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7. Benchmark Examples 
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In this section we present tree-based profiling and clustering methods on three 

benchmark datasets.  Each of these datasets has been selected to highlight features of 

tree-based methods and to compare their performances.  The datasets selected are all 

freely available benchmark datasets.  

 

The first dataset is the Thyroid dataset, which is a clustering problem involving only 

quantitative variables.  Here the improvement in clustering performance gained 

through using the auto-association proximity matrices is shown.  MCTs are compared 

with auto-associative random forests and treeboost, AA-MRTs, PAM and K-means. 

 

The second dataset is the Wisconsin breast cancer dataset.  This analysis is used to 

compare the performance of tree methods in a categorical domain with a known clear 

grouping structure.  For this analysis MCT approaches are compared to binary 

substitution and Gower distance methods.   

 

The third dataset is the horse colic dataset.  This analysis is focused on the 

performance on MCTs in a mixed domain profiling problem.  Here the limits of the 

Gower distance and binary substitution methods are shown and the power of the 

proximity matrices is highlighted.   This study also explores the features of MCTs that 

assist in further understanding and simplifying the problem.  In particular the ability 

of PLAID consensus generation to find subgroups within variables of the profiling set 

is highlighted. 
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7.1 Clustering Quantitative Variables: Thyroid dataset 
 

In this analysis a comparison between tree-based methods for clustering and existing 

methods is performed using the thyroid dataset.  The thyroid dataset (Coomans, 

Broeckaert, Jonckheer and Massart 1983) consists of 215 observations on 5 variables 

that describe the action of the thyroid gland.  There are three known groups in the data 

corresponding to hypothyroid (1), hyperthyroid (2) and normal (3) patients.  The other 

variables are hormone levels measured in the blood.  These are: 

1. TSH 

2. DTSH 

3. RT3U 

4. T4 

5. T3 

The goal of the analysis is to cluster the data and compare the clustering performance 

with the known groups.   
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7.1.1 AA-MRT 
 

The RE graph for AA-MRT is used to determine the size of the tree (Figure 50), and 

it can be seen that the performance plateaus at 5 terminal nodes, and the 

corresponding tree is displayed in Figure 51.  Using the terminal node locations as 

group classifications, AA-MRTs misclassify 35 observations (Table 18) when 

compared with the known groups. The AA-MRT of the raw data outperforms PAM, 

which misclassified 49 observations, but not K-means, which misclassified 30 

observations.   

 
Figure 50: Thyroid analysis AA-MRT RE graph. 
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Figure 51: Thyroid analysis AA-MRT.   

 

Table 18: Thyroid analysis AA-MRT misclassification table 

Terminal Node  
4 5 7 12 13 

Hypothyroid 0 4 4 10 12 
Hyperthyroid 16 14 2 3 0 
Normal 0 78 64 8 0 

 

7.1.2 AA-RF  
 

AA-RF performs quite well on the dataset, converging to a stable predictive 

performance after 100 trees are added to the model (Figure 52).  This precision is 

mirrored within the proximity matrix and MDS images with three groups obvious 

(Figure 53).  Clustering this matrix with an MCT using SSR splitting (Figure 54), 

(4) (5) 

(12) (13) 

(7) 
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gives 22 misclassifications (Table 19) and 12 misclassifications are recorded for PAM 

and 11 for K-means.  It is clear that the clustering techniques all do better on the 

proximities than on the raw data, whereas the fact that K-Means and PAM do better 

than MCTs is a reflection on the overlapping nature of the groups.  If the groups are 

strongly overlapping it is likely that a partition on a single variable will be sufficient.  

Both K-means and PAM have the luxury of not requiring a clear single variable 

separation between the groups and therefore do better.  

 

Figure 52: Thyroid analysis AA-RF error convergence plot. 
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Figure 53: Thyroid analysis AA-RF proximity images. 

 

Figure 54: Thyroid analysis SSR partition on the AA-RF proximity matrix. 

 

 
Table 19: Thyroid analysis AA-RF misclassification table 

Terminal Node  
2 6 7 

Hypothyroid 0 34 15 
Hyperthyroid 6 1 135 
Normal 24 0 0 
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7.1.3 AA-Treeboost 
 

The AA-Treeboost model proved to be more complex than the random forest models 

with the error converging (Figure 55) after 300 trees were added to the model.  

Despite the number of trees added the proximity images do not obviously show three 

known groups (Figure 56).  This non-obvious structure affects the performances of 

the base clustering algorithms with K-Means and PAM misclassifying 38 

observations.  However MCTs with MR splitting (Figure 57) on the treeboost 

proximity matrix misclassified only 15 observations (Table 20).  The improvement 

gained by MCTs is most likely a direct result of trees being used to construct the 

proximity matrix, thus allowing MCTs to identify the structure not easily found by 

other methods.  

 

Figure 55: Thyroid analysis AA-Treeboost error convergence plot. 
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Figure 56: Thyroid analysis AA-Treeboost proximity images. 

 

Figure 57: Thyroid analysis MR partition on the AA-Treeboost proximity matrix. 

 

 

Table 20: Thyroid analysis AA-Treeboost misclassification table. 

Terminal 
Node 

 

3 4 5 
Hypothyroid 24 6 0 
Hyperthyroid 0 7 28 
Normal 0 148 2 
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7.1.4 Global MCT 
 

The cross-validation for Global MCTs using SSR splitting identifies 2 splits or three 

groups (Figure 58).  The proximity matrix images (Figure 59) are comparable to those 

found by AA-RF.  The corresponding MCT (Figure 60) misclassifies 19 observations 

(Table 21).  However by observation of each terminal node’s probability of 

expression, “P(C)” it can be seen that node 3, which corresponds to the normal group 

is under-expressed showing a probability of 0.32.  This implies that this group is 

difficult for trees to correctly classify.  A finding that is mirrored by its broad 

dispersion over the MDS plot (Figure 59).  When compared with K-means and PAM, 

MCTs are found to under-perform as they both only misclassify 9 observations. 

 

Figure 58: Thyroid analysis global MCT 10-Fold cross-validated RE curves. 
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Figure 59: Thyroid analysis global MCT proximity images. 

 

Figure 60: Thyroid analysis global MCT, constructed with MR splitting on the GPA 

consensus. 

 

Table 21: Thyroid analysis global MCT misclassification table. 

Terminal 
Node 

 

3 4 5 
Hypothyroid 24 6 0 
Hyperthyroid 0 11 24 
Normal 1 148 1 
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7.1.5 Local MCT 
 

Local MCTs find a more complicated tree than global MCTs, identifying 3 splits or 4 

groups (Figure 61).  These groups are clearly observed within the ACM images and 

MDS plots,  (Figure 62) and this improved resolution is also obvious in the terminal 

probabilities of the corresponding tree (Figure 63), which are significantly greater 

than for global MCTs.  The local MCT equalled the performance of boosting MCTs, 

misclassifying 15 observations (Table 22), however the proximity matrices have a 

more defined structure.  However using the ACM, K-means (finding 4 groups) and 

PAM (finding 3 groups) only misclassified 12 and 10 observations respectively.   

 

Figure 61: Thyroid analysis local MCT RE and AIC plots. 
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Figure 62: Thyroid analysis local MCT ACM images and MDS plots. 

 

Figure 63: Thyroid analysis local MCT with SSR splitting and GPA consensus 
combining. 

 

 
Table 22: Thyroid analysis local MCT misclassification table. 

Terminal Node  
4 5 6 7 

Hypothyroid 0 0 6 24 
Hyperthyroid 8 27 0 0 
Normal 20 1 129 0 
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7.1.6 Thyroid summary 
 

A clear result of this example is the marked improvement of general clustering 

performance that is achieved by using the proximity matrix from either random 

forests or treeboost.  Of the two ensembles the random forest proximity is clearly 

more stable, and is suited for input into other clustering techniques.  The boosted 

proximity matrix, although producing a more optimal MCT, has a less well defined 

structure that is not found by other methods. 

 

The fact that K-means and PAM on the proximities do better than trees is primarily 

due to the fact that trees are constrained by the valid splits available in the variables 

within the predictor set.  When the 15 observations misclassified by MCTs are 

compared to a classification tree predicting the three groups, which misclassifies 14 

observations, it is clear that MCTs are approaching the optimal tree.  More so it is 

clear that the improvements gained by PAM and K-Means are because they are not 

constrained by the predictor variables. 

 

The differences between the local and global MCTs are expected.  Local MCTs have 

the luxury of removing entire groups, allowing them to focus on groups that may be 

hard to separate, where as global MCTs are always observing the entire dataset.  In 

this example, the local MCT was more complicated, however more accurate.  This 

accuracy is found not only in the misclassification performances but also in the 

probability of expression for each terminal node of the tree.  Global MCTs found one 

terminal node that is below random chance expression (3 terminal nodes, random 

chance expression is P(C)=0.33).  By making the tree more complicated the terminal 
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nodes found by local MCTs were all above random chance expression.  As a result 

the predictive performance of local MCTs is improved. 

