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Abstract 

 

Multivariate profiling aims to find groups in a response dataset that are described by 

relationships with another.  Profiling is not predicting each variable within the 

response set, but finding stable relationships between the two datasets that define 

common groups.  Profiling styles of analysis arise commonly within the context of 

survey, experimental design and diagnosis type of studies.  These studies produce 

complex multivariate datasets that contain mixed variables often with missing values 

that require analysis with a flexible, stable statistical technique. 

 

The profiling model under consideration within this thesis is a Classification and 

Regression Tree (CART).  A standard CART model finds groups within a univariate 

response by building a decision tree from a set of predictor variables.  The flexible 

structure of a CART model allow it to be used for either discriminate or regression 

analysis whilst also catering for mixed types within the predictor set.  

 

The goal of this thesis to develop methods that extend CART for a multivariate 

response dataset involving mixed data types.  Multivariate regression for CART 

(MRT) has recently been shown to be a powerful profiling and clustering tool.  

However the same successes in extending CART for multivariate classification and 

multivariate mixed type analysis is yet to be realised.  To begin with thesis explores 

simple extensions to CART for multivariate mixed type analysis.  These are binary 

substitution of categorical variables within the response set and partitioning of a 

distance matrix using Db-MRT.  These techniques use already existing extensions to 



 

CART methods and are used as comparison methods to gauge the performance of the 

ensemble and consensus approaches that are the focus of this thesis. 

 

Ensemble models using CART, such as random forests and treeboost, not only 

improve the overall accuracy of the model predictions but also introduce an ensemble 

proximity matrix as a measure of similarity between observations of the response set.  

In this thesis, through MRT, extensions to both random forests and treeboost are 

developed such that they predict a multivariate response. Furthermore, by binary 

substitution of the categorical variables within the response set these multivariate 

ensemble techniques are further extended to mixed type profiling.  A result of this 

extension is that the ensemble proximity matrix now describes the groups found 

within the multivariate response.  In this way multivariate tree-base ensembles can be 

interpreted as a cluster ensemble method, where the ensemble proximity matrices can 

be seen as cluster ensemble consensus matrices.  In this thesis these proximity 

matrices are found to be powerful visualisation tools providing improved resolution of 

group structure found by a multivariate ensemble method.  More so, as in cluster 

ensembles using these matrices as an input in to a clustering method improves the 

accuracy of the groups found. 

 

The main work of this thesis is the development of the Multivariate Consensus 

Tree (MCT) framework for mixed type profiling.  Motivating the MCT approach 

is the need to further understand which variables relate to the groups observed within 

the proximity matrix.  To do this MCTs describe three methods to intelligently 

combine the ensemble proximity matrices of individual responses into one overall 

consensus matrix.  This consensus matrix is a summary of the overall group structure 



 

within each individual proximity matrix.  As MCTs work solely with proximity 

matrices they are independent of the data types within the variables of the response 

set.  Furthermore as each response variable is explicitly predicted it is possible to 

assess the quality of each proximity matrix in terms of predictive accuracy of the 

corresponding ensemble. 

 

The MCT consensus matrix is a visualisation tool for the groups present within both 

the response and predictor datasets.  As a consensus matrix is a similarity matrix this 

thesis proposes five new splitting criteria for tree-based models that search for 

decision rules within variables of the predictor set that partition the consensus matrix 

into the observed groups.  This tree provides a logical decision path that predicts each 

group.  As the groups within the response are now defined by their relationships 

within the predictor set, the MCT profiling is complete.  This thesis proposes two 

algorithms for building an MCT; global MCTs and local MCTs.  Global MCTs 

construct an overall consensus matrix spanning all observations, and recursively 

partition on this matrix to build the tree.  Local MCTs build a new consensus matrix 

at each terminal node to evaluate each new split.   

 

As MCTs have the proximity matrices to summarise the group structure within each 

response variable methods to identify important subgroups within these variables are 

also proposed.  This search for subgroups within the response can be done on two 

levels.  Firstly to identify subgroups of response variables for overall analysis; and 

secondly to identify subsets of response variables within any specific group found by 

the MCT.  By finding subsets of response variables that relate to specific group 

structure the understanding of structure within the dataset is greatly improved. 



 

This thesis shows tree-based methods for profiling, in particular MCTs, to be a 

powerful tool for mixed type analysis.  Firstly, the visualisation of the tree, combined 

with the proximity matrices, provide a unique view of the groups found and allow for 

their easy interpretation within the context of the analysis.  Secondly, MCTs are 

shown to accurately estimate the number of groups and provide measures on their 

stability and accuracy.  Furthermore, MCTs are found to be resistant to noise 

variables within the analysis.  Finally they provide methods to find subgroups within 

the response variables and to identify unimportant variables from the analysis.  

Throughout this thesis these tree-based methods are compared with standard 

clustering techniques to provide an accurate benchmark for their performance. 
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1. Introduction 
 



 2 

One of the functions of statistics is to find and describe important features within a 

dataset.  In most cases, what the statistics finds is expected. But as the questions asked 

become more complicated and involve identifying interactions across many variables 

of different types, even the experts cannot describe all the effects that combine to 

produce the outcome.  Researchers in an assortment of fields such as ecology, 

psychology, bioinformatics and medical research are now gathering highly complex 

datasets that require large amounts of detailed analysis to comprehend.  So much so 

that the complexity of these datasets is driving the development of new approaches 

that are powerful enough to analyse them whilst also being easily understood.  This is 

where the full potential of statistics as a data mining tool is realised.   

 

Multivariate profiling aims to find groups that exist over many variables.  Profiling is 

not predicting each variable, but finding stable groups that exist over all variables.  

Cluster analysis can be considered a subset of profiling called “unconstrained 

profiling”, where there is only a single dataset.  However profiling can be extended to 

finding groups in one dataset that are well represented within another.  This is 

“constrained profiling” where the structure found in the response set is constrained by 

the relationships available within the predictor set.  Profiling analyses arise most 

commonly within the context of survey, experimental design and diagnostic styles of 

analyses.  

 

Most of the complexity of clustering and profiling analysis is in the validation of the 

model.  The groups found must be shown to be logical and be representative of the 

data.  This thesis explores the potential of Classification and Regression Tree 

(CART) models for use in multivariate profiling problems.  CART is an ideal 
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choice for profiling as it provides an intuitive framework for understanding 

relationships within a dataset.  CART models use a hierarchy of decision rules found 

on predictor variables that logically determine groups within response variables. 

 

A Classification and Regression Tree (CART) (Breiman, Friedman, Olshen and Stone 

1984) is a data-mining tool for non-linear regression and classification.  CART works 

by creating a binary tree from the set of predictor variables and by imposing 

conditions upon these variables, the tree predicts or classifies a response.  The 

resulting tree provides information on the relationships between predictor variables 

and the response, and gives an insight into possible groups or clusters within the 

dataset.  CART modelling provides an intuitive statistical framework that is easily 

understood by the non-statistician.  Due to the ease of interpretation many researchers 

are now choosing to use CART models over the standard regression or classification 

techniques (Quinlan 1986, De'ath and Fabricius 2000, E. Dusseldorp and J. J. 

Meulman 2001). 

 

By creating an ensemble of CART models it is well established that predictive 

performance will stabilise and improve (Dietterich 2000b, Breiman 2001).  Another 

motivating reason for this is to extract ensemble co-occurence matrix of the forest, 

called the Random Forest Proximity (RF proximity) matrix (Breiman 2001, Shi and 

Horvath 2006).  Contained within this RF proximity matrix is a summary of all the 

group structure within the response set as defined by the predictor variables. This is 

viewing tree-base ensembles as a cluster ensemble method (Strehl and Ghosh 2002), 

where the ensemble proximity matrices can be seen as cluster co-occurrence matrices 

(Monti, Tamayo, Mesirov and Golub 2003).  These matrices are powerful 
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visualisation tools providing improved resolution of group structure found by an 

ensemble method.  

 

Extending CART to multivariate profiling is finding appropriate measures to assess 

the quality of a split over many variables of different types.  For multivariate 

regression this can be easily implemented by using multivariate sums of squares, 

Multivariate Regression Trees (MRT) (Segal 1992).  However such simple extensions 

are not possible for multivariate classification or mixed type response sets.  A 

generalized entropy approach for multiple binary responses (Zhang 1998) uses a log-

linear model over the responses but assumes an exponential distribution for each 

variable for each terminal node of the tree.  General estimating equations have also 

been used to extend trees for a mixed type response set (Seong Keon Lee, Hyun-

Cheol Kang, Sang-Tae Han and Kwang-Hwan Kim 2005).  This approach uses a 

marginal regression model to determine the terminal nodes of the tree. 

 

As model based methods assume a distribution of the response variables, they remove 

the non-parametric nature of CART.  As such, these methods view multivariate 

extensions to CART in a multivariate predictive framework.  This thesis takes a 

different view, choosing to use multivariate trees as a method for identifying stable 

groups within the datasets.  These two ideas are not same as finding a stable group 

structure may not lead to optimal predictive performance. 

 

Partitioning a distance matrix as in Db-MRT (De'ath 2002) offers a non-parametric 

approach for extending CART to multivariate response sets.  Although transforming 

the response into a distance matrix allows for an easy implementation of multivariate 
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CART, uncertainty exists in the measuring of the quality of the tree’s predictions and 

in determining the size of the tree. Furthermore, standard distance measures are 

poorly defined over a mixed type domain.  Methods that can give an indication on the 

quality of a node in a mixed multivariate domain are required for a complete solution. 

 

Taking lead from DB-MRT and tree-based ensemble methods this thesis investigates 

using the RF proximity to relating observations as input to a clustering or profiling 

model.  To identify the group structure within the RF proximity matrix we propose a 

Multivariate Consensus Tree (MCT) for partitioning the matrix to identify groups 

within the response variables.  A MCT searches for decision rules within the predictor 

variables that define areas of high similarity within the RF proximity matrix.  

 

One important issue with cluster or profiling type analyses is that different data types 

may exist within the variables of the datasets involved. If presented with a mixed type 

dataset the question of an appropriate way of relating objects spanning many types 

must be answered. A key feature of the base CART model is its power in handling 

mixed type datasets.  In this thesis the suitability of tree-based models to solve such a 

problem is explored.  

 

By using CART and MRT theory as a starting point this thesis also proposes and 

compares methods to create RF proximities over a mixed type dataset. The first 

proposed method substitutes the categorical variables with a binary indicator matrix 

(Gifi 1990).  From here the substituted response set is treated as a multivariate 

regression problem and a tree based ensemble is built.  Then the RF proximity matrix 

is extracted and an MCT is used to identify the groups. 
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However employing binary substitution on the categorical responses assumes a 

Euclidean relationship between categorical and continuous variables and homogenous 

levels within each categorical variable (Kaufman and Rousseeuw 1990).  It is 

expected that for a realistic analysis this assumption may not be valid.   

 

Motivated by the need to further understand which variables relate to the groups 

observed within the proximity matrix, the second mixed type extension proposed is to 

intelligently combine individual variable RF proximity matrices to produce a single 

overall consensus matrix.  To do this the three combination methods are explored, 

General Procrustes Analysis (GPA), a Beta Binomial model (Gelman, Carlin, Stern 

and Rubin 1997) and Plaid Models (Lazzeroni and Owen 2002). 

 

As this approach models a variable’s proximity matrix it is independent of its data 

type, therefore allowing it to produce a consensus matrix from proximities created 

from a mixed type data set.  Furthermore as the individual variable proximity matrices 

are predicted by the overall consensus a R2 can be defined as a measure of variable 

importance is to the final cluster solution can be computed.  A MCT is then used to 

identify the groups within the overall consensus based on decision rules found within 

the original dataset variables. 

 

In Section 2 the background literature for clustering and profiling with a particular 

focus on ensemble and tree-based methods is reviewed.  Section 3 describes the 

specifics of the core methods required to understand MCTs including univariate and 

multivariate tree models, tree-based ensembles, mixed type extensions to trees and 

methods to combine proximity matrices are described.  Section 4 presents the MCT 



?; 

algorithms using the iris dataset as an example and Section 5 references the software 

used and developed in this thesis. Sections 6 and 7 use simulated and benchmark 

examples to assess and compare the performance of individual trees, tree-ensembles 

for profiling and MCT methods. Section 8 and 9 present a detailed discussion on the 

performance of the methods and conclusion chapters. 
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2.1 Relating Objects 
 

Measures of how related objects are within a dataset forms one of the core principles 

of statistics.  How objects are related depends on their data types.  Two broad 

statistical groups of variable types exist: quantitative and qualitative.  Quantitative or 

‘continuous’ variables comprise of two subgroups, interval and ratio.  These variables 

have a strict order and are commonly used to measure the relative magnitude of an 

observation, e.g. temperature.  Qualitative or ‘categorical’ variables also have two 

subgroups: ordinal and nominal.  However nominal qualitative variables can be 

unordered and their assigned labels may not be representative of the actual levels 

within the variable.  Categorical variables are often used to identify grouping structure 

over a variable e.g. hair colour.  Due to the structural difference between the 

variables, separate measures for relating objects within a single data type have been 

developed.  

 

For relating objects based on quantitative variables the most common choice is the 

Euclidean distance (Everitt 1993).  The Euclidean distance between two vectors 
 
!

x  

and 
 
!

y  is defined as, 

 
 

d
!

x,
!

y( ) =
!

x !
!

y( )
T

!

x !
!

y( ) . (2.1) 

The interpretation of (2.1) is the length of a straight line between the two vectors and 

therefore assumes a continuous domain.  As the length of the line increases the less 

related the two observations are and therefore the Euclidean distance is also a 

dissimilarity measure. 
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Common choices for relating objects based on qualitative variables are a simple 

pairwise matching statistic (Kaufman, et al. 1990) that counts the number of 

observations over the variables with the same labels or using the chi-square distance 

(Lebart, Morneau and Warwick 1984).  These are similarity measures as the more 

related the two objects are the larger the value of the measure. 

 

2.2 Relating Mixed Types 
 

Mixed type analysis relates variables spanning multiple data types.  The problem 

surrounding this is the order inherent in quantitative variables and the lack of order of 

qualitative variables.  This structural difference between the two types prevents any 

simple extension of a measure designed for a single type.  There are however, 

approaches commonly used for relating mixed types.  Two of these approaches are 

discussed in this thesis and are used as benchmark methods.  These are using the 

Gower dissimilarity measure and binary substitution of categorical variables. 

 

The first benchmark method for relating mixed types is the Gower dissimilarity 

measure (Gower 1971a).  This is defined as, 

 

 

d
!

xi ,
!

x j( ) =
! ij
(m )
dij
(m )

m=1

M

"

! ij
(m )

m=1

M

"
 (2.2) 

where dij
(m )  is the distance between the observations i and j and carries a different 

definition given the type of variable m, and ! ij
(m )  is a binary flag indicating the 

position of missing values within a variable.  The definitions of dij
(m )  are: 

1. For nominal variables: 



 11 

 
dij

(m )
= 1 if xim ! x jm

       = 0 if xim = x jm
 (2.3) 

2. For binary variables, dij
(m )  is the Jaccard Coefficient (Kaufman, et al. 1990). 

3. For interval or ratio variables: 

 dij
(m )

=

xim ! x jm

range(xm )
 (2.4) 

This dissimilarity provides a simple measure between mixed types, however assigns 

the same weight to any variable type and therefore will not model complex 

relationships within the data. 

 

Binary variable substitution for categorical variables is the second method for relating 

mixed types.  This method substitutes categorical variables into an indicator matrix G 

(Young 1981, Gifi 1990).  An example of binary substitution of a categorical variable 

(2.5) shows the indicator matrix G has a ‘1’ at the location of each category in the 

categorical variable xcategorical: 

 xcategorical = 1,1,1,2,2,2,3,3,3[ ] =

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

!

"

#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&

= G  (2.5) 

This substitution is made in optimal scaling, non-linear principal component analysis 

and correspondence analysis (Lebart, et al. 1984).   
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Both the Gower dissimilarity and binary substitution assume Euclidean distances 

between categorical and continuous variables (Buuren and Heiser 1989).  This 

assumption has considerable impact on the structure within the qualitative variables.  

It forces the assumption that the levels within these variables are homogeneous or 

evenly spaced (Kaufman, et al. 1990).  Although, to identify a simple group structure 

this assumption may be valid, it is not likely to hold for more complex relationships.  

Therefore to find group structure over more complex relationships spanning multiple 

types a more advanced method for relating objects is required. 

 

2.3 Cluster Analysis 
 

The aim of cluster analysis is to find groups within a single dataset.  There are many 

clustering methods available.  Cluster analysis methods differ either in their definition 

of a group or in the algorithm used for finding the groups.  Common group definitions 

of are either based on within group measures such as areas of high similarity between 

observations or between group measures such as the maximum distance between two 

objects (Figure 1). 

 

Figure 1: Cluster analysis example. 
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There are many algorithms commonly used for cluster analysis.  Firstly, there are 

divisive or agglomerative methods, which iteratively separate or merge objects into 

groups.  There are a variety of these methods such as hierarchical agglomeration 

(Everitt 1993) and auto-associative multivariate regression trees (AA-MRT) 

(Questier, Put, Coomans, Walczak and Vander Heyden 2004).  Secondly there are 

optimisation methods that search for a predefined number of stable group centres.  

These methods define clusters by minimising the distance between objects and the 

group centres.  K-means and partitioning around medoids (PAM) (Kaufman and 

Rousseeuw 1987) are examples of optimisation based methods. 

 

2.3.1 Hierarchical agglomeration 
 

Hierarchical agglomeration iteratively merges the objects into groups starting with all 

objects in their own group or each object by itself.  Using a specified agglomeration 

or merging criterion the algorithm searches for two objects to form the next best 

group.  Once a group of more than one object is formed, these objects are considered 
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a single group and treated as one for the duration of the algorithm.  As the algorithm 

progresses all objects are placed into the group to which they are most similar, based 

on the agglomeration criterion.  These groups are iteratively merged until the final 

group is the entire dataset.  At any point in the agglomeration the algorithm may be 

stopped and the individual groups at that iteration can be extracted.   

 

Different merging criteria will find different groups.  Commonly used criteria are: 

1. Single Linkage: The distance between two groups is the minimum distance 

between any two objects in separate groups. 

2. Complete Linkage: The distance between two groups is the maximum distance 

between any two objects in separate groups. 

3. Average Linkage: The distance between two groups is the average distance 

between all objects in both groups. 

4. Wards Method: The distance between groups is defined by the change in 

within sums of squares between the merged and unmerged groups. 

Determining where to stop the merging determines the number of clusters that have 

been found.  A plot of the agglomeration history called a ‘dendrogram’, for a small 

dataset can help to determine the stopping location.  For large datasets however, these 

are difficult to read and no accepted automatic stopping criteria are available 

(Milligan and Cooper 1985). 

 

2.3.2 K-means and medoids (PAM) 
 

K-Means (Hartigan 1975) searches for the optimal set of clusters that minimise their 

within cluster sums of squares (WSS), 
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where 
 
!

x
i
 is an observation vector in the dataset, C

k
 are the labels of the set of K 

clusters 
 
1,!,k,!,K{ }  and 

 
!

x
k
 is the mean vector of cluster k.  The user specifies the 

number of clusters to find and the algorithm starts with a randomly generated set of K 

cluster centres.  Each object is then assigned to the centre it is closest to.  After the 

assignment the cluster centres are re-computed and the objects re-assigned.  The 

algorithm is stopped after the cluster centres have stabilised.  K-Means requires 

quantitative variables as inputs. 

K-medoids is a robust form of K-Means as instead of minimising the within cluster 

sums of squares, it searches for representative objects within the dataset to form the 

cluster centres.  These centres are selected such that the absolute distance between 

them is maximised.  Partitioning Around Medoids (PAM) (Kaufman, et al. 1987) is 

an implementation of K-medoids.  PAM is more robust than K-Means as the absolute 

distance between cluster centres is less affected by outlying observations than the 

squared distance. 

 

2.3.3 Clustering challenges 
 

Cluster analysis is an unsupervised search for grouping structure within a dataset.  

However, as different groups are found using different techniques, verifying the 

accuracy of any clustering solution is difficult.  The problem is a lack of a known 

objective to compare the final result against.  This manifests itself in two major issues 

for any cluster analysis technique: 

1. Estimating the number of groups to be found. 
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2. Verifying the accuracy, stability and reproducibility of these groups. 

These problems can never be fully resolved by any method.  Despite this much 

research has been conducted with the aim to assist those implementing clustering 

analysis methods in validating their results. 

 

2.3.4 Determining the number of groups 
 

The first studies into determining the number of groups in a dataset focus on 

automatic stopping rules for hierarchical agglomeration techniques.  A stopping rule 

dictates where to stop merging objects to determine the number of groups found by 

the scheme.  Comprehensive simulation tests of 30 of these criteria (Milligan, et al. 

1985) revealed a clear best set of indices but also a wide variety of performances, and 

concludes unsurprisingly that the performance of each criterion is dataset dependent.   

 

Predictive arguments for determining the number of clusters in a dataset are becoming 

more popular, as they can be explained in terms of model complexity.  The elbow of 

the relative error curve of an Auto-associative Multivariate Regression Trees (AA-

MRTs) (Smyth, Coomans, Everingham and Hancock 2005) is an example of model 

complexity determining cluster number.  Predictive cluster number determination 

treats cluster analysis as optimising the performance of a multivariate predictive 

model.  

 

Mixture model based methods (Fraley and Raftery 2002) estimate the data using a 

weighted sum of distributions where each distribution corresponds to a group.  

Mixture models are predictive models of the data and as such use model complexity 
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measures such as the Bayesian Information Criterion (BIC) and likelihood ratio 

statistics to determine the number of clusters.  Although these measures are seen as a 

useful tool in practice, they assume a known structure on the data that is not nessarily 

valid (Mclachlan, Bean and Peel 2002). 

