on P  variables; 
�
ϕ  is a vector of principal 

component scores; and here Γ  is obtained from the spectral decomposition of R , the 

correlation matrix.  
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Principal components analysis attempts to model the total variance of the original 

dataset via the uncorrelated principal components (Dunteman 1989). If the variables are 

standardized, principal components analysis finds the first principal component by 

maximizing the variance of the linear combination T
1 x
��

γ  given that T
1 1 1=
� �
γ γ  (Dunteman 

1989). The second principal component 2
�
γ  maximizes the variance of T

2 x
��

γ  given that 

T
2 2 1=
� �
γ γ  and T

1 2 0=
� �
γ γ . This reasoning can be continued for P

�
γ  principal components. 

Using these definitions, pγ
�

 is the thp  eigenvector of R : 

 p p pλγ γ=R
� �

 (2.2) 

where pλ  is the thp  eigenvalue (and also the variance of the thp  principal component). 

Obviously if Λ  is a diagonal matrix with the eigenvalues ordered along the diagonal 

from largest to smallest then =Γ ΓΛR  where the matrix Γ  is given by: 

 1 2 P . =  "
� � �

Γ γ γ γ  (2.3) 

 

The value p / Pλ  gives the proportion of variation explained by the thp  principal 

component (Dunteman 1989). The loadings vector p pλ γ
�

 gives the correlations of the 

variables with the principal components (Dunteman 1989). 

 

There are as many principal components as variables. However, often only the first q  

principal components (that is the largest q  eigenvalues and corresponding eigenvectors) 

are used to approximate the correlation matrix R  and indeed the entire dataset. The 

value q  can be deduced using a number of heuristics but most often a scree plot (Cattell 

1966) of the eigenvalues is obtained and the location of the “elbow” is considered to be 
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the optimal q . Observational units are represented in the q  dimensional subspace via 

the first q  principal component scores. Dimension reduction is achieved by discarding 

the latter P q−  principal components. 

2.2 Factor Analysis 

Factor analysis assumes that the observed variables can be generated as a linear 

combination of q  unobservable common factors plus a unique factor (Dunteman 1989).  

The factor analysis model is given by: 

 i i ix v= + +
� � ��

µ εF  (2.4) 

where 
�
µ  is a mean vector; F  is a P q×  matrix of factor loadings; iv

�
 is a q  

dimensional vector of hypothetical common factors; and i�
ε  is a unique factor. 

 

The difference between principal components analysis and factor analysis is obvious 

after comparing equations (2.1) and (2.4). Principal components analysis creates new 

variables as linear sums of the original variables and factor analysis models the original 

variables as linear sums of “hypothetical factors”.  

 

Because the factors are artificially created it is necessary to impose some assumptions 

so that the factor loadings can be estimated. Firstly, the iv
�

 are assumed to be 

independent and identically distributed as q( , )N 0
�
I , (where qI  is a q q×  identity 

matrix), independently of the errors i�
ε . Secondly, the errors are assumed to be 

independent and identically distributed as ( , )N 0
�
Ψ  where Ψ  is a diagonal matrix 

(McLachlan, et al. 2002). The diagonality of Ψ  implies that the variables are 

independent given the factors (Ghahramani and Hinton 1996). In other words, the 



 224

factors attempt to explain the correlations of the observed variables (McLachlan and 

Peel 2000).  Conditional on the iv
�

’s, the ix
�

’s are independently and identically 

distributed as i( , )N vµ + F
��
Ψ  (McLachlan and Peel 2000). Unconditionally, the 

standardized ix
�

’s are independently and identically distributed as ( ), TN +
�
µ ΨFF  

(McLachlan and Peel 2000) and therefore factor analysis models the correlation matrix 

as T +ΨFF .   

 

The decomposition of the correlation matrix shows how factor analysis partitions the 

total variance into “common” and “unique” variance. The matrix, F , is a matrix of 

factor loadings: the correlations of a variable with a common factor (Kline 1994). The 

diagonal matrix Ψ  contains the specific variance of each variable: the “unique” 

variance of each variable that is not associated with the other variables. 

 

This decomposition of the correlation matrix also finally elucidates the estimation of the 

factor loadings. If the matrix cR is defined as: c
T= − =ΨR R FF , then the matrix F  

can be obtained via methods such as maximum likelihood estimation or principal 

components analysis after the estimation of Ψ  (Dunteman 1989).  

 

Substantial dimension reduction can be obtained using factor analysis if q P� . 

Observational units can be represented in the q  dimensional factor space by the 

estimated values of the hypothetical common factors, called factor scores. The factor 

scores can be obtained easily using regression analysis. 
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3 CREATING INDIVIDUAL MODELS FOR ENSEMBLES 

Models were individualized throughout this thesis in a variety of ways. This section 

details the sampling strategies that were employed to create these models. 

3.1 Bootstrapping and Random Features 

Assume n  observational units are sampled with replacement from a dataset. The 

obtained dataset is called a ‘bootstrap dataset’. Usually the sampling is repeated B  

times to obtain B  bootstrap datasets. The bootstrap datasets can be used to assess the 

accuracy of a parameter estimate or prediction. Bootstrapping also allows many 

different models to be grown on the same dataset, and these models can be combined 

into an ensemble.  

 

Another sampling strategy that can be used to create models suitable for an ensemble is 

“random features”. Here, random subsets of the variables are selected B  times. These 

B  datasets induce B  individualized models that are combined into an ensemble.  

3.2 Bagging 

Combining models into an ensemble given by B  bootstrap datasets is commonly 

referred to as ‘bagging’ (bootstrap aggregating). Bagging is known to improve 

parameter estimates and predictions, and reduce overall variance (Hastie, et al. 2001). 

Bagging regression models commonly involves taking the average prediction of an 

observational unit given by a set of models grown on separate bootstrap datasets. 

Mathematically, this is given by (Hastie, et al. 2001): 

 
B

*b
bag

b 1

ˆ ˆ( ) 1/ B ( )f x f x
=

= ∑� �
 (3.1) 
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where B  is the number of bootstrap datasets; *bˆ ( )f x
�

 is the prediction of observational 

unit x
�

 made by the model grown on the thb  bootstrap dataset. Bagging classification 

models commonly involves taking the majority vote over the classifications given by 

the models grown on B  bootstrap datasets. 

3.3 Random Forests 

A well known bagging algorithm is random forests (Breiman 2001). Random forests 

combine bagging with randomization. A bootstrap sample is taken, and a tree is grown 

on the bootstrap sample. The number of variables, m , used to determine the split at a 

node is pre-specified to be much smaller than the number available. At each node, m  

variables are randomly selected and the best split is found amongst these.  

 

4 BAYESIAN LINEAR REGRESSION  

Bayesian linear regression was used in this thesis to calculate the coefficients for a 

weighted ensemble of regression models. In this section Bayesian theory is briefly 

introduced and then Bayesian linear regression is further explored. Gelman, Carlin, 

Stern and Rubin (1995) was used extensively as a reference source throughout this 

section.  

 

Bayesian theory incorporates exogenous knowledge (a “prior” distribution) to estimate 

the posterior distribution of a parameter. The prior distribution may incorporate known 

or assumed information about the parameter before consideration of the data. The prior 

distribution of the parameter is transformed to the posterior distribution by the data via 

the model likelihood. The extent to which the posterior distribution resembles the prior 
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distribution is inversely proportional to the amount of data available. From the posterior 

distribution an estimate of the parameter can be obtained.  

 

Mathematically, the posterior distribution is given by Bayes’ Theorem: 

 ( | ) ( | ) ( )p y p y pθ θ θ∝
� � �� �

 (4.1) 

where ( )p θ
�

 is the prior probability distribution of the parameter; ( | )p y θ
��

 is the 

sampling distribution (likelihood function) dependent on the parameter θ
�

; and ( | )p yθ
� �

 

is the posterior probability distribution of the parameter given the observed data. The ‘|’ 

notation indicates the dependence of the posterior distribution on the data. 

 

Thus, the problem of estimating a parameter reduces to  

1) Determining a suitable prior probability distribution of the parameter (section 

4.1) 

2) Calculating the likelihood function of the data (section 4.2) 

3) Determining the posterior distribution of the parameter (section 4.3) 

4) Sampling from the (approximated) posterior distribution (section 4.4) 

4.1 Determining a Suitable Prior Distribution 

The prior distribution is either an “informative” or “non-informative” distribution 

dependent on the information available to the analyst. If there is no prior knowledge or 

information pertaining to the parameter on hand, a “non-informative” prior distribution 

is recommended. A “non-informative” prior is usually uniform across the parameter 

space. If information pertaining to the parameter is available, it can easily be 

incorporated into an “informative prior” such as a normal prior centered at the assumed 
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value of the parameter and a variance inversely proportional to the certainty of the prior 

estimate of the parameter. 

 

A prior distribution will also be either “conjugate” or “non-conjugate”. A “conjugate 

prior” implies the posterior distribution of the parameter is of the same class as the prior 

distribution. It is often advantageous to choose a conjugate prior, for it engenders 

computational convenience and facilitates interpretation of posterior distributions. 