 

Overall MCT approaches are shown to improve on AA-MRT, AA-RF and equal the 

performance of AA-Treeboost.  However as they are limited by their tree structure, in 

this analysis MCTs do not perform as well as PAM or K-means.  In fact these 

methods by searching for groups within the consensus matrix, without knowledge of 

the known labels, perform better than a classification tree.  This highlights the quality 

of the grouping structure within the consensus and at the same time the limits of a 

simple tree structured for clustering or classification. 
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7.2 Clustering Categorical Variables: Breast Cancer Dataset 
 

The breast cancer dataset (Wolberg and Mangasrian 1990) contains 699 observations 

on 11 variables, one being an index variable, 9 being ordered or nominal, and 1 target 

class (Table 23). This dataset was sourced from the “mlbench” R package (Leisch and 

Dimitriadou 2005).  The aim of this study is to present and compare performances of 

all tree-based methods for clustering categorical data.  For a fair performance 

comparison the data will be divided in two with 349 training set observations and 350 

test set observations. 

Firstly the base tree methods are presented.  These are Db-MRT on the Gower distance, 

and MRTs, random forests and treeboost on the binary substituted form of the 

response.  As the response dataset is the binary substituted dataset, these models are not 

auto-associative.  Therefore through this section the random forest and treeboost 

methods are referred to as binary substituted random forest and binary substituted 

treeboost.  Secondly, the results for local and global MCTs are presented.  Finally a 

summary of the methods and comparison of the results is presented. 

 

Table 23: Breast cancer analysis dataset description. 
Variable Name Description Type 

Id Sample code number Character 
Cl.thickness Clump Thickness Ordinal {1 to 10} 

Cell.size Uniformity of Cell Size Ordinal {1 to 10} 
Cell.shape Uniformity of Cell Shape Nominal {1 to 10} 

Marg.adhesion Marginal Adhesion Nominal {1 to 10} 
Epith.c.size Single Epithelial Cell Size Ordinal {1 to 10} 
Bare.nuclei Bare Nuclei Ordinal {1 to 10} -16 Missing 
Bl.cromatin Bland Chromatin Nominal {1 to 10} 

Normal.nucleoli Normal Nucleoli Nominal {1 to 10} 
Mitoses Mitoses Nominal {1 to 10} 
Class Cancer classification Nominal {benign, malignant} 
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7.2.1 Gower dissimilarity Db-MRT 
 

From the RE curve of the Db-MRT (Figure 64) it clear that only two groups have 

been identified.  From the MDS scatter plot (Figure 65) of the distance matrix only 

two groups found by the tree can be observed.  Observation of the misclassification 

table for the tree in Table 24 show these to groups correspond well with the benign 

and malignant breast cancers with a misclassification rate of 8 % on the external test 

set. 

 

Figure 64: Breast cancer analysis Gower distance Db-MRT RE curve. 
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Figure 65: Breast cancer analysis Gower distance Db-MRT. 

Gower Distance Db-MRT MDS terminal node location plot using 
the Gower Distance Matrix 

  

 

7.2.2 Binary substituted MRT 
 

From the RE curve of the binary substituted MRT (Figure 66) it clear that only two 

groups have been identified.  From the MDS scatter plot (using a Euclidean distance 

between observations within the response matrix) (Figure 67) only the two groups 

found by the tree can be observed.  Observation of the misclassification table for the 

tree in Table 24 show these to groups correspond well with the benign and malignant 

breast cancers with a misclassification rate of 8 % on the external test set. 

(2)  (3)  
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Figure 66: Breast cancer analysis binary substituted MRT RE curve. 

 
 
Figure 67: Breast cancer analysis binary substituted MRT and MDS plot. 

Binary Substitution MRT MDS terminal locations plot using a 
Euclidean distance over the binary 

substitution  

  
 

(2)  (3)  
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7.2.3 Binary substituted RF 
 

Binary substituted RF parameters are set to be the following: 

(a) A separate random forest test set of 70 training set observations is removed 

before the analysis to tune the model. 

(b) The bootstrapped sample that is used to grow each tree consists of 196 

observations and 3 variables.  

(c) A maximum tree size of 10 splits within the forest is allowed. 

(d) The minimum terminal node size for each tree within the forest is 10 

observations. 

(e) There are 200 trees within the random forest. 

 

Figure 68: Breast cancer analysis binary substituted AA-RF error convergence plot. 
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Figure 69: Breast cancer analysis binary substituted RF RE curves. 

 
 
Figure 70: Breast cancer analysis binary substituted random forests MCT built with 
SSR splitting to 2 splits. 
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Figure 71: Breast cancer analysis binary substituted RF proximity images. 

 
 

From the error convergence plot (Figure 68) it is obvious that the random forests error 

is stable at 200 trees.  The RE curves of the MCT splitting criteria however are less 

clear (Figure 69).  Here SSR splitting is selected at two splits, as the RE is stable at 

approximately 0.32 between 2 and 8 splits.  This is not the case with the other 

splitting criteria.  The tree (Figure 70) and the corresponding random forest proximity 

images (Figure 71) indicate a high certainty in terminal node 3, however markedly 

less certainty is terminal nodes 4 and 5.  This is reflected in the misclassification table 

(Table 24) with terminal node 3 clearly being the most accurate. 
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7.2.4 Binary substituted treeboost 
 

The boosted set of trees is grown using the following parameters: 

(a) A separate random forest test set of 70 training set observations is removed 

before the analysis to tune the model. 

(b) The bootstrapped sample that is used to grow each tree consists of 196 

observations and 3 variables.  

(c) A maximum tree size of 2 splits within the boosting is allowed. 

(d) The minimum terminal node size for each tree within the boosting is 10 

observations. 

(e) There are 500 trees within the boosted set. 

(f) Shrinkage Parameter set at 0.05. 

 

Figure 72: Breast cancer analysis binary substituted treeboost error convergence plot. 
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Figure 73: Breast cancer analysis binary substituted treeboost RE curves. 

 

 

Figure 74: Breast cancer analysis binary substituted treeboost MCT built with SSR 
splitting to 3 splits. 
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Figure 75: Breast cancer analysis binary substituted treeboost proximity images. 

 

 

From the error convergence plot (Figure 72) it can be seen that the treeboost model 

has stabilised after 500 trees.  The RE curves (Figure 73) show that the splitting 

functions SSR, OR and OR-SSR each pick a tree size of 3 splits.  Of these SSR is 

selected, as the cross-validated performances are the most stable at a RE of 

approximately 0.22.  From the tree (Figure 74) and proximity images (Figure 75) a 

high level of certainty exists throughout each terminal node.  This is mirrored in the 

misclassification table (Table 24), where an error rate of 6.85 % is observed on the 

test set. 
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7.2.5 Base method misclassification results 
 
Table 24: Breast cancer analysis misclassification performances of base methods. 

Training Set Test Set Method Tree Node Benign Malignant Benign Malignant 
2 215 7 202 5 
3 18 110 23 119 

Gower  
DB-MRT 

(7.5 % Error) % Error 7.73 % 5.98 % 10.36 % 3.9 % 
2 7 215 5 202 
3 110 18 119 23 BS-MRT 

(7.5 % Error) 
% Error 5.98 % 7.73 % 3.9 % 10.36 % 

3 197 2 183 2 
4 3 81 2 92 
5 33 34 40 30 

RF 
(10.44% Error) 

% Error 15.45 % 0.89 % 0.89 % 25.8 % 
4 10 105 10 110 
5 8 5 13 9 
6 27 6 24 5 
7 188 1 178 0 

Treeboost 
(6.5 % Error) 

% Error 4.2 % 10.26 % 4.44 % 9.4 % 
 

The single tree results highlight the similarities between binary substitution and the 

Gower dissimilarity, as BS-MRT and Gower Db-MRT produced the same terminal 

nodes but with an exactly opposite tree and show marked similarities in the MDS 

locations plots (Figure 65, Figure 67).  The consensus based methods show the same 

first split using variable “Cell.size” as the single tree methods, however binary 

substituted RF shows a different decision point to the treeboost (Figure 70, Figure 

74).   

 

Interestingly both consensus based methods find more complex trees, however only in 

the case of binary substituted treeboost does this translate into improved performance.  

Surprisingly binary substituted RF performs worst of all other methods (Table 24).  

By observation of the misclassification tables it is clear that binary substituted RF is 

strongly biased towards the malignant group in the training set, to the detriment of 
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overall predictive performance.  The best performing model of the base methods is 

clearly treeboost, with the lowest classification error and a clear proximity image. 

 

7.2.6 Global MCT 
 

Global MCT random forests are grown on each variable in the training set with the 

following parameters: 

(a) A separate random forest test set of 70 training set observations is removed 

before the analysis to tune the model. 

(b) The bootstrapped sample that is used to grow each tree consists of 196 

observations and 3 variables.  

(c) A maximum tree size of 10 splits within the forest is allowed. 

(d) The minimum terminal node size for each tree within the forest is 10 

observations. 

(e) There are 200 trees within the random forests. 