 

The Gap statistic (Tibshirani, Walther and Hastie 2001) estimates the number of 

clusters by searching for the most reproducible set of labels.  The Gap statistic, 

 Gapn k( ) = En

* log Wk( )( ) ! log Wk( )  (2.7) 

observes the change in the log sum of the pairwise distances, log W
k( ) , for all objects 

in each cluster k on the real dataset, compared to the mean of the log sum of pairwise 

distances for cluster k over many simulated reference datasets En

* log W
k( )( ) . The gap 

statistic’s use of simulated reference datasets provides a null distribution upon which 

to compare a potential clustering solution against.  The optimal number of clusters is 

found when the pairwise distances between objects in the actual scheme are most 

different to pairwise distances in the reference datasets.  This is at the maximum of 

the gap statistic and the most reproducible number of groups. 

 

Figure-of-merits (FOM) (Yeung, Haynor and Ruzzo 2001) are also based on the idea 

that model stability rather than pure predictive performance should determine the 

optimal number of groups.  To determine stability, jack-knife cross-validation on the 

variables is employed.   As the number of clusters is increased, the model stability is 

assessed by monitoring the change in the root mean squared error over the course of 

the jack-knifing.  The result is a curve similar to the relative error curves produced by 

auto-associative multivariate regression trees (AA-MRT) however the focus is on 

stability not predictive performance. 
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The FOM approach is similar in ideology to that of Tibshirani et al. (2005) and 

(Dudoit and Fridlyand 2002) where V-fold cross-validation on the observations is 

used to assess cluster stability.  Tibshirani et al. (2005) compares the performances of 

the same clustering model run on a test/training set partition of the data.  The 

performance of the clustering algorithm is assessed by comparing the predicted 

groups using the training model on the test set, with the groups found by clustering 

the test set individually.  If the groups differ then the clustering algorithm is not 

stable.  Dudoit and Fridlyand (2002) perform a similar cross validation however build 

a classifier to predict the group labels of the training set.  This classifier is then used 

to predict the test set labels.  These methods test the reproducibility of a clustering 

scheme, where the most reproducible number of clusters is selected as optimal, they 

require no known group labels and unlike trees or mixture models are independent of 

the clustering method. 

 

Once the number of clusters has been determined there is still the problem of 

assessing the accuracy of the solution.  Even with the number of clusters estimated 

there are still a huge number of possible group configurations.  The rand and modified 

rand indices (Hubert and Arabie 1985) are measures of overlap between two 

clustering schemes on the same data set.  If two different clustering schemes on the 

one dataset find similar grouping structure, then it is likely that the found groups are 

representative of the dataset.  This is a relative form of accuracy, however as the 

group labels are unknown it is the only form of accuracy possible.   
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One solution to the problem of determining which clustering algorithm to use is by 

combining information over many different clustering algorithms.  Such an approach 

is called an ensemble approach to clustering and is now discussed in more detail. 

 

2.3.5 Cluster ensembles 
 

A cluster ensemble (Strehl, et al. 2002) is simply a collection of clustering solutions 

that are combined into one overall solution.  An individual clustering solution is 

called a partition within the cluster ensemble.  The goal of the analysis is to find 

common grouping structure across each partition and summarise it into one overall 

partition.  This is done to remove the need to choose which clustering method to use.  

Instead, a range of techniques are selected and the ensemble combines them into an 

overall partition which is the final grouping structure of the data.  It is hoped by 

combining information across many solutions that the stability of the final clustering 

structure is improved.  

 

2.3.5.1 Cluster ensemble objective functions 
 

To find the overall partition requires a means of summarising common information 

across many different partitions.  Functions that do this are called ensemble objective 

functions. In fact there are many potential statistics that can be employed as an 

objective function for cluster ensembles.  The goal of a cluster ensemble is to find an 

overall partition that optimises this objective function. 
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Cluster ensembles were initially defined using the maximum of the normalised mutual 

information index, !NMI , between two partitions (Strehl, et al. 2002, Ana L. N. Fred 

and Anil K. Jain 2005) as its objective function: 

 ! (NMI ) " (a)," (b)( ) =
2

n
n
l

(h) log
k
(a ) .k(b )

n
l

(h)
n

n
(h)
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)  (2.8) 

In (2.8) the two partitions ! (a)  and ! (b)  on n observations have k (a)  and k (b)  groups 

where n(h)  is the number of observations is cluster h according to ! (a) , n
l
 is the 

number of observations in cluster l according to ! (b)  and n
l

(h)  is the number of 

observations in cluster l according to ! (b)  that are also in cluster h according to ! (a) .   

 

Defining (2.8) as the ensemble objective function, to find the overall partition ˆ! , will 

require a search over permutations of all labels within each partition in the set of all 

partitions, 
 
! = "

(1)
,!,"

(q)
,!,"

(r ){ } .  Unfortunately this requires approximately 

k
n

k!
 comparisons between groups where n >> k which is infeasible if the number of 

partitions is large (Strehl 2002).  To bypass this computational complexity, cluster 

ensembles use heuristics to approximate ˆ! .   

 

Another objective function commonly used defines the Euclidean dissimilarity 

(Weingessel, Dimitriadou and Hornik 2001) between two partitions to be, 

 d !
(a)
,!

(b)( ) = min" !
(a)

# !
(b)
"  (2.9) 

where the minimum is taken over all possible permutations ! , and  .  is the 

Frobenius norm.  The minimum of (2.9) is found when the permutation performed on 

!
(b)  matches best the group configuration in ! (a) .   
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A solution to (2.9) is possible by treating the problem as a linear sum assignment 

problem and using a linear program to estimate the overall partition (Hornik 2006).  

By extending (2.9) to the squared Euclidean dissimilarity, 

 d !
(a)
,!

(b)( ) = min !
(a)

" !
(b)
#( )

2

{ }  (2.10) 

another possible solution can be found using the iterative approach described in the 

“Voting” algorithm (Weingessel, et al. 2001).  This algorithm iteratively updates the 

probability that each observation lies within each group over all partitions within the 

ensemble.  The group with the maximum probability is the final clustering 

assignment. 

 

Hypergraph representations of the ensemble as in Hypergraph Partitioning Algorithm 

HGPA, Meta-Clustering Algorithm MCLA (Strehl 2002) and Hybrid Bipartite Graph 

Formulation HBGF (Fern and Brodley 2004) also present a possible means for 

estimating the overall partition.  These methods represent each cluster in the ensemble 

as a vertex on a graph that are connected by common observations.  From this 

representation, a distance between clusters can be formulated, and the goal of the 

analysis is to collapse the graph into strongly connected components that define the 

overall partition.  

 

Mixture model approaches can also be used to estimate the overall partition (Topchy, 

Jain and Punch 2004, Topchy, Minaei-Bidgoli, Jain and Punch 2004).  Here each 

partition within the ensemble is treated as a random variable that can be modelled 

with a mixture of multivariate component densities, 
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where !q  is a partition in the ensemble with component density parameters !q  and 

!
q  are the mixture weights and !  is the set of all parameters of the mixture model to 

be estimated 
 
! = "

1
,…,"

r
;#
1
,…,#

r{ } .  The final cluster assignments are found by 

estimating the maximum posterior probability of each observation belonging to each 

component density in the mixture model.   

 

2.3.5.2 Cluster ensemble consensus matrices 
 

The most common solution to cluster ensembles avoids optimising an objective 

function entirely through the construction of a ‘consensus’ or ‘co-occurrence’ matrix 

over the observations.  A consensus matrix is a similarity matrix where each cell 

contains a count as to how many times two observations are clustered together over 

all partitions in the ensemble.  Once constructed from an ensemble this matrix is 

passed as an input to another clustering algorithm to find the overall partition.  

Examples of this approach can be found in the Cluster-based Similarity Partitioning 

Algorithm (CSPA) (Strehl, et al. 2002) and the evidence accumulation algorithms 

(Ana L. N. Fred, et al. 2005).  CSPA clusters co-occurrence matrices using the 

hypergraph partitioning algorithm METIS (Karypis and Kumar 1998) and evidence 

accumulation using hierarchical agglomeration with single linkage (Section 2.3.1). 

 

One approach to constructing a consensus matrix is by bootstrapping a clustering 

algorithm and computing the similarity based on the partitions from each 

bootstrapped model (Monti, et al. 2003).  Bootstrapping for consensus construction 
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has been applied to hierarchical agglomeration (Kavsek, Lavrac and Ferligoj 2001, 

Monti, et al. 2003, Stephen Swift, et al. 2004), PAM (Dudoit and Fridyland 2003) and 

self organising maps (SOM) (Monti, et al. 2003),  and has consistently shown to 

improve the stability of the groups found.  Furthermore, observation of the consensus 

matrix reordered by the found clusters provides a useful visualisation tool to assess 

the quality of the groups found (Ben-Hur, Elisseeff and Guyon 2002, Monti, et al. 

2003). 

 

Analysis of the structure within consensus matrices provides a method to estimate the 

optimal number of groups (Ben-Hur, et al. 2002, Monti, et al. 2003).  This work 

assumes that an ideal consensus matrix is block diagonal and sparse.  Therefore an 

ideal distribution for a consensus matrix can be estimated.  This distribution can be 

viewed by a histogram, and should show two clear bins, one for the observations 

classified together and one for the observations not classified together.  By computing 

the empirical cumulative distribution function (CDF) of the histogram and observing 

its structure a measure of quality for that scheme is produced.  By observing changes 

in the CDFs of the same method grown to different numbers of clusters an estimate of 

the optimal number of clusters can be achieved. 

Cluster ensembles show that by optimising the level of agreement between different 

clustering regimes, uncertainty in choosing the clustering method and estimating 

number of groups can be reduced.  However these methods do not take into account 

to the accuracy of the clustering method.  In fact a danger of these methods is that in 

combining many partitions without knowledge of how representative each solution is 

of the data it is possible to find a stable set of clusters with no accuracy.  One solution 

to this problem is to consider each clustering algorithm as a prediction of the dataset.  
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By doing this ideas from predictive ensembles can be used to assess the accuracy of a 

cluster ensemble. 

 

2.3.6 Cluster ensembles and predictive ensembles 
 

By bootstrapping a clustering technique and aggregating the results, consensus 

clustering is essentially ‘bagging’ a clustering algorithm (Breiman 1996a).  Usually 

bagging is a methodology that aims to optimise performance of a model by averaging 

over many bootstrapped predictions.  In random forests it is shown that bagging tree-

based models can dramatically improve their predictive performance (Breiman 2001).  

Furthermore, a random forest provides a means of summarising the structure found 

over all trees generated over the course of the bootstrapping through the construction 

of a proximity matrix.  The random forest proximity matrix is similar to a consensus 

matrix, as it is a similarity matrix comprising of a count of how many times two 

observations have been placed in the same terminal node over an ensemble of trees 

within the forest.  An unsupervised extension to random forests, (unsupervised 

random forests), has allowed for this matrix to be constructed on a single dataset by 

using a simulated response variable.  Unsupervised random forests (Shi, et al. 2006) is 

a ensemble clustering algorithm that produces a consensus matrix and employs PAM 

on the proximity matrix to find the overall partition.  This method exploits the 

advantages of consensus clustering, however as it uses a meaningless simulated 

response it nullifies the predictive improvements offered by random forests.  

 

This thesis presents a new approach for cluster analysis of a mixed dataset called 

Multivariate Consensus Trees (MCT).  MCTs exploit the similarity between the 
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predictive proximity matrix of tree-based ensembles and the cluster ensemble 

consensus matrices.  Combining the two ideas allow MCTs to harness the predictive 

power of tree-based ensembles, and by using cluster ensembles, to present this 

information in the form of a consensus clustering problem.  Furthermore as trees are a 

model based clustering approach, MCTs also provide measures to estimate the 

optimal number of clusters and to assess the accuracy of the final solution. 

 

MCTs predict each variable within the response set with a tree-based ensemble.  From 

these ensembles the grouping structure from each variable is summarised into a 

proximity matrix.  Then in a similar step to ensemble clustering these proximity 

matrices are combined into one overall consensus matrix.  This consensus matrix 

provides an overall view of the group structure within the entire dataset.  By searching 

for a decision within the original variables of the dataset, a tree is grown to partition 

this overall consensus matrix.  The resulting tree is the called the MCT of the dataset 

and the groups found lie in the terminal nodes. 

 

By predicting each variable individually MCTs perform a similar step to the cross 

validation used in FOMs, and allow for a way to assess how representative each 

variable is of the final clustering solution. This addresses the previously mentioned 

problem associated with consensus ensembles in assessing the accuracy of the final 

solution.  Furthermore, knwledge of individual performances for each variable allows 

MCTs to perform a data reduction step to remove unimportant variables from the 

analysis.  Variable selection performed in MCTs can reduce a highly complex 

clustering problem into a simpler one allowing for easier understanding of the final 

solution. 
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MCTs as a cluster analysis method use auto-association as in AA-MRT on the dataset 

to produce the tree.  However as trees can predict a separate response dataset, MCTs 

can also be used as a multivariate profiling tool.  In the next section common profiling 

methodology is discussed. 

 

2.4 Profiling Analysis 
 

The process of identifying groups in one dataset (the predictor set) that also define 

groups in another (the response set), is in this thesis is “profiling the response dataset 

by the predictor set dataset”.  The response 
 
Y =

!

y
1
,
!

y
2
,…,
!

y
m
,…,
!

y
M

!
"

#
$  consists of n 

observations on M variables where each response variable is denoted by 
 
!

y
m , and the 

predictor set 
 
X =

!

x
1
,
!

x
2
,…,
!

x
p
,…,
!

x
P

!" #$  on the same objects as the response set but on 

P separate predictor variables denoted as 
 !

x
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quite specific set of variables relating to the phenomena under consideration.  

However, it is common for the predictor set to consist of a comparatively large 

number variables that may be related to the response.   In this case the researcher 

wishes to identify a small subset of predictor variables that summarise strong 

relationships. 

 

Simply clustering the profiling set is an insufficient solution to profiling analysis, as 

the same grouping structure may not be present in the predictor set (Figure 2). 

Profiling methods require a compromise solution between the groups present within 

both the response and predictor datasets.  If a group exists within the response set that 
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is not represented within the predictor set then it will not be identified by a profiling 

method.  Therefore profiling is a data mining problem as it involves identifying the 

important structure within the predictor variables that agrees with the structure of the 

response set.  This requires a method that can not only relate objects within an 

individual dataset but also between datasets.  
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Figure 2: Example of profiling a response set Y = {y1, y2} by predictor variables X = 
{x1, x2, x3, x4}. 

 

Relating two complete datasets is a difficult statistical problem and requires the 

specification of a statistical model.  Methods like multivariate regression and 

Multivariate Analysis Of Variance (MANOVA) (Seber 1984), Canonical 

Correspondence Analysis (CCA) (Hotelling 1936), Generalised Procrustes Analysis 

(GPA) (Gower 1975) all relate information from many sources.  These methods 

however are either aimed more at explicit prediction or summarising the relationships 

in a lower dimension rather than profiling any group structure that may be present 

across the datasets.  Rule based methods are also commonly used as profiling tools 

aimed at identifying groups over many databases.  However, for reasonably sized 

datasets, these methods require summarising thousands of individual rules. 
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2.4.1 Multivariate regression and multivariate analysis of variance 
 

Multivariate experimental design is the most common example of profiling in 

statistics.  The model for both multivariate regression and analysis of variance 

(MANOVA) is stated in the form of a general linear model, 

 Y
(N !M )

= X
N !P( )

B
P!M( )

+ U
N !M( )

 (2.12) 

where B is a matrix of coefficients estimated by least squares and U is the 

corresponding error matrix.  If X is a matrix of predictor variables then the model in 

(2.12) is identical to performing separate univariate multiple regressions for each 

response variable.  However if X is substituted for an ANOVA design matrix, solving 

(2.12) is performing a multivariate hypothesis test.  The major assumption of these 

models is that the error matrix U follows a multivariate normal distribution.  

Multivariate linear models of this type are designed to predict Y.  They do not uncover 

common groupings unless they are known and coded into the design matrix.  

 

2.4.2 Canonical correlation analysis (CCA) 
 

Canonical Correlation Analysis (CCA) models common correlation structure between 

Y and X by summarising them in a lower dimensional space.  These dimensions, 
 
!

u
i
 

and 
 
!
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i
 are weighted projections of Y and X: 
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where 
 
!

a
i
 and 

 
!

b
i
 are called the canonical variates. The canonical variates are found in 

directions of decreasing maximum squared correlation r2  between 
 
!

u
i
 and 

 
!

v
i
.  The 

canonical variates are a mapping between Y and X.  The maximum number of 
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canonical variates that can be extracted is less than or equal to the smallest number of 

variables present in either Y or X (Seber 1984).  These variates have mathematical 

relationships with the results of multivariate regression and MANOVA, but also with 

linear discriminate analysis and so may highlight group structure between the two 

datasets (Rencher 2002). 

 

2.4.3 Procrustes analysis 
 

Methods such as CCA require the specification of a response and predictor set, and as 

such only work for relating two datasets.  Methods of combination like Generalized 

Procrustes Analysis and Individual Scaling Analysis (INDSCAL) (Carroll and Chang 

1970) relate many datasets together in order to find a matching configuration.  Over 

M datasets these methods minimise, 
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#
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%
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'
(
)

 (2.14) 

where the matching configuration is X  and !
m

 is a weight vector that defines a 

rotation upon X
m

 such that it is closest to the mean configuration.  This mean 

configuration highlights dominant structure over all data sources.  However as the 

purpose of these methods is as a data reduction tool, it is difficult to identify the 

source of the observed groups. 
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2.4.4 Decision and association rules 
 

Association rules are logical expressions found within a dataset that are characteristic 

of, or are related to an outcome.  Used commonly in “market basket analysis” 

(Giudici 2003) the association rules are of the form, 

 d(x)! y  (2.15) 

where d(x) is a decision rule on a variable x that logically implies y.  The form of d(x) 

can be in the that of a single variable inequality or as a logical combination of 

inequalities using “and” (∧) and “or” (∨) operations (Lent, Swami and Widom 1997).  

As this definition is quite flexible association rules can be easily defined for all data 

types.  

 

For any realistic analysis thousands of individual association rules are identified.  This 

means a way of filtering to find only interesting or significant association rules is 

needed.  This brings forward the ideas of support and confidence for an association 

rule.  For the simple rule d x( )! y  the support S and confidence C are defined as, 

 
S = P A ! B( )

C = P B A( )
, (2.16) 

where the support is the probability of both events A and B occurring together, and the 

confidence is the probability of event B given an event A.  Identifying interesting rules 

is usually done by imposing a threshold on either the support or confidence on 

individual rules (Srikant and Agrawal 1997), or by constructing a weighted 

combination of rules based on how well they predict a response (Friedman and 

Popescu 2005). 
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A Classification and Regression Tree (CART) is a hierarchical combination of 

decision rules and is often referred to as a decision tree (Kass 1980, Breiman, et al. 

1984).  Extensions to CART for multivariate regression (MRT) (Yan Yu and Diane 

Lambert 1999, De'ath 2002, Larsen and Speckman 2004) allow for profiling a 

continuous response set, by a mixed predictor set.  Auto-associative Multivariate 

Regression Trees (AAMRT) (Questier, et al. 2004) look for decision rules that 

partition a continuous profiling set into homogeneous clusters, allowing for MRTs to 

work both as a profiling and clustering tool.  Furthermore these decision rules can 

then be used to cluster new observations.  This also allows for validation regimes to 

be imposed over the model to test for validity and help estimate the number of groups 

present (Smyth, et al. 2005). 

 

The flexibility of decision rule methods to handle most data types is their most 

powerful feature.  When combined into a decision tree they provide an intuitive 

statistical framework to conduct profiling analysis.  Furthermore ensembles of trees 

not only improve and stabilise the predictions of a single tree but also provide useful 

links with cluster ensemble methods (Section 2.4).  Therefore tree-based methods are 

a natural choice for profiling analysis and are the focus of this thesis. 

 

2.5 Tree-based Profiling 
 

Tree based techniques present an ideal framework for profiling as they produce 

predictive decision rules on the predictor variables that identify group structure within 

the response.  The primary aim of this thesis is to extend tree based profiling to 
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handle a mixed type response set.  To achieve this goal several approaches are 

implemented in this thesis culminating in the development of MCTs.  

 

Mixed type extensions to standard CART theory are proposed using the Gower 

dissimilarity and binary substitution.  These methods transform the response dataset 

into a form suitable for use with the existing MRT or Db-MRT methods.  Furthermore 

through the use of auto-association these techniques double as a clustering tool.  The 

result of this is a single multivariate tree that can profile a simple mixed type response 

set. 

 

Binary substitution represents a mixed type dataset set as a multivariate continuous 

dataset compatible with MRTs and therefore allows a simple mixed type extension to 

multivariate ensemble methods.  In this thesis MRT theory with binary substitution is 

used to implement multivariate mixed type extensions to random forests and 

treeboost.  Multivariate random forests and treeboost are predictive clustering or 

profiling techniques that can handle multivariate response and predictor sets and are 

resistant to a large number of variables within the predictor set. 

 

Through the use of the proximity matrix arising from tree-based ensembles this 

thesis proposes MCTs, which is a new technique for either profiling or 

clustering. MCTs present methods to intelligently combine individual ensemble 

proximity matrices to allow for improved understanding of the structure within each 

response variable.  By partitioning these combined ensemble proximity matrices 

MCTs provide a method to identify grouping profiles found over all ensembles. This 
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allows for removal of unimportant response variables from the analysis and more 

importantly allow MCTs to identify subgroups of variables within the response set. 
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3. Methods 
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In this section is the core theory that forms the base of the MCT model.  Firstly the 

CART methodology is described along with the relevant multivariate extensions 

MRT, AA-MRT and Db-MRT.  This is followed by multivariate extensions to tree-

based ensembles.  From here, the link between tree-based ensembles and cluster 

ensembles is made by describing techniques to combine ensemble proximity matrices. 

 

To assist the reader in interpretation of the models presented here an example 

implementation is provided on the benchmark iris dataset (Fisher 1936). 