However, there are situations which necessitate the use of a non-conjugate prior. 

4.2 Calculating the Likelihood Function of the Data 

The sampling distribution, ( | )p y θ
��

 in (4.1) is given by: 

 
n

i
i=1

( | ) ( | )p y f y=∏� ��
θ θ  (4.2) 

where i( | )f y
�
θ  is the probability density function of iy  given the parameter vector θ

�
.  

 

If we regard the sampling distribution ( | )p y θ
��

 in (4.2) as a function of θ
�

 for a fixed y
�

 

rather than a function of y
�

 for fixed θ
�

 we refer to it as a “likelihood function”, ( | )l yθ
� �

: 

 
n

i
i 1

( | ) ( | ) ( | ).l y p y f yθ θ θ
=

= =∏� � �� �
 (4.3) 

Because of the constant of proportionality in (4.1), the resultant posterior distribution is 

not changed by multiplication of the likelihood by 

(a) a constant 

(b) any function of y
�

 only. 

This detail is often utilised to simplify the calculation of the posterior distribution. 
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4.3 Determining the Posterior Distribution of the Parameter 

The joint probability distribution of θ
�

 and y
�

 is given by: 

 ( , ) ( ) ( | )p y p p yθ θ θ=
� � �� �

 (4.4) 

where ( )p θ
�

 is the prior distribution of θ
�

; and ( | )p y θ
��

 is the sampling distribution of 

θ
�

. Using Bayes’ Rule, we obtain the posterior density ( | )p yθ
� �

: 

 
( , ) ( ) ( | )

( | )
( ) ( )

p y p p y
p y

p y p y
θ θ θ

θ = =� � �� �� �
� �

 (4.5) 

where ( ) ( ) ( | )p y p p y
θ

θ θ=∑
�

� �� �
 for discrete θ

�
; and ( ) ( ) ( | )p y p p y d

θ

θ θ θ= ∫
�

� � �� �
 for 

continuous θ
�

. Because ( )p y
�

 is independent of θ
�

 and can therefore be considered 

constant for fixed y
�

, we arrive at (4.1). Substituting (4.3), we arrive at the expression 

for the posterior distribution: 

 
n

i
i 1

( | ) ( ) ( | ) ( ) ( | ).p y p l y p f yθ θ θ θ θ
=

∝ = ∏� � � � �� �
 (4.6) 

4.4 Sampling from the (Approximated) Posterior Distribution 

An estimate of the parameters can be obtained from the posterior distribution via 

sampling. If the posterior distribution is of a known family, drawing a sample is 

straightforward. This occurs when a conjugate prior has been used. More complicated 

posterior densities arise in multiparameter problems where the density may involve a 

product of two families. In this instance separating the posterior probability distribution 

using basic probability theory facilitates sampling. The joint posterior distribution is 

separated into the product of marginal and conditional densities: 

 κ κ κ( | ) ( | , ) ( | )p y p y p y− −=
� � � �� � �
θ θ θ θ  (4.7) 
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where κ κ( | , )p y−� � �
θ θ  is the conditional distribution of κ�

θ  given κ−�
θ ; κ( | )p yθ−� �

 is the 

marginal density of κ−�
θ , all parameters not considered in κ�

θ , calculated by averaging 

over κ�
θ : 

 
κ

κ κ( | ) ( | ) .p y p y d
θ

θ θ θ− = ∫
�

� � �� �
 (4.8) 

 

To sample from the posterior, a draw is first taken from κ( | )p y−� �
θ , κ−̂�

θ . The conditional 

distribution κ κ( | , )p y−� � �
θ θ  is then given by κ κ

ˆ( | , )p y−� � �
θ θ , and a draw is taken from this 

conditional distribution to give κ̂�
θ . This technique of separating the posterior is suitable 

when κ κ( | , )p y−� � �
θ θ  and κ( | )p y−� �

θ  are easily recognized. If they are not easily 

identified, techniques exist to approximate κ κ( | , )p y−� � �
θ θ  and κ( | )p y−� �

θ  and indeed the 

entire joint posterior distribution. 

 

When the parameter vector θ
�

 is very large, simulation techniques are also available. 

Markov Chain simulations are suited for high dimensional problems. The two main 

types of Markov Chain simulations are the generalized Metropolis algorithm and the 

Gibbs sampler. The Gibbs sampler approach was used extensively in this thesis and it is 

described in more detail below.  

4.4.1 Gibbs Sampler 

The parameter vector θ
�

, is subdivided into 1 2 Κ( , ,......, )=
� � � �
θ θ θ θ  such that the conditional 

distributions κ 1 κ 1 κ 1 Κ( | ,..., , ,..., , )p yθ θ θ θ θ− +� � � � � �
 are easily recognized or approximated for 

all κ�
θ . Initial values are assigned to each κ ,κ 1,...,Κ=

�
θ , to give (0) (0) (0)

1 Κ( ,..., )θ θ θ=
� � �

. 

The algorithm then iterates through each κ�
θ  updating it with a draw from its conditional 
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distribution given the current estimates of -κθ�
. That is, (ζ)

κ�
θ  is a draw from 

(ζ) (ζ) (ζ) (ζ 1) (ζ 1)
κ 1 2 κ 1 κ 1 Κ( | , ,..., , ,..., )p − −

− +� � � � � �
θ θ θ θ θ θ . Each full iteration gives values for all parameters, 

(ζ)

�
θ , where (ζ) (ζ) (ζ)

1 K( ,..., )=
� � �
θ θ θ . After a large number of iterations called a “burn-in”, 

(ζ)

�
θ  converges to a draw from the joint posterior distribution. It is possible to measure 

convergence for the chain, see for example Gelman, et al. (1995). 

4.4.2 Using Samples to Summarize the Posterior Density Function 

Once samples of the posterior distribution have been obtained, they may be used to 

summarize the posterior distribution. For example, the posterior mean is easily 

calculated once sufficient samples have been drawn.  

4.5 Using Bayesian Linear Regression to Calculate Weight Coefficients 

Bayesian theory can be extended to ordinary linear regression by imposing prior 

distributions on the parameters of the regression model, namely the regression 

coefficients, β
�

 and the variance of the error terms, 2σ . The choice of prior distribution 

influences the final regression coefficients selected. For example, a non-informative 

prior will induce a multivariate normal conditional posterior for the regression 

coefficients, with mean equal to the classical least squares estimates. If different priors 

are imposed, Bayesian linear regression will suggest different regression coefficients.  

 

In this thesis, Bayesian linear regression theory was used to obtain the weight 

coefficients for the ensemble: the traditional data matrix, X , was replaced by the 

predictions matrix Ŷ 1; and the traditional regression coefficients were replaced by the 

weight coefficients, ω
�

. The vector y
�

 is the observed univariate response vector. Four 

                                                 
1 The predictions matrix is an n*M  matrix with each column containing the predictions of the n  
observational units for a single model.  
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different prior distributions were used to obtain the weight coefficients. All necessary 

distributions are described below and the resulting posterior distributions are also 

derived. 

4.5.1 Distributions 

4.5.1.1 Multivariate Normal Distribution 

The density function of a Κ dimensional parameter vector θ
�

 arising from a multivariate 

normal distribution is given by: 

 ( )Κ / 2 1/ 2 1

( , )

( ) (2 ) | | exp 1 2( ) ( )Tp

θ Ν µ

θ π θ µ θ µ

θ

− − −= − − −

−∞ < < ∞

∼
� �

� � �� �
�

Σ

Σ Σ  (4.9) 

where Σ  is a symmetric, positive definite Κ Κ×  covariance matrix; and µ
�

 is a Κ 1×  

vector. 

4.5.1.2 Inverse Gamma Distribution 

The density function of a parameter θ  arising from an inverse gamma distribution is 

given by: 

 ( )α (α 1)

θ (α ,β)
(θ) β (α) θ exp β θ

θ 0.

Inv gamma
p Γ − +

−

= −

>

∼
 (4.10) 

4.5.1.3 Multivariate T Distribution  

The probability density function of a Κ  dimensional parameter vector θ
�

, arising from a 

multivariate t distribution is given by: 

 ( ) ( )
ν

(ν Κ) 2
1/2 1

Κ 2 Κ 2

( , )

((ν Κ) / 2) 1( ) | | 1
(ν / 2)ν ν

T

t

p

θ µ

Γθ θ µ θ µ
Γ π

θ

− +
− −+  = + − − 

 
−∞ < <∞

∼
� �

� � �� �

�

Σ

Σ Σ  (4.11) 
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where ν  is the degrees of freedom, ν 0> ; µ
�

 is a Κ 1×  location vector; and Σ  is a 

symmetric Κ Κ×  positive definite scale matrix. As ν  increases, the multivariate t 

distribution approaches the normal distribution. 

4.5.1.4 Weibull Distribution 

The density function of a parameter θ , arising from a Weibull distribution is given by 

 ( )δ 1 δ

θ (δ,υ)

(θ) δυθ exp υθ

θ 0.