The individual RFPs (Figure 76) clearly show that the forests are finding a clear 

distinction between benign and malignant cancer groups.  The training set 

performance for predicting each variable by the forest as a misclassification error is 

printed in the plot titles. 
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Figure 76: Breast cancer analysis individual RFP MDS plots. 

 

 

Each RFP combination method is used to construct a consensus matrix (Figure 77(a)).  

By observation of the MDS plots, it appears that BB and GPA find similar 

configurations, and PLAID finds a different structure.  This observation is reinforced 

by RMSE plots between the individual RFPs and the consensus (Figure 77(b)).  From 

the RMSEs it can be seen that BB and GPA clearly favour the middle variables, 

performing poorest on Mitoses and Cl.thinckness, whereas PLAID favours these 

variables at the expense of the others. 
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Figure 77: Breast cancer analysis consensus MDS plots and RMSEs.  

(a) Consensus MDS plots 

 

(b) RFP RMSE with Consensus 

 

 

To assess how far to grow the MCT 10-fold CV is performed on the consensus 

matrix, with a minimum terminal node size fixed to 10 observations (Figure 78).  
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Clearly the best structure is resolved by the splitting method OR-SSR, which finds a 

RE elbow for GPA (Figure 78a) and BB (Figure 78b) at 6 splits, and for PLAID 

(Figure 78c) at 5 splits, with a corresponding mean RE of between 0.2 and 0.25.  This 

RE equates to an R2 of approximately 0.7, meaning the predicted consensus matrix 

accounts for between 65 % and 75 % of the consensus variation. 

 

Figure 78: Breast cancer analysis global MCT 10-fold CV RE curves. 
(a) GPA 
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(b) BB 

 
(c) PLAID 
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The global MCTs for GPA and BB are grown to 6 splits (7 clusters) and PLAID to 5 

splits (6 clusters) all using the OR-SSR splitting method. The trees for GPA and BB 

are the same (Figure 79(a,i)) and only show subtle differences from splits observed in 

the PLAID MCT (Figure 79(b,i)).  The terminal node locations found by the trees are 

displayed on the MDS plots of the consensus matrices (Figure 79(a,ii) and Figure 

79(b,ii)) for GPA, BB or PLAID respectively.  From this it can be seen that most 

effort is spent identifying the malignant group, with the majority of the benign group 

being positioned in both trees in terminal node 15. In the left corner of the MCTs, the 

response variable importance list (YVIP) list can be found. The structure found in the 

YVIP matches the RMSE combination plots (Figure 77b).  The mean of the 

consensus at each terminal node is printed below the terminal node as a probability, 

“P(C)”, along with the terminal node number in brackets, and the number of training 

set observations within that node.  A bar plot of the P(C)s of each individual RFP at 

each terminal node is also presented.   
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Figure 79: Breast cancer analysis best global MCTs and terminal node location MDS 
plots. 
(a) GPA & BB OR-SSR MCT Tree 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
GPA MCT Terminal Node Locations BB MCT Terminal Node Locations 

  
 

(i) 

(ii) 
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 (b) PLAID OR-SSR MCT Tree 

 
Plaid MCT Terminal Node Locations 

 

(i) 

(ii) 
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The training and test set performances for global MCTs (Table 25) show an overall 

test sample misclassification rate of approximately 4.9 %.  When compared to 

supervised classification on the same data, a decision tree grown to 4 splits gives test 

set misclassification rate of 6.3 % and a random forest gives a test set 

misclassification rate of 2.8 %.  Therefore the performance of global MCTs for the 

breast cancer dataset is approaching that of a random forest. 

 

Table 25: Breast cancer analysis global MCT misclassification performances. 
(a) GPA & BB (6 % Overall Error) 

Train Set  
(6.3 % misclassification) 

Test Set 
(4.9 % misclassification) MCT Node 

Benign Malignant Benign Malignant 
4 0 28 0 30 
6 6 13 7 8 
11 3 7 2 5 
14 5 6 0 3 
15 213 2 213 5 
20 2 51 1 60 
21 4 10 2 13 

Overall Misclassification 8.6 % 1.7 % 5.33 % 4 % 
(b) PLAID (5.4 % Overall Error) 

Train Set  
(6 % misclassification) 

Test Set 
(4.87 % misclassification) MCT Node 

Benign Malignant Benign Malignant 
4 0 33 0 34 
6 6 11 7 8 
10 6 55 3 70 
11 3 8 2 4 
14 3 7 0 3 
15 215 3 213 5 

Overall Misclassification 8.0 % 2.6 % 5.33 % 4 % 
 



 183 

7.2.7 Local MCT 
 

As local MCTs build a separate forest at each node, the random forest parameters are 

presented in percentages.  The local MCT parameters are set at the following: 

(a) The bootstrapped sample used to grow each tree within each node is defined 

as 70% of node observations and 33% of variables.  

(b) Maximum random forest tree size is 3 splits. 

(c) Minimum MCT and random forest terminal node size is 10 observations. 

(d) Random forest size is 200 trees. 

(e) OR-SSR splitting criteria. 

RE and AIC are generated to assess local MCT tree size.  For a fair comparison with 

global MCTs only OR-SSR splitting criteria is employed as it clearly outperformed 

other splitting criteria in global MCTs for this problem.  Local MCTs are run using all 

three RFP combination methods. 

 

For local MCTs the results for each combination method with OR-SSR splitting are 

identical.  The RE and AIC plots each indicate a tree size of 3 split or 4 groups 

(Figure 80) and the resulting MCT tree for each combination method at 3 splits is the 

same (Figure 81i).  This results in the same misclassification performance of 5.44 % 

error on the test set (Table 26).  The only difference in the trees is the subtle 

differences observed in the PLAID MDS plot of the ACM matrix when compared to 

either the BB or GPA plots (Figure 81ii). 
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Figure 80: Breast cancer analysis local MCT RE and AIC plots. 

GPA 

 

BB 

 

PLAID 
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Figure 81: Breast cancer analysis GPA, BB and PLAID, OR-SSR local MCT. 
(i)  GPA, BB and PLAID local MCT 

 
(ii) MDS Terminal Node Location Plot 
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Table 26: Breast cancer analysis local MCT misclassification performances. 
Train Set  

(5.71 % misclassification) 
Test Set 

(5.44 % misclassification) MCT Node 
(5.57 % Total Error) Benign Malignant Benign Malignant 

3 215 7 202 5 
4 0 33 0 34 
10 10 74 10 81 
11 8 3 13 4 

Overall Misclassification 4.29 % 8.54 % 4.44 % 7.26 % 
 

7.2.8 Breast cancer summary 
 

Of all the methods presented, global MCTs using the PLAID consensus produced the 

most accurate tree (test set misclassification performance 4.87 %) (Table 25).  

Furthermore, the performances of all MCT methods are better than any base tree 

method.  Compared to existing literature on this dataset MCTs are performing 

comparably.  Clustering using SOM achieved a misclassification rate of 4.68 % 

(Pantazi, Kagolovsky and Moehr 2002) however this method assumes all variables 

are ordinal and provides no measures of variable importance.  Supervised analysis of 

this dataset has been shown to perform well below 10 % misclassification, with a 

linear programming approach achieving 3 % misclassification (Mangasrian and 

Wolberg 1990).   

 

Given that there are two groups (benign and malignant) within the dataset, the most 

accurate models in this case were Gower Db-MRT and binary substituted MRT as 

they found 2 terminal nodes.  As accuracy increased so did tree size with the most 

accurate MCT identifying 6 groups within the data.  This inflation of group number is 

due to the overlap between the two groups.  This is reinforced by observation of the 

consensus MDS images, as in all plots expect AA-Treeboost two groups are obvious.  
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These results imply that the simple base methods (Gower Db-MRT and binary 

substituted MRT) do not have sufficient power to identify the overlapping groups.   

 

The improvement in resolution gained from a local MCT should also be noted.  All 

combination methods for local MCTs produced the same tree.  Furthermore a smaller 

tree is obtained with comparable predictive performance.  These results highlight the 

differences between local and global MCTs, and show that once tuned local MCTs 

produce a more accurate result. 
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7.3 Mixed Type Profiling: Horse Colic Dataset 
 

In this analysis MCTs are used as a mixed type profiling tool. Here there is no known 

set of groups to compare against, and therefore the quality of the groups found must 

be assessed on how representative they are of each response variable.  This analysis is 

performed on the horse colic dataset, where the response set comprises of variables 

that describe the observed physical state of each horse, and the predictor set are 

variables that describe the type, site and severity of their colic lesion (Mcleish and 

Cecile 1989).  The goal is to use MCTs to identify groups in the predictor variables 

describing the lesions that correspond to groups within the response set of physical 

descriptors.  