 

3.1 Tree-based Models 
 

A decision tree is a hierarchy of decision rules that partition a response into separate 

groups (Figure 3).  This hierarchy imposes interactions between decision rules using 

an “and” operation.  Figure 3 presents an example decision tree to classify three 

varieties of iris flowers (Setosa, Versicolor and Virginica) based on their sepal and 

petal length and widths using the benchmark iris dataset.  The first decision or split is 

found on the variable “petal width”.  The effect of this split is to partition the dataset 

into two mutually exclusive groups; the first containing iris flowers with a petal width 

less than 0.8 and the second with petal widths greater than 0.8.  This decision has the 

effect of accurately defining the Setosa variety of iris flower in the left terminal node 

(3.1).  From the scatter plot in Figure 3 it is obvious that based on petal width the 

Setosa variety of flowers is the most easily identified showing a considerable smaller 

petal width and is therefore the first split within the tree. 
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(1) (Petal  Width < 0.8) !  (Group 1) !  Setosa{ }

(2) (Petal  Width >= 0.8)" (Petal  Width < 1.75) !  (Group 2) !  Versicolor{ }

(3) (Petal  Width >= 0.8)" (Petal  Width >= 1.75) !  (Group 3) !  Virginica{ }

. (3.1) 

 

From here the tree must further partition the dataset to identify the other two varieties 

of iris flowers.  As the first split accurately determined Setosa in the left terminal 

node, the second split to determine Versicolor and Virginica must be on the right.  By 

coincidence this split is also performed on petal width, however could have 

potentially been on any other predictor variable within the dataset.  As the second 

split depends on the first, to determine the two other varieties of iris flowers the 

compound decision rules in (3.1) are necessary.  By observation of the scatter plot in 

Figure 3 it can be seen that this decision is not as clear as the first.  In fact, this split 

invokes a misclassification of 6 out of the 150 iris flowers.   

 

Figure 3: Example decision tree classifying the species of flowers in the iris dataset. 
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In this example the tree built is a classification tree and the splits are performed on 

quantitative variables.  However, the flexibility of tree based models comes from the 

easy definition of decision rules for either categorical or quantitative predictor 

variables, for either univariate classification or multivariate regression.  There are two 

popular tree growing algorithms available, Classification and Regression Trees 

(CART) (Breiman, et al. 1984) and C4.5 (Quinlan 1993).  Due to the easy 

accessibility of the “rpart” package (Therneau, Atkinson and Ripley 2005) in R (R 

Development Team 2005) to benchmark the CART algorithm, this framework is 

selected for use in this thesis. 

 

3.2 Classification and Regression Trees (CART) 
 

Building a CART model requires a search on two levels (Figure 4).  Starting with all 

observations within the root terminal node, the first step is to find the next best split 

for each terminal node of the tree.  This involves searching in every terminal node for 

the decision rule that minimises the impurity defined in (3.2).  After all the next best 

splits have been found for each terminal node, a second search is performed over the 

terminal nodes of the tree.  By minimising relative error (RE) of the tree defined in 

(3.3) the best node to split on is found.  This split is then used to grow the tree.  This 

process continues until no more splits can be found; this tree is called the maximal 

tree. 
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Figure 4: CART algorithm. 

 

CART finds the next best split for each terminal node by ranking all possible decision 

rules within the predictor set.  Each decision rule is assessed based on its impurity. 

The impurity of a decision is defined as the degree of heterogeneity of the response 

observations within each node resulting from the decision.  Put more formally, the 

impurity R(d) of a decision d is defined as the weighted sum of the impurities of the 

left, 
 
R
!

y !left( )  and right 
 
R
!

y !right( )  nodes respectively, 

 
 
R d( ) = pleftR

!

y !left( ) + prightR
!

y !right( )  (3.2) 

where pleft and pright are the probabilities of the left and right nodes respectively. 

 

CART defines the idea of a relative error (RE) to assess the quality of the overall tree.  

The RE(T) of a tree T, is defined as the sum over the impurity of all terminal nodes, 

 

 

RE(T ) =

R
!

y !t
n( )

tn !T

"

R
!

y( )
 (3.3) 

where tn is a terminal node is tree T and 
 
R
!

y( )  is the relative error of the non-

partitioned response.  As defined in (3.3) the RE is the percent error of a tree, and is a 

monotonically decreasing function.  

While tree size < maximum tree size do: 
1. Find the best split on each terminal node: 

a. For each predictor variable find the best split, d, by finding the 
minimum impurity R(d) (3.2). 

b. Over each predictor compare the best splits, and pick the variable 
with the smallest R(d). This split on this variable is the next best 
split for that terminal node. 

2. For each terminal node compute the RE(d) (3.3) using the next best split 
for that terminal node. 

3. Compare the RE(d) statistics over each terminal node and grow the tree on 
the minimum. 
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3.2.1 Determining CART tree size 
 

The algorithm in Figure 4 grows the maximal tree, and will result in a tree that 

overfits the data.  Therefore a means of pruning the tree to a smaller size is needed.  

Tree size can be defined in two ways; either by specifying the minimum size of the 

terminal nodes or by specifying the maximum number of splits.  The values of these 

parameters are most commonly estimated using V-fold cross validation.  This 

involves the CART algorithm (Figure 4) to be run V times on subsets of the data.  For 

each subset and for each tree size (1 split, 2 splits, … , etc.) the data not used to build 

the tree is predicted or classified.  After the V iterations, the cross validated 

performances are presented on a graph called the relative error graph (Figure 5).  The 

minimum of the cross validated RE graph is taken to be the optimal tree size for that 

dataset.   

 

An example of a RE curve for a multivariate regression tree on the iris dataset is 

presented in Figure 5.  This graph contains two plots corresponding the training set 

(top) and test (bottom) relative errors for tree sizes ranging from 1 to 10 splits.  The 

reference line displays the mean performance for each tree size. For standard CART 

models 10-fold cross validation is usually implemented.  The points surrounding the 

line are the individual performances for each tree over the course of 10-fold cross-

validation.  The spread of the points around the mean line at each tree size is related 

to how certain a tree of that size is.  If the variance of the points is large then the 

structure of a tree grown to that size is uncertain.  The task is now to estimate an 

appropriate tree size based on these graphs. 
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Figure 5: 10-fold cross-validated RE graph for the iris dataset. 

 

Picking the optimal tree size can be done in many ways.  The most common method 

is the “1-SE” rule.  This rule defines the best tree to be the simplest tree with a RE 

within one standard error of the RE of the next tree.  This implies that the RE of the 

next tree is essentially the same as the RE of the current tree, and then there is no 

improvement gained by growing the tree any further.  The idea of the “1-SE” rule 

method is that the terminal nodes of the tree must be as stable as possible.  As this 

thesis is focused finding stable groups within the terminal nodes of a tree, this method 

is employed to determine optimal tree size. 

 

Minimal cost-complexity is another means to determine the size of CART models that 

is focused on optimal predictive performance (Breiman, et al. 1984).  This rule 

estimates a penalising parameter that is a combination of the predictive performance 

of the tree and its complexity.  The form of this penalty is, 
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RE

!
T( ) = RE T( ) +! !T  (3.4) 

where RE
!
T( )  is a combination of its cost RE(T) and its complexity 

 
! !T  with 

 

!T  

being the number of terminal nodes in a tree and !  is the estimated cost complexity 

parameter.  The best tree is now picked at the minimum of (3.4) which is the 

minimum error tree given its size.  Many other pruning algorithms exist for finding 

the optimal tree, such as Reduced Error Pruning (REP) and Pessimistic Error Pruning 

(PEP) (Quinlan 1987).  For a comparison of the relative performances of these see 

(Esposito, Malerba and Semeraro 1997, Esposito, Malerba, Semeraro and Tamma 

1999) 

 

3.2.2 Finding the best split 
 

Making a decision upon a variable requires an exhaustive search over all possible split 

points within each predictor variable.  For continuous predictor variables sorting the 

response such that it is in the ascending order of the predictor variable, and then 

parsing it in this order will search all valid splits.  In general for a continuous 

predictor variable there are n valid split points.  For a categorical predictor variable 

with k levels a search over all (2k-1-1) possible splits is required.  At each split point 

the impurity function, (3.2), must be evaluated and compared with the current best 

split.  The specific impurity function used depends on the types of variables within the 

response set.  Common impurity functions for classification and regression are now 

discussed. 
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3.2.3 Classification trees  
 

The gini index for a split, d, is the sum of the gini indices for the left and right nodes 

resulting from the split, 
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where p yi = k( )  is the probability that an observation yi is of class k within the left or 

right nodes, levelsy is a list of all the groups within y, nLeft and nRight are the number of 

observations in the left or right nodes respectively and n is the total number of 

observations .  It is possible to simplify (3.5) further and get a more interpretable from 

of the gini index: 
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As indicated in (3.6), minimising the gini index requires either p(yi=k) to be close to 

1.  In other words minimising the gini index will find terminal node class profiles 

with probabilities of each class being close to 1.  Taken to its extreme this usually 

results in terminal nodes containing yi’s of the same class.  After the tree is grown, 

classification trees use the highest probability class within a terminal node to classify 

the observations within that node.  
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3.2.4 Univariate regression trees 
 

Regression trees minimise the squared error between all observations and their mean 

within a terminal node, 
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where yLeft  and yRight  are the means of the observations in the left and right partitions 

respectively.  In implementing (3.7), the squared error must be computed for all 

possible splits in each predictor variable.  This is time consuming and not necessary 

as (Therneau, et al. 2005) show that maximising the within sums of squares over the 

entire split (both left and right terminal nodes) produces the same split and is 

considerably faster , 
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where yleft  and yright  is the mean of the left and right terminal nodes of the split 

respectively and y
t
 is the mean of all observations in the parent node. 

 

From (3.8) it can be seen that a split in regression trees can be viewed as either 

finding the maximum difference between the terminal node means and the total 

means; or, by (3.7), the same split is found by minimising the variance within each 

terminal node.  The overall prediction made by a regression tree is the mean of each 

terminal node.  
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3.2.5 Multivariate regression trees (MRT) 
 

Multivariate regression splitting (MRT) is simply the multivariate extension to (3.7) 

(Segal 1992, Yan Yu, et al. 1999, De'ath 2002, Larsen, et al. 2004), 
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where yLeft ,m  and yRight ,m  are the means of the mth response variable in the left or right 

nodes respectively.  Minimising (3.9) is analogous to maximising the Mahalanobis 

distance with a covariance matrix equal to the identity (Segal 1992).  Furthermore if 

the response matrix Y is a binary indicator matrix for a categorical variable as in (2.5), 

it can be shown that minimising (3.9) is the same as minimising the gini index (3.6) 

(Breiman, et al. 1984).  This improves our understanding of the gini index: in that for 

classification splitting it directs the algorithm towards finding the split that minimises 

the variance of the probabilities for each level within a node (Hastie, Tibshirani and 

Friedman 2001). 

 

MRTs offer a method for a continuous profiling set and a mixed predictor set because 

the tree is identifying groups (terminal nodes) within a response matrix Y that are 

defined by the predictor set X.  MRTs identify stable and reproducible clusters, as the 

terminal nodes must be predictive of the response.  Furthermore, the elbow of the 

relative error curve (Figure 5) which is used to estimate tree size also gives an 

estimate of the number of groups in the profiling solution (Smyth, et al. 2005).  This 

is a validation regime over the profiling technique because the RE curve provides a 

cross validated procedure for estimating the number of groups based on predictive 

performance.  This links in with the concepts of cross-validation (Dudoit, et al. 2003) 
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and predictive validation (Dudoit, et al. 2002, Tibshirani, et al. 2005) for cluster 

validation.  

 

3.2.6 CART on a distance matrix (Db-MRT) 
 

A distance matrix is a specific data type that summarises relationships between 

observations within a dataset.  It is a square symmetric matrix of the form, 
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where D(Y) is a distance matrix of size n by n, where n is the number of observations, 

 
d
!

yi ,
!

yj( )  the distance between observations i and j in the response dataset Y.  Forming 

splits on the distance matrix representation of the response set has been suggested as a 

flexible multivariate extension to CART (De'ath 2002).  

 

As a distance matrix contains the observations on both the rows and columns, a split 

must also act on both.  Figure 6 shows a distance matrix D(Y) is partitioned by a 

decision d(x) on predictor variable x.  This results in four sub-matrices corresponding 

to the left group (DL), right group (DR) and the between group distance matrices 

which for ease of understanding in this thesis are called the covariance groups, (DC) 

and (DC)T.  The goal of a partition is to minimise the distances between the 

observations within both the left and right groups. 
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Figure 6: Example distance matrix partition. 

 

Distance Based MRT (Db-MRT) (De'ath 2002) defines the node impurity as the sums 

of the squared distances within the left and right groups, 
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which is exactly equivalent to standard MRT (3.9) if the distance metric between two 

observations is squared Euclidean, however takes no account of the distance between 

the observations of the two groups found in D
C

.  If the distance in (3.11) is 

Euclidean, the squared distance between the left and right group centroids can be 

defined by the Gower distance (Gower and Hand 1996), 

 d D
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+ D

R
! 2D

C
 (3.12) 

where D
L

, D
R

 and D
C

 are the centroids for each sub-matrix and are defined to be, 
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where g denotes either the left, right or covariance sub-matrices.  Either maximising 

(3.12) or minimising (3.11) is simply stating that the distances between objects within 

a cluster must be small.  However it does not necessary follow that minimising (3.11) 

will maximise (3.12), due to the inclusion of the covariance group centroid in (3.12).   
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Tree based-distance splitting has the ability to profile group structure within a 

multivariate response.  Furthermore it allows for profiling over a mixed type through 

the use of the Gower dissimilarity to construct the base matrix to be partitioned.  

However as a distance matrix is an abstraction upon the data, assessing predictive 

performance is difficult.  This difficulty extends to problems in determining which 

response variables are expressed within a terminal node. 

 

3.2.7 Auto associative multivariate regression trees (AA-MRT) 
 

Trees can be considered a search for homogeneity within the response.  Multivariate 

regression and Euclidean Db-MRT have strong relationships with K-Means and   

Wards method for agglomeration, as they all define a group by minimum within-

group sums of squares.  However unlike the other techniques MRTs use a predictor 

set to identify the groups.  

 

Auto-Associative MRTs (AA-MRT) (Questier, et al. 2004, Smyth, et al. 2005) extend 

MRTs to be able to cluster a single dataset.  The idea simply mirrors the response set 

within the predictor set of the MRT model.  For example, to cluster a dataset Y, AA-

MRT will grow a tree with Y as the response and predictor dataset.  AA-MRT is a 

form of constrained K-means as the groups are found to reduce the within-sums-of-

squares but also must be defined by the decision rules of the tree.  
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3.3 Ensembles of Trees 
 

When modelling large datasets it is necessary to pick a model that can accurately 

assess the predictive performance of all predictor variables.  Usually this is done as a 

two step procedure by first using a data reduction method, such as a partial least 

squares (De Jong 1993) or a genetic algorithm (Mitchell 1998).  The output is then 

passed into a more powerful method for example see Hancock et al. (2005).  Another 

alternative is to use a penalising method such as ridge regression (Hoerl and Kennard 

1970) or penalised discriminate analysis (Hastie, Buja and Tibshirani 1995).  

Penalising methods impose strong conditions on estimation to reduce the risk of 

overfitting.  However it is rapidly becoming clear that a single model is insufficient 

for analysing large datasets.  More commonly, collections of models are combined 

into an ensemble to create an overall large model.  By doing this, statisticians are 

treating a single model more as a variable within a larger modelling scheme. 

 

A weak learner (Schapire 1990) is a model that is guaranteed to perform better than a 

coin flip.  CART falls into this category because the RE must be a decreasing 

function.  Therefore the worst possible performance of CART must still outperform 

the mean variation on the training set.  As encouraging as this is, it is well known that 

the predictive or classification performance of CART is average to poor (Hastie, et al. 

2001).  However, weak learners like CART are ideal for ensemble methods, as it is 

known that any individual model produced must do better than random chance. 

 

Ensemble methods combine the results of many weak learners to improve their 

overall predictive performance (Breiman 2001).  Commonly behind these techniques 
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is the idea of bootstrapping to improve the predictive performance of the model 

(Efron 1979).  By taking random samples of the training set many different models 

can be built, each selecting different variables and displaying different characteristics.  

These models are then combined together using a simple linear combination.  There 

are many different types of ensembles; the differences between them lie in how the 

linear combination of models is constructed.  Two common means of building 

ensembles are bagging and boosting.  

 

3.3.1 Bagging, random forests and multivariate random forests 
 

Bagging (Bootstrapped Aggregation) (Breiman 1996a), is the simplest means of 

building an ensemble.  Bagging averages the results over many bootstrapped models.  

For discriminate analysis, the classification of a single observation is the majority 

vote over all bootstrapped models and for regression it is simply the mean prediction. 

Bagging usually performs better than a single model (Breiman 1996a), and also 

improves the accuracy of the variable importance statistics (Breiman 1996a, 

Dietterich 2000b).   

 

A common extension of bagging is implemented using a CART model and in this 

form, it is called Random Forests (RF) (Breiman 2001). The difference is that the 

random forest bootstrap is performed over the variables and the observations 

simultaneously (Figure 7).  This ensures that each tree has the best chance of being 

different.  The more different the trees, the better the bagging model will perform 

(Breiman 1996a, Dietterich 2000b, Friedman and Popescu 2003). 
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How different each tree is from the others is called the diversity of a forest.  The 

diversity of the forest has a direct relationship with an upper bound generalization 

error, PE and is given by, 

 PE !
" 1# s2( )

s
2

 (3.14) 

where !  is the mean correlation between trees in the forest and s is the strength of the 

random forest classifier defined as, 

 s = E
X ,y margin X,y( )( ) , (3.15) 

where X are the predictors and y is the response.  The margin is the estimate of by 

how much the predictions of the forest exceed random chance (Breiman 2001). 

 

By (3.14), it is shown that, as the correlation between the trees in the forest increases, 

the upper bound on the error of the forest also increases.  As diversity is measured by 

the mean correlation, ! , between the trees of the forest, the higher the diversity the 

lower the mean correlation and consequently the lower the error of the forest.  

Counteracting this in (3.14) is the relationship between !  and s, where s acts as a 

limiting factor on PE by resisting the increase caused by increasing ! .  If !  of the 

trees within a forest increases, each tree is identifying similar structure within the 

response variable.  The parameter s is then to assess how correct that structure is and 

to penalize the model accordingly.  The action of bootstrapping on the construction of 

the trees is intended to minimise ! , which then allows (3.14) to be dominated by s.  It 

is expected that (3.14) also holds as a loose upper bound over any ensemble learner 

(Breiman 2001). 
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The algorithm for random forests is simple and is given in Figure 7.  The user 

specifies the number of trees in the forest, the number of observations and variables to 

be randomly selected to build each tree and the tree building parameters.  One 

important addition to the random forest model is the use of “out-of-bag” samples to 

assess model convergence.  Out-of-bag (OOB) samples are those observations that are 

in the training set, but not in the bootstrapped sample which was used to build the 

tree.  Using the OOB sample to estimate the error rate of the forest will provide a 

more realistic estimation of this parameter. 

 

Figure 7: Random forests algorithm. 
 

 

 

 

 

In this thesis random forests are extended to multivariate regression by implementing 

the algorithm in Figure 7 with multivariate regression trees (Section 3.2.5).  

Furthermore, by binary substituting the categorical variables as described in Section 

2.2, multivariate random forests are extended to handle a mixed type response set. 

 

1. While the number of trees < maximum number of trees do: 
a. Take a random sample of observations. 
b. Take a random sample of variables. 
c. Grow a maximal tree. 
d. Predict the left out observations. 
e. Update OOB, test and training set errors. 
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3.3.2 Auto associative random forests and the random forest proximity matrix 
(RFP) 
 

The natural tendency of tree-based methods is to find predictable groups within large 

datasets.  Random forests can be considered as an search to find every possible tree 

that can be formed.  By combining the two ideas, random forests can be seen as 

bagging a clustering algorithm, with each tree finding a slightly different grouping 

structure within the data.  From this it is possible to form a proximity matrix on the 

observations of the data, mapping their grouping tendency (Breiman 2001).  This 

matrix contains a similarity between the response variable observations as seen by the 

profiling set.  This matrix is: 

 

   

C =
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 (3.16) 

where  
cij  is the number of times the cases i and j have been placed into the same 

terminal node in every tree within the forest, and NB is the number of trees within the 

forest.  

 

Observation of the grouping structure within C is best viewed with an metric 

multidimensional scaling plot (MDS) (Gower, et al. 1996, Breiman 2001).  An 

example of C can be found in Figure 8.  This proximity matrix is a very powerful 

profiling feature of random forests as it allows a visual representation of how the 

predictor set views the groups in the profiling set.  Furthermore, it can be constructed 

over a mixed type predictor set.  Because of these features the RFP is a cornerstone 

idea behind the MCT method developed in this thesis.   
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Unsupervised random forests (Shi and Horvath 2003) provide a means of generating 

these proximities over a single dataset without a response dataset, such that the 

proximity matrix can be used for clustering.  To do this a simulated response is 

constructed.  This response is a categorical variable where all observations in the 

original data are labelled as ‘1’. The original data set is then inflated with new 

observations created by taking random samples from the marginal distributions of the 

original variables.   This sampled data is then labelled as ‘2’ in the response.  Random 

forests are the run to classify the response group.  As there should be no difference 

between the original and sampled data then a decision to partition the response into 

subgroups may indicate prominent group structure within the predictor variables.  

Therefore the trees grown within unsupervised random forest will reflect the grouping 

structure variables within the predictor set.  The proximities from this process can 

then be used in other clustering methods.  This idea of using a cluster models to vote 

on interobject distance has also been used by (Dudoit, et al. 2003) and consensus 

clustering (Monti, et al. 2003).   

 

Unsupervised RF however has the problem that predicting a simulated response 

makes little sense.  As in thesis multivariate random forests have been developed 

(Section 3.3.1) it is possible by the idea of AA-MRT (Section 3.2.7) to also 

implement Auto-Associative Random Forests (AA-RF).  This extension allows for the 

construction an RFP over a meaningful response.  The difference between the two 

approaches is best described in an example using Fisher’s benchmark iris dataset 

(Figure 8) (Fisher 1936). More so, by binary substituting the response set of AA-RF it 

is possible to extend it to handle mixed data types.  
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AA-RF has the advantage of observing the group structure within the response and 

the predictor variables, which results in a significantly clearer proximity image with 

the three groups being obvious along the diagonal (Figure 8).  This is translated into a 

clear MDS representation for AA-RF (Figure 8) where the groups ‘vericolor’ (2) and 

‘virginica’ (3) are less overlapping than in unsupervised random forests.  