Weib

p −= −

>

∼

 (4.12) 

4.5.1.5 Double Exponential Distribution 

The probability density function of a parameter θ , arising from a double exponential 

distribution is given by: 

 

θ (µ, τ)
τ(θ) exp( τ | θ µ |)
2

θ .

dexp

p = − −

−∞ < < ∞

∼

 (4.13) 

4.5.2 Posterior Distributions 

4.5.2.1 Posterior Distribution - Multivariate Normal Prior 

The prior of the weight coefficients of the ensemble is taken to be multivariate normal: 

 0 0( ) ( , ).p ω Ν µ∼
� �

Σ  (4.14) 

The hyperparameters, 0µ
�

 and 0Σ , are specified a priori. The vector, 0µ
�

 is specified as a 

vector of zeros, reflecting that prior to analysis all regression coefficients (models) are 

expected to be non-informative. The matrix 0Σ , varies according to the certainty that 

the weight coefficients are all equal to zero. 
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The prior distribution of the error variance, 2σ , is taken to be inverse gamma. The 

inverse gamma distribution for the error variance is used in conjunction with all the 

different priors on the weight coefficients. The parameter, 2σ , is not of interest, and 

therefore the inverse-gamma prior is used throughout:  

 2(σ ) (α,β).p Inv gamma−∼  (4.15) 

Values of the hyperparameters α,β , are dictated by the data.  

 

The combination of the multivariate normal prior on the ω
�

 and the inverse gamma for 

the error variance is considered the conjugate prior for regression analysis. The joint 

prior is given by: 

 
2 2 2

2

( ,σ ) ( | σ ) (σ )

              ( ) (σ ).

p p p

p p

ω ω

ω

=

=
� �

�

 (4.16) 

Substituting (4.14),(4.15),(4.9) and (4.10), the prior becomes: 

( ) ( )2 Κ/2 1/2 1 α 2 (α 1) 2
0 0 0 0( ,σ ) (2 ) | | exp 1 2( ) ( ) β (α)(σ ) exp β σ .Tp ω π ω µ ω µ Γ− − − − += − − − −

� � �� �
Σ Σ  (4.17) 

 

The posterior of the parameters is:  

 2 2 2 2( ,σ | ) ( | ,σ ) ( | σ ) (σ ).p y p y p pω ω ω=
� � �� �

 (4.18) 

Substituting (4.17) and the model likelihood: 

 ( )2 n 2 2 n 2 2 1 ˆ ˆ( ,σ | ) (2 ) (σ ) exp (2σ ) ( ) ( )Tl y y y− − −= − − −
� � �� � �
ω π ω ωY Y  (4.19) 

(4.18) becomes: 

 

( )
( )
( )

2 n 2 2 n 2 2 1

Κ / 2 1/ 2 1
0 0 0 0

α 2 (α 1) 2

ˆ ˆ( ,σ | ) (2 ) (σ ) exp (2σ ) ( ) ( )

                      (2 ) | | exp 1 2( ) ( )

                      β (α) (σ ) exp β σ .

T

T

p y y yω π ω ω

π ω µ ω µ

Γ

− − −

− − −

− +

= − − − ×

− − − ×

−

Y Y
� � �� � �

� �� �
Σ Σ  (4.20) 

Rearranging gives:  
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( )
( ) ( )

( )
( )

2 2 n/2 (α 1) 2

2 1 1
0

2 2 n/2 (α 1) 2

2 1 1
0

( ,σ | ) (σ ) exp β σ

ˆ ˆ ˆ                      exp (2σ ) ( 2 ) exp 1 2( )

( ,σ | ) (σ ) exp β σ

ˆ ˆ                      exp 1 2 (σ ) 2

T T T T T T

T T T

p y

y y y

p y

ω

ω ω ω ω ω

ω

ω ω ω

− − +

− −

− − +

− −

∝ − ×

− − + −

∝ − ×

− + −

Y Y Y

Y Y

� �

� � � � �� � �

� �

� � �

Σ

Σ( )( ) ( )2 1 2 1ˆ(σ ) exp (2σ ) .T Ty y y− −−Y
� � �

 (4.21) 

 

Conditioning on 2σ , (4.21) shows the conditional distribution of the weight coefficients 

is normal: 

 ( ) ( )( )1 12 2 1 1 2 1 2 1 1
0 0

ˆ ˆ ˆ ˆ ˆ( | σ , ) (σ ) (σ ) , (σ ) .T T Tp y yω Ν
− −

− − − − −+ +Y Y Y Y Y∼
� � �

Σ Σ  (4.22) 

The prior distribution, 2( | σ )p
�
ω  is independent of 2σ , however in the conditional 

posterior distribution 2( | σ )p y
� �
ω  is dependent on 2σ . This implies that the prior is semi-

conjugate. 

 

The multivariate normal prior with 0 0µ =
��

 will induce estimates of the regression 

coefficients similar to the ordinary least squares estimates for large prior variance. 

However, as we decrease the prior variance, greater emphasis is placed on the prior 

belief than the data. 

4.5.2.2 Posterior Distribution - Multivariate T Prior 

The prior on the weight coefficients is taken to be multivariate t: 

 ν 0 0( ) ( , ).p tω µ∼
� �

Σ  (4.23) 

The hyperparameters 0 0,
�
µ Σ  are specified to reflect prior belief regarding the weight 

coefficients. The vector, 0µ
�

 is specified as a vector of zeros, reflecting that prior to 

analysis all regression coefficients (models) are expected to be non-informative. The 

matrix 0Σ , varies according to the certainty that the weight coefficients are all equal to 
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zero. The wider tails of a t distribution allow larger weight coefficients than the normal 

distribution. 

 

The prior on the error variance 2σ , is taken to be inverse gamma, with hyperparameters 

dictated by the data. This combination of priors is not conjugate. The joint prior is given 

by: 

( ) ( ) ( )

2 2

(ν Κ) 2
2 1/2 1 α 2 (α 1) 2

0 0 0 0Κ2 Κ2

( ,σ ) ( ) (σ )

((ν Κ)/2) 1( ,σ ) | | 1 β (α)(σ ) exp β (σ ) .
(ν/2)ν ν

T

p p p

p

ω ω

Γω ω µ ω µ Γ
Γ π

− +
− − − +

=

+  = + − − − 
 

� �

� � �� �
Σ Σ

 (4.24) 

 

The posterior of the regression coefficients (substituting (4.19) for the model likelihood) 

is given by: 

( )

( ) ( )

2 2 2

2 n 2 2 n 2 2 1

(ν Κ) 2
1/ 2 1

0 0 0 0Κ 2 Κ 2

α

( ,σ | ) ( ,σ | ) ( ,σ )

ˆ ˆ( ,σ | ) (2 ) (σ ) exp (2σ ) ( ) ( )

((ν Κ) / 2) 1                      | | 1
(ν / 2)ν ν

                       β

T

T

p y l y p

p y y y

ω ω ω

ω π ω ω

Γ ω µ ω µ
Γ π

− − −

− +
− −

=

= − − − ×

+  + − − × 
 

Y Y
� � �� �

� � �� � �

� �� �
Σ Σ

( )
( ) ( )( )

( ) ( )

2 (α 1) 2

2 2 n 2 (α 1) 2 2 1

(ν Κ) 2
1

0 0 0

(α)(σ ) exp β (σ )

ˆ ˆ ˆ( ,σ | ) (σ ) exp β (σ ) exp (2σ ) 2

1                      1 .
ν

T T T T T

T

p y y y y

Γ

ω ω ω ω

ω µ ω µ

− +

− − + −

− +
−

−

∝ − − − + ×

 + − − 
 

Y Y Y
� � � �� � � �

� �� �
Σ

 (4.25) 

The joint posterior probability density function is not of known form, but integrates to a 

finite value. The conditional distribution of the vector of weight coefficients is: 

 ( )( )
(ν Κ ) 21

2 2 1 0ˆ ˆ ˆ( | σ , ) exp (2σ ) 2 1 .
ν

T
T T T Tp y y ω ωω ω ω ω

− +−
−  

∝ − − + 
 

Y Y Y � �� � � �� �
Σ  (4.26) 

4.5.2.3 Posterior Distribution - Weibull Prior 

The prior of each weight coefficient is assumed to be a Weibull distribution 
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 κ κ κ( ) (δ ,υ ).p Weibω ∼  (4.27) 

The Weibull prior ensures all regression coefficients are greater than zero. The value of 

κδ  is always 2 . The hyperparameter κυ  is varied according to the prior belief that the 

regression coefficient is equal to zero. 