 

The horse colic dataset contains 300 observations on 17 variables, 5 being 

quantitative and 12 being either ordinal or nominal  (Table 27).  With such a 

complicated response set spanning many types, it is expected that some variables will 

display different group profiles.  In this analysis MCTs are used as a search for 

subgroups of response variables that display a common group structure.  To do this a 

recursive search for common group structure using plaid combining is described.  The 

result of this search is subgroups of response variables that have similar 

configurations within their RFPs.  Upon these subgroups, separate MCTs are grown 

and compared to the structure found in an overall MCT involving all RFPs.  This is a 

data reduction step that is aimed at improving the understanding of group structure 

within each variable and how it relates to the overall structure within the dataset.  
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Table 27: Horse colic analysis dataset description. 
Variable 

Set 
Variable 

Name Description Type Missing 
Values 

Response REC.TEMP Rectal temperature Continuous 60 
Response PULSE Pulse rate Continuous 24 
Response CELL.VOL Packed cell volume Continuous 29 
Response TOT.PROT Total protein Continuous 33 
Response RESP.RATE Respiratory rate Continuous 58 
Response TEMP.EXT Temperature of extremities Ordinal {4 levels} 56 
Response PERIF.PU Peripheral pulse Ordinal {4 levels} 69 
Response MUCOUS.M Mucous membranes Nominal {6 levels} 47 
Response CAPILL.R Capillary refill time Ordinal {2 levels} 34 

Response PAIN A subjective judgment of pain 
level Nominal {5 levels} 55 

Response PERISTAL Peristalsis Nominal {4 levels} 44 
Response ABDOM.DI Abdominal distension Ordinal {4 levels} 56 
Response NASO.REF Nasogastric reflux Ordinal {4 levels} 106 
Predictor LESION Is surgery required on the lesion Dichotomous 

Yes or No 
0 

Predictor LESION.S Site of the lesion 

Nominal 
1. Gastric  
2. Small intestine  
3. Large colon  
4. Large colon and 

cecum 
5. Cecum  
6. Transverse colon. 
7. Retum/descending 

colon 
8. Uterus 
9. Bladder  
10. All intestinal sites 
11. None 

0 

Predictor LESION.T Type of the lesion 

Nominal 
1. Simple  
2. Strangulation  
3. Inflammation  
4. Other 

60 

Predictor LESION.A Subtype of the lesion 
Nominal 

1. Mechanical  
2. Paralytic  
3. N/A 

1 
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7.3.1 MRT methods 
 

To begin analysis on the horse colic dataset, simple MRTs with the Gower distance 

matrix and binary substituted response sets are grown.  If the grouping structure 

within the response is strong then these methods will adequately describe the groups 

present.  However it is expected that with such a complicated response these methods 

will be insufficient and unable to find meaningful structure. 

 

7.3.1.1 Gower dissimilarity Db-MRT 
 

Figure 82: Horse colic analysis Gower Db-MRT RE curve. 
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Figure 83: Horse colic analysis Gower Db-MRT and terminal node locations. 

Gower Db-MRT MDS plot of the Gower distance 
matrix. 

  
 

7.3.1.2 Binary substituted MRT 
 

Figure 84: Horse colic analysis binary substituted MRT RE curve. 

 

     (2)                                         (3) 
  n = 238                                  n = 62 
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Figure 85: Horse colic analysis binary substituted MRT and terminal node locations. 

Binary Substituted MRT MDS plot of the binary substituted 
response using a Euclidean distance. 

  

 

7.3.1.3 MRT method summary 
 

The issue of missing values within the response set is primary when interpreting the 

MRT methods.  The Gower distance simply ignores comparisons that involve a 

missing value in its distance computation.  The result of such an approach is no 

observable grouping structure within the response set (Figure 83).  This lack of 

structure is represented by a high RE of 95 % (Figure 82) and results in a simple 

single split tree (Figure 83). 

 

For the binary substituted data, the missing values are imputed using a K-nearest 

neighbour averaging on a Euclidean distance (Hastie, Tibshirani, Narasimhan and 

Chu 2005).  The effect of this is a more obvious grouping structure within the MDS 

plot, which is not found by the MRT (Figure 85).  The MRT itself acknowledges this 

with a poor predictive performance, displaying a RE of 0.93 +/- 0.052 (Figure 84).   

 

      (2)                            (3) 
   n = 153                    n = 147 
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The implications of these results are that the groups within the profiling set are not 

obvious within the predictor set.  As a result the trees found are simple and poorly 

performing. 

 

7.3.2 Tree-based ensemble methods 
 

To benchmark the MCT methods, overall consensus matrices are produced using 

random forests and treeboost on the binary substituted response.  The important 

results of these techniques will be observable structure within the MDS plots of the 

ensemble proximity matrices, and measures of predictive accuracy and stability of 

tree based methods with the error convergence plots. 

 

The consensus approaches show a much improved resolution of the lesion groups 

within the response (Figure 89, Figure 93).  However the complexity of these 

relationships is highlighted with the random forest models requiring over 200 trees to 

become stable and treeboost over 100 (Figure 86, Figure 90).  The partitions of the 

proximity images show for both methods a clear 2-3 group structure (Figure 87, 

Figure 91).   

 

The MCTs for each ensemble proximity matrix are slightly different (Figure 88, 

Figure 92) with nodes 6 and 7 being found by lesion type in random forest ensemble 

MCT splitting and by whether the lesion was surgical or not, in treeboost ensemble 

MCT.  For the split, of the 106 strangulation lesion types in LESION.T, 98 of these 

are flagged as being surgical in LESION implying a strong overlap between the two 
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potential splits.  The total difference between the two splits is 28 observations, which 

is 9.34 % of the observations. 

 

7.3.2.1 Binary substituted random forests 
 

Figure 86: Horse colic analysis binary substituted RF error convergence plot. 
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Figure 87: Horse colic analysis binary substituted RF RE curves. 
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Figure 88: Horse colic analysis RF tree grown to 3 splits using SSR splitting. 

 

Figure 89: Horse colic analysis RF proximity images. 
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7.3.2.2 Binary substituted treeboost 
 
Figure 90: Horse colic analysis binary substituted treeboost error convergence plot. 

 
 

Figure 91: Horse colic analysis binary substituted treeboost RE curves. 
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Figure 92: Horse colic analysis treeboost tree grown to 3 splits using SSR splitting. 

 
 
Figure 93: Horse colic analysis treeboost proximity images. 
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7.3.3 MCT methods 

 

MCTs treat each variable within the response set individually to gain more 

understanding on the grouping structure of each individual response.  As a result 

MCTs can be used not only for finding common profiles that exist in the entire 

dataset, but also sub-profiles or groups that are present in only a subset of response 

variables.  This analysis focuses on MCT’s ability to find these sub-groups and 

improved understanding of the final groups gained through the filtering process. 

 

The first step in this analysis is the construction of a global MCT to profile the 

complete response set of the horse colic dataset.  On this terminal node filtering is 

performed.  This will show that not all response set variables express every node 

within the MCT.  Secondly an algorithm of filtering the response variables before an 

MCT is grown is presented.  This algorithm finds groups of variables within the 

profiling set using the PLAID consensus generation method.  By doing this it is 

shown that further understanding and improved resolution of the groups found by the 

MCT is possible. 
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7.3.3.1 Complete response set global MCT 
 

The first step in the analysis is to run the random forests for each response separately.  

These RFPs are used for all analysis.  The global MCT random forest parameters: 

• Set seed at 123. 

• Separate test percentage of 60 observations to evaluate the ensemble’s 

performance. 

• 168 observations and 1 predictor used to construct each tree. 

• Maximum tree size is 10 splits. 

• Minimum terminal node size is 10 observations. 

• The random forest is built to 200 trees. 

Before being passed into any further analysis the performance of the random forests is 

assessed.  The percent training set error in the title of the RFP images plot in Figure 

94 show that for the response variables REC.TEMP, CELL.VOL, TOT.PROT and 

RESP.RAT the error in prediction is greater than if a simple mean is used as the 

prediction.  As a result these variables are removed from the analysis. 

 

To construct the global MCT the following profiling variables are used: 

• PULSE 
• TEMP.EXT 
• PERIF.PU 
• MUCOUS.M 
• CAPILL.R 
• PAIN 
• PERISTAL 
• ABDOM.DI 
• NASO.REF 
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The consensus MDS plots (Figure 95a) show that the structure within the individual 

RFPs (Figure 94) has been maintained.  Each combination method appears to have 

identified very similar structure with no observable difference in the MDS plots or in 

the RMSE profiles (Figure 95b).  This similarity is unsurprising, as all individual RFP 

images appear to show similar profiles.  The 10-fold global MCT RE graphs (Figure 

96) indicate the best splitting function is SSR, and all show a full MCT size of 3 splits 

(4 groups is optimal).  From this the MCT is grown with SSR to three splits using the 

GPA consensus (Figure 97). 
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Figure 94: Horse colic analysis individual RFP MDS plots.  The MDS plots are coloured by the predictor variable LESION. 
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Figure 95: Horse colic analysis consensus MDS plots and consensus RMSE plots. 