Furthermore, an analysis of the predictive performance of the AA-RF can be observed 

(Figure 9) to assess the accuracy of the groups found in the MDS plots.  

 
Figure 8: A comparison between the unsupervised random forest and AA-RF 
proximities. The proximity matrices have been re-ordered by the known iris groups: 
(1) Setosa, (2) Vericolor, (3) Virginica.  Yellow represents a high count between the 
observations, red a low count. 
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Figure 9: AA-RF predictive performance with predictions on the y-axis and actual 
variables on the x-axis and a reference line running through y = x.  The multivariate 
R2 = 0.97 and the individual variable R2s are printed in the titles of each plot. 
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3.3.3 Boosting, treeboost and multivariate treeboost 
 

Boosting is a stage-wise addition of models into a linear combination.  Unlike random 

forests where each tree is built independently from the other, boosting conditions each 

new tree on the performance of past trees.  A boosting model fm x( )  forms iteratively 

as a recurrence relation, such that after m iterations, 

 
 
fm x( ) = fm!1 x( ) + "mh x;

!

am( )  (3.17) 

where !
m

 is the coefficient of the new model 
 
h(x;
!

a
m
)  with parameters 

 
!

a
m

, to be 

added to the previous boosting model fm!1
x( ) .  The complexity of boosting lies in 

how the model weights, !
m

, are estimated. 

 

Adaboost (Freund and Shapire 1997) was the first boosting algorithm developed and 

it displayed improved results for binary classification.  Stochastic Gradient Boosting 

(MART) (Friedman 1999, 2001) is a faster, more accurate method for constructing a 

boosted model for classification or regression problems.  MART conditions each new 

model to lie along the path of steepest decent of the loss function L.  MART 

minimises, 

 
 

argmin

!

am

L y, fm!1 +"h x;
!

am( )( ){ } , (3.18) 

where 
 
h x;
!

a
m( )  is the next tree with parameters 

 
!

a
m

 in the boosted set found and !  is 

the shrinkage factor.  MART models are also easily defined for both regression and 

classification problems. 

 

For regression, MART estimates the new model 
 
h x;
!

a
m( )  to predict the residuals of 

the previous boosted model: 
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argmin

!

am

L y ! ŷm!1,h x;
!

am( )( ){ } , (3.19) 

and in this way each model is forced to lie in the direction of steepest decent of the 

loss function.  For classification, the new model is found to predict the residuals 

within the probability domain of the response, 

 
 

argmin

!

am

L I yi = k( ) ! pk
!

xi( )( )
m!1
,h x;

!

am( )( ){ }  (3.20) 

where I(yi =k) is ‘1’ if an observation yi is of class k, ‘0’ otherwise, and 
 
pk
!

xi( )( )
m!1

 is 

the probability that yi belongs to class k given the current boosted model.  

Interestingly (3.20) is analogous to (3.19) where the sums of squares are computed on 

the probabilities that each observation belongs to each class. 

 

MART finds 
 
h x;
!

a
m( )  on a bootstrapped sample of the observations within the 

training set.  The shrinkage parameter !  arises from the regularisation of boosting 

model such that it is resistant to overfitting.  Unlike random forests, the trees grown in 

a boosted set are small, commonly stumps (one split).  The inputs into a MART 

algorithm (Figure 10) are the tree size, the number of trees, the shrinkage parameter 

and the tree building parameters. 

 

Figure 10: Treeboost algorithm. 

 

 

 

 

Treeboost can be extended to multivariate regression by implementing the algorithm 

in Figure 10 with multivariate regression trees (Section 3.2.5) (Sain and Carmack 

1. While number of trees < max number of trees do: 
a. Take a random sample of observations and variables. 
b. Compute the residuals of the current model, fm. 
c. Fit a tree predicting these residual to get h(x;am+1). 
d. Update the boosting model by  fm+1

= fm + !h(x;am+1
) . 
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2002).  Furthermore, by binary substituting the categorical variables as described in 

Section 2.2, multivariate treeboost is extended to handle mixed types within the 

response set. 

 

3.3.4 Auto associative treeboost and the treeboost proximity matrix 
 

In the same way as AA-RF (Section 3.3.3) extends AA-MRT (Section 3.2.7) in this 

thesis multivariate treeboost is extended to Auto-Associative Treeboost (AA-

Treeboost).  AA-Treeboost models are used for finding groups within a single dataset 

through the construction of a treeboost proximity matrix.  The treeboost ensemble 

proximity matrix is constructed in an identical way to the random forest proximity 

matrix (Section 3.3.2), but over the trees of a boosted ensemble.  This allows for a 

comparison in the ensemble proximities performances of AA-Treeboost and AA-RF.  

More so, by binary substituting the response set of AA-Treeboost it is possible to 

extend it to handle mixed data types.   

 

In the iris example (Figure 11), the boosted proximity matrix is comparable to the 

unsupervised random forests image and the MDS plot shows high levels of overlap 

between vericolor (2) and virginica (3).  Despite this it can be seen from the 

individual predictive plots that treeboost (Figure 12) outperforms random forests 

(Figure 9) on all variables but Petal length.   

 

However, because of the linear form of the treeboost model, the structure within 

boosted proximity matrix may be undefined, as the construction assumes an equal 

contribution of all trees within the ensemble.  As boosting applies a weight to each 
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tree this assumption is not valid. Furthermore, as a multivariate response is more 

complex than a univariate response more care is needed in specifying the shrinkage 

parameter to avoid overfitting.  It is expected that boosting will out perform random 

forests (Breiman 2001) but understanding the resulting model is considerably more 

difficult.   

 

Figure 11: AA-Treeboost proximity results. The proximity matrices have been re-
ordered by the known iris groups: (1) Setosa, (2) Vericolor, (3) Virginica.  Yellow 
represents a high count between the observations, red a low count. 
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Figure 12: AA-Treeboost predictive performance on the iris dataset with predictions 
on the y-axis and actual variables on the x-axis and a reference line running through y 
= x.  The multivariate R2 is 0.996, and the individual variable R2s are printed in the 
titles of each plot. 

 

 

3.3.5 Interpreting ensembles 
 

Ensembles work because they make use of a majority vote on the prediction of an 

observation (Dietterich 2000a) .  In this interpretation, random forests assign each tree 

a unit vote on the prediction, and boosting defines the vote as a weight where, the 

higher the weight, the more influence that tree has on the model.  This understanding 

of ensembles relies on the flexibility of “weak learners”.  If you are assured that a 
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model will always predict the training set to some degree, then it is possible to assign 

a weight or vote to that model based on your confidence. 

 

As ensemble models can involve a large number of individual models, simply 

understanding the weights for each model is difficult.  A lot has been made of this 

paradox of ensembles that as you increase the number of models within an ensemble 

to well in excess of the number of observations, the testing set error does not increase.  

By the sheer size of the ensemble methods it is expected that overfitting would result.  

As noted by (Schapire, Freund, Bartlett and Lee 1998), this flies in the face of model 

parsimony theories.   

 

Because of this, much of the work surrounding the understanding of ensembles has 

centered on this conundrum by trying to find bounds on the generalisation error 

(Freund, et al. 1997, Schapire, et al. 1998, Breiman 2001, Schapire 2002).  In doing 

this, an ensemble is treated as a method for optimising the performance of a particular 

model.  This theoretical work goes to the heart of how these models optimise the 

solution, but pays little attention to how the final result may be understood.  

 

Another interpretation of an ensemble is as a means of simulating the distribution of 

models, where different combination methods are simply different ways of simulating 

a likelihood distribution (Friedman, Hastie and Tibshirani 2000).  This idea links 

ensembles with methods like Bayesian Model Averaging (BMA) (Raftery, Madigan 

and Hoeting 1997).  BMA imposes a weight upon the models of an ensemble 

depending on where they occur within the known model distribution.  This can be 



 63 

considered as a post-processing step over the ensemble in an effort to improve their 

performance (Friedman, et al. 2003).   

 

3.3.6 Multidimensional Scaling (MDS) representation of ensemble proximity 
matrices. 
 

Classical multidimensional scaling (MDS) (Torgerson 1958)  is used in this thesis to 

view the group structure within the ensemble proximity matrices.  MDS seeks a lower 

dimensional representation of a dissimilarity matrix whilst preserving the pair wise 

distances as much as possible.  Each new dimension, zd is found such that it 

minimises the stress function, 
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 (3.21) 

where dij are the ensemble proximity dissimilarities found by, 

 dij = NB ! sij  (3.22) 

where NB is the number of trees within the forest.  In this thesis, as MDS is used only 

as a visualisation tool the representation is only to 2 dimensions. 
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3.4 Issues With CART For Mixed Type Responses 
 

The major goal of this thesis is to extend CART to handle mixed types within the 

profiling set.  To do this two benchmark approaches are described.  Substitution of 

categorical response variables as a binary indicator matrix is the first 

benchmark mixed type extension to CART.  In effect this is making each group 

within a categorical variable a response variable (Figure 13).  From here the 

substituted response set is treated as a multivariate regression problem, and the tree is 

grown with MRT.  This can be done because it is known that minimising the gini 

index in (3.6) on a categorical variable is the same as minimising the multivariate 

sums of squares (3.9) on the indicator matrix representation of the response (Breiman, 

et al. 1984)(p. 124-125).  Therefore by using MRT to find a split on a substituted 

matrix, the impurity minimisation is the sum of the multivariate sums of squares and 

the gini indices, 
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A problem with this method arises when the categorical responses have a large 

numbers of levels.  This results in inflating the number of variables in response set by 

the total number of the levels in all categorical variables.  Furthermore if some levels 

of the categorical variables are not well represented within the observations of the 

response set, a sparse matrix will result where accurate prediction is difficult.  Also 

care should be taken to standardize the continuous response variables before analysis 

to reduce any bias towards them.   
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Figure 13: Binary substitution of an example dataset where the nominal type response 
variable ‘Sex’ becomes two binary variables P(M) and P(F) corresponding to the 
probability of a person being male and female respectively. 

 

 

The second benchmark method uses Db-MRT with the Gower dissimilarity (2.2) 

to grow a tree over a mixed type.  It is expected that the Gower dissimilarity and 

binary substitution will produce similar results as both assume a Euclidean 

relationship between categorical and continuous variables and homogenous levels 

within a categorical variable. 

 

With profiling analysis we are not so much interested in predicting the responses as 

accurately as possible, but finding stable groups within them.  It is natural to assume 

that in a multivariate response set, different variables will show different grouping 

structure (Figure 2), where the final profiling analysis will be a compromise over all 

structures.  There is considerable interest when performing profiling analysis to be 

able to assess the influence of each variable on the final group structure.  

Unfortunately with binary substitution and Db-MRT, this can be a difficult process 

because it is a simultaneous model over all variables that leaves little room for the 

analysis of individual effects.   
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The random forest proximity matrix (RFP) (3.16) is a summary of the groups found 

over many trees.  This is a similarity matrix as in consensus clustering (Ben-Hur, et 

al. 2002, Monti, et al. 2003) and can be constructed for regression or classification 

analyses.  This thesis exploits this flexibility of the RFP for mixed type analysis. 

 

An RFP is a representation of the group structure within a variable of any type.  This 

thesis proposes three methods to intelligently combine individual RFPs into one 

overall consensus RFP.  This overall consensus RFP will provide a summary of the 

group structure over many variable of mixed type.  By combining RFPs in this way is 

building an ensemble of RFPs is analogous in concept to cluster ensembles. 

 

This overall consensus matrix is ideal for partitioning with a tree, because it is formed 

by combining the results from many random forests, therefore is a summary of all 

tree-based grouping structures over all variables.  Growing a tree from a consensus 

matrix is expected to highlight the common groups found over all trees. 
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3.5 Combining Proximity Matrices 
 

When considering multiple responses MCTs grow a random forest for each response 

variable independently to get a set of M RFPs, 
 
C
1
,!,C

m
,!,C

M{ } .  The group 

structure of each is then summarised and combined into the one overall consensus 

matrix, C .  If only one dataset is present then treating each variable as a response, 

and predicting it by the others can produce the individual RFPs.  For the iris dataset 

(Figure 14) the individual RFPs (Cm) have been reordered by the known iris groups 

{(1) Setosa, (2) Vericolor, (3) Virginica}.  In these matrices, high counts are 

represented with yellow and low counts with red.  It is clear that the groups are 

differently expressed across each response, (more expressed groups have a high 

count, and appear more yellow in colour).  The consensus matrix C  is a mean 

representation over all individual matrices. 

 
Figure 14: An illustration of combining RFPs into a consensus proximity matrix, C , 
using the iris dataset. 
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In this thesis we propose three methods to estimate C : Generalised Procrustes 

Analysis (GPA) (Gower, et al. 1996), a hierarchical beta binomial model (BB) 

(Gelman, et al. 1997) and Plaid Models (PLAID) (Lazzeroni, et al. 2002).  

 

GPA looks for an average principal component representation over all C
m

.  Principal 

components analysis (PCA) maps the correlation structure within the RFPs in a 

reduced dimension space.  Therefore, finding an average PCA will highlight the 

dominant correlation structure.   

 

A hierarchical beta binomial model observes an individual count, cijm, over the M 

RFPs.  The model assumes that each count follows a binomial distribution with a 

probability parameter, θijm.  These θijms are assumed to follow an overall beta 

distribution.  The interpretation of this distribution is that it summarises the 

probabilities from each binomial distribution over all the M RFPs.  From the beta 

binomial model the expectation of this distribution is estimation and taken as the 

overall estimate for the probability of cij in the consensus matrix.  For a large number 

of counts (responses) the beta binomial model approaches a normal distribution mean, 

however for small numbers of counts it provides a robust estimate of the probability 

distribution (Gelman, et al. 1997). 

 

The third method uses plaid models to find responses that are similar in the RFPs, and 

explicitly model those that are different.  Plaid models for MCTs look for the most 

stable mean representation over the response RFPs.  To do this, RFPs are weighted by 

their importance to the average representation.  Those found to diverge from the mean 

are entered as parameters into the model and the degree of divergence is estimated.  
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Plaid models offer a way of identifying responses that do not display the consensus 

grouping structure. 

 

3.5.1 Combining RFPs by general procrutes analysis (GPA) 
 

Orthogonal General Procrustes Analysis (GPA) (Gower, et al. 1996), minimises the 

Euclidean norm, 

 
  

CmQm ! C
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M

"  (3.24) 

where  Qm  is an orthogonal rotation on  Cm  and  C  is the new mean configuration of 

   
C1,…Cm ,…,CM{ } .  Before the algorithm starts, the global mean is subtracted from 

each  Cm . After iteration i, the new global mean   C i+1  is defined by, 
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where the SVD is taken to n
k
 components, and U

k
 are the singular vectors with the 

largest corresponding eigenvectors !
k
.  Once each  Qm  is known the algorithm then 

updates  C  and each  Cm  is rotated in the direction of  Qm
i , redefining   Cm

i+1
= Cm

i Qm
i .  
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By expanding (3.24) (Gower 1975), an error measurement of the new configuration 

can be attained: 
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which is the reduction in residual sums of squares of the new configuration.  The 

iterations stop when the error converges.  The result is a overall representation of the 

structure of all matrices (Figure 15). 

 

Figure 15: GPA consensus matrix for the iris dataset: (1) setosa, (2) versicolour, (3) 
virginica. 

 

 

3.5.2 Combining RFPs by a hierarchical beta-binomial model (BB) 
 

The beta binomial model considers each cell over all matrices individually.  Each cell 

within a single RFP, cijm, represents the number of times the two observations i and j 

have been placed in the same terminal node within the ensemble to predict response 

variable m.  Therefore cijm can be considered a binomial distribution, 



 71 

 
c
ijm
! BIN N

B
,!

ijm( )  where θijm is the binomial probability parameter that observations 

i and j are placed in the same terminal node of the ensemble consisting of NB trees.  

 

From each response variable’s RFP, taking the same cell gives a vector of M counts 

 !

c
ij
= c

ij1
,",c

ijm
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ijM{ } .  Each count, cijm, is assumed to have a binomial 

distribution.  The goal of the analysis is to estimate an expected value over all counts, 

 
ĉ
ij
= E

!

c
ij( ) , that is representative of all responses.  To do this a hierarchical beta-

binomial model is used (Gelman, et al. 1997).  

 

The hierarchical beta-binomial model (Figure 16) assumes that the probability 

parameters that define each binomial distribution for each cijm, 

 !
!
ij
= !

ij1
,…,!

ijm
,…,!

ijM{ } , are independent random samples from an overall 

distribution of the probabilities !ij .  The overall distribution of the probabilities is 

assumed to be a beta distribution, 
 
!ij ! Beta aij ,bij( )  with parameters aij  and bij .  This 

distribution is the generating distribution for the counts in 
 !

c
ij .   
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Figure 16: Illustration of the hierarchical beta-binomial model. 

 

 

Estimating the expected value of the overall beta distribution, 
 
!̂
ij
= E

!

!
ij( ) , will give 

an overall probability that the observations have been placed in the same terminal 

node over all RFPs.  The hierarchical Bayesian beta-binomial model estimates the 

hyperparameters aij and bij for the overall beta distribution of !ij . 

 

3.5.2.1 Estimating the overall beta distribution 
 

By Bayes’ theorem, the joint posterior distribution over all parameters of the beta 

binomial model as a product of the prior distribution of the hyperparameters, a beta 

likelihood for the probabilities and a binomial likelihood for the counts is defined to 

be: 



 73 

 

 

p !ij ,aij ,bij
!

cij( )" p aij ,bij( ) p
!

!ij aij ,bij( ) p
!

cij
!

!ij ,aij ,bij( )

= p aij ,bij( )
# aij + bij( )
# aij( )# bij( )m=1

M

$ !ijm
aij %1 1%!ijm( )

bij %1

!ijm
cijm %1

1%!ijm( )
NB %cijm

m=1

M

$
. (3.28) 

As there are only two hyperparameters that need to be estimated, their distribution 

p aij ,bij( )  can be simulated directly using a contouring approach.  The 

implementation within this thesis follows (Gelman, et al. 1997) closely.  By assuming 

that each cijm  is independent the joint density of 
 !

!
ij  is the beta likelihood: 

 
 

p
!

!ij aij ,bij ,
!

cij( ) =
" aij + bij + NB( )

" aij + cijm( )" bij + NB # cijm( )m=1

M

$ !ijm
aij +cijm #1

1#!ijm( )
bij +NB #cijm #1

.(3.29) 

By using conditional probability, 

 

 

p aij ,bij
!

cij( ) =
p !ij ,aij ,bij

!

cij( )
p !ij aij ,bij ,

!

cij( )
, (3.30) 

the joint distribution of the hyperparameters can be extracted by dividing (3.28) by 

(3.29) to give, 

 
 

p aij ,bij
!

cij( ) = p aij ,bij( )
! aij + bij( )
! aij( )! bij( )

! aij + cijm( )! bij + NB "
!
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! aij + bij + NB( )m=1

M

# . (3.31) 

Evaluating (3.31) over a suitable range will produce a contour plot of the joint density 

from which estimates of the hyperparameters can be attained.  To simplify the 

computations the natural logarithm of (3.31) is used.  The prior for the 

hyperparameters is specified as uniform over the range p log
aij

bij

!

"
#

$

%
& , log aij + bij( )

!

"
#

$

%
&  

(Gelman, et al. 1997).   

 

A contour run over the initial estimate of its range may result in the density in (3.29) 

not being completely encompassed.  To prevent this, the boundaries of the contour are 
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summed, if the sum of the probabilities on the boundaries is greater than 0.01 (or less 

than 99% of the distribution being modelled), the boundaries are extended and the 

contouring is repeated.  Once the distribution has been sufficiently modelled, the 

values of the hyperparameters are extracted by reading off the maximum. 

 

3.5.2.2 Estimating the overall count 
 

Now that the hyperparameters have been estimated and assuming a binomial 

distribution, a formula for the estimation of the overall count ĉij  is found to be, 

 ĉij = E BIN NB ,!ij( )( ) = NBE !ij( ) = NB

aij

aij + bij

"

#
$

%

&
' . (3.32) 

The result of this procedure is a robust estimation of the expected value of 
 !

c
ij , where 

ĉ
ij  is the estimated count.  These expectations are combined to form the overall 

consensus matrix 

 

C =

ĉ
11
! ĉ

1N

" ĉij "

ĉN1 ! ĉNN

!

"

#
#
#

$

%

&
&
&

.   

For the iris dataset the overall consensus matrix is displayed in Figure 17. 
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Figure 17: BB consensus matrix for the iris dataset: (1) setosa, (2) versicolour, (3) 
virginica. 

 
 

3.5.3 Combining RFPs by plaid models (PLAID) 
 

Plaid models (Lazzeroni, et al. 2002) are a two-way clustering algorithm as they 

define a group as a subset of variables and observations.  Developed initially for 

micro-array clustering, a plaid model searches for blocks of observations and 

variables that show a common pattern.  Plaid models find one subset (layer) at a time 

in a forward stage-wise fashion.  Each new layer is found in a similar way to adding a 

new model in boosted regression, as the effect of previous layers are subtracted, and 

the next layer is found on the residual data matrix. 

 

As an RFP combination method, plaid models perform a search for a stable mean 

consensus matrix by grouping RFPs that have similar configurations.  This method 

treats each RFP as a single variable in plaid models.  To do this each RFP of 

(dimension n by n) is converted into a vector of length n2 by, 
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is denoted by' (''' RFP# $###  (3.33) 

and then these vectors are concatenated into a data matrix, 

 

 

Y =

! ! !

RFP
1" #"""" RFP

2" #"""" $ RFP
M" #"""""

! ! !

!