 

The prior distribution for the error variance is again an inverse gamma distribution, with 

hyperparameters dictated by the data. The joint prior is then given by: 

 ( ) ( )

( )

κ κ

2 2

Κ
2 2

κ
κ 1

Κ
δ 1 δ2 α 2 (α 1) 2

κ κ κ κ κ
κ 1

ΚΚ
2 2 (α 1) 2 2

κ κ κ
κ 1 κ 1

( ,σ ) ( ) (σ )

( ,σ ) (σ ) ( )

( ,σ ) β (α) (σ ) exp β σ δ υ exp υ

( ,σ ) (σ ) exp β σ exp υ .

p p p

p p p

p

p

ω ω

ω ω

ω Γ ω ω

ω ω ω

=

−− +

=

− +

= =

=

=

= − −

 
∝ − − 

 

∏

∏

∑ ∏

� �

�

�

�

 (4.28) 

 

The joint posterior distribution is given by: 

 ( )

( )

2 2 2

Κ
2 2 n 2 (α 1) 2

κ
κ 1

Κ
2 1 2

κ κ
κ 1

( ,σ | ) ( ,σ | ) ( ,σ )

( ,σ | ) (σ ) exp β σ

ˆ ˆ ˆ                      exp (2σ ) 2 υ .T T T T T

p y l y p

p y

y y y

ω ω ω

ω ω

ω ω ω ω

− − +

=

−

=

=

∝ − ×

 
− − + − 
 

∏

∑Y Y Y

� � �� �

� �

� � � � � �

 (4.29) 

The posterior is not recognizable as coming from a known distribution family. 

However, the posterior distribution integrates to a finite positive value.  

 

The conditional posterior distribution for a single regression coefficient (used in the 

Gibb’s sampler) is:  

( )2 2 1 2
κ κ κ κ κ κ κ κ κ κκ,κ κ, κ κ

ˆ ˆ ˆ ˆ ˆ( | ,σ , ) exp (2σ ) 2 2 .T T Tp y yω ω ω ω ω ω ω ω υω−
− −−

      ∝ − + − −       
Y Y Y Y Y

� �� �
 (4.30) 
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4.5.2.4 Posterior Distribution - Double Exponential Prior (Lasso) 

The prior for each regression coefficient is assumed to be an independent double 

exponential distribution with hyperparameters κ κτ ,µ : 

 κ κ κ( ) (τ ,µ ).p dexpω ∼  (4.31) 

The hyperparameters κµ  are specified a priori as zero. The prior probability distribution 

of a single regression coefficient is then peaked at zero. With this prior, the lasso 

regularized regression coefficients are easily derived. The hyperparameter κτ  reflects 

the certainty that a weight coefficient is equal to zero. All κτ  are identical. 

 

The error variance prior is inverse gamma with hyperparameters determined by the data. 

The joint prior probability density function is not conjugate and is given by: 

 ( )

( )

2 2

Κ
2 2

κ
κ 1

Κ
2 α 2 (α 1) 2 κ

κ κ κ
κ 1

Κ
2 2 (α 1) 2

κ
κ 1

( ,σ ) ( ) (σ )

( ,σ ) (σ ) ( )

τ( ,σ ) β (α) (σ ) exp β σ exp( τ | µ |)
2

( ,σ ) (σ ) exp β σ exp τ | | .

p p p

p p p

p

p

ω ω

ω ω

ω Γ ω

ω ω

=

− +

=

− +

=

=

=

= − − −

 
∝ − − 

 

∏

∏

∑

� �

�

�

�

 (4.32) 

 

The joint posterior distribution is given by: 

( ) ( )

2 2 2

Κ
2 2 2

κ
κ 1

Κ
2 2 (α 1) 2 n 2 2 n 2 2 1

κ
κ 1

( ,σ | ) ( ,σ ) ( ,σ | )

( ,σ | ) ( ,σ | ) (σ ) ( )

ˆ ˆ( ,σ | ) (σ ) exp β σ exp τ | | (2 ) (σ ) exp (2σ ) ( ) ( ) .T

p y p l y

p y l y p p

p y y y

ω ω ω

ω ω ω

ω ω π ω ω

=

− + − − −

=

=

=

 
∝ − − − − − 

 

∏

∑ Y Y

� � �� �

� �� �

� � �� � �

 (4.33) 

The joint posterior distribution, although not of a known type integrates to a finite 

value.  
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The conditional distribution of the vector of regression coefficients given 2σ  is: 

 

Κ
2 2 1

κ
κ 1

Κ
2 1

κ
κ 1

ˆ ˆ( | σ , ) exp (2σ ) ( ) ( ) τ | |

ˆ ˆ ˆ                  exp (2σ ) ( 2 ) τ | | .

T

T T T T

p y y y

y

ω ω ω ω

ω ω ω ω

−

=

−

=

 
∝ − − − − 

 
 

∝ − − − 
 

∑

∑

Y Y

Y Y Y

� � �� � �

� � � �

 (4.34) 

The conditional distribution of a single regression coefficient (used by the Gibb’s 

sampler) is given by: 

( )2 2 1
κ κ κ κ κ κ κ κκ,κ κ, κ κ

ˆ ˆ ˆ ˆ ˆ( | ,σ , ) exp (2σ ) 2 2 τ | | .T T Tp y yω ω ω ω ω ω ω ω−
− −−

      ∝ − + − −       
Y Y Y Y Y

� �� �
 (4.35) 

 

By consideration of (4.34) it can easily be seen that using independent double 

exponential prior distributions for each of the weight coefficients is analogous to the 

lasso (Tibshirani 1996) regularized regression: 

 
2n M M

i m i,m m
i 1 m 1 m 1

ˆˆ arg min λ | |.y Yω ω ω
= = =

 
= − + 

 
∑ ∑ ∑�

 (4.36) 

 

5 EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms are optimization techniques that mimic the Darwin theory of 

natural selection. This thesis employs two types of evolutionary algorithms: genetic 

algorithms and evolution strategies. The main conceptual difference between genetic 

algorithms and evolution strategies is that the chromosomes of genetic algorithms 

contain 0 ' s  and1's , and the chromosomes of evolution strategies can contain any real 

number.  

 

Initially, these algorithms randomly suggest solutions to an optimization problem. Each 

solution is encoded via a chromosome and the set of all chromosomes at any iteration is 
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referred to as the population. Subject to some assessment of fitness, the best 

chromosomes of the thζ  generation reproduce to create “offspring”. The offspring are 

mutated with some probability and replace the parents to give the thζ 1+  generation. 

Over time (iterations), all chromosomes approach the best (local) solution and will 

become virtually identical. At this time, the algorithm is said to have converged, and the 

optimal solution to the optimization problem (encoded via a chromosome) is obtained.  

 

From an optimization viewpoint, these algorithms can be considered an intelligent 

random search of the solution space. The randomised operators within genetic 

algorithms and evolution strategies imply these algorithms are more robust than other 

optimization techniques. The algorithms eventually converge to a solution, sometimes 

local, that minimizes/maximizes a loss function. 

 

The stepwise procedure for these algorithms is: 

1) Randomly create a population of chromosomes to give the initial generation 

2) Then iterate: 

a) Calculate the fitness of each chromosome in the current generation. 

b) Breed pairs of chromosomes according to fitness to give offspring 

chromosomes. 

c) Mutate offspring with some probability. 

d) Replace chromosomes of current generation with offspring with some 

probability. 

This iterative process is described in more detail below. Davis (1991) was used 

extensively as a reference source throughout this section.  
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5.1 Calculating Fitness Values 

The fitness function is derived to ascertain which chromosomes provide the best 

solution to the optimization problem. The higher the fitness value, the better the 

chromosome solves the optimization problem.  

5.1.1 Fitness Scaling 

Fitness scaling is used to prevent premature convergence during the early iterations and 

to engender convergence to optimal solutions during the later iterations. In the early 

stages of iteration there may be one outstanding individual. If the fitness values are 

unscaled, the outstanding individual will contribute many offspring to the next 

generation, thereby increasing convergence to a suboptimal solution. In the later 

iterations, there may be little difference between the fitness values of the best and worst 

individuals in the generation. If the fitness values are left unscaled, the probability of a 

bad chromosome producing offspring for the next generation is only fractionally less 

than that of the probability of the best chromosome, and it is unlikely that the algorithm 

will converge. There are various methods of scaling fitness values, the evolution 

strategy of this thesis simply ranked the fitness values. 

5.2 Breeding Chromosomes According to Fitness 

Two chromosomes from the current population are randomly selected with the 

probability of any chromosome being selected equal to its (scaled) fitness value divided 

by the sum of all (scaled) fitness values. This is known as roulette wheel selection 

however other selection techniques exist. These two chromosomes (parents) reproduce 

to create two offspring via a process referred to as “crossover” (genetic algorithms) and 

“recombination” (evolution strategies). The selection and reproduction process is 

repeated until enough offspring are produced to replace the entire generation.  
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5.2.1 Crossover - Genetic Algorithm 

The two chromosomes (parents) selected via roulette wheel selection reproduce to 

create two offspring via a process referred to as “crossover”. Crossover entails a point 

between 1:Ρ (where Ρ  is the length of the chromosome) being randomly selected. After 

this point, the elements of the parents are interchanged to give the two offspring. This is 

known as one point crossover: other crossover definitions exist. The crossover operator 

occurs with some probability, CROSSη .  If crossover does not occur, the offspring are 

identical to the parents.  