(a) Consensus MDS plots 

 
(b) RFP RMSE with Consensus 
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Figure 96: Horse colic analysis global MCT 10-fold CV RE curves. 
(a) GPA 

 
(b) BB 
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(c) PLAID 

 
 
Taking into consideration the similarity in consensus, individual RFP configurations 

and the RE curves, it is not surprising that for each combination method with SSR 

splitting grown 3 splits, the same MCT is produced (Figure 97a).  Interestingly, the 

least obvious group in the MDS plot, (Figure 97b, group 4) is the most well expressed 

in the MCT, showing a within node probability of 0.97.  Also, each group, especially 

group 5, appears to be a combination of two groups which have not been identified.  

In fact these groups can never be fully resolved, even when the MCT is grown to 10 

splits shown in Figure 106. 
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7.3.3.2 Complete response set global MCT plaid terminal node filtering 
 

Plaid terminal node filtering takes the sub-matrices for each terminal node for each 

RFP and observes their structure.  At a terminal node it is assumed that each RFP 

displays the same structure.  The assumption is that each cell can be modelled 

sufficiently with the mean centroid of that sub-matrix.  The PLAID consensus 

generation is seen as a way to test for the validity of this assumption.  If the plaid 

model finds a !
m

 of ‘1’, it means that this RFP has a different count profile to the 

other RFPs.  If the same structure is found the plaid consensus is the mean of all 

consensus matrices and each !
m

 will be zero.  

 

Running plaid terminal node filtering upon an MCT gives an indication of which 

RFPs express each group.  The result of this process (Table 28) identifies variables 

that express that node’s consensus structure as ‘0’.  For those that deviate, the 

magnitude and direction of the deviation is estimated.  The results clearly show that 

terminal node 4 is the most stable node with only CAPILL.R and ABDOM.DI 

expressing different configurations.  Conversely terminal node 5 is the least stable 

with only PULSE, PERIF.PU, PERSITAL and ABDOM.DI expressing the consensus 

structure.  Interestingly, terminal nodes 5 and 6 show the opposite expression 

structure, indicating a marked difference in profiles at these nodes.  This fits with 

their relative positions within the tree. 
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Table 28: Horse colic analysis plaid terminal node plaid filtering results. 
MCT Node Response 

Variable 4 5 6 7 
PULSE 0 0 4.57 0 

TEMP.EXT 0 6.04 0 0 
PERIF.PU 0 0 -6.92 -11.40 

MUCOUS.M 0 5.03 0 0 
CAPILL.R 17.03 -4.27 0 0 

PAIN 0 6.99 0 0 
PERISTAL 0 0 -3.57 0 
ABDOM.DI -17.29 0 5.79 -11.81 
NASO.REF 0 -13.78 0 23.09 

 

Terminal node filtering offers a means to test the homogeneity of each terminal node 

and investigate any variables that violate this assumption.  However the MCT is built 

using information from all response variables, whether they are homogeneous with 

the MCT groups or not.  It is possible that in a sufficiently complex response set that 

there will be sub-groupings of the variables that show different structure.  We now 

propose an extension to the plaid combining method aimed at identifying these sub-

groups before an MCT is build.  
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Figure 97: Horse colic analysis complete response set global MCT and terminal node 
location MDS plot. 
(a) MCT 

 
(b) Terminal node location MDS plot 
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7.3.3.3 Plaid response variable filtering algorithm 
 

Plaid model RFP combination estimates a binary variable κm, which flags those RFPs 

whose configurations deviate from the mean configuration.  An RFP with a κm of ‘1’, 

has a different configuration from the mean, whereas a κm of ‘0’ is considered to be 

adequately modelled by the background mean.  Using a recursive algorithm described 

in Figure 98 it is possible to construct a search for similar configurations, by 

identifying those RFPs with κms of ‘0’.  The algorithm is stopped either when all κm s 

are either ‘1’ or ‘0’, or when the residual sums of squares between the RFPs and the 

combined configuration has converged.   

 

If the residual sums of squares of the plaid model have converged, but there are still 

some κms of ‘1’, then plaid models considers these RFPs to be different but the effect 

of their difference is small.  Therefore removing them does not improve the error in 

the modelled consensus structure.  At this point, the RFPs are considered to be 

sufficiently homogeneous.   

 

If the algorithm returns a subset where all κm s are found to be ‘1’, it implies that all 

RFPs are sufficiently different from their background mean.  Therefore no simple 

mean of the RFPs can be used to model the overall structure.  If this occurs it is likely 

that PLAID combining will not yield the most accurate consensus matrix.  In this 

case, a different combination method, designed to model heterogeneity between 

RFPs, such as the BB or GPA combination methods, should be employed to estimate 

the consensus. 
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Figure 98: Plaid variable filtering algorithm. 

 

The result of the plaid variable filtering algorithm in Figure 98is 4 groups of response 

variables shown in Table 29.  For all variables but PERIF.PU the RMSE error 

between the RFP and the consensus configuration reduced, sometimes by over a half.  

Furthermore the variable groups found appear to make physical sense, with group 1 

and 2 relating primarily to the horse’s blood circulation function and group 3 relating 

to any observed pain the horse may be experiencing.  Finally group 4 just contains 

MUCOUS.M (a variable describing the colour of the horse’s eyes) and is grouped 

separately as it does not obviously relate to either heart function or observed pain. 

 

The first group is found with some κms not being zero.  This is because the plaid 

model error is shown to be sufficiently small at two iterations (Figure 99).  If the 

filtering algorithm is followed through to the third iteration, the first group of RFPs 

only contains TEMP.EXT.  The results in Figure 99 show that at iteration 2 the RFPs 

contribute to less than 34 % of initial plaid model error at iteration 1.  Because the 

error decrease from the second to the third iteration is small, the RFPs with a κm of ‘1’ 

1. Place all RFPs in subset A. 
2. While subset A has RFPs within it do: 

a. Calculate the complete plaid model parameters for all RFPs in subset A 
as described in Section 3.5.3. 

b. Compute the plaid model error, Qi, by (3.38). 
c. Compute the percent error relative to the error in the plaid model 

involving all RFPs in the initial subset A, Q0. 
d. If all κm = 0 then stop, a good subset of RFPs has been found. 
e. If all κm = 1 then stop, the RFPs cannot be modelled well by a stable 

mean representation. 
f. If the percent error has converged but all κm’s do not equal 0 then stop, 

a reasonable subset of RFPs has been found. 
g. Update subset A with all RFPs with a κm = 0. 
h. Update subset B with all RFPs with a κm = 1. 

3. Rerun the analysis on subset B. 
4. Stop when all RFPs have been placed into a stable group. 
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are shown to have a minimal effect on the homogeneity of the final consensus. 

Therefore they are considered sufficiently modelled by the consensus in the second 

iteration and the first group of RFPs is defined to be TEMP.EXT, PERIF.PU and 

CAPILL.R.  

 
Figure 99: Horse colic analysis plaid variable reduction error convergence for the first 
group. 

 

To investigate any improvements in resolution over these subgroups a global MCT is 

now built upon them.  For the first group, the RE curves (Figure 101a) indicate a tree 

size of three or four splits is possible.  This is one more split than the full response set 

MCT.  In this MCT (Figure 101b) the first three splits are the same as the full MCT, 

and the additional split acts upon the full MCT’s terminal node 5.  The resulting 

terminal nodes 10 and 11, improve the probability of expression from 0.65 in the full 

MCT to approximately 0.77 and 0.72 respectively, in the reduced MCT.  The MDS 

plot of the terminal node groups (Figure 101c) is more clearly resolved than in the full 

MCT with the noticeable difference in the group separation. 

 

By the RE curve for the second group (Figure 102a), 3 splits are selected.  The 

resulting MCT (Figure 102b) is identical to the full MCT in the splitting structure.  
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The only difference being in the MDS plot (Figure 102c), which appears to more 

clearly identify group 4. 

 

The third group RE curve (Figure 103a) clearly indicates 2 splits, a smaller tree to the 

other groups.  The splits made (Figure 103b) are the same as in the full MCT tree, 

however it does not make the partition to find nodes 7 and 8.  The MDS plot (Figure 

103c) shows a clear separation between nodes 3 and 5, however node 4 is not easily 

identified. 

 

As the fourth group only has one variable, a consensus matrix does not need to be 

computed.  The RE curves (Figure 104a) for this group indicate 4 splits as in the first 

group (Figure 104b).  However by observation of the MDS plot (Figure 104c) the 

differences in the group structure between the two are apparent.  Furthermore the 

fourth group more accurately defines groups 10 and 11.  This is shown in the mean 

probability of expression within these terminal nodes increasing from 0.77 and 0.72 in 

the first variable set to 0.8 and 0.8 in the fourth set. 

 

For each variable a strongly significant group profile is found (Figure 100).  For 

categorical variables this was tested using a ! 2  test of independence between the 

group categories and the MCT terminal node labels, and for a continuous variable a 

one-way ANOVA was performed testing the mean difference between MCT terminal 

nodes.  The significance of these profiles indicates the groups found by the MCTs are 

representative of structure within the responses.  Correlation coefficients, r, are also 
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presented to assess the strength of the relationships, for continuous variables 

Pearson’s r is computed and for categorical variables Cramer’s Phi is computed. 