"

#
#
#

$

%

&
&
&

. (3.34) 

 

Plaid models estimate the entire dataset using a sum of K layers, where each layer 

defines a homogeneous group within the data.  A subset of observations and variables 

of the data matrix Y define each layer.  These subsets are specified for each layer, k, 

by binary indicator variables, ρ(ij)k for the rows and κmk for the variables.  A ‘1’ in 

these vectors indicates that the structure within that observation or variable deviates 

from the mean of that layer, µk.  The magnitudes of these deviations are estimated in 

the parameters, α(ij)k for the observation effects and βmk for the variable effects 

respectively.  This results in two sets of parameters: (ρ(ij)k, α(ij)k) which estimates how 

representative each observation is of µk and (κmk, βmk) which estimates how 

representative each variable is  of µk (Figure 18). 
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Figure 18: Plaid model illustration for a single layer. 

 

 

In this thesis, to construct the overall consensus matrix, plaid models are run on Y 

(Figure 18) to a single layer, K = 1, and therefore the k index can be dropped from the 

model.  The mean representation of a single count between observations i and j, cij , 

can be found as a sum over the M RFPs, 

 ĉ
(ij ) = µ

0
+ µk + !

(ij )k" (ij )k + # mk$mk

m=1

M

%&
'(

)
*+

. (3.35) 

Doing this for all counts will produce a consensus matrix of the form,  
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For the iris dataset the result of plaid combining is shown in Figure 19. 
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Figure 19: PLAID consensus matrix for the iris dataset: (1) setosa, (2) versicolour, (3) 
virginica. 

 
 

3.5.3.1 Estimating the plaid parameters 
 

Plaid models use a forward stage-wise addition of layers.  For each element in Y, this 

is expressed as a linear combination of row and column effects over K layers, 

 c
ij( )m = µ

0
+ µk + !

ij( )k" ij( )k +# mk$mk( )
k=1

K

% , (3.37) 

where each new layer is found by estimating the parameters on the residuals from the 

previous layers. 

 

For each layer, plaid models iteratively minimise the loss function Q, 

 Qk =
1

2
zijmk ! µ

ij( )k + "
ij( )k# ij( )k +$ mk%mk( )( )

2

m=1

M

&
j=1

N

&
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& , (3.38) 

where zijmk  are the residuals from the previous layer.  Plaid model estimate the 

parameters using the method of Lagrange multipliers, subject to a loose set of 

constraints, 

 0 = !
ij( )k
2 "

ij( )k
j=1

N

#
i=1

N

# = $ mk

2 %mk

m=1

M

# , (3.39) 
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that forces the minimisation to use positive values of !
ij( )k  and !

mk
, but also have the 

effect of shrinking small values of these parameters close to zero.  These constraints 

however do not enforce the necessary conditions that !
ij( )k " 0,1[ ]  and !

mk
" 0,1[ ] .   

 

To enforce that ρ(ij)k and κmk lie within the range [0,1], the updates are never 

implemented.  Instead S iterations are run and if the update for ρ(ij)k or κmk at iteration 

s is above 0.5, then its value is updated by 0.5 + s/(2S) and if it is below 0.5 the 

update is then 0.5 – s/(2S).  This enforces a binary value of 0 or 1 in the final iteration 

and that at each iteration !
ij( )k " 0,1[ ]  and !

mk
" 0,1[ ] .  Once all ρ(ij)k’s and κmk’s have 

been found, a new layer is defined and consequently a new cluster has been 

determined. 

 

The result from the minimisation procedure is the following parameter update 

formulae: 
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and using !
ij( )mk = µk +" ij( )k + #mk , 
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The most important parameter resulting from plaid model combining is the values in 

κmk.  If in (3.35) the value of κmk is found to be ‘1’, it means that the structure in this 

RFP deviates sufficiently from the mean such that it is necessary to explicitly add it as 

a parameter within the model.  The magnitude of the corresponding βmk gives an 

indication of how different that structure is.  It is possible for plaid models not to find 

any κmk’s to be ‘1’.  In this case all of the counts are sufficiently modelled by a stable 

mean representation over the RFPs. 

 

The other parameters, α(ij)k, ρ(ij)k are necessary for the running of plaid models, 

however in the context of RFP combination are difficult to understand as they refer to 

a specific 
 !

c
ij , as in the beta-binomial combination method.  Their values read just like 

the βmk’s and κmk’s as if ρ(ij)k is set to one, then that count differs from the mean 

representation, with α(ij)k being a measure of the size of the deviation.  If it is found to 

be a significant effect in the plaid model, it means that the counts over the RFPs for 

observations i and j do not follow the pattern of the other counts found as modelled by 

the consensus matrix.   
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4. Multivariate Consensus Trees (MCT) 
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A Multivariate Consensus Tree is a clustering or profiling model capable of 

finding stable groups over mixed type datasets.  MCTs are tree-based models that 

search for decision rules within the predictor set to partition a consensus matrix into 

homogeneous groups.  To do this MCTs define five new splitting criteria designed to 

find group structure within a consensus matrix.  Furthermore, MCTs extend the RE 

graphs of CART (Section 3.2.1) to provide a way to estimate the optimal number of 

groups within the dataset.   

 

This thesis proposes two algorithms for building an MCT; Global MCTs and local 

MCTs.  Global MCTs construct an overall consensus matrix spanning all 

observations, and recursively partition on this matrix to build the tree.  Local MCTs 

build a new consensus matrix at each terminal node to evaluate each new split.  As 

local MCTs re-construct the consensus matrix for each split it is expected that they 

are more accurate in determining the split points of the tree.  On the other hand global 

MCTs always observe the constant consensus matrix and therefore are likely to be 

adversely affected by competing group structures within the dataset. 
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4.1 MCT Splitting Functions 
 

Splitting on a consensus matrix is very similar to splitting on a distance matrix as in 

Db-MRT (Figure 6).  However with Db-MRT, the goal is to find the sub-matrices DL 

and DR containing small distances between the observations and DC showing a large 

distance between the groups.  As consensus matrices contain a similarity measure, the 

goal is to find group sub-matrices with high counts and a covariance sub-matrix with 

low counts.  To not confuse Db-MRT with MCT methods, the consensus left and 

right sub-matrices will be denoted as SL, SR respectively and the covariance sub-

matrix is denoted as SC.  

 

4.1.1 Splitting using sums of squares (SSR) 
 

Sums of Squares Reduction Splitting (SSR) minimises the following, 

 R d( ) = cij ! SL( )
2

j"SL

#
i"SL

# + cij ! SR( )
2

j"SR

# + 2 cij ! SC( )
2

j"SC

#
j"SC

#
j"SR

#  (4.1) 

where the group centroid is defined as the mean of all observations of a group.  SSR 

splits are subject to a condition to ensure that a valid split is found.  A valid split is 

defined when  SL > SC  and  SR > SC .  This condition must be accepted before 

assessing the quality of a split; and states that the observations in the left and right 

groups of the split have been classified together more times than apart.  As we are 

dealing with a similarity measure rather than a distance the validity condition is 

necessary to ensure a split results in meaningful nodes. 
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It is possible that no split on any variable in the dataset will meet the validity 

condition.  If this happens the MCT cannot be grown any further.  This could be 

because of two reasons: 

1. There is no grouping structure within the data left to model. Therefore the 

terminal nodes are as pure as they will become.  

2. The minimum terminal node size does not allow for the best split to be found. 

 

4.1.2 Splitting using margin reduction (MR) 
 

The margin of a classifier is defined as by how much the predictions made exceed 

random chance (Breiman 2001).  When considering a split on an RFP, the best 

selected split should improve the grouping of objects.  In terms of counts within a 

consensus matrix, this translates to having the counts within the terminal node sub-

matrices of a potential split greater than the mean of the entire consensus matrix, S
T

.  

By this it is possible to define a correct and incorrect grouping for an observation cij  

within a terminal node sub-matrix: 

1. A correct grouping of an observation is when cij > ST .  

2. An incorrect grouping of an observation is whencij ! ST . 

Using these rules an impurity measure can be derived which maximises the ratio of 

correct and incorrect grouping observations, 

 R(d) =

cij( )
j!SL

"
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"
#
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If the sum of the incorrect groupings is small for both the left and right terminal nodes 

then (4.2) will decrease.  If (4.2) decreases, the observations in the new left and right 

partitions have higher counts than the overall mean of all observations and the margin 

is maximised.  Therefore by decreasing (4.2) the mean count in the new partitions is 

higher and the partition will increase the margin and the split is good. 

 

However using (4.2) it is possible to get an impurity of zero or an undefined impurity 

depending on the structure within the consensus matrix.  An undefined impurity is a 

problem as this means that the sum of the correct counts is zero, and there is no valid 

split.  Conversely a margin of zero is not a problem as this means that the sum of the 

incorrect counts is zero.  This means that a very good split has been found where no 

incorrect groupings have been induced by the partition. 

 

4.1.3 Splitting using an odds ratio (OR) 
 

The odds ratio (Schork and Remington 2000) is a very common statistical tool for 

summarising the structure within two-way contingency tables (Figure 21), 

 OR =
Probability of Success

Probability of Failure
=
ad

bc
. (4.3) 

 

Figure 20: MCT split as an odds ratio. 
 

 

 

The odds ratio for an MCT split is defined as, 
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It comes into use in MCTs because a partition on a consensus matrix can be treated as 

a two way contingency table,  

 OR =
Odds left

Odds right
=
ad

bc
=

cij( )
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2
. (4.4) 

As MCTs reduce impurity, the inverse of (4.4) is used to pick the best split.  If the 

inverse of (4.4) is less than one, the sum of the left and right partitions is larger than 

that of the covariance partition and the split is good.  If it is one or more, then the 

sums are the same, or the covariance sum is larger than the left and right partitions 

sum and the split is invalid. 

 

4.1.4 Combining splitting functions (MR-SSR & OR-SSR) 
 

One major advantage of the SSR split method is that it takes into account the group 

variation, however does not make use of the count structure of the data.  By only 

considering the group variation, SSR may embed smaller groups within larger groups. 

The other techniques, (MR and OR) use only the count structure of the data, and do 

not estimate the variance of the group.  By not considering the group variance it is 

possible that these methods may be biased towards smaller groups.  To overcome 

these problems a combination of SSR with MR and OR to create two new splitting 

functions is proposed. 

 

Combining SSR with MR (MR-SSR) gives the following impurity function: 

 R(d) = MR(d) ! SSR(d)  (4.5) 

Combining SSR with OR (OR-SSR) gives: 
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 R(d) = OR(d) ! SSR(d) . (4.6) 

Combination splitting methods are intended to remove split bias and improve 

performance.  By weighting the count based rules by SSR, the path toward the best 

split becomes less steep, which increases the stability of the final split point (Figure 

21). 

 

Figure 21: Illustrating the performance of each individual MCT splitting function, on 
the case of perfect separation between the groups. 
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4.2 Growing An MCT 
 

MCTs use a very general rule to pick the best split over many terminal nodes.  

Standard CART does this by picking the minimum of the RE statistic over all the 

nodes.  MCTs can be more efficient as they have more information in the consensus 

matrix to assess the quality of a split, in particular the covariance between two nodes.  

The overall goal of an MCT split is to maximise the mean of counts of the new 

terminal nodes.  This is done within each terminal node separately by finding the 

minimum of the impurity function.  

 

To pick the next node upon which to split on, MCTs search for the best reordering of 

the consensus matrix into a block diagonal.  Using the value of the impurity function 

to do this is likely to be biased toward picking terminal nodes with more observations.  

To find the next terminal node to grow on MCTs search over the best splits in all 

terminal nodes for the smallest S
C

.  This finds the next two groups that are most well 

defined and gives the best re-ordering of the consensus matrix into a block diagonal 

form.  Therefore it forces MCTs to identify the most clearly separated groups early in 

the tree and is unaffected by the specific splitting function.  
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4.3 Global MCTs 
 

Global MCTs produce an overall consensus matrix and then grow the MCT on this 

matrix.  The algorithm (Figure 22) relies heavily on the performance of the original 

random forests.  The advantage of this approach is speed and that it allows for 

structure within the overall consensus matrix to be viewed with an MDS plot.  

Furthermore it is possible to directly observe the performance of each random forest, 

which can give an indication of response variable importance. 

 

Figure 22: Global MCT algorithm. 

 

 

 

 

 

 

 

 

1. For each response variable: 
a. Grow the forest and produce the RFP. 

2. Produce the consensus matrix over all RFPs from each response matrix. 
3. While tree size < maximum tree size do: 

a. Find the best split on each terminal node: 
i. For each predictor variable find the best split, d, by finding the 

minimum R(d). 
ii. Over each predictor compare the best splits, and pick the 

variable with the smallest R(d). 
b. For each terminal node compute the RE(d) for the tree if that node was 

used to grow the tree. 
c. Compare the RE(d) statistics over each terminal node and grow the tree 

on the minimum. 
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4.3.1 Tree size selection for global MCTs 
 

As the response set for global MCTs is constant, the tree size can be estimated by V-

fold cross validation as in standard CART.  The RE statistic is defined as the sums of 

squares reduction as in SSR splitting (4.1). Over the course of the validation the left 

out observations are predicted by the centroid of the group in which they fall.  The 

relative error statistic is computed on each test and training set in the validation.  

Finding the elbow in the RE curve (Figure 23) gives an estimate of the appropriate 

tree size to use. In the case of the iris dataset this is two splits or three terminal nodes 

(Figure 24). 

 

Figure 23: Global MCT 10-Fold CV for the iris dataset. 

 

By predicting the consensus matrix in the cross-validation, global MCTs are finding 

the most stable number of clusters.  The idea is very similar to other cross-validation 
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regimes to determine the optimal number of groups (Dudoit, et al. 2002) and 

assessing the accuracy of a clustering solution (Tibshirani, et al. 2005). 

 

For the iris dataset, based on the RE curve (Figure 23) the global MCT (Figure 24) is 

grown to 2 splits using SSR splitting and the GPA consensus matrix.  Using the 

terminal node locations as groups this tree misclassifies 8 observations when 

compared with the known iris groups.  A classification tree on the iris dataset grown 

to 3 terminal nodes misclassifies 6 observations. 

 

Figure 24: Global MCT for the iris dataset. 
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4.4 Local MCTs 
 

Local MCTs construct a new independent consensus matrix for the observations at 

each terminal node (Figure 25).  In doing this they look for local grouping structure 

within a node, unaffected by the grouping structure in other nodes.  By producing a 

consensus at each node the resolution of the groups is improved, and hopefully so too 

is the clustering accuracy.  As local MCTs construct consensus matrices at each 

terminal node, they are computationally expensive, and do not allow for the analysis 

of the overall random forests to assess response variable importance. 

 

Figure 25: Local MCT algorithm. 

 

 

 

 

 

 

 

 

 

To allow local MCTs to produce a consensus matrix over all the observations they 

augment the individual consensus matrices for each split within the tree together into 

one overall consensus matrix.  To do this local MCTs simply replace the areas in the 

old consensus matrix with the newly formed consensus matrix.  This new matrix is 

the called the “augmented consensus matrix” (ACM).  

 

1. While tree size < maximum tree size do: 
a. Find the best split on each terminal node: 

i. For each response variable: 
(a) Grow the forest and produce the RFP. 

ii. Produce the consensus matrix over all RFPs from each response 
matrix. 

i. For each predictor variable find the best split, d, by finding the 
minimum R(d). 

ii. Over each predictor compare the best splits, and pick the 
variable with the smallest R(d). 

b. For each terminal node compute the RE(d) for the tree if that node was 
used to grow the tree. 

c. Compare the RE(d) statistics over each terminal node and grow the tree 
on the minimum. 

d. Compute the augmented consensus matrix for that tree. 
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4.4.1 The local MCT augmented consensus matrix (ACM) 
 

An example construction of the augmented consensus matrix (ACM) is presented in 

Figure 26.  Here, the first consensus matrix is constructed using all the available 

observations, as in global MCTs.  A single partition is then made upon this matrix.  

After this partition, for each terminal node a separate consensus matrix is built using 

only the observations within the node.  The best partition is then found for these 

matrices separately.  These partitions are then compared and the best is selected and 

used to grow the tree.  To produce the ACM the intermediate consensus matrix is then 

used to update the first consensus matrix. 

 

Figure 26: Illustration of the construction of an ACM for the iris dataset. 
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The disadvantages of local MCTs are the run time, and difficulty in summarising and 

monitoring the performances of each individual forest.  More so, with local MCTs it 

is not possible to implement the standard V-fold cross-validation for model selection 

as the response consensus matrix changes with the addition of each new tree.  To 

overcome this, an AIC statistic is produced to assist in model selection for local 

MCTs. 

 

4.4.2 Tree size selection for local MCTs 
 

As local MCTs cannot be cross-validated another method of model selection must be 

used that considers tree size.  It is possible to get an indication of optimal tree size by 

using the Akaike Information Criterion (AIC) for a normal least squares problem 

(Burnham and Anderson 2002), 

 AIC = n log !̂
2( ) + 2K . (4.7) 

In a local MCT, each proximity cij of the ACM is grouped into a sub-matrix, S as a 

result of the partitions in the tree.  If the groups within the MCT are stable, then the 

proximities within each sub-matrix should be well predicted by the centroid of that 

sub matrix S , 
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Therefore, by (4.7) and (4.8) the AIC for a local MCTs is defined to be, 
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where cij
ACM  is a proximity within the ACM, cij

ACM  is the centroid of its sub-matrix, 

and n is the number of observations within the dataset.  The model size K, is 4 x 

(number of splits) as for each split there are 4 centroids to be estimated.  By using the 

AIC it is possible to consider model size in selecting a local MCT model.  The 

assumptions resulting from using the AIC for tree size selection is that the similarities 

within each sub-matrix of S follow a normal distribution and that the model 

complexity is that of a linear model with 4*(number of splits) parameters to be 

estimated. 

 

Unlike global MCTs the RE curve is not necessarily a decreasing function (Figure 

27).  This is because the ACM is continually updated, and in doing this it is not 

guaranteed that the RE will decrease.  However this does not change the 

interpretation, as the optimal tree size still lies at the minimum, which in the case of 

the iris dataset is 2 splits or 3 terminal nodes (Figure 28). 

 

Figure 27: Local MCT RE and AIC curves for the iris dataset. 
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For the iris dataset, based on the RE and AIC curves (Figure 27) the local MCT 

(Figure 28) is grown to 2 splits using SSR splitting and the GPA consensus matrix.  

Using the terminal node locations as groups this tree misclassifies 8 observations 

when compared with the known iris groups.  A classification tree on the iris dataset 

grown to 3 terminal nodes misclassifies 6 observations. 

Figure 28: Local MCT on the iris dataset.  
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4.5 Understanding MCTs Output 
 

4.5.1 Terminal node labelling 
 

The numbering system used for the terminal nodes is simply that position in the entire 

tree from left to right (Figure 29).  This provides a unique number for each possible 

terminal node location.  Therefore there is no confusion as to where any terminal node 

is within the tree. 

 

Figure 29: Terminal node numbering scheme. 

 

 

4.5.2 Terminal node quality 
 

Both local and global MCTs have some common statistics that help in the overall 

understanding of the trees (Figure 24, Figure 28).  Firstly the centroid of each 

terminal node gives a measure of confidence in that node.  Expressed in terms of a 
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probability this measure is denoted as “P(C)” underneath each terminal node of the 

tree, 

 P(C) =
S
Node

N
B

 (4.10) 

where S
Node

 is the centroid for a node and NB is the number of trees within the 

ensemble.  The closer P(C) is to ‘1’ the more times each observation within that 

terminal node has been positioned in the same node, and the more chance that node is 

a strong group within the data.   

 

This information is also displayed for each individual response variable in the bar 

chart printed at each terminal node.  In these charts, the longer the bar, the higher the 

expression of that node for that response variable.  The order of the response variables 

in these charts is printed in the top left hand corner of the tree plot.  These bar charts 

can be read like a variable importance list for the response variables for each terminal 

node. 

 

Other information displayed on the tree is the node number, presented in brackets at 

each terminal node.  Accompanying this is the number of observations within each 

terminal node. 
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4.5.3 Assessing the quality of the consensus 
 

After constructing the consensus matrix it is necessary to see how representative the 

result is.  In this thesis a Root Mean Square Error (RMSE) is used, 

 RMSE RFPm( ) =
cijm ! ĉij( )

2

j=1

N

"
i=1

N

"

n
2

. (4.11) 

The RMSE is used as it gives an error measurement in the form of a count, which 

allows for a more intuitive interpretation.  For local MCTs, the RMSE is constructed 

between the ACM and the individual consensus matrices. 

 

Figure 30: RMSEs for global and local MCTs for the iris example. 

 

As can be seen for the iris dataset the RMSE profiles for local and global MCTs are 

the same (Figure 30).  However it is clear that local MCTs have on average a lower 

RMSE than global MCTs.  This is due to the updating of the consensus matrix with 

more accurate group structure. 
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4.5.4 Response variable importance (YVIP) 
 

A response variable importance statistic for the entire MCT can also be computed.  

This is defined as an R2 between the RFP for that response and a matrix of group 

centroids found by the tree: 

 YVIP ym( ) = 1!
cijm ! cijm( )

2

j=1

N

"
i=1

N

"

cijm ! Sm( )
2

j=1

N

"
i=1

N

"
 (4.12) 

where cijm  is the centroid of the group in which cij has been placed, and S
m

 is the 

centroid of the entire RFP for response variable m.  The YVIP of each variable is 

published in the MCT output (Figure 24, Figure 28) in the top left hand corner.  The 

closer the YVIP is to ‘1’, the more accurately the tree models that response variable. 

 

4.5.5 Plaid terminal node filtering 
 

The terminal nodes of an MCT correspond to sub-matrices that lie along the diagonal 

of the consensus matrix.  At each terminal node MCTs assume that the counts within 

a sub-matrix can be modelled their mean centroid.  This is also assuming that each 

terminal node sub-matrix for each response variables RFP are also sufficiently 

modelled by the mean centroid of the consensus matrix.  This assumption in this 

thesis is called the “homogeneity of a terminal node within an MCT”. 

 

The consensus matrix of an MCT is a combination of RFPs for each response 

variable.  As the combination methods are designed to find the dominant structure 

over all response variables, it is possible that within a terminal node some RFPs will 
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not express the structure found in the MCT consensus matrix.  If so this is a violation 

of the assumption of a homogeneous terminal node.  Plaid terminal filtering uses the 

PLAID combining algorithm to identify those RFPs within each terminal node that 

deviate from this assumption. 