5.2.2 Recombination - Evolution Strategy 

The two parent chromosomes in an evolution strategy reproduce to create two offspring 

chromosomes via a process called “recombination”. The elements of the offspring 

chromosome, O�
ω  are given as a mixture of the two parent chromosomes, P1�

ω  and P2�
ω : 

 O P1 P2α (1 α)= + −
� � �
ω ω ω  (5.1) 

where O�
ω  is the offspring chromosome vector; P1�

ω  is the first parent chromosome 

vector; P2�
ω  is the second parent chromosome vector; and α [ 0.25,1.25]∈ −  drawn 

randomly. For each pair of parent chromosomes, two values of α  are randomly drawn 

from the set to give two offspring chromosomes. This process is called line 

recombination. Other recombination techniques exist. 

5.3 Mutation  

The mutation operator reintroduces diversity into the population and can be fairly 

arbitrary. 
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5.3.1 Mutation - Genetic Algorithm 

Generally, the mutation operator of a genetic algorithm permutes each element (bit) of 

any offspring chromosome with small probability MUTη . If the operator mutates the bit, 

its value is flipped to the opposite of its current value. 

5.3.2 Mutation - Evolution Strategy 

The mutation operator of an evolution strategy is more complicated than that of a 

genetic algorithm. For each chromosome one bit, ρbit  is randomly chosen to be 

mutated. The bit is then replaced by a mutated value, MUT
ρbit : 

 MUT
ρ ρ ρ ρ ρbit bit h g e= + × ×  (5.2) 

where ρh { 1,1}∈ −  chosen randomly; ρ ρg 0.1 domain= × ; ρ ρu f
ρe 2− ×= ; ρu [0,1]∈  chosen 

randomly; and f {4,5,..., 20}∈  chosen randomly. 

 

The parameter f  indirectly influences the size of the mutation. This mutation operator 

produces small mutations with a high probability and large mutations with a low 

probability.  

5.4 Creation of a New Generation 

After a complete set of offspring have been produced, it must be determined which 

individuals (from the current generation and the set of offspring) will form the new 

generation. This decision may be made on the basis of fitness values (which must also 

be calculated for the offspring). Another possibility is to replace the entire current 

generation by the set of offspring. This is known as generational replacement. 

Generational replacement is advantageous because it is simple and it avoids premature 

convergence of the chromosomes. 
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5.5 Using Genetic Algorithms and Evolution Strategies to Calculate 

Weight Coefficients 

This section will explain genetic algorithms and evolution strategies in the context of 

calculating optimal weight coefficients. 

5.5.1 Genetic Algorithm Approach 

A genetic algorithm can be used to calculate which models are the most relevant in the 

ensemble. Each chromosome represents important models by a '1'  in the corresponding 

bit position and superfluous models with a '0 '  in the corresponding bit position.  

 

The initial generation is randomly generated by setting bits to zero with high probability 

and bits to one with low probability. This reflects the notion that it is likely most models 

contain no relevant information.  

 

To calculate the fitness values of each chromosome, the set of models deemed to have a 

non-zero weight coefficient by the chromosome ( '1'  in corresponding bit position) are 

parsed to another method (for example Bayesian linear regression). The “shadow 

method” calculates the weights for these models only, and parses this information back 

to the fitness evaluation module of the genetic algorithm. The fitness of each 

chromosome is given by the inverse of the residual sums of squares, jRSS : 

 ( ) ( )j j j j j
1 ˆ ˆRSS
n

T
y yω ω= − −* *Y Y

� �� �
 (5.3) 

where j�
ω  is the vector of weights calculated by the shadow method for chromosome j ; 

and *
jŶ  is the set of models chromosome j  indicates to have non-zero coefficients.  
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Therefore a chromosome with 1' s  in the bit positions of the most important models will 

have a high fitness value and a chromosome with 1's  in the bit positions of models with 

small predictive capabilities will have a low fitness value.  

 

Based on the fitness values, chromosomes are selected as parents and reproduce via 

crossover to produce offspring. Chromosomes which indicate the truly important 

models have a high chance of producing offspring. The offspring are mutated by setting 

bits with a corresponding weight of less than 0.05  to '0 ' . This enforces the expectation 

that only models with high weights are relevant. 

 

The current generation is then replaced by the offspring generation (generational 

replacement) and the process iterates until the chromosomes converge. The genetic 

algorithm only allows a small number of models to have non-zero weight coefficients 

and will eventually converge to the set of models that give the lowest residual sums of 

squares with weights calculated using the shadow method (for example Bayesian 

regression). 

5.5.2 Evolution Strategy Approach 

An evolution strategy can be used to calculate the weight coefficients directly, without 

the “shadow method” a genetic algorithm requires. However, the evolution strategy will 

assign non-zero weights to all models, and therefore may not be as appropriate if the 

goal is to find the best, smallest set of non-zero weight coefficients.  

 

Each chromosome is a possible set of weight coefficients. Explicitly, each element of a 

chromosome contains the weight assigned to the corresponding model. The initial 

generation is created by setting a few bits of each chromosome as a draw from a 
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uniform distribution on [0,1] . Each chromosome is then standardized so that the sum of 

its elements equals one.  

 

The fitness of the thj  chromosome is the inverse of the residual sums of squares, jRSS : 

 ( ) ( )j j j
1 ˆ ˆRSS
n

T
y yω ω= − −Y Y

� �� �
 (5.4) 

where j�
ω  is the thj  chromosome (weights are given directly by the chromosome). To 

prevent premature convergence, the fitness values are scaled. 

 

Chromosomes with high fitness values (weights that give low residual sums of squares) 

have a high chance of being selected as parents. Parent chromosomes are selected via 

roulette wheel selection and produce offspring via line recombination. Line 

recombination is attractive in this instance as it indirectly enforces the condition that the 

elements of the offspring chromosomes sum to one. 

 

The offspring chromosomes are mutated as previously described. Furthermore, if too 

many weights are non-zero, some weights are randomly set to zero. The offspring 

chromosomes are then renormalized such that the elements of each chromosome sum to 

one. The offspring replace the current generation (generational replacement) and the 

process is iterated until the chromosomes converge to the set of weights that minimize 

the residual sums of squares.  

 

6 QUADRATIC PROGRAMMING  

Quadratic programming was used in this thesis to calculate the weights for regression 

ensembles. Quadratic programs, the active set method, and the extension to calculating 
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weight coefficients are explained in this section. Nocedal and Wright (1999) and 

Fletcher (1987) were used extensively as reference sources throughout this section. 

 

A quadratic program refers to a constrained optimization problem, where the function to 

be maximized/minimized is quadratic and the constraints are linear. The function to be 

optimized is referred to as the objective function, ( )q w
�

, and the solution as *w
�

. The 

constraints, can be both equality and inequality constraints, and create the feasible 

region. A quadratic program can be written as: 

 1min  ( )
2

T T

w
q w w w w d= +

� � � � � �
G  (6.1) 

subject to:  

 j j

j j

   j

   j

T

T

a w b

a w b

= ∈Ε

≥ ∈Ι
� �

� �

 (6.2) 

where Ε  and Ι  are finite sets of indices that reference the equality and inequality 

constraints respectively; G  is a Κ Κ×  symmetric Hessian matrix; ,d w
� �

 and 

{ }j| ja ∈Ε Ι∪
�

 are Κ 1×  dimensional vectors. 

 

The quadratic program may be infeasible or unbounded  and have no solution. However 

these two situations are easily exposed. If the quadratic program can be solved, the 

uniqueness of the solution is dependent on the nature of the Hessian matrix, G . If G  is 

indefinite, the solution is a local solution and the quadratic program is a “non-convex 

problem”. If G  is positive semi-definite, the solution is a global solution, and if G  is 

positive definite the solution is global and unique. In these instances, the quadratic 

program is called a convex quadratic program. 
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There are a set of conditions satisfied at a local solution, *w
�

, of a quadratic program. 

These are called necessary conditions for a local solution and involve the Lagrange 

multipliers corresponding to *w
�

. For completeness, the Lagrangian function of the 

general constrained optimization problem: 

 
Κ

min ( )
w

f w
∈\
� �

 (6.3) 

subject to:  

 j

j

( ) 0   j

( ) 0   j

c w

c w

= ∈Ε

≥ ∈Ι
�
�

 (6.4) 

where Ε  and Ι  are two finite sets of indices is given by: 

 j j
j

( , ) ( ) ( ).w f w c wλ λ
∈Ε Ι

= − ∑
∪

A
� � � �

 (6.5) 

The set of necessary conditions for the general constrained optimization problem are:   

 

* *

*
j

*
j

*
j

* *
j j

( , ) 0

( ) 0   for all j

( ) 0   for all j

0   for all j

( ) 0   for all j .

w w

c w

c w

c w

λ

λ

λ

∇ =

= ∈Ε

≥ ∈Ι

≥ ∈Ι

= ∈Ε Ι

�
A
� �

�

�

∪
�  (6.6) 

These conditions are referred to as the Karush-Kuhn-Tucker (KKT) conditions. Any 

point that satisfies the KKT conditions is known as a KKT point. The KKT conditions 

are used as a basis to derive many quadratic programming algorithms. 