 

From the response variable profiles (Figure 100) it can be seen that the group 

structure found is weak.  Group 1 appears to be defined by the temperature at the 

horse’s extremities being either normal or reduced, a reduced pulse and a capillary 

refill time of less than 3 seconds.  Group 2 finds MCT terminal nodes 4, 5 and 6 

relating to no nasogastric reflux.  The significant difference seen over the terminal 

nodes is driven by an elevation in pulse between nodes 4 and 7.  In fact all of these 

profiles significantly highlight terminal node 4 as showing different structure.  

Terminal node 4 in these groups more often identifies the groups labelled ‘normal’ 

within the response variables.  As a result an overall interpretation of these results is 

that RFP groups 1 and 2 are be primarily focused on identifying the profiles of a 

normal horse. 

 

Group 3 has the strongest observed correlations however no clear group structure 

exists over the variables.  Reversing the problem to a classification problem 

discriminating the groups in the predictor variable LESION, it is seen that only group 

3 variables are used in the tree (Figure 105).  This indicates the response variables 

within this group are those that are highly predictive of a single response variable 

LESION and therefore are determining the dominant grouping structure within the 

dataset. 
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Table 29: Horse colic analysis plaid response variable filtering results. 
1. Group one 

Variables: TEMP.EXT PERIF.PU CAPILL.R 
κm: 0 1 1 
βm: 0 -5.56 5.56 
RMSE with filtered response consensus: 8.15 8.90 4.85 
RMSE with full response set consensus: 16.26 8.49 10.41 

2. Second Group 
Variables: PULSE NASO.REF 
κm: 0 0 
βm: 0 0 
RMSE with filtered response consensus: 6.26 6.26 
RMSE with full response set consensus: 18.90 10.37 

3. Third Group 
Variables: PAIN PERSITAL ABDOM.DI 
κm: 0 0 0 
βm: 0 0 0 
RMSE with filtered response consensus: 4.59 6.58 6.49 
RMSE with full response set consensus: 8.33 9.52 10.31 

4. Fourth Group: MUCOUS.M 
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Figure 100: Horse colic analysis response variable group profiles. 
(a) Group 1 

TEMP.EXT PERIF.PU CAPILL.R 
 
 
 
 
 
 
 
 

  

! 2
= 43.044  

r = 0.19 
P-Value = 0.003 

! 2
= 53.7028  
r = 0.21 

P-Value = 0.00009 

! 2
= 30.0507  
r = 0.16 

P-Value = 0.00009 
(b) Group 2 

PULSE NASO.REF 

 

 

F = 36.908  
r = 0.36 

P-Value = 4.128 * 10-9 

! 2
= 25.6809  
r = 0.17 

P-Value = 0.0005 
 

MCT Node 
 4 6 7 10 11 
Absent 0 4 2 2 0 
Reduced 3 49 19 23 9 
Increased 3 1 0 1 0 
Normal 39 25 8 34 9 
 

MCT Node 
 4 6 7 10 11 
Absent 2 17 3 5 0 
Reduced 10 46 19 24 10 
Increased 11 6 1 10 2 
Normal 25 18 5 24 6 
 

MCT Node 
 4 6 7 10 11 
>= 3 Seconds 0 41 15 14 5 
< 3 Seconds 48 57 15 56 12 
 

MCT Node 
 4 5 6 7 
< 1 Litre 1 12 20 7 
> 1 Litre 0 12 15 8 
None 27 43 44 6 
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(c) Group 3 
PAIN PERISTAL ABDOM.DI 

 
 
 
 
 
 
 
 
 
 

  

! 2
= 69.2889  
r = 0.34 

P-Value = 0.00009 

! 2
= 65.4187  
r = 0.33 

P-Value = 0.00009 

! 2
= 50.2653  
r = 0.29 

P-Value = 0.00009 
(d) Group 4 

MUCOUS.M 
 
 
 
 
 
 
 
 
 

! 2
= 95.29  

r = 0.28 
P-Value = 0.00009 

 

MCT Node  
3 4 5 

Continuous 
severe pain 31 1 10 

Intermittent 
severe pain 25 1 13 

Intermittent 
mild pain 29 13 25 

Depressed 31 10 18 
Alert, no pain 2 23 13 
 

MCT Node  
3 4 5 

Abset 51 0 22 
Hypomotile 56 23 49 
Normal 4 6 6 
Hypermotile 8 23 8 
 

MCT Node  
3 4 5 

Severe 23 0 15 
Moderate 47 2 16 
Slight 26 17 22 
None 19 27 30 
 

MCT Node  
4 6 7 10 11 

Dark Cyanotic 1 11 6 2 0 
Bright Red/ Injected 2 6 10 5 2 
Pale Cyanotic 1 28 4 8 0 
Pale Pink 7 22 3 20 6 
Bright Pink 10 10 2 5 3 
Normal Pink 29 13 6 15 16 
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Figure 101: Horse colic analysis plaid filtered variable group one MCT results. 
(a) 10 fold CV RE curve 

 
(b) MCT 

 
(c) Terminal node location MDS plot 
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Figure 102: Horse colic analysis plaid filtered variable group two MCT results. 
(a) 10-fold CV RE curve  

 
(b) MCT 

 
(c) Terminal node location MDS plot 
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Figure 103: Horse colic analysis plaid filtered variable group three MCT results. 
(a) 10-fold CV RE curves 

 
(b) MCT 

 
(c) Terminal node location MDS plot 
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Figure 104: Horse colic analysis plaid filtered variable group four MCT results. 
(a) 10-fold CV RE curve 

 
(b) MCT 

 
(c) Terminal node locations MDS plot 
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Figure 105: Horse colic analysis classification tree classifying the groups within 
predictor LESION by the entire response set.  (Correct classification rate of 77.33 %). 
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Figure 106: Horse colic analysis MCT grown to 10 splits. 
(a) 10 split MCT 

 
(b) 10 split MCT terminal node locations 
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7.4 Horse Colic Summary  
 

The horse colic dataset is a good example of a profiling style analysis with MCTs.  

Firstly, using the a simple MRT on either the Gower distance matrix or binary 

substituted representation of the profiling set resulted in poor results.  The 

improvement gained from moving to the random forest and treeboost proximity 

matrix is considerable.  Groups that are common to both predictor and profiling sets 

now become obvious and easily found using the MCT splitting criteria.  These 

methods give good indications of the structure to be found within the analysis 

however provide little detailed information on the composition of the groups. 

 

Using MCTs it is possible to observe the grouping structure of each individual 

response variable and the relationship with the consensus matrix.  It allows for the 

terminal nodes of the resulting MCT to be simplified using plaid filtering.  By using 

MCTs with plaid terminal node filtering a two-way clustering is performed, where 

within a terminal node lie a subset of response variables and observations that define 

the common profile within the group. 

 

A pre-processing step can be taken with the recursive filtering algorithm, allowing for 

an initial clustering of the responses based on the structure within their RFPs.  This 

analysis highlights the complexities within profiling studies, as each response group 

displays a different subset of groups.  What is interesting in this analysis is not the 

differences but the similarities between the subsets:  in this case the splitting variables 

used in the tree and the tree size.  It is clear that modelling a subset of variables 

produces a more accurate result, however this improved accuracy relates to the same 
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groups found in the overall analysis.  It did not change the consensus structure 

completely, but reinforced the groups found in the overall consensus. 

 

A major issue with the horse colic analysis was the high level of missing values.  The 

results for the plaid filtering are dependant on the original global MCT model shown 

in Figure 97 and therefore if any bias in the missing values exists it will be obvious in 

this model.  The percent of missing values in each terminal is shown in Table 30 show 

that terminal nodes 5 and 6 contain the 69 % of missing values and 4 and 7 only 

contain 31 %.  However comparing this distribution to the relative size of each 

terminal node it is seen that the missing values are distributed with terminal node size.  

Therefore no obvious bias towards any particular group of missing values is observed. 

 

Table 30: Horse colic analysis global MCT terminal missing value distribution. 

MCT Node 4 5 6 7 
% Missing values 0.19 0.34 0.35 0.12 
Relative terminal node size 0.22 0.33 0.35 0.12 
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8. Discussion 
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The aim of this thesis is to extend tree based methods to handle a mixed type 

multivariate response.  To do this a series of methods have been developed.  Firstly, 

mixed type extensions to a multivariate tree are implemented by transforming the 

response using either the Gower distance, or binary substitution.  These techniques 

offer a simple solution to a complex problem, but provide little in the way of 

understanding the result.  Secondly, to improve on the performance of a single tree, 

multivariate tree based ensemble methods are also developed.  Ensemble methods 

improve the predictions on the multivariate responses, and by binary substitution, are 

further extended to mixed type response sets.  Multivariate tree-based ensembles are 

shown in this thesis to be powerful methods for profiling. 

 

One key feature provided by tree-based ensemble methods is their proximity matrices.  

These proximity matrices are identical to consensus matrices that can be produced 

over a cluster ensemble.  This changes the interpretation of a tree-based ensemble to 

that of a consensus clustering algorithm.  A result of this interpretation is that the 

predictive performance of the ensemble becomes a key statistic in determining the 

quality of the final clustering solution.  By using the ensemble predictive performance 

the problems in determining the accuracy and reproducibility of a cluster ensemble 

are reduced. 