 

Plaid filtering extracts from each response variables RFP the sub-matrices 

corresponding to each terminal node of the MCT.  These sub-matrices are entered into 

the plaid model combination method, and an analysis of the !
m

s is performed.  If a 

!
m

 is ‘1’, then plaid models have identified that the structure within that RFPs sub-

matrix differs from the stable mean representation found by the plaid model.  

Therefore it violates the assumption of a homogeneous terminal node.  A measure of 

by how much that RFP differs from the mean is estimated by βm.  Those RFPs with 

κms equal to zero agree with the mean representation of that node. 

 

Table 1: Plaid terminal node filtering of the iris dataset.  The values in the table are 
(κm) x (βm).  A zero represents agreement with the mean representation. 

 

Local MCT Global MCT 
 

2 6 7 2 6 7 

Sepal Length 0 0 0 0 -25.98 -0.1 

Sepal Width 0 15.79 16.12 14.65 17.37 0 

Petal Length -0.50 0 0 0 8.9 0 

Petal Width 0.47 -15.79 -16.05 -14.56 -0.29 0 

 

For the iris example (Table 1) the results clearly show that the local MCTs produce a 

more accurate consensus as each terminal node has its more representative variables, 
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denoted as a ‘0’.  These values are representative of the mean structure of the terminal 

node as they are found by plaid models not be expressed differently from the mean 

configuration and indicated with a !
m

 of ‘0’.  For global MCTs terminal node 6 is not 

easily found by any variable as no RFP is found to match the consensus RFP.   

 

The non-zero values in Table 1 are the !
m

 coefficients of the plaid model for that 

node.  A positive value indicates over expression, or a comparatively higher count 

than the mean centroid for that RFP sub-matrix, and negative values represent under 

expression or a comparatively lower count than the consensus mean centroid.  It 

should be noted that the sum of the βms should be close to zero, as they must follow a 

normal distribution.  Therefore, for a terminal node if one βm is over-expressed, for 

example 15.79 for sepal width in terminal node 6 for the local MCT, plaid models are 

forced to find counterweights that are equally under expressed, in this case sepal 

width which is underexpressed at -15.79.  

 

For the iris dataset it is clear that local MCTs and global MCTs are finding a different 

mean structure.  Global MCTs show that all RFPs express the mean representation in 

terminal node 7, indicating that this is a stable group.  However no RFPs display 

terminal node 6, in particular sepal length, which is underexpressed by -25.98.  

Through observation of the RFP bar plots for terminal node 6 in the global MCT 

(Figure 24), it can be seen that sepal width and petal length show a higher expression 

than sepal length and petal width.  This is what is seen in the filtering results.  The 

high expression of sepal length and petal width forced the stable mean representation 

to a higher value, which the plaid model then counteracted by assigning higher 
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weights to the less expressed variables.  The conclusion is that terminal node 6 for 

global MCTs is not a stable group. 

 

For local MCTs a lot of symmetry in the plaid model parameters is observed.  The 

pattern of the plaid coefficients over all RFPs for each terminal node is two variables 

of 0, one positive and one negative.  In fact this is characteristic of a stable pattern.  It 

can be seen that for terminal node 6 and 7 plaid models have selected sepal length and 

petal length as the stable mean representation for the nodes. By observation of the 

local MCT terminal node bar plots for these nodes (Figure 28), it can be seen that 

sepal length and petal length have similar expression levels to all other RFPs across 

these nodes, and therefore are good selections for the stable mean.   

 

For terminal node 2 the bar plot shows that sepal width is highly over-expressed.  In 

this case plaid filtering selected sepal length and sepal width to construct the mean 

representation.  This is a choice of a relatively over-expressed variable to construct 

the mean has the result of inducing a high mean variation between the mean of the 

terminal node and the RFPs.  This variation is large enough to encompass the 

expression of petal length and petal width.  Therefore the observed deviations of these 

variables are small.  This result could be due to a possible outlier effect induced by 

the over-expressed sepal width for that node. 

 

Plaid terminal node filtering in combination with terminal node bar plots provides a 

useful tool to assess the quality of the groups found by an MCT.  Those nodes with a 

stable mean representation are likely to be strongly expressed groups within the 

dataset.  However plaid models can also highlight subsets of response variables that 
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strongly express a particular node, or do not express a node at all.  With careful 

interpretation of the results from plaid filtering it is possible to gain an understanding 

into what response variables express which group and a measure of the stability of 

these groups.   
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5. Software 
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All methods in this thesis were implemented in the R package for statistical 

computing (R Development Team 2005).  The other techniques used are found within 

add-on packages to R, and referenced below. 

1. The code for hierarchical agglomeration (AGNES) and partitioning around 

medoids (PAM) is found in the R contributed package “cluster” (Maechler, 

Rousseeuw, Struyf, Hubert and Hornik 2006). 

2. Multivariate regression trees are found in the “mvpart” R contributed package 

(Therneau, Atkinson, Ripley and De'ath 2004). 

3. MCTs, random forests and treeboost are all implemented in the R package “mct” 

developed during this thesis (Hancock 2006).  This package implements the 

following algorithms: 

a. Random forests for classification and regression. 

b. Multivariate random forests with binary substitution for categorical 

response variables. 

c. Multivariate treeboost with binary substitution for categorical response 

variables. 

d. Global and Local MCT with the following functions: 

i. GPA, BB and PLAID proximity matrix combination methods 

ii. SSR, MR, OR, MR-SSR and OR-SSR splitting functions. 

iii. Plaid model terminal node filtering. 

iv. Plaid model variable filtering (Section 7.3.3.3). 
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6. MCT Sensitivity Analysis 
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The aim of this sensitivity analysis is two-fold.  Firstly the aim is to assess the 

accuracy of the MCT splitting criteria and RFP combination methods, and secondly to 

assess what effect different random forest parameters have on the final MCT solution.  

These tests focus on three key stages in the construction of an MCT and their 

influential parameters (Table 2).  

 
Table 2: Table of important MCT parameters 

Construction Stage Important Parameters Possible Effect 

Random forest tree size Determines the number of 
groups within each RFP. 

Stage 1 

Construction of the RFPs Random forest terminal 
node size 

Determines the minimum 
group size possible. 

GPA 

BB 

Stage 2 

Computing the consensus 

matrix PLAID 

Determines the structure in 
the final consensus. 

Local or global MCT 
Will have an effect on the 

accuracy of the final 
solution. 

MCT splitting criteria Determines group 
structure. 

MCT terminal node size Determines the minimum 
group size to be found. 

Stage 3 

Growing the MCT 

MCT tree size 
Determined by V-fold 
cross-validation or by 

AIC. 
 

The first sets of experiments are simulation tests designed to gauge the performances 

of the RFP combination and MCT growing methods described in stages 2 and 3 in 

Table 2.  These experiments simulate RFPs such that they have a known and well 

defined group structure.  This is done to remove any effect that different random 

forest parameters may have.   These simulated RFPs are then run through global 

MCTs, using each combination technique and splitting criteria over a range of MCT 
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tree and terminal node sizes.  Furthermore RE curves are generated for each 

experiment to assess the ability of MCTs to estimate the number of groups in the 

datasets. 

 

The second experiment is designed to assess the effect of the random forest 

parameters on the construction of the RFPs in stage 1.  These experiments run local 

and global MCTs using random forests with different tree sizes and terminal node 

sizes to assess what affect these parameters have on the final MCT solution. 

 

6.1 Simulation Tests 
 

The following simulation tests aim to assess the sensitivity of MCTs to the consensus 

generation methods, choice of splitting criteria, and MCT terminal node and tree 

sizes.  To do this several RFPs are simulated with known groups.  Each RFP is then 

randomly blurred to simulate noise within a response set.  The RFP combination 

methods will then be run to uncover the original base groups from the blurred RFPs.  

These simulation tests are intended to assess the quality and robustness of the MCTs, 

in the face of random variation within the RFP structure.  Simulating the RFPs 

directly allows for an unbiased assessment of the performance of the RFP 

combination and the MCT splitting methods, as they are independent of any 

performance bias that random forests may have to either classification or regression 

responses variables or any type of predictor variable.  

 



 110 

The performance of MCTs will be compared with the performance of standard 

methods, using the MCT created consensus matrix as their input.  The comparison 

methods are: 

• Hierarchical agglomeration (AGNES) using average, complete and Wards 

linkage (Section 2.3.1). 

• Partitioning around medoids (PAM) (Section 2.3.2). 

• K-means (Section 2.3.2). 

 

To assess the relative quality of the different RFP combination methods a RMSE 

between the consensus matrix and the original non-blurred RFP is used.  Here the 

lower the RMSE between the original RFP and the consensus matrix, the better that 

consensus generation method has found the original group structure. 

 

As MCTs require a predictor variable to form a split, each MCT will be grown with a 

single predictor variable, which will be an index of the observations, where the known 

groups will be ordered along this index.  As the index is the predictor variable it is 

possible for MCTs to anywhere split along its range.  This knowledge of the order of 

the groups could give MCTs a distinct advantage over the comparison methods.  
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6.1.1 Simulating RFPs 
 

To ensure that the exact group structure within each RFP is known, they are directly 

generated for a specified base group structure.  The base configuration is a matrix that 

represents the centroids of each group within the RFP.  From these base centroids the 

counts within the RFPs are samples taken from a uniform distribution centred about 

centroid that defines the group.  To ensure sufficient within group variability exists, 

these counts are generated within a range defined one binomial standard deviation 

either side of the specified centroid. 

 

For example, if the user specified groups centroids for a two group RFP is, 
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where the maximum count is N
B
= 50  then the binomial standard deviation for each 

cell is defined as, s = Nb p 1! p( ) , where p is the probability for a sub-matrix, given 

N
b

.  Given this, uniform random counts representing each group will be generated 

over the following domain: 

45 ± 4.5 30 ± 12

30 ± 12 35 ± 10.5

!
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$
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&

. 

If the group sizes are defined to be of 50 and 20 observations each, and a random seed 

is set at 1234567 the RFP and MDS plots in Figure 31 are generated.  The RFP for 

group 1 comprises of 50 by 50 simulated counts, group 2 has 20 by 20 simulated 

counts and the covariate groups has 50 by 20 simulated counts. 

Figure 31: Example of a simulated RFP. 
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Once the base RFP has been generated, to make the simulations more realistic, a 

random number from a uniform distribution within a specified range is randomly 

added or subtracted to each count within the RFP.  This decreases the resolution of 

the groups, making them harder to find.  At all stages of the simulations, it is ensured 

that the symmetry of the RFP is maintained and that the individual counts all lie 

between 0 and N
B

.   
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6.1.2 Simulation Test 1: Four blurred equal sized groups 
 

This experiment generates four blurry, but clearly separated groups.  The groups here 

are equally sized to remove any outlying effects for the combination methods.  The 

simulation parameters are: 

• The random seed is initially set at 1234567. 

• The group size for each group is 100 observations. 

• The maximum count for any element in the RFP is 50. 

• The original base configuration is in Table 3. 

• Six blurred configurations are generated, by randomly adding or subtracting 

uniform random numbers between 0 and {5,10,15,20,25,30} to the original 

RFP.  In the MDS plots of these RFPs (Figure 33) this is denoted by a +/- in 

the title. 

 

Table 3: Four group simulation experiment base configuration group centroids. 

Group  
1 2 3 4 

1 39 15 20 15 
2 15 30 15 10 
3 20 15 39 20 G

ro
up

 

4 15 10 20 35 
 

The original configuration (Figure 32) shows the four simulated groups are quite 

close together with groups 2 and 3 slightly overlapping.  The image of the RFP shows 

that the expressions of the groups are not that much different from the background 

expression.  Once blurred, the groups become less obvious, with original +/- {15 (c), 

25 (d) and 30 (e)} counts (Figure 33) not obviously showing all of the known groups. 
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Figure 32: Four group simulation base configuration. 

 
 

Figure 33: Four group simulation blurred RFP MDS plots. 

 
 

The combination methods are now run on the blurred configurations, without 

knowledge of the original base configuration.  Of the combination methods it is clear 

from the RMSE plot that GPA and PLAID are performing equally best (Figure 34) 

 (a) (b) (c) 
 
 
 
 
 
 
 
 
 
 
 
 (c) (d) (e) 
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and BB the worst.  When the consensus configurations are compared side by side 

(Figure 36) there is no observable difference between the resulting MDS plots. 

Overall despite a weak original structure with additional blurring, the RMSE show 

that the combination methods only differed from the original by approximately 10 % 

(Figure 34). 

 

Figure 34: Four group simulation combination RMSE. 

 
 

Over the different combination splitting methods, the RE curves for the same terminal 

node size show a consistent pattern (Figure 35).  The known group size is 100 

observations for each group.  For the terminal node size set at 25 observations, all but 

the MR splitting function with the PLAID combining clearly show the elbow in the 

RE curves at 3 splits.  When the terminal node size is increased to 50 observations, 

MCTs do not grow trees past 3 splits, again with the exception of MR splitting with 

PLAID combining which grew to 4 splits.  
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Figure 35: Four group simulation RE graphs. 
(a) SSR 

 
(b) MR 
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(c) OR 

 
(d) MR-SSR 
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(e) OR-SSR 
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Figure 36: Four group simulation consensus configurations. 

 
 
Table 4: Four group simulation MCT misclassification performance (Min node size = 
25) 

 GPA BB PLAID 
SS (0,0,0,0) 

0 % 
(0,0,0,0) 

0 % 
(0,0,0,0) 

0 % 
MR (0,0,0,3) 

0.0075% 
(0,0,0,0) 

0 % 
(0,0,0,3) 
0.0075% 

OR (0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

MR-SSR (0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

OR-SSR (0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

 

 (a) (b) (c) 
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Table 5: Four group simulation MCT misclassification performance (Min node size = 
50). 

 GPA BB PLAID 
SS (0,0,0,0) 

0 % 
(0,0,0,0) 

0 % 
(0,0,0,0) 

0 % 
MR (0,0,0,3) 

0.0075% 
(0,0,0,0) 

0 % 
(0,0,0,3) 
0.0075% 

OR (0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

MR-SSR (0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

OR-SSR (0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

 
Table 6: Four group simulation comparative method results. 

 GPA BB PLAID 
AGNES (average) (2,1,1,0) 

0.01 % 
(2,2,5,0) 

0.0225 % 
(4,4,9,2) 

0.0475 % 
ANGES (complete) (2,0,3,1) 

0.015 % 
(4,1,7,12) 

0.06% 
(16,2,26,2) 
0.115 % 

ANGES (ward) (2,0,3,1) 
0.015 % 

(4,1,7,12) 
0.06% 

(16,2,26,2) 
0.115 % 

PAM (26,4,20,9) 
0.14475 % 

(26,5,24,8) 
0.1575 % 

(35,27,30,11) 
0.2575 % 

K-Means (0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

(0,0,0,0) 
0 % 

 
Growing all MCTs to 3 splits or 4 groups, the classification performances of MCTs 

are assessed.  The results of the misclassifications (Table 4, Table 5) show that the 

MR method is the only method that misclassifies.  These performances were for the 

PLAID and GPA combination methods, with a terminal node size of 25, where 3 

observations in group 4 were mislabelled.  On comparison with the standard 

techniques also run to find 4 groups (Table 6) MCTs performed on par with K-Means 

and outperformed all other techniques. 
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6.1.3 Simulation Test 2: Ten uneven but clear groups  
 

The goal of this analysis is to test the sensitivity of MCTs, particularly the splitting 

methods, to uneven groups.  To do this, ten clearly separable but unevenly sized 

groups are simulated. The group sizes are quite diverse with the smallest being 20 

observations and the largest being 180 and the total number of observations is 700. 

The experiment parameters are: 

• The random seed is initially set at 125 

• The group size is {75,25,80,125,25,20,100,20,50,180}. 

• The maximum count for any element in the RFP is 100. 

• The original group configuration is in Table 7. 

• Six blurred structures are generated, by adding and subtracting uniform 

random numbers between 0 and {10,20,30,40,50,60} to the original RFP.  In 

the MDS plots of these RFPs (Figure 38) this is denoted by a +/- within the 

title. 

 

Table 7: Ten group simulation base configuration group centroids. 

Group  
1 2 3 4 5 6 7 8 9 10 

1 93 10 27 32 87 88 48 30 59 55 
2 10 98 69 32 9 50 38 38 84 61 
3 27 69 70 34 66 62 26 52 5 69 
4 32 32 34 96 15 0 68 5 86 42 
5 87 9 66 15 93 54 5 7 80 38 
6 88 50 62 0 54 95 26 79 24 9 
7 48 38 26 68 5 26 95 68 50 27 
8 30 38 52 5 7 79 68 100 58 62 
9 59 84 5 86 80 24 50 58 95 43 

G
ro

up
 

10 55 61 69 42 38 9 27 62 43 75 
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The original configuration (Figure 37) shows ten quite clear groups.  The large groups 

(10 (180 obs), 4 (125 obs) and 7 (100 obs)) appear at the corners with the smaller 

groups surrounding them.  Over the course of the blurring (Figure 38), the smaller 

groups merge in with the larger. Groups 3, 2 and 8 blur with 10, 4 and 1 blur with 

groups 7, and groups 5 and 6 blur together. 

 

Figure 37: Ten group simulation original configuration. 

 
 

9 

1 

4 
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Figure 38: Ten group simulation blurred configurations. 

 
 

The consensus generation methods are now run on the blurred configurations in 

(Figure 38).  Each of the combination techniques perform about the same in terms of 

RMSE (Figure 39), each showing an error of between 15 % and 18 % with the base 

configuration.  PLAID combination is clearly doing the worst, with a 

misclassification rate over twice that of either BB or GPA.  However by a side-by-

side comparison of the consensus configurations (Figure 40), the combination 

methods are inseparable.   

 

 (a) (b) (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) (d) (e) 



 124 

A raw sum of the residuals , 

 Residual Sum = c
ij

Orignal
! ĉ

ij( )
j=1

N

"
i=1

N

"  (6.1) 

where cij
Original  is a count within the base configuration and ĉij  a count within the 

consensus matrix shows the bias between the consensus matrices and the original.  

The result of this (Table 8) reveals that the PLAID combination method consistently 

underestimates the base configuration, as the residual sum is positive.  These results 

imply that PLAID combination is finding the correct structure but at a reduced 

accuracy. 

 

Figure 39: Ten group simulation consensus RMSEs. 
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Figure 40: Ten group simulation consensus configurations. 

 
 
Table 8: Ten group simulation residual sums. 

 GPA BB PLAID 
Residual Sums 29105.05 -156389.8 4290265 

 

 

 (a) (b) (c) 

1 1 1 
9 9 9 
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Figure 41: Ten group simulation RE curves. 
(a) SSR 

 
(b) MR 
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(c) OR 

 
(d) MR-SSR 
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(e) OR-SSR 

 
 

The RE graphs (Figure 41) consistently indicate the presence of 7 to 13 groups 

depending on the splitting method.  The RE curves of SSR, OR and OR-SSR give a 

clear elbow at 7 or 8 groups (6 or 7 splits), and the MR and MR-SSR elbow 

placements range from 9 to 13 groups (8 to 12 splits).  In comparing the overall 

structure of the RE curves between splitting methods it is clear that SSR, OR and OR-

SSR have an obvious RE structure, and the MR based methods show poor predictions 

and elbow placements.  No real difference is observed between the RE curves for the 

5 and 10 minimum terminal node sizes, except with MR splitting on PLAID 

combining.  

 

The trees are grown to 10 terminal nodes to assess misclassification performance.  

Between the 5 (Table 9) and 10 (Table 10) minimum terminal node size tables, the 
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only observed difference is with the MR criterion with PLAID combining, where 

increasing the terminal node size improved performance.  It is clear from the 

misclassification pattern that all methods are completely misclassifying the smaller 

groups (2 and 8) in favour of the larger groups (4, 7, and 10).  It is also clear that the 

MR alone is not performing as well as the others, however MR-SSR performs on par 

with other methods.  An improvement is also noticed with the combination splitting 

functions OR-SSR and MR-SSR outperforming the SSR method. 

 

When compared with the other techniques (Table 11) it is obvious that the best 

performance of MCTs (misclassifying 25 observations) is better than all other 

clustering techniques, and the worse performances are on par with K-means.  Of the 

standard clustering techniques PAM is performing the best by misclassification of 36 

observations on the BB consensus. 

 
Table 9: Ten group simulation MCT misclassification table (Min node size = 5). 

 GPA BB PLAID 
SSR (0,25,0,0,0,0,0,20,0,0) 

0.064 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
MR (0,0,8,18,25,20,0,20,0,0) 

0.13 % 
(0,0,7,18,25,20,0,20,0,0) 

0.129 % 
(0,25,67,0,0,0,0,20,0,0) 

0.16 % 
OR (0,25,0,0,0,0,0,20,0,0) 

0.064 % 
(0,0,5,0,0,0,0,20,0,0) 

0.035 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
MR-
SSR 

(0,0,6,0,0,0,0,20,0,0) 
0.037 % 

(0,0,5,0,0,0,0,20,0,0) 
0.035 % 

(0,0,18,0,0,20,0,20,0,0) 
0.082 % 

OR-
SSR 

(0,25,0,0,0,0,0,20,0,0) 
0.064 % 

(0,25,0,0,0,0,0,20,0,0) 
0.064 % 

(0,25,0,0,0,0,0,20,0,0) 
0.064 % 
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Table 10: Ten group simulation MCT misclassification table (Min node size = 10). 
 GPA BB PLAID 
SSR (0,25,0,0,0,0,0,20,0,0) 

0.064 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
MR (0,0,8,0,25,20,0,20,0,0) 

0.104 % 
(0,0,7,25,20,0,20,0,0) 

0.103 % 
(0,0,17,0,0,0,0,20,0,0) 

0.053 % 
OR (0,25,0,0,0,0,0,20,0,0) 

0.064 % 
(0,0,5,0,0,0,0,20,0,0) 

0.035 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
MR-SSR (0,0,6,0,0,0,0,20,0,0) 

0.037 % 
(0,0,5,0,0,0,0,20,0,0) 

0.035 % 
(0,0,18,0,0,0,0,20,0,0) 

0.054 % 
OR-SSR (0,0,6,0,0,0,0,20,0,0) 

0.037 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
(0,25,0,0,0,0,0,20,0,0) 

0.064 % 
 

Table 11: Ten group simulation comparative method results. 