  
 
When considering a quadratic program, (6.1) subject to (6.2), the KKT conditions are 

given by: 
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( )

*

* * * * * * *
j j j

j

* * * *
j j

j ( )

* *
j j

* *
j j

* *
j

1( , )
2

( , ) 0

   for all j ( )

   for all j \ ( )

0   for all j ( )

T T T
w w

w
w

T

T

w w w w d a w b

w w d a

a w b w

a w b w

w

λ λ

λ λ

λ

∈Ι Ε

∈

 
∇ = ∇ + − − 

 
∇ = + − =

= ∈

≥ ∈Ι

≥ ∈Ι

∑

∑
A

A
A

A

G

G

� � ∪

�
�

A
� � � � � � � �

A
� � � � �

� � �

� � �
∩

�  (6.7) 

where * *
j j( ) {j : }Tw a w b= ∈Ε Ι =A ∪

� � �
. *( )wA

�
 is called the optimal active set.  

 

When considering a quadratic program with only equality constraints (an EP): 

 1min  ( )
2

T T

w
q w w w w d= +G

� � � � � �
 (6.8) 

subject to: 

 j j    jTa w b= ∈Ε
� �

 (6.9) 

the KKT conditions are given by:  

 

* * * *
j j

j

*
j j

( , ) 0

   for all j .

w

T

w w d a

a w b

λ λ
∈Ε

∇ = + − =

= ∈Ε

∑G
�
A
� � � � �

� �  (6.10) 

These conditions are more compactly expressed in matrix format: 

 
*

*

T dw
bλ
−  −  

=    
    

G A
A 0

��
��

 (6.11) 

where j j[ ]Ta ∈Ε=A
�

. The matrix in (6.11) is called the KKT matrix, and if it is non-

singular, (6.11) is solved directly to give a local solution to the EP, * *,w λ
� �

. The solution 

is given by: 
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*

*

1 1 1 1 1

1 1 1

1 1

( )
( )

( ) .

T

T T

T T

T

dw
bλ

− − − − −

− − −

− −

−    
=    −    

= −

=

=

H T
T U

H G G A AG A AG
T G A AG A
U AG A

��
��

 (6.12) 

 

Many algorithms exist to solve various types of quadratic programs. Some algorithms 

can only be used with convex problems, however some (for example active set 

methods) can be used with both convex and non-convex quadratic programs. The active 

set method is described in detail below. 

6.1 Active Set Methods 

Active set methods are powerful algorithms used to solve both convex and non-convex 

quadratic programs. An optimal solution to any quadratic program, *w
�

, will satisfy 

some (or none) of the inequality constraints as strict equalities. The set of inequality 

constraints satisfied as strict equalities at *w
�

 (plus the set of equality constraints) is 

referred to as the optimal active set. If the optimal active set is known or found, the 

quadratic program becomes an EP and is easily solved. Solving a quadratic program can 

therefore be treated as the problem of finding the optimal active set. Active set methods 

attempt to find the optimal active set via expanding or contracting an active set at each 

iteration. These methods are guaranteed to converge to a solution if the quadratic 

program is convex. Firstly, the method as applied to convex quadratic programs is 

described, and then the extension that makes the method applicable with non-convex 

quadratic programs is detailed (in section 6.1.2). 
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6.1.1 Active Set Methods for Convex Quadratic Programs 

Let us assume that we wish to solve (6.1) subject to (6.2) where G  is positive (semi-) 

definite. Assume that there is an initial feasible point (0)w
�

. The set of inequality 

constraints satisfied as strict equalities by (0)w
�

 and the set of equality constraints form 

the initial active set, (0)A .  

 

Let us assume that (0)w
�

 does not minimize ( )q w
�

 over (0)A  and that the minimizer over 

(0)A  is given by w+

�
: 

 (0) (0)w w p+ = +
� � �

 (6.13) 

where (0)p
�

 is a step from (0)w
�

. So we must find the minimizer w+

�
 by solving the EP: 

 1min  ( )
2

T T

w
q w w w w d= +G

� � � � � �
 (6.14) 

subject to:  

 j j    for all j .Ta w b= ∈ 0A
� �

 (6.15) 

Using the KKT matrix representation on the EP we write: 

 .
T dw

bλ

+

+

−  −  
=    
    

G A
A 0

��
��

 (6.16) 

If we consider (0) (0)w w p+ = +
� � �

, (6.16) can be written as:  

 
(0) (0)T w p d

bλ+

 + − −  
=    
     

G A
A 0

� ��
��

 (6.17) 

and rearranging we obtain:  

 

(0) (0)

(0)

(0) (0)

(0) (0) .

T p g

c

g d w

c b w 0

λ+

    −
=    

        
= − −

= − =

G A
A 0

G

A

� �
� �

� ��
� � � �

 (6.18) 
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The solution is easily found by (6.12). (Obviously, if (0)p
�

 is equal to the zero vector, 

(0)w
�

 minimizes ( )q w
�

 over (0)A . The Lagrange multipliers, λ+

�
, indicate if (0)w

�
 is a 

KKT point.) 

 

Now, (0) (0)w w p+ = +
� � �

 will satisfy all the constraints within the active set (0)A  because 

of the constraint (6.15) enforced by the EP. If w+

�
 satisfies all the constraints not in (0)A  

then we update (0)w
�

 to (1)w w+=
� �

. If w+

�
 does not satisfy all the constraints not in (0)A  

then we update (0)w
�

 to (1) (0) (0) (0)αw w p= +
� � �

 where (0)α  is the maximum possible step 

length in the direction (0)p
�

 for which all constraints remain satisfied. The step length 

(0)α  can be calculated by considering the inequality constraints not satisfied by w+

�
. If a 

constraint j  is not satisfied by w+

�
 then: 

 (0) (0) (0) (0) (0)
j j j j j j j j( ) 0.T T T T Ta w b a w p b a p b a w a p+ ≤ ⇒ + ≤ ⇒ ≤ − ⇒ <
� � � � � � � �� � �

 (6.19) 

To ensure that these constraints remain satisfied we must choose a step length to 

enforce: 

 (0) (0) (0)
j j( α ) .Ta w p b+ ≥
� � �

 (6.20) 

So: 

 

(0) (0) (0)
j j j

(0) (0) (0)
j j j

(0)
j j(0)

(0)
j

α

α

α .    

T T

T T

T

T

a w a p b

a p b a w

b a w
a p

+ ≥

≥ −

−
≤

� � � �
� � ��

� �
� �

 (6.21) 

 

The value (0)α  must be calculated for all constraints not satisfied by w+

�
, to find the 

minimum (0)α . This becomes the step length. Explicitly, (0)α  is given by: 
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(0) (0)

j

(0)
j j(0)

(0)j , 0
j

α min 1, min .    
T

T

Ta p

b a w
a p∈ <

 −
=   

 A
� �

� �
� �

 (6.22) 

(If (0)α  is 1, then all constraints were satisfied by w+

�
.) If (0)α  is less than 1, the 

constraint corresponding to the minimum (0)α  is added to the active set to give (1)A .  

 

The active set method now iterates: 

For ζ 1,2,...=  

1) Find (ζ )p
�

 by solving: 

 
(ζ ) (ζ )

(ζ)

T p g

0λ

    −
=    

        

G A
A 0 � �

� �

 (6.23) 

 where (ζ) (ζ)g d w= − −G
� ��

.  If (ζ) 0p ≠
��

, check if (ζ) (ζ)w p+
� �

 satisfies all constraints  

not in (ζ)A . If so, go to 2a. If not, go to 2b. If (ζ ) 0p =
��

, go to 2c. 

2)  

a) Set (ζ 1) (ζ ) (ζ)w w p+ = +
� � �

 and (ζ 1) (ζ)+ =A A . Return to 1. 

b) Then (ζ 1) (ζ) (ζ) (ζ)αw w p+ = +
� � �

 where (ζ)α  is given by (6.22) with (0)A  

replaced by (ζ )A , (0)w
�

 replaced by (ζ)w
�

; and (0)p
�

 replaced by (ζ )p
�

. Add 

constraint corresponding to (ζ)α  to (ζ )A  to give (ζ 1)+A . Return to 1. 

 

The active set method continues to iterate until (ζ)w
�

 minimizes ( )q w
�

 over (ζ )A . At this 

point (ζ )p
�

 is the zero vector. The KKT conditions (6.7) are considered to ascertain if 

(ζ)w
�

 is a KKT point of the original problem. Consideration of (6.18) shows the first 

KKT condition to be satisfied. The second and third conditions are obviously satisfied. 

If the fourth KKT condition is satisfied then we conclude (ζ)w
�

 is a KKT point and must 
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be a global minimum of the quadratic program because G  is positive (semi-) definite. 