 

The major contribution of this thesis is the development of multivariate consensus 

trees (MCT) for mixed type clustering or profiling.  MCTs combine ensemble 

proximities into one overall consensus matrix in an analogous step to the cluster 

ensemble search for the overall partition.  This provides more information on the 

accuracy of the final solution with the ability to analyse the individual group structure 
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of each response variable in the analysis.  MCTs partition the consensus matrix to find 

the optimal partition.  This procedure uses decision rules to map the predictor 

variables back over the consensus to allow for an understanding of the origin of the 

final groups in the optimal partition.  These rules also make MCTs a predictive 

clustering or profiling algorithm allowing them to easily group new observations 

without altering the original model.  This predictive ability allows MCTs to cross-

validate estimates on the number of groups and overall group accuracy. 

 

Before opting for the more complex and computationally expensive solution as 

implemented in MCTs, using the simple tree and ensemble methods can be useful.  

The Gower distance metric and binary substitution transformation of the response set 

are common ways of finding groups in mixed type domains.  In this thesis the results 

of these approaches are remarkably similar to each other as they both assume a 

Euclidean relationship between categorical and quantitative variables.  This similarity 

is highlighted in the breast cancer dataset analysis.  In this example both approaches 

grow the same tree and the MDS plots show very similar group structure (Figure 65, 

Figure 67).  Binary substitution is the more flexible of the two approaches as it can 

also be used with ensemble tree methods.  In the case of obvious structure these 

simple extensions will work.  

 

A major problem for binary substituting of the response is that of dimensionality.  

Binary substitution inflates the number of variables within the response by the total 

number of levels within each categorical variable.  In the case of the breast cancer 

analysis the 9 original categorical variables were transformed into 89 binary variables.  

Although it has been shown that multivariate tree based methods can handle a large 
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response set (Smyth, Coomans and Everingham 2006), the understanding of the final 

result is impaired by the dimensionality.  Furthermore as the response set is treated as 

a whole, filtering out unimportant variation is not possible. 

 

Multivariate extensions to tree based ensembles are shown to clearly improve group 

resolution within the MDS plots of the proximity matrices.  On comparison between 

multivariate random forest and treeboost notable differences in the group structure of 

the responses are observed.  The group structure within the random forest proximity 

matrices more closely matches that observed using the Gower distance and binary 

substitution.  However treeboost appears to find a consistently different group 

structure as seen in the thyroid and breast cancer analyses.  This difference does not 

manifest itself in performance, with the final grouping of the treeboost proximity 

matrix outperforming the final random forest proximity.   

 

Despite the improved accuracy observed when determining the groups over the 

treeboost proximities, they are not appropriate inputs for the MCT consensus 

construction.  There are two reasons for this:  

1) Boosting models are sensitive to the shrinkage parameter.  This prohibits 

automated running of the model as required for MCT construction.  The action of 

the shrinkage parameter means that simply increasing the number of trees within 

the model will not achieve optimal performance (Hastie, et al. 2001).  Random 

forests however can be easily tuned by increasing the number of trees within the 

forest to achieve optimal performance, and because of this are ideal candidates for 

MCT construction.   
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2) The trees in a boosting model are dependant upon each other.  This means that 

each tree does not contribute equally to the construction of the proximity, a fact 

that is not reflected within the proximity matrix itself.  This violates the 

assumption of a binomial distribution of the counts and could seriously affect the 

combination methods. 

 

The analysis of the consensus matrix with the MDS plots must go hand in hand with a 

heat map of the reordered matrix.  The structure of the groups with the MDS plots 

does not represent their structure within the dataset but how well that group has been 

predicted by the ensemble.  The result of this is that groups that are poorly predicted 

will be large and noisy within the MDS plot.  These groups will also have a relatively 

low probability of expression.   

 

From the base tree and ensemble methods it is clear that trees are highly suited to 

mixed type clustering and profiling.  The primary feature of tree-based methods is the 

ensemble proximity matrices.  By partitioning these matrices it is possible to 

simultaneously view a logical decision path that predicts each group in the form of a 

tree and the relationships between these groups within the MDS plots, a feature that is 

not available with any other unsupervised technique.  This allows  for a detailed 

understanding on how the groups within the predictor set match the response set.  

However as the response set is treated as a whole, they do not allow for clear 

understanding of how well each response variable expresses each group.  To do this 

the more individualistic analysis of MCTs is required.   

MCTs are designed for simultaneous analysis of relationships in both the response 

variables and between the response and predictor variables.  This is done by 
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individually analysing the group structure within each response variable.  By 

combining these structures MCTs not only retain all the functionality of the random 

forest proximity matrices but also can improve on the group resolution.  In fact this 

thesis shows the performance of MCTs for unsupervised classification can be 

comparable to the performance of a classification tree.  Also by analysis of the 

individual RFP structures it is possible to filter noise and unrelated variables from the 

response set by using both performance diagnostics and plaid combining.  

 

By extending PLAID combining, MCTs offer an algorithm to filter the response 

variable set.  Plaid filtering is implemented in two ways, firstly to cluster the response 

variables before construction of an MCT, and secondly to test the assumption of 

homogeneity within the terminal nodes of an existing tree.  Plaid filtering extends 

MCTs to be a two-way technique, where a group is defined both on a subset of 

observations and variables.  In the horse colic analysis plaid filtering is used to cluster 

the variables within the response variable set.  Over the four response variable 

subgroups found, different group structure within them is observed.  Furthermore, the 

consensus produced from each subgroup is a more accurate consensus in terms of 

RMSE between RFPs of the subgroup and the overall model consensus.  

 

The horse colic results give a clear indication of the power of plaid filtering.  Firstly 

the algorithm removes the dominant variation corresponding to the normal symptoms 

of a horse, and then places together the variables related to the lesion groups. In 

addition the profiles found for each subgroup are different and also strongly 

significant.  However the relationships in terms of correlation observed over the 
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terminal nodes are weak ranging between 0.16 to 0.36.  Therefore plaid filtering is 

shown to be effective even when the observed grouping structure is weak.   

 

However, as plaid filtering is finding groups over RFPs generated from a random 

procedure, care should be taken to ensure that all structure in these matrices has been 

fully resolved.  This can be done easily by increasing the number of trees within each 

forest and observing the structure change.  If the RFPs themselves are unstable, then 

plaid filtering will also be unstable. 

 

Much of the effort in this thesis is spent of testing the effect of various parameter 

specifications in the three stages of MCT construction (Table 2).  The estimation of 

the overall consensus matrix from the individual RFPs is the first major complexity 

within the MCT algorithm.  Three combination methods are proposed in this thesis, 

GPA, BB and PLAID.  Both GPA and PLAID define the overall consensus by 

minimising the square error loss between each individual RFP and the consensus.  BB 

does not minimise a loss function but rather provides a robust estimation of each 

count within the proximities by estimating their overall probability distribution.  As a 

result it is expected that different combination methods will provide a different 

consensus solution. 

 

By analysing the RMSE errors between the RFPs and the consensus matrix it is 

possible to assess the quality of the combination.  This provides a response variable 

importance statistic for the overall MCT.  Strong similarity is found in the resulting 

consensus matrices from each combination method.  From the results it appears that 

GPA and BB are finding very similar structure as they produce the same global and 



 232 

local MCT in the breast cancer analysis (Figure 79, Figure 81) and show the same 

performance convergence in the sensitivity analysis (Table 16, Table 17).  PLAID 

combining however produces a different global MCT for the breast cancer dataset 

(Figure 79), shows a different performance convergence in sensitivity analysis (Figure 

79, Figure 81) and shows a much increased RMSE for the 10 uneven but clear group 

simulation tests (Figure 39).  However whether these differences translate into 

reduced clustering accuracy is not clear.  In the sensitivity analysis using PLAID 

combining shows a less accurate consensus that resulted in a reduced performance of 

the overall tree.  However in the breast cancer dataset, using PLAID combining 

results in the most accurate tree.   

 

The inconsistent performance of PLAID combining is most likely due to the plaid 

model’s search for common structure over the RFPs.  In this thesis the plaid model is 

only run to a single layer.  This may result in smaller groups being modelled in later 

layers, as the common structure in the first layer is likely to favour the larger groups.  

This is what is observed in the sensitivity analysis.  With plaid models the MCTs 

grown using the PLAID consensus do not finding the smallest group (group 3) and in 

the ten group simulation experiment with large and small group sizes the RMSE for 

plaid combining is obviously the greatest.  These results show that PLAID combining 

may not resolve smaller group structure over the RFPs. 