 GPA BB PLAID 
AGNES  
(average) 

(0,25,80,0,25,20,100,20,50,0) 
0.457 % 

(0,25,80,0,25,20,100,20,50,0) 
0.457 % 

(0,25,80,0,25,20,100,20,50,0) 
0.457 % 

ANGES 
(complete) 

(0,25,0,0,25,20,100,20,50,19) 
0.37 % 

(0,25,0,0,25,20,100,20,50,0) 
0.34 % 

(0,25,0,0,25,20,100,20,50,22) 
0.374 % 

ANGES  
(ward) 

(0,25,0,0,25,20,100,20,50,19) 
0.37 % 

(0,25,0,0,25,20,100,20,50,0) 
0.34 % 

(0,25,0,0,25,20,100,20,50,22) 
0.374 % 

PAM (0,25,0,0,0,0,0,0,0,26) 
0.073 % 

(0,25,0,0,0,0,0,0,0,11) 
0.051 % 

(0,25,0,0,0,0,0,0,0,24) 
0.07 % 

K-Means (0,25,0,0,0,20,0,20,0,0) 
0.093 % 

(0,0,0,0,25,20,0,20,0,0) 
0.093 % 

(0,25,0,0,25,20,0,20,50,0) 
0.20 % 
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6.1.4 Simulation Test 3: Addition of pure randomness 
 

The aim of this study is to test the sensitivity of MCTs to the addition of pure random 

structure.  This experiment varies from the others in that the original configuration is 

entered into RFPs for the combination and tree growing.  The key difference is that all 

other RFPs in the list have no structure and are simply uniform random numbers 

between 0 and the maximum count.  Three clear, equal sized groups are simulated and 

combined with six purely random configurations.  The simulation parameters are: 

• The random seed is set initially at 1234567. 

• The group size is 50 observations. 

• The maximum count for any observation is 50. 

• Six purely uniform random configurations are generated with counts ranging 

from 0 to 50. 

• The original configuration is in Table 12. 

 

The original configuration (Figure 42) shows three clear groups, and the random 

groups (Figure 43) have no obvious grouping structure present.  The consensus 

generation methods are now run with the 6 random configurations and with the 

original RFP.  

 

Table 12: Pure randomness simulation base configuration group centroids. 

Group 
 1 2 3 

1 45 20 5 
2 20 45 25 

G
ro

up
 

3 5 25 45 
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Figure 42: Pure randomness simulation original configuration. 

 
 
Figure 43: Pure randomness simulation combination method RMSE. 
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Figure 44: Pure randomness simulation RMSE for the consensus matrices. 

 
 

From the RMSE results (Figure 43) it is clear that all techniques perform inseparably.  

The RMSE of approximately 5, indicates the resilience of each technique in the face 

of randomness.  To find the groups a minimum terminal node size was set at 25 

observations, half the size of the known groups.  It is obvious from the 10-fold cross-

validated RE curves (Figure 45) that all splitting methods are consistently finding 

only three groups (2 splits).  
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Figure 45: Pure randomness simulation RE curves. 
(a) SSR 

 
(b) MR 

 
(c) OR 

 
(d) MR-SSR 
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(e) OR-SSR 

 
 

A side by side comparison of the consensus matrices (Figure 46) clearly shows the 

three methods identifying the three group structure.  This structure is reinforced with 

every consensus matrix over all splitting criteria showing no misclassifications (Table 

13).  On comparison with standard techniques (Table 14) only K-means matches this 

result.  All other techniques mislabel a large percentage of the observations.   

 
Figure 46: Pure randomness simulation consensus configurations. 

 
 

 (a) (b) (c) 
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Table 13: Pure randomness simulation MCT misclassification results (Min node size 
= 25). 

 GPA BB PLAID 
SS (0,0,0) 

0 % 
(0,0,0) 
0 % 

(0,0,0) 
0 % 

MR (0,0,0) 
0 % 

(0,0,0) 
0 % 

(0,0,0) 
0 % 

OR (0,0,0) 
0 % 

(0,0,0) 
0 % 

(0,0,0) 
0 % 

MR-SSR (0,0,0) 
0 % 

(0,0,0) 
0 % 

(0,0,0) 
0 % 

OR-SSR (0,0,0) 
0 % 

(0,0,0) 
0 % 

(0,0,0) 
0 % 

 
Table 14: Pure randomness simulation comparative method results. 

 GPA BB PLAID 
AGNES (average) (1,3,0) 

0.0267% 
(0,49,0) 

0.3267 % 
(0,48,0) 
0.32 % 

ANGES (complete) (2,8,0) 
0.067 % 

(0,0,5) 
0.033% 

(1,5,0) 
0.04 % 

ANGES (ward) (1,2,0) 
0.02 % 

(0,1,0) 
0.0067 % 

(1,2,0) 
0.02 % 

PAM (3,14,14) 
0.21 % 

(2,7,8) 
0.113 % 

(3,15,10) 
0.1867 % 

K-Means (0,0,0) 
0 % 

(0,0,0) 
0 % 

(0,0,0) 
0 % 

 

MCTs have shown to be quite resilient to the addition of pure randomness.  In this 

experiment the groups were still obvious in the MDS plot despite a 6:1 ratio of 

random noise to group structure.  MCTs resolve the 3 groups perfectly, where as the 

comparative methods show some degree of error. 

 

6.2 Random Forest Sensitivity Analysis Using Vietnam Data  
 

This analysis is used to discuss stability of the underlying random forests required to 

build the MCT RFPs, and their sensitivity to changes in parameter values.  An MCT 

relies heavily on the stable performance of the random forest.  However the 
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performance and stability of random forests relies heavily on tree size and minimum 

terminal node size.  The aim of this experiment is to quantify the effect of the 

relationship between the two parameters, using an applied example where not all the 

known groups are obvious. 

 

The Vietnam dataset (Table 15) (Hong 1997) contains 18 variables on 224 

observations, comprising of 17 continuous profiling variables and one labelling the 6 

groups present within the dataset.  The variables relate to mineral and heavy metal 

concentrations within the hair of two cohorts of the Vietnamese population, the first 

group is regularly exposed to coal, and the second is rarely exposed to coal.  

 

The random forest parameter values that will be varied are: 

1. RF tree sizes of {1, 3, 5, 8, 10}. 

2. RF minimum terminal node sizes of {5, 10, 15}. 

The MCT split method; tree size and number of trees within each random forest are 

kept constant over all analyses.  To determine an appropriate splitting method a pre-

analysis with reasonable parameters values (RF tree size 10, and minimum terminal 

node size of 15) is run.  Based on the RE curves (Figure 47) the MR-SSR splitting 

criterion was selected.  The MCT tree size is run to 5 splits, as it is known that 6 

groups exist in the data.  The number of trees within the forest is set at 200 over all 

analyses.  Before any forest is generated the random seed is set at 1234 to ensure 

reproducibility of the results and fairness across all methods.  This analysis will be 

performed for both local and global MCTs. 
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The simulation tests for global MCTs (Table 16) show a clear relationship between 

tree number and minimum terminal node size.  It is known that the smallest group 

within the data has 18 observations.  From the misclassification results it is obvious 

that for a smaller minimum terminal sizes (5 or 10), to achieve the stable results the 

size of the trees within the random forest must increase.  More so the simulations 

show that if the trees are not grown such that the number of terminal nodes is at least 

the number of groups within the dataset, achieving optimal results is not possible.   

 

If the parameters for global MCTs are entered naively, the simulation tests show that 

quite serious misclassifications can result (Table 16).  It seems that choice of 

combination method does not seriously affect the results.  With the exception of 

PLAID combining with extremely naive parameter values, the resulting 

misclassification tables are quite similar.  The optimal performance of global MCTs 

for the Vietnam dataset is 17 misclassifications or 7.6 % miss-classification (Figure 

48). 

 

For local MCTs, when compared to global MCTs, the simulations (Table 17) show a 

stronger dependence on minimum terminal node size.   Optimal results were only 

found at terminal node size of 15, and converged after the tree size was grown to 3 or 

more splits.  A secondary effect for a local MCT is found to be the choice of 

combination method, with PLAID combining performing worst, inducing 6 more 

misclassifications when compared to BB or GPA.  Overall the optimal local MCT 

(Figure 49) misclassifies 25 observations or 11.16 % misclassification. 
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When comparing the splits and the MDS plots between local and global MCTs the 

initial obvious difference is structure within the MDS plots.  Local MCTs show a 

stronger grouping structure within the MDS plots.  These groups correspond to the 

first three splits within the tree.  These splits are identical to those found by the global 

MCT.  The differences between the two trees only occur when distinguishing the last 

nodes, 12, 13, 14 and 15.  This indicates the presence of four strong groups defined by 

the first three splits. 
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Table 15: Random forest sensitivity analysis Vietnam dataset description. 
Variable Description Type 
zlas Standardised logarithm of arsenic 

concentration Continuous 

zlba Standardised logarithm of barium 
concentration Continuous 

zlcd Standardised logarithm of cadmium 
concentration Continuous 

zlcr Standardised logarithm of chromium 
concentration Continuous 

zlcu Standardised logarithm of copper concentration Continuous 

zlhg Standardised logarithm of mercury 
concentration Continuous 

zlmn Standardised logarithm of manganese 
concentration Continuous 

zlmo Standardised logarithm of molybdenum 
concentration Continuous 

zlni Standardised logarithm of nickel concentration Continuous 
zlpb Standardised logarithm of lead concentration Continuous 

zlse Standardised logarithm of selenium 
concentration Continuous 

zlsn Standardised logarithm of tin concentration Continuous 

zlsr Standardised logarithm of strontium 
concentration Continuous 

zlth Standardised logarithm of thorium 
concentration Continuous 

zlti Standardised logarithm of titanium 
concentration Continuous 

zlu Standardised logarithm of uranium 
concentration Continuous 

zlv Standardised logarithm of vanadium 
concentration Continuous 

grp Known group 

Nominal 
(1) Control Adults: Adults with low 

exposure to coal. (n=31) 
(2) Miner Adults: Males employed 

at a coal mine. (n=56) 
(3) Burner Adults: Females using 

coal for cooking. (n=18) 
(4) Control Children: Children with 

low exposure to coal. (n=31) 
(5) Miner Children: Children of 

coal miners. (n=47) 
(6) Burner Children: Children with 

exposure to coal through its use 
for cooking. (i) 
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Figure 47: Random forest sensitivity analysis RE curves. 
(a) GPA 

 
(b) BB 
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(c) PLAID 
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Table 16: Random forest sensitivity analysis global MCT misclassification tables.  
The number of observations misclassified for each group is presented in brackets.  
The optimal performance for each combination method is emboldened. 
(a) GPA 

Minimum Terminal Node Size  
5 10 15 

1 (1,0,18,1,8,13) 
0.18 % 

(31,2,18,31,6,17) 
0.47 % 

(31,2,18,31,6,14) 
0.46 % 

3 (1,0,18,1,8,13) 
0.183 % 

(1,0,18,1,8,13) 
0.183 % 

(1,0,3,1,3,13) 
0.094 % 

5 (1,2,18,4,6,12) 
0.19 % 

(1,0,3,1,3,13) 
0.094 % 

(1,0,3,1,3,9) 
0.076 % 

8 (1,2,3,4,1,10) 
0.094 

(1,0,3,1,3,9) 
0.076 % 

(1,0,3,1,3,9) 
0.076 % 

M
ax

im
um

 tr
ee

 si
ze

 

10 (1,0,3,1,3,9) 
0.076 % 

(1,0,3,1,3,9) 
0.076 % 

(1,0,3,1,3,9) 
0.076 % 

(b) BB 
Minimum Terminal Node Size  

5 10 15 
1 (1,0,18,1,8,13) 

0.183 % 
(31,14,18,31,1,20) 

0.513 % 
(31,14,3,31,1,20) 

0.446 % 
3 (1,0,18,1,8,13) 

0.183 % 
(1,0,18,1,8,13) 

0.183 % 
(1,0,3,1,3,13) 

0.094 % 
5 (1,2,18,4,6,12) 

0.19 % 
(1,0,3,1,3,13) 

0.094 % 
(1,0,3,1,3,9) 

0.076 % 
8 (1,2,3,4,1,14) 

0.11 % 
(1,0,3,1,3,9) 

0.076 % 
(1,0,3,1,3,9) 

0.076 % 

M
ax

im
um

 tr
ee

 si
ze

 

10 (1,0,3,1,3,9) 
0.076 % 

(1,0,3,1,3,9) 
0.076 % 

(1,0,3,1,3,9) 
0.076 % 

(c) PLAID 
Minimum Terminal Node Size  

5 10 15 
1 (6,0,18,12,44,39) 

0.53 % 
(27,29,4,7,41) 

0.48 % 
(31,16,18,31,8,41) 

0.65 % 
3 (1,0,18,1,44,41) 

0.47 % 
(1,0,18,0,8,13) 

0.18 % 
(1,0,3,1,3,13) 

0.094 % 
5 (1,2,18,4,6,12) 

0.19 % 
(1,0,3,1,3,11) 

0.085 % 
(1,0,3,1,3,9) 

0.076 % 
8 (1,2,3,4,1,10) 

0.094 % 
(1,0,3,1,3,9) 

0.076 % 
(1,0,3,1,3,9) 

0.076 % 

M
ax

im
um

 tr
ee

 si
ze

 

10 (1,0,18,1,3,9) 
0.143 % 

(1,0,3,1,3,9) 
0.076 % 

(1,0,3,1,3,9) 
0.076 % 
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Table 17: Random forest sensitivity analysis local MCT misclassification table.  The 
number of observations misclassified for each group is presented in brackets.  The 
optimal performance for each combination is emboldened. 
(a) GPA 

Minimum Terminal Node Size  
5 10 15 

1 (0,32,18,1,47,41) 
0.62 % 

(0,27,18,1,14,6) 
0.29 % 

(0,27,18,1,14,6) 
0.29 % 

3 (1,0,18,1,47,41) 
0.48 % 

(1,2,5,1,8,13) 
0.134 % 

(1,12,1,1,4,6) 
0.11 % 

5 (1,2,18,4,47,41) 
0.50 % 

(1,12,18,1,3,41) 
0.34 % 

(1,12,1,1,4,6) 
0.11 % 

8 (1,2,18,4,47,41) 
0.50 % 

(1,12,18,1,3,41) 
0.34 % 

(1,12,1,1,4,6) 
0.11 % 

M
ax

im
um

 tr
ee

 si
ze

 

10 (1,2,18,1,47,41) 
0 49 % 

(1,12,18,1,3,41) 
0.34 % 

(1,12,1,1,4,6) 
0.11 % 

(b) BB 
Minimum Terminal Node Size  

5 10 15 
1 (0,23,18,1,0,41) 

0.37 % 
(0,6,18,1,14,6) 

0.20 % 
(0,6,18,1,14,6) 

0.20 % 
3 (1,0,18,1,4,47,41) 

0.50 % 
(1,0,5,1,8,13) 

0.125 % 
(1,12,1,1,4,6) 

0.11 % 
5 (1,2,18,4,47,41) 

0.504 % 
(1,12,1,1,3,41) 

0.263 % 
(1,12,1,1,4,6) 

0.11 % 
8 (1,2,18,4,47,41) 

0.504 % 
(1,12,1,1,3,41) 

0.263 % 
(1,12,1,1,4,6) 

0.11 % 

M
ax

im
um

 tr
ee

 si
ze

 

10 (1,0,18,1,47,41) 
0.48 % 

(1,12,1,1,3,41) 
0.263 % 

(1,12,1,1,4,6) 
0.11 % 

(c) PLAID 
Minimum Terminal Node Size  

5 10 15 
1 (1,0,18,1,47,41) 

0.48 % 
(1,0,6,2,8,13) 

0.134 % 
(1,0,18,1,8,13) 

0.183 % 
3 (1,0,18,1,47,41) 

0.48 % 
(1,0,5,1,8,13) 

0.125 % 
(1,0,18,1,8,13) 

0.183 % 
5 (1,2,18,4,47,41) 

0.504 % 
(1,12,18,1,47,41) 

0.54 % 
(1,0,18,1,4,6) 

0.134 % 
8 (1,2,18,4,47,41) 

0.504 % 
(1,12,18,1,47,41) 

0.54 % 
(1,0,18,1,4,6) 

0.134 % 

M
ax

im
um

 tr
ee

 si
ze

 

10 (1,0,18,1,47,41) 
0.48 % 

(1,12,18,1,47,41) 
0.54 % 

(1,0,18,1,4,6) 
0.134 % 

 



 145 

Figure 48: Random forest sensitivity analysis best global MCT, MR-SSR splitting 
with GPA consensus, and random forest tree size of 5 with a minimum terminal node 
size of 15. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Terminal node locations MDS plot Misclassification table 

 

 
 
 

Vietnam Groups  1 2 3 4 5 6 
4 0 0 0 30 3 2 
5 30 0 1 0 0 0 
12 0 0 0 1 0 32 
13 0 0 0 0 44 7 
14 1 56 2 0 0 0 M

C
T 

gr
ou

ps
 

15 0 0 15 0 0 0 
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Figure 49: Random forest sensitivity analysis best local MCT, MR-SSR splitting with 
GPA consensus, and random forest tree size of 5 with a minimum terminal node size 
of 15. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Terminal node locations MDS plot Misclassification table 

 

 
 

Vietnam Groups  1 2 3 4 5 6 
4 0 0 0 30 3 2 
5 30 0 1 0 0 0 
12 0 0 0 1 1 35 
13 0 0 0 0 43 4 
14 1 44 0 0 0 0 M

C
T 

gr
ou

ps
 

15 0 12 17 0 0 0 
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6.3 Summary 

 

MCTs have been shown to be a powerful tool for uncovering groups within a dataset.  

In three simulation experiments MCTs consistently outperformed PAM and 

agglomerative techniques and performed comparably to K-Means.  Furthermore these 

experiments show MCTs to be quite resistant to noise within the response set.  Even 

with complete noise variables within the response, MCTs still resolved the correct 

groups.  The RE curves are also highlighted as an accurate tool for estimating the 

number of groups within a dataset.   For simple grouping cases, (simulation tests 1 

and 3), these curves estimated the number of groups exactly.  As the group structure 

became more complex the RE curves became less obvious (simulation test 2), 

however still provided a range of group numbers that encompassed the number of 

known groups. 

 

The sensitivity analysis on the Vietnam analysis highlights key parameters that affect 

the construction of an MCT.  These parameters are random forest terminal node size 

and tree size.  These parameters have a threshold effect where, if specified correctly 

MCTs provide a stable optimal performance, otherwise the performances vary 

considerably.  Global MCTs are found to be more stable than local MCTs, and 

PLAID combining is found to produce the weakest consensus. 
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7. Benchmark Examples 
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In this section we present tree-based profiling and clustering methods on three 

benchmark datasets.  Each of these datasets has been selected to highlight features of 

tree-based methods and to compare their performances.  The datasets selected are all 

freely available benchmark datasets.  

 

The first dataset is the Thyroid dataset, which is a clustering problem involving only 

quantitative variables.  Here the improvement in clustering performance gained 

through using the auto-association proximity matrices is shown.  MCTs are compared 

with auto-associative random forests and treeboost, AA-MRTs, PAM and K-means. 

 

The second dataset is the Wisconsin breast cancer dataset.  This analysis is used to 

compare the performance of tree methods in a categorical domain with a known clear 

grouping structure.  For this analysis MCT approaches are compared to binary 

substitution and Gower distance methods.   

 

The third dataset is the horse colic dataset.  This analysis is focused on the 

performance on MCTs in a mixed domain profiling problem.  Here the limits of the 

Gower distance and binary substitution methods are shown and the power of the 

proximity matrices is highlighted.   This study also explores the features of MCTs that 

assist in further understanding and simplifying the problem.  In particular the ability 

of PLAID consensus generation to find subgroups within variables of the profiling set 

is highlighted. 
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7.1 Clustering Quantitative Variables: Thyroid dataset 
 

In this analysis a comparison between tree-based methods for clustering and existing 

methods is performed using the thyroid dataset.  The thyroid dataset (Coomans, 

Broeckaert, Jonckheer and Massart 1983) consists of 215 observations on 5 variables 

that describe the action of the thyroid gland.  There are three known groups in the data 

corresponding to hypothyroid (1), hyperthyroid (2) and normal (3) patients.  The other 

variables are hormone levels measured in the blood.  These are: 

1. TSH 

2. DTSH 

3. RT3U 

4. T4 

5. T3 

The goal of the analysis is to cluster the data and compare the clustering performance 

with the known groups.   
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7.1.1 AA-MRT 
 

The RE graph for AA-MRT is used to determine the size of the tree (Figure 50), and 

it can be seen that the performance plateaus at 5 terminal nodes, and the 

corresponding tree is displayed in Figure 51.  Using the terminal node locations as 

group classifications, AA-MRTs misclassify 35 observations (Table 18) when 

compared with the known groups. The AA-MRT of the raw data outperforms PAM, 

which misclassified 49 observations, but not K-means, which misclassified 30 

observations.   

 
Figure 50: Thyroid analysis AA-MRT RE graph. 
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Figure 51: Thyroid analysis AA-MRT.   

 

Table 18: Thyroid analysis AA-MRT misclassification table 

Terminal Node  
4 5 7 12 13 

Hypothyroid 0 4 4 10 12 
Hyperthyroid 16 14 2 3 0 
Normal 0 78 64 8 0 

 

7.1.2 AA-RF  
 

AA-RF performs quite well on the dataset, converging to a stable predictive 

performance after 100 trees are added to the model (Figure 52).  This precision is 

mirrored within the proximity matrix and MDS images with three groups obvious 

(Figure 53).  Clustering this matrix with an MCT using SSR splitting (Figure 54), 

(4) (5) 

(12) (13) 

(7) 
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gives 22 misclassifications (Table 19) and 12 misclassifications are recorded for PAM 

and 11 for K-means.  It is clear that the clustering techniques all do better on the 

proximities than on the raw data, whereas the fact that K-Means and PAM do better 

than MCTs is a reflection on the overlapping nature of the groups.  If the groups are 

strongly overlapping it is likely that a partition on a single variable will be sufficient.  