The optimal active set is (ζ)A . If however, the (ζ)
jλ  are not all greater than or equal to 

zero, a local minimum has not yet been reached. A (ζ)
jλ  with a negative value, implies 

that ( )q w
�

 can be decreased by removing the corresponding constraint from (ζ)A . In the 

situation of multiple Lagrange multipliers with negative values, the constraint with the 

most negative Lagrange multiplier is removed from (ζ)A  to give (ζ 1)+A . The active set 

method then checks if (ζ 1) (ζ 1) (ζ) (where )w w w+ + =
� � �

 minimizes ( )q w
�

 over (ζ 1)+A  and the 

iterations continue.  

 

The algorithm for the active set method now reads in its entirety for step 2: 

c) Calculate (ζ)λ
�

 via: 

 
1(ζ) (ζ)

(ζ )

Tp g

0λ

−    −
=    

       

G A
A 0� �

� �

 (6.24) 

where the inverse of the KKT matrix is given by (6.12). If all (ζ) 0λ ≥
�

 

STOP. If  (ζ)
j 0λ <  for some j , remove the constraint corresponding to 

the most negative (ζ)
jλ  from (ζ)A  to give (ζ 1)+A , set (ζ 1) (ζ)w w+ =

� �
. Return 

to 1. 

6.1.2 Active Set Methods for Non-Convex Quadratic Programs 

It is known that if the reduced Hessian matrix, TZ GZ (where Z is a matrix whose 

columns form the basis of the null space of A  such that =AZ 0 ) is positive definite, 

then the step direction (ζ)p
�

at any iteration will point in the direction of the minimum. 

Therefore, in the case of convex quadratic programs, the positive definiteness of 

G enforces the positive definiteness of TZ GZ , and (ζ)p
�

 is guaranteed to point towards 
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the minimum. However, when considering a non-convex quadratic program, TZ GZ  is 

not necessarily positive definite. If the reduced Hessian is not positive definite, the (ζ)p
�

 

points toward a saddle point. In this situation, an amendment of the active set method 

which determines a direction of negative curvature, (ζ )s
�

 is required.  

 

The indefiniteness of the reduced Hessian is easily detected using a TLDL  factorization. 

If any of the elements of the diagonal matrix D  are negative, then TZ GZ  is not 

positive definite. The TLDL  factorization is then further utilized to calculate a direction 

of negative curvature.  

 

Let us assume that the quadratic program to be solved is given by (6.1) subject to (6.2) 

where G  is indefinite. Let us also assume that we have a current solution to the 

quadratic program, (ζ)w
�

 which minimizes ( )q w
�

 over (ζ)A  and that (ζ ) (ζ )T

Z GZ  is 

positive definite. The Lagrange multipliers, (ζ )λ
�

, are then calculated. If all (ζ) 0λ ≥
�

, the 

algorithm will terminate. If however, (ζ)
j 0λ <  for various j , let δ  be the index of the 

multiplier with the most negative value. Constraint δ  should be removed from the 

current active set. Hypothetical removal of constraint δ  from (ζ)A  will increase the 

dimension of (ζ)Z  (where (ζ) (ζ) =A Z 0 ) by one column, to give (ζ*) (ζ*) (ζ ), [ | ]z=Z Z Z
�

. 

(ζ*) (ζ*)T

Z GZ  is factored into (ζ*) (ζ*) (ζ*)T

L D L  where 
(ζ )

(ζ*)

1T

0
l

 
=  
 

L
L �

�
 and 

(ζ )
(ζ*)

Κ t 1d
0

0 − +

 
=  
 

D
D �

�
 for some vector l

�
 and element Κ t 1d − +  (where t  is the number of 

constraints in (ζ)A ). If Κ t 1d − +  is positive, then (ζ*) (ζ*)T

Z GZ  remains positive definite, and 

we can remove constraint δ  from (ζ )A  to give (ζ 1)+A . If t 1dΚ− +  is negative, (ζ*) (ζ*)T

Z GZ  
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is not positive definite and we cannot use the direction given by (ζ 1)p +

�
 because it does 

not point in the direction of the minimum. Instead a direction of negative curvature is 

calculated via: 

 (ζ) (ζ*) (ζ)
zs s= Z

� �
 (6.25) 

where:  

 (ζ*) (ζ)
Κ t 1.

T

zs e − +=L
� �

 (6.26) 

It is easily verified that (ζ)s
�

 points in a direction of negative curvature because: 

(ζ) 2 (ζ) (ζ) (ζ) (ζ) (ζ*) (ζ*) (ζ) (ζ) (ζ*) (ζ*) (ζ*) (ζ) (ζ*)
Κ t 1 Κ t 1 Κ t 1d 0.

T T T T T T T T
z z z zs qs s s s s s s e e− + − + − +∇ = = = = = <G Z GZ L D L D

� � � � � � � � � �
 (6.27) 

 

The next iterate (ζ 1)w +

�
 is given by (ζ 1) (ζ) (ζ) (ζ)αw w s+ = +

� � �
 where (ζ)α  is calculated by: 

 
ζ (ζ )

j

(ζ )
j j(ζ )

(ζ )j , 0
j

α min .    
T

T

Ta s

b a w
a s∈ <

−
=

( )A
� �

� �
� �

 (6.28) 

The step length (ζ)α  indicates how far we move along (ζ)s
�

 before we encounter a 

constraint, j . This constraint is added to the active set to give (ζ 1)+A . Note at this point 

constraint δ  still remains in (ζ)A  as a psuedoconstraint. Its hypothetical removal 

induced (ζ*)Z  and (ζ)s
�

. 

 

After the addition of constraint j  to (ζ )A  (to give (ζ 1)+A ) the (hypothetical) removal of 

constraint δ  is considered. If (ζ 1*) (ζ 1*)T+ +Z GZ  remains indefinite, then constraint δ  is not 

removed, however if (ζ 1*) (ζ 1*)T+ +Z GZ  becomes positive definite, then constraint δ  is 

actually removed from (ζ 1)+A . The search for a minimizing direction (ζ 1)p +

�
 is resumed. 

If the hypothetical removal of constraint δ  implies (ζ 1*) (ζ 1*)T+ +Z GZ  is indefinite, then δ  

remains in (ζ 1)+A  as a psuedoconstraint. That is, we use constraint δ 's  hypothetical 
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removal to calculate (ζ 1*) (ζ 1*) (ζ 1*), ,+ + +Z D L  and a subsequent (ζ 1)s +

�
, but do not actually 

remove it from the active set (ζ 1)+A . We continue to iterate in the fashion, until 

eventually, the addition of a constraint j  will allow the removal of δ  from the current 

active set. After δ  has been removed, the search for a minimizing direction p
�

 is 

resumed.  

 

The algorithm for non-convex quadratic programs is therefore very similar to the 

algorithm for convex quadratic programs (assuming that (0) (0)T

Z GZ  is positive 

definite). However step 2 now reads: 

c) Calculate (ζ)λ
�

 via (6.24) where the inverse of the KKT matrix is given 

by (6.12). If all (ζ) 0λ ≥
�

 STOP. If (ζ)
j 0λ <  for some j , find the constraint 

with the most negative multiplier, δ . Calculate the matrix (ζ*)Z  where 

(ζ*) (ζ*) =A Z 0  and (ζ*)A  is the matrix of constraints from (ζ )A  but not 

including δ . If (ζ*) (ζ*)T

Z GZ  is positive definite (checked easily via the 

diagonal elements of (ζ*)D  where (ζ*) (ζ*) (ζ*) (ζ*) (ζ*)T T

=Z GZ L D L ) remove 

δ  from (ζ )A  to give (ζ 1)+A , set (ζ 1) (ζ)w w+ =
� �

, and return to 1. Otherwise go 

to step 2d. 

d) Hypothetically remove constraint δ  from (ζ)A  to give (ζ*)A . 

Calculate (ζ) (ζ),αs
�

 via equations (6.25), (6.26), and (6.28). Calculate 

(ζ 1) (ζ) (ζ) (ζ)αw w s+ = +
� � �

. Add constraint j  to (ζ)A  to give (ζ 1)+A . 

Hypothetically remove δ  from (ζ 1)+A  to give (ζ 1*)+A . If (ζ 1*) (ζ 1*)T+ +Z GZ  is 

positive definite, actually remove δ  from (ζ 1)+A  and return to 1. If not, 

repeat step 2d, until δ  can be removed.  
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6.2 Using Quadratic Programming to Calculate Weight Coefficients 

The problem of finding weight coefficients can easily be formulated as a quadratic 

program. We wish to minimize the loss of using the weighted sum of models to predict 

the response. If the loss is the squared error loss function, the problem becomes: 

 ˆ ˆmin    q( )=( ) ( )Ty y
ω

ω ω ω− −Y Y
� � � �� �

 (6.29) 

subject to:  

 
m

M

m
m 1

0   for all m

1.