 

An obvious solution to this problem is running plaid combining to more than one 

layer.  However, as different group configurations will exist within each additional 

layer any interpretation of what variables contribute to the groups in the final 

consensus will be confused.  This removes one of the most important features of the 
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plaid combining algorithm.  Another approach is to change the background layer from 

an average consensus matrix to one produced by BB or GPA.  This approach biases 

plaid models to the structure found by BB and GPA.  A flow on affect is to change the 

interpretation of the plaid parameters.  Instead of modelling the deviations from the 

mean consensus they are modelling the deviations from a modelled consensus.  As 

this modelled consensus has no simple expression, the interpretation of the plaid 

parameters as estimating deviations from homogeneity does not hold. 

 

This thesis also assessed the effect noise variables within the RFPs will have on the 

final consensus solution. The results showed that the consensus generation procedure 

of MCTs was found to be remarkable resistant to added noise within the response set.  

In these experiments it is shown that the consensus configuration has the same group 

structure as the original despite the addition of pure randomness within the consensus 

generation procedure.  Furthermore the RE curves accurately estimate the number of 

clusters, and the accuracy of the resulting partitions is found to be comparable or 

exceed that of K-means.   

 

Once an overall consensus has been estimated the task is now to partition the matrix 

to find the groups.  To do this five splitting criteria are developed.  These criteria 

search over all decisions within each variable in the predictor for blocks of 

observations with high similarity within the consensus matrix.  In an ideal case the 

decisions found will reorder the consensus matrix into a block diagonal structure 

where the similarities on the block diagonal are high and the similarities within the off 

diagonal blocks are low.  Of the five splitting criteria developed, one observes the 
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group variance structure (SSR), two utilise the count structure of the cells within the 

matrix (MR and OR) and the last two are combinations of MR and OR with SSR.  

 

The quality of each splitting criteria is best assessed by observation of their respective 

RE curves.  Over the simulation tests these curves were produced for each criteria for 

each experiment.  Overall it appears that MR and MR-SSR produced curves that are 

less accurate than the other splitting criteria (Figure 35, Figure 41, Figure 45).  This is 

shown by consistent high variability within the cross-validated performances.  The 

other splitting methods performed indistinguishably as the RE curves are closely 

matched and the misclassification performances similar.  However when moved from 

the sterile domain of the simulation experiments to an actual dataset a clear 

interaction between the performance of the splitting criteria, combination method and 

random forest parameters emerged. 

 

Considerable effort has been made in this thesis to quantify the interaction between 

the splitting criteria, combination method and random forest parameters for both 

global and local MCTs.  Global MCTs have a clear interaction with random forest 

tree terminal node size.  The structure of this is that if the terminal node size is set too 

small by increasing the tree size optimal performance can be reached (Table 16).  This 

interaction is seen to be mostly independent of combination method.  However local 

MCTs seemed only to be sensitive to terminal node size (Table 17).  Here the 

terminal node size must be specified as close as possible to the smallest group size in 

the data.   
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These results are not surprising given how the two types of MCTs are grown.  As 

local MCTs recompute the consensus matrix it is difficult to optimise the performance 

of the base random forests.  Furthermore the choice of MCT splitting criteria is a 

sensitive parameter as the accuracy of the intermediate consensus matrices is 

dependant on the previous decisions within the tree.  Global MCTs do not suffer as 

severely from this problem because the response is constant and therefore it is easier 

to optimise the important parameters.  These differences are highlighted in the 

sensitivity analysis of the Vietnam data. 

 

Local MCTs, when optimised, show a more improved resolution of the groups.  This 

improvement highlights the power of a localised clustering solution.  The resolution is 

improved as once obvious groups are removed from the analysis, more attention can 

be paid to separating the groups that are closer together.  This is strongly highlighted 

in the breast cancer dataset analysis.  To get the same performance the local MCTs 

require 3 splits whereas global MCTs require 5.  This increased split accuracy is 

highlighted in the identification of the benign group.  Global MCTs identify the 

majority of the benign group at terminal node 15, and much of the work in the early 

splits of the tree is dedicated to shaving off smaller malignant sub-groups (Figure 79).  

However local MCTs find the majority of the benign group first, in terminal node 3, 

and then use the other two splits to find the less obvious malignant sub-groups (Figure 

81).  This implies that local MCTs will find the most obvious groups first, whereas 

global MCTs are likely to favour smaller groups. 

 

MCTs however are limited by their tree structure when finding groups.  In the 

thyroid, Vietnam and breast cancer analyses it was found the performance of MCTs 
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approaches the performance of a classification tree.  However in the thyroid analysis 

it was apparent that K-Means and PAM on the consensus matrix found by MCTs 

identified the known groups more accurately.  For example, the local MCT for the 

thyroid dataset misclassifies 15 observations, whereas on the ACM, K-means 

misclassifies 12 and PAM 10 observations.  The reason for this is that tree-based 

clustering methods are bound by groups that are separable by a single decision on a 

single predictor variable, where as K-Means and PAM are not.  A possible solution to 

this is to define a multivariate or linear combination of splitting functions (Breiman, 

et al. 1984, Brodley and Utgoff 1995). 

 

MCTs when run correctly are a powerful technique for clustering or profiling.  

However there are a lot of parameters that can serious affect the accuracy of the final 

solution. For a reasonable dataset as computation time for MCTs is considerable a 

course of action to determine a reasonable set of parameters for a MCTs analysis is 

now described: 

1. The first step is to produce a single multivariate tree upon the dataset.  If mixed 

types exist then use binary substitution or the Gower distance approaches.  From 

this analysis it is hoped that the following information is gained: 

a. To determine appropriate tree and terminal node sizes for the ensemble 

methods.  These can be determined through observation of the RE graphs. 

b. To assess the predictive performance of that tree.  If there is no stable tree 

observed from the RE graphs then it is unlikely that this will change with 

any further analysis. 

2. Once you have appropriate estimates for tree and terminal node size the next step 

is to build a simple multivariate random forest or treeboost model using these 
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parameters.  From these models the most important piece of information is the 

error convergence plots.  It is strongly recommended that a reasonable 

independent test set be used to assess the performance of the ensemble.  If the 

predictions upon this test set do not converge then no stable trees can be built, and 

as a result this analysis will not find stable groups.  If the performance does 

stabilise it is recommended that more trees well past the point of convergence be 

added to the model to ensure that this stability remains.   

3. Once the ensemble methods are stable then the MCT approaches can be 

considered.  Firstly observe the structure within the plots of the proximity matrix 

to get an idea of the quality of the group structure.  Then produce the RE curves to 

partition this proximity matrix for each splitting criteria. If a stable group structure 

has been found the elbow should appear at the number of groups observed in the 

proximity matrix plots.  If this is the case then MCT methods are likely to find a 

representative set of clusters. 

4. The decision to go to the local or global MCT methods using a combined 

consensus matrix should be determined on the number of response variables 

available.  If there are many responses then filtering out some before combining is 

recommended.  In the horse colic analysis this was done on the basis of the 

performance of the random forest for each response variable.  From here it is 

advisable to perform all combination techniques but only growing a global MCT 

on each.  Once the global MCT parameters have been optimised, then a local 

MCT approach using similar parameters may be attempted.  It should be noted 

that local MCTs are remarkably more sensitive than global MCTs to the choice of 

parameters and may take some time to optimise. 
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5. After the MCTs are grown and the results make sense, plaid filtering can be 

performed.  However it is advisable that a stable model be found before 

performing this step as reproducible proximity matrices for each varaible are 

required. 

It is hoped that this guide will produce stable MCT solutions, however the final result 

will be dataset dependent. 
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9. Conclusions 
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This thesis has developed models for mixed type clustering or profiling.  The core 

idea within this thesis is that groups found to describe a dataset must be predictive of 

each variable within it.  The methods developed in this thesis use tree-based ensemble 

techniques to predict the data, and cluster ensemble ideas to identify the overall 

grouping structure.  This combination of ideas culminated in the development of a 

new algorithm called Multivariate Consensus Trees (MCT). 

 

Multivariate Consensus Trees, in this thesis have been shown to find more accurate 

grouping structure than either hierarchical agglomeration, K-Means or PAM.  

Furthermore they enable an analysis of the found groups in terms of: “which predictor 

variables determine the groups?”; “which response variables express these groups?” 

and the probability that these groups are representative of the data.  MCTs also allow 

for pre and post-processing steps, using plaid models, to filter out response variables 

that do not express the groups found by the MCT.  These features of MCTs make 

them a unique tool for finding and understanding the grouping structure over a mixed 

type dataset. 

 

The focus of MCTs is in finding groups on a multivariate mixed type response.  

However this thesis has also suggested methods for mixed type prediction using 

multivariate extensions to tree-based ensembles using binary substitution of 

categorical variables within the response dataset.  Multivariate random forests and 

treeboost are new methods of predictive profiling analysis that can highlight grouping 

structure, but are more focused on creating an accurate predictive model.  Tree based 

models are resistant to overfitting problems and can handle large datasets.  These 

features are highly desirable for any multivariate model. 
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Overall this thesis has exploited the flexibility of trees in handling mixed data types 

and extended them to a predictive multivariate ensemble.  Moving from prediction to 

clustering this thesis views a tree-based ensemble as a consensus clustering algorithm.  

The result is multivariate consensus trees, a tree based clustering and profiling tool for 

mixed data types. 
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