Both K-means and PAM have the luxury of not requiring a clear single variable 

separation between the groups and therefore do better.  

 

Figure 52: Thyroid analysis AA-RF error convergence plot. 
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Figure 53: Thyroid analysis AA-RF proximity images. 

 

Figure 54: Thyroid analysis SSR partition on the AA-RF proximity matrix. 

 

 
Table 19: Thyroid analysis AA-RF misclassification table 

Terminal Node  
2 6 7 

Hypothyroid 0 34 15 
Hyperthyroid 6 1 135 
Normal 24 0 0 
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7.1.3 AA-Treeboost 
 

The AA-Treeboost model proved to be more complex than the random forest models 

with the error converging (Figure 55) after 300 trees were added to the model.  

Despite the number of trees added the proximity images do not obviously show three 

known groups (Figure 56).  This non-obvious structure affects the performances of 

the base clustering algorithms with K-Means and PAM misclassifying 38 

observations.  However MCTs with MR splitting (Figure 57) on the treeboost 

proximity matrix misclassified only 15 observations (Table 20).  The improvement 

gained by MCTs is most likely a direct result of trees being used to construct the 

proximity matrix, thus allowing MCTs to identify the structure not easily found by 

other methods.  

 

Figure 55: Thyroid analysis AA-Treeboost error convergence plot. 
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Figure 56: Thyroid analysis AA-Treeboost proximity images. 

 

Figure 57: Thyroid analysis MR partition on the AA-Treeboost proximity matrix. 

 

 

Table 20: Thyroid analysis AA-Treeboost misclassification table. 

Terminal 
Node 

 

3 4 5 
Hypothyroid 24 6 0 
Hyperthyroid 0 7 28 
Normal 0 148 2 
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7.1.4 Global MCT 
 

The cross-validation for Global MCTs using SSR splitting identifies 2 splits or three 

groups (Figure 58).  The proximity matrix images (Figure 59) are comparable to those 

found by AA-RF.  The corresponding MCT (Figure 60) misclassifies 19 observations 

(Table 21).  However by observation of each terminal node’s probability of 

expression, “P(C)” it can be seen that node 3, which corresponds to the normal group 

is under-expressed showing a probability of 0.32.  This implies that this group is 

difficult for trees to correctly classify.  A finding that is mirrored by its broad 

dispersion over the MDS plot (Figure 59).  When compared with K-means and PAM, 

MCTs are found to under-perform as they both only misclassify 9 observations. 

 

Figure 58: Thyroid analysis global MCT 10-Fold cross-validated RE curves. 
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Figure 59: Thyroid analysis global MCT proximity images. 

 

Figure 60: Thyroid analysis global MCT, constructed with MR splitting on the GPA 

consensus. 

 

Table 21: Thyroid analysis global MCT misclassification table. 

Terminal 
Node 

 

3 4 5 
Hypothyroid 24 6 0 
Hyperthyroid 0 11 24 
Normal 1 148 1 
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7.1.5 Local MCT 
 

Local MCTs find a more complicated tree than global MCTs, identifying 3 splits or 4 

groups (Figure 61).  These groups are clearly observed within the ACM images and 

MDS plots,  (Figure 62) and this improved resolution is also obvious in the terminal 

probabilities of the corresponding tree (Figure 63), which are significantly greater 

than for global MCTs.  The local MCT equalled the performance of boosting MCTs, 

misclassifying 15 observations (Table 22), however the proximity matrices have a 

more defined structure.  However using the ACM, K-means (finding 4 groups) and 

PAM (finding 3 groups) only misclassified 12 and 10 observations respectively.   

 

Figure 61: Thyroid analysis local MCT RE and AIC plots. 
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Figure 62: Thyroid analysis local MCT ACM images and MDS plots. 

 

Figure 63: Thyroid analysis local MCT with SSR splitting and GPA consensus 
combining. 

 

 
Table 22: Thyroid analysis local MCT misclassification table. 

Terminal Node  
4 5 6 7 

Hypothyroid 0 0 6 24 
Hyperthyroid 8 27 0 0 
Normal 20 1 129 0 
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7.1.6 Thyroid summary 
 

A clear result of this example is the marked improvement of general clustering 

performance that is achieved by using the proximity matrix from either random 

forests or treeboost.  Of the two ensembles the random forest proximity is clearly 

more stable, and is suited for input into other clustering techniques.  The boosted 

proximity matrix, although producing a more optimal MCT, has a less well defined 

structure that is not found by other methods. 

 

The fact that K-means and PAM on the proximities do better than trees is primarily 

due to the fact that trees are constrained by the valid splits available in the variables 

within the predictor set.  When the 15 observations misclassified by MCTs are 

compared to a classification tree predicting the three groups, which misclassifies 14 

observations, it is clear that MCTs are approaching the optimal tree.  More so it is 

clear that the improvements gained by PAM and K-Means are because they are not 

constrained by the predictor variables. 

 

The differences between the local and global MCTs are expected.  Local MCTs have 

the luxury of removing entire groups, allowing them to focus on groups that may be 

hard to separate, where as global MCTs are always observing the entire dataset.  In 

this example, the local MCT was more complicated, however more accurate.  This 

accuracy is found not only in the misclassification performances but also in the 

probability of expression for each terminal node of the tree.  Global MCTs found one 

terminal node that is below random chance expression (3 terminal nodes, random 

chance expression is P(C)=0.33).  By making the tree more complicated the terminal 
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nodes found by local MCTs were all above random chance expression.  As a result 

the predictive performance of local MCTs is improved. 

 

Overall MCT approaches are shown to improve on AA-MRT, AA-RF and equal the 

performance of AA-Treeboost.  However as they are limited by their tree structure, in 

this analysis MCTs do not perform as well as PAM or K-means.  In fact these 

methods by searching for groups within the consensus matrix, without knowledge of 

the known labels, perform better than a classification tree.  This highlights the quality 

of the grouping structure within the consensus and at the same time the limits of a 

simple tree structured for clustering or classification. 
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7.2 Clustering Categorical Variables: Breast Cancer Dataset 
 

The breast cancer dataset (Wolberg and Mangasrian 1990) contains 699 observations 

on 11 variables, one being an index variable, 9 being ordered or nominal, and 1 target 

class (Table 23). This dataset was sourced from the “mlbench” R package (Leisch and 

Dimitriadou 2005).  The aim of this study is to present and compare performances of 

all tree-based methods for clustering categorical data.  For a fair performance 

comparison the data will be divided in two with 349 training set observations and 350 

test set observations. 

Firstly the base tree methods are presented.  These are Db-MRT on the Gower distance, 

and MRTs, random forests and treeboost on the binary substituted form of the 

response.  As the response dataset is the binary substituted dataset, these models are not 

auto-associative.  Therefore through this section the random forest and treeboost 

methods are referred to as binary substituted random forest and binary substituted 

treeboost.  Secondly, the results for local and global MCTs are presented.  Finally a 

summary of the methods and comparison of the results is presented. 

 

Table 23: Breast cancer analysis dataset description. 
Variable Name Description Type 

Id Sample code number Character 
Cl.thickness Clump Thickness Ordinal {1 to 10} 

Cell.size Uniformity of Cell Size Ordinal {1 to 10} 
Cell.shape Uniformity of Cell Shape Nominal {1 to 10} 

Marg.adhesion Marginal Adhesion Nominal {1 to 10} 
Epith.c.size Single Epithelial Cell Size Ordinal {1 to 10} 
Bare.nuclei Bare Nuclei Ordinal {1 to 10} -16 Missing 
Bl.cromatin Bland Chromatin Nominal {1 to 10} 

Normal.nucleoli Normal Nucleoli Nominal {1 to 10} 
Mitoses Mitoses Nominal {1 to 10} 
Class Cancer classification Nominal {benign, malignant} 
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7.2.1 Gower dissimilarity Db-MRT 
 

From the RE curve of the Db-MRT (Figure 64) it clear that only two groups have 

been identified.  From the MDS scatter plot (Figure 65) of the distance matrix only 

two groups found by the tree can be observed.  Observation of the misclassification 

table for the tree in Table 24 show these to groups correspond well with the benign 

and malignant breast cancers with a misclassification rate of 8 % on the external test 

set. 

 

Figure 64: Breast cancer analysis Gower distance Db-MRT RE curve. 
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Figure 65: Breast cancer analysis Gower distance Db-MRT. 

Gower Distance Db-MRT MDS terminal node location plot using 
the Gower Distance Matrix 

  

 

7.2.2 Binary substituted MRT 
 

From the RE curve of the binary substituted MRT (Figure 66) it clear that only two 

groups have been identified.  From the MDS scatter plot (using a Euclidean distance 

between observations within the response matrix) (Figure 67) only the two groups 

found by the tree can be observed.  Observation of the misclassification table for the 

tree in Table 24 show these to groups correspond well with the benign and malignant 

breast cancers with a misclassification rate of 8 % on the external test set. 

(2)  (3)  
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Figure 66: Breast cancer analysis binary substituted MRT RE curve. 

 
 
Figure 67: Breast cancer analysis binary substituted MRT and MDS plot. 

Binary Substitution MRT MDS terminal locations plot using a 
Euclidean distance over the binary 

substitution  

  
 

(2)  (3)  
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7.2.3 Binary substituted RF 
 

Binary substituted RF parameters are set to be the following: 

(a) A separate random forest test set of 70 training set observations is removed 

before the analysis to tune the model. 

(b) The bootstrapped sample that is used to grow each tree consists of 196 

observations and 3 variables.  

(c) A maximum tree size of 10 splits within the forest is allowed. 

(d) The minimum terminal node size for each tree within the forest is 10 

observations. 

(e) There are 200 trees within the random forest. 

 

Figure 68: Breast cancer analysis binary substituted AA-RF error convergence plot. 
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Figure 69: Breast cancer analysis binary substituted RF RE curves. 

 
 
Figure 70: Breast cancer analysis binary substituted random forests MCT built with 
SSR splitting to 2 splits. 
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Figure 71: Breast cancer analysis binary substituted RF proximity images. 

 
 

From the error convergence plot (Figure 68) it is obvious that the random forests error 

is stable at 200 trees.  The RE curves of the MCT splitting criteria however are less 

clear (Figure 69).  Here SSR splitting is selected at two splits, as the RE is stable at 

approximately 0.32 between 2 and 8 splits.  This is not the case with the other 

splitting criteria.  The tree (Figure 70) and the corresponding random forest proximity 

images (Figure 71) indicate a high certainty in terminal node 3, however markedly 

less certainty is terminal nodes 4 and 5.  This is reflected in the misclassification table 

(Table 24) with terminal node 3 clearly being the most accurate. 

 



 170 

7.2.4 Binary substituted treeboost 
 

The boosted set of trees is grown using the following parameters: 

(a) A separate random forest test set of 70 training set observations is removed 

before the analysis to tune the model. 

(b) The bootstrapped sample that is used to grow each tree consists of 196 

observations and 3 variables.  

(c) A maximum tree size of 2 splits within the boosting is allowed. 

(d) The minimum terminal node size for each tree within the boosting is 10 

observations. 

(e) There are 500 trees within the boosted set. 

(f) Shrinkage Parameter set at 0.05. 

 

Figure 72: Breast cancer analysis binary substituted treeboost error convergence plot. 
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Figure 73: Breast cancer analysis binary substituted treeboost RE curves. 

 

 

Figure 74: Breast cancer analysis binary substituted treeboost MCT built with SSR 
splitting to 3 splits. 
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Figure 75: Breast cancer analysis binary substituted treeboost proximity images. 

 

 

From the error convergence plot (Figure 72) it can be seen that the treeboost model 

has stabilised after 500 trees.  The RE curves (Figure 73) show that the splitting 

functions SSR, OR and OR-SSR each pick a tree size of 3 splits.  Of these SSR is 

selected, as the cross-validated performances are the most stable at a RE of 

approximately 0.22.  From the tree (Figure 74) and proximity images (Figure 75) a 

high level of certainty exists throughout each terminal node.  This is mirrored in the 

misclassification table (Table 24), where an error rate of 6.85 % is observed on the 

test set. 
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7.2.5 Base method misclassification results 
 
Table 24: Breast cancer analysis misclassification performances of base methods. 

Training Set Test Set Method Tree Node Benign Malignant Benign Malignant 
2 215 7 202 5 
3 18 110 23 119 

Gower  
DB-MRT 

(7.5 % Error) % Error 7.73 % 5.98 % 10.36 % 3.9 % 
2 7 215 5 202 
3 110 18 119 23 BS-MRT 

(7.5 % Error) 
% Error 5.98 % 7.73 % 3.9 % 10.36 % 

3 197 2 183 2 
4 3 81 2 92 
5 33 34 40 30 

RF 
(10.44% Error) 

% Error 15.45 % 0.89 % 0.89 % 25.8 % 
4 10 105 10 110 
5 8 5 13 9 
6 27 6 24 5 
7 188 1 178 0 

Treeboost 
(6.5 % Error) 

% Error 4.2 % 10.26 % 4.44 % 9.4 % 
 

The single tree results highlight the similarities between binary substitution and the 

Gower dissimilarity, as BS-MRT and Gower Db-MRT produced the same terminal 

nodes but with an exactly opposite tree and show marked similarities in the MDS 

locations plots (Figure 65, Figure 67).  The consensus based methods show the same 

first split using variable “Cell.size” as the single tree methods, however binary 

substituted RF shows a different decision point to the treeboost (Figure 70, Figure 

74).   

 

Interestingly both consensus based methods find more complex trees, however only in 

the case of binary substituted treeboost does this translate into improved performance.  

Surprisingly binary substituted RF performs worst of all other methods (Table 24).  

By observation of the misclassification tables it is clear that binary substituted RF is 

strongly biased towards the malignant group in the training set, to the detriment of 
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overall predictive performance.  The best performing model of the base methods is 

clearly treeboost, with the lowest classification error and a clear proximity image. 

 

7.2.6 Global MCT 
 

Global MCT random forests are grown on each variable in the training set with the 

following parameters: 

(a) A separate random forest test set of 70 training set observations is removed 

before the analysis to tune the model. 

(b) The bootstrapped sample that is used to grow each tree consists of 196 

observations and 3 variables.  

(c) A maximum tree size of 10 splits within the forest is allowed. 

(d) The minimum terminal node size for each tree within the forest is 10 

observations. 

(e) There are 200 trees within the random forests. 

The individual RFPs (Figure 76) clearly show that the forests are finding a clear 

distinction between benign and malignant cancer groups.  The training set 

performance for predicting each variable by the forest as a misclassification error is 

printed in the plot titles. 
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Figure 76: Breast cancer analysis individual RFP MDS plots. 

 

 

Each RFP combination method is used to construct a consensus matrix (Figure 77(a)).  

By observation of the MDS plots, it appears that BB and GPA find similar 

configurations, and PLAID finds a different structure.  This observation is reinforced 

by RMSE plots between the individual RFPs and the consensus (Figure 77(b)).  From 

the RMSEs it can be seen that BB and GPA clearly favour the middle variables, 

performing poorest on Mitoses and Cl.thinckness, whereas PLAID favours these 

variables at the expense of the others. 
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Figure 77: Breast cancer analysis consensus MDS plots and RMSEs.  

(a) Consensus MDS plots 

 

(b) RFP RMSE with Consensus 

 

 

To assess how far to grow the MCT 10-fold CV is performed on the consensus 

matrix, with a minimum terminal node size fixed to 10 observations (Figure 78).  
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Clearly the best structure is resolved by the splitting method OR-SSR, which finds a 

RE elbow for GPA (Figure 78a) and BB (Figure 78b) at 6 splits, and for PLAID 

(Figure 78c) at 5 splits, with a corresponding mean RE of between 0.2 and 0.25.  This 

RE equates to an R2 of approximately 0.7, meaning the predicted consensus matrix 

accounts for between 65 % and 75 % of the consensus variation. 

 

Figure 78: Breast cancer analysis global MCT 10-fold CV RE curves. 
(a) GPA 
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(b) BB 

 
(c) PLAID 
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The global MCTs for GPA and BB are grown to 6 splits (7 clusters) and PLAID to 5 

splits (6 clusters) all using the OR-SSR splitting method. The trees for GPA and BB 

are the same (Figure 79(a,i)) and only show subtle differences from splits observed in 

the PLAID MCT (Figure 79(b,i)).  The terminal node locations found by the trees are 

displayed on the MDS plots of the consensus matrices (Figure 79(a,ii) and Figure 

79(b,ii)) for GPA, BB or PLAID respectively.  From this it can be seen that most 

effort is spent identifying the malignant group, with the majority of the benign group 

being positioned in both trees in terminal node 15. In the left corner of the MCTs, the 

response variable importance list (YVIP) list can be found. The structure found in the 

YVIP matches the RMSE combination plots (Figure 77b).  The mean of the 

consensus at each terminal node is printed below the terminal node as a probability, 

“P(C)”, along with the terminal node number in brackets, and the number of training 

set observations within that node.  A bar plot of the P(C)s of each individual RFP at 

each terminal node is also presented.   
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Figure 79: Breast cancer analysis best global MCTs and terminal node location MDS 
plots. 
(a) GPA & BB OR-SSR MCT Tree 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
GPA MCT Terminal Node Locations BB MCT Terminal Node Locations 

  
 

(i) 

(ii) 
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 (b) PLAID OR-SSR MCT Tree 

 
Plaid MCT Terminal Node Locations 

 

(i) 

(ii) 
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The training and test set performances for global MCTs (Table 25) show an overall 

test sample misclassification rate of approximately 4.9 %.  When compared to 

supervised classification on the same data, a decision tree grown to 4 splits gives test 

set misclassification rate of 6.3 % and a random forest gives a test set 

misclassification rate of 2.8 %.  Therefore the performance of global MCTs for the 

breast cancer dataset is approaching that of a random forest. 

 

Table 25: Breast cancer analysis global MCT misclassification performances. 
(a) GPA & BB (6 % Overall Error) 

Train Set  
(6.3 % misclassification) 

Test Set 
(4.9 % misclassification) MCT Node 

Benign Malignant Benign Malignant 
4 0 28 0 30 
6 6 13 7 8 
11 3 7 2 5 
14 5 6 0 3 
15 213 2 213 5 
20 2 51 1 60 
21 4 10 2 13 

Overall Misclassification 8.6 % 1.7 % 5.33 % 4 % 
(b) PLAID (5.4 % Overall Error) 

Train Set  
(6 % misclassification) 

Test Set 
(4.87 % misclassification) MCT Node 

Benign Malignant Benign Malignant 
4 0 33 0 34 
6 6 11 7 8 
10 6 55 3 70 
11 3 8 2 4 
14 3 7 0 3 
15 215 3 213 5 

Overall Misclassification 8.0 % 2.6 % 5.33 % 4 % 
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7.2.7 Local MCT 
 

As local MCTs build a separate forest at each node, the random forest parameters are 

presented in percentages.  The local MCT parameters are set at the following: 

(a) The bootstrapped sample used to grow each tree within each node is defined 

as 70% of node observations and 33% of variables.  

(b) Maximum random forest tree size is 3 splits. 

(c) Minimum MCT and random forest terminal node size is 10 observations. 

(d) Random forest size is 200 trees. 

(e) OR-SSR splitting criteria. 

RE and AIC are generated to assess local MCT tree size.  For a fair comparison with 

global MCTs only OR-SSR splitting criteria is employed as it clearly outperformed 

other splitting criteria in global MCTs for this problem.  Local MCTs are run using all 

three RFP combination methods. 

 

For local MCTs the results for each combination method with OR-SSR splitting are 

identical.  The RE and AIC plots each indicate a tree size of 3 split or 4 groups 

(Figure 80) and the resulting MCT tree for each combination method at 3 splits is the 

same (Figure 81i).  This results in the same misclassification performance of 5.44 % 

error on the test set (Table 26).  The only difference in the trees is the subtle 

differences observed in the PLAID MDS plot of the ACM matrix when compared to 

either the BB or GPA plots (Figure 81ii). 
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Figure 80: Breast cancer analysis local MCT RE and AIC plots. 

GPA 

 

BB 

 

PLAID 

 
 



 185 

Figure 81: Breast cancer analysis GPA, BB and PLAID, OR-SSR local MCT. 
(i)  GPA, BB and PLAID local MCT 

 
(ii) MDS Terminal Node Location Plot 
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Table 26: Breast cancer analysis local MCT misclassification performances. 
Train Set  

(5.71 % misclassification) 
Test Set 

(5.44 % misclassification) MCT Node 
(5.57 % Total Error) Benign Malignant Benign Malignant 

3 215 7 202 5 
4 0 33 0 34 
10 10 74 10 81 
11 8 3 13 4 

Overall Misclassification 4.29 % 8.54 % 4.44 % 7.26 % 
 

7.2.8 Breast cancer summary 
 

Of all the methods presented, global MCTs using the PLAID consensus produced the 

most accurate tree (test set misclassification performance 4.87 %) (Table 25).  

Furthermore, the performances of all MCT methods are better than any base tree 

method.  Compared to existing literature on this dataset MCTs are performing 

comparably.  Clustering using SOM achieved a misclassification rate of 4.68 % 

(Pantazi, Kagolovsky and Moehr 2002) however this method assumes all variables 

are ordinal and provides no measures of variable importance.  Supervised analysis of 

this dataset has been shown to perform well below 10 % misclassification, with a 

linear programming approach achieving 3 % misclassification (Mangasrian and 

Wolberg 1990).   

 

Given that there are two groups (benign and malignant) within the dataset, the most 

accurate models in this case were Gower Db-MRT and binary substituted MRT as 

they found 2 terminal nodes.  As accuracy increased so did tree size with the most 

accurate MCT identifying 6 groups within the data.  This inflation of group number is 

due to the overlap between the two groups.  This is reinforced by observation of the 

consensus MDS images, as in all plots expect AA-Treeboost two groups are obvious.  
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These results imply that the simple base methods (Gower Db-MRT and binary 

substituted MRT) do not have sufficient power to identify the overlapping groups.   

 

The improvement in resolution gained from a local MCT should also be noted.  All 

combination methods for local MCTs produced the same tree.  Furthermore a smaller 

tree is