ω

ω
=

≥

=∑
 (6.30) 

This is easily converted to a quadratic program:  

 min    ( ) T Tq d
ω

ω ω ω ω= +G
� � � � � �

 (6.31) 

subject to (6.30); where ˆ ˆT=G Y Y  and ˆ2 Td y= − Y
� �

. 

 

The active set method is employed to solve the quadratic program. By formulating the 

problem as a quadratic program, the loss function is not restricted to the squared error 

loss. A number of other quadratic programs were formulated to calculate the weight 

coefficients and are detailed in the manuscript “Post processing regression ensembles: 

imposing parsimony to improve predictions”. 

 

7 K-MEANS 

K-means was used as a benchmark method throughout this thesis, and was later 

modified to engender the creation of similarity-based k-means. K-means clustering is a 

divisive clustering technique. K-means seeks clusters that minimize their within group 

sums of squares. K-means attempts to minimize the objective function: 
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r r

i r

K

i S i S
r 1 S

( ) ( )T

x

x x x x
= ∈

− −∑∑
�

� � � �
 (7.1) 

where rS  includes all the observational units in cluster r  and 
rSx
�

 is the mean of 

observational units in cluster r .  

 

The optimization of the objective function can be performed by a “hill climbing”  

algorithm (Everitt 1993). A hill climbing algorithm moves observational units between 

clusters, and keeps solutions if and only if they improve the value of the objective 

function. Applied to k-means, ‘hill climbing’ results in the following algorithm: 

1) Choose the number of clusters and initial estimates of the cluster centers. 

2) Visit each observational unit and assign it to the cluster whose centroid is closest 

using the squared Euclidean distance 
r

2
i S( , )dist x x
� �

: 

 
r r r

2
i S i S i S( , ) ( ) ( ).Tdist x x x x x x= − −
� � � � � �

 (7.2) 

Recalculate the centroids of the clusters the observational unit has left and 

joined. 

3) Repeat step 2 until no more reassignments of the observational units take place. 

 

Step 1 requires not only the number of clusters but also initial estimates of the cluster 

centers to be specified in advance. These estimates can be obtained in various ways. The 

observational units can (randomly) be divided into groups and the mean vector of each 

group calculated. Alternatively, the centers can be random seed points. The initial 

estimates can dramatically affect the final clustering solution, with some starts steering 

the solution to only a local optimum.  
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8 SIMILARITY-BASED K-MEANS 

The traditional k-means algorithm was modified in this thesis to create similarity-based 

k-means (SBK). SBK is designed to cluster a similarity matrix. Formally, SBK seeks 

clusters to minimize either of the objective functions: 

 ( ) ( )r r'

r r
r'

2 2K K K

(S ,S )i, j r i, j
r 1 i, j S r 1 r' r i S

r' 1 j S

min C COVC C
= ∈ = ≠ ∈

= ∈

− + −∑ ∑ ∑∑∑  (8.1)   

or:  

   r r'

r r
r'

K K K

(S ,S )i, j r i, j
r 1 i, j S r 1 r' r i S

r' 1 j S

min C COVC C
= ∈ = ≠ ∈

= ∈

− + −∑ ∑ ∑∑∑  (8.2) 

 where rS  is the set of observational units in the thr  cluster; i,jC  is the th(i,j)  element of 

the co-occurrence matrix; rC  is the mean similarity of the thr  cluster; and r r'(S ,S )COV  is 

the mean similarity of the covariance matrix where the rows are given by the 

observational units in cluster r  and the columns are given by the observational units in 

cluster 'r . 

 

Because of the mean squared error and absolute error terms in the objective functions, 

SBK can be viewed almost entirely in the prediction sense. However, a validity criterion 

(Hancock 2006) is imposed to ensure that the clustering ideology prevails over the 

prediction ideology. The validity criterion is simply: 

 r r'r r' (S ,S )C & C COV .>  (8.3) 

This validity criterion ensures that an observational unit is only placed in a cluster if it 

will increase the mean similarity of the cluster whilst simultaneously decreasing the 

mean similarity of the corresponding covariance submatrix. Thus, clusters must have 

higher mean similarities than their covariance. 
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Identical to traditional k-means, the algorithm is implemented via a “hill climbing” 

approach. The SBK algorithm is given by: 

1) Choose the number of clusters and an initial partition of the data.  Here, we use 

initial partitions given by both hierarchical clustering of the co-occurrence 

matrix and entirely random partitions.  Choose the objective function: either the 

mean squared error (8.1) or absolute error (8.2). 

2) Visit each observational unit and assign it to the cluster which will result in the 

largest decrease of the objective function.  Before moving the observational unit 

ensure that the validity criterion is upheld. 

3) Update the mean similarity of:  

a) the cluster the observational unit has left  

b) the cluster the observational unit has joined  

c) and all appropriate covariance means. 

4) Repeat steps two and three until no more reassignments of the observational 

units take place.  

 

9 DETERMINING THE NATURAL NUMBER OF CLUSTERS 

Similarity-based k-means allows for an estimate of the number of clusters in the dataset. 

This estimate considers the average predictive capability of the algorithm, for any 

number of clusters, k . In theory, the estimate closely resembles the figure of merit 

method proposed by Yeung, et al. (2001). This section describes the figure of merit 

methodology. The similarity between the figure of merit methodology and the technique 

used in conjunction with SBK is also described.  
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9.1 Figures of Merit 

A figure of merit (FOM) assesses the “predictive power” of a clustering algorithm by 

leaving out a variable, p , clustering the data (into k  clusters), then calculating the root 

mean square error (RMSE) of p relative to the cluster means, RMSE(p,k) : 

 ( )
i r

k 2

ip r
r 1 S

1RMSE(p,k) x (p)
n x

x
= ∈

= −∑∑
�

  (9.1) 

where ipx is the measurement of the thp variable on the thi observational unit; n is the 

number of observational units; rS is the set of observational units in the thr cluster; and 

rx (p)  is the mean of variable p for the observational units in the thr cluster. Each 

variable is omitted and its RMSE calculated. These RMSE are summed over all 

variables to give an aggregate FOM (AFOM): 

 
P

p 1

AFOM(k) RMSE(p, k).
=

=∑  (9.2) 

Obviously, low values of a clustering algorithm’s AFOM indicate that the algorithm has 

high predictive power (Yeung, et al. 2001). 

 

The AFOM is calculated for each k , and adjusted for cluster size. The reasoning behind 

adjusting the aggregate FOM for cluster size is simple. As we increase the number of 

clusters, the AFOM will artificially decrease because the clusters are smaller and 

naturally will not be as spread out. The adjusted AFOM mitigates the artificial decrease 

effect, by dividing the aggregate figure of merit by n k
n
− . 
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Yeung, et al. (2001) detail the reasoning behind the factor n k
n
− . An idealized model 

is assumed where the n  observational units fall into χ  real classes, and the variables of 

each class are normally distributed with mean rµ (p)  and variance 2
r,pσ  r=1,...,χ .  

Assume all of one class is clustered together. The expected value of 

r r
2ξ n ξ n

ip ip r
i 1 i=1

ξ nx x
=

 
− 

 
∑ ∑  is 2

r r,p(ξ n 1)σ−  where rξ  is the proportion of observational units 

in class r . If the class is split up into rξ k  smaller clusters then the expected value of 

r r
2ξ n ξ n

ip ip r
i 1 i=1

ξ nx x
=

 
− 

 
∑ ∑  reduces to 2

r r r,p(ξ n ξ k)σ− . Therefore:  

 

( )
χP

2
r r r,p

p 1 r 1

χP
2

r r,p
p 1 r 1

χP
2

r r,p
p 1 r 1

1AFOM(k) ξ n ξ k σ
n

1                (n k)ξ σ
n

n k                ξ σ .
n

= =

= =

= =

= −

= −

−
=

∑ ∑

∑ ∑

∑ ∑

 (9.3) 

Thus, the adjusted figure of merit is given by: adj
AFOM(k)AFOM (k) .

n k
n

=
−

 

9.2 Extending Figures of Merit  

It is simple to expand the above adjusted FOM theory to the results obtained by the 

SBK algorithm. If the dataset is clustered to k  clusters, and this process is repeated P  

times, then the AFOM is defined as: 

 ( )
r

P k 2

i,j r2
p 1 r 1 i,j S (p)

1AFOM(k) C (p)
n

C
= = ∈

= −∑ ∑ ∑  (9.4) 
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where rS (p)  is the set of observational units in cluster r  on the thp  run; rC (p)  is the 

mean similarity of observational units in cluster r on the thp  run; i,jC  is th(i, j)  element 

of the co-occurrence matrix; and 2n  is the dimension of the similarity matrix.  

 

Following the same theory described above, here the adjusted figure of merit is given 

by: 

 adj 2

2

AFOM(k)AFOM (k) .
n kP

n

=
−

 (9.5) 

We also incorporate P  into the adjustment factor to find the mean adjusted figure of 

merit. The adjAFOM is obtained for varying levels of k , and the smallest adjAFOM  

indicates the number of clusters. For the sake of parsimony, the elbow of the adjAFOM  

curve is selected as the optimal number of clusters. 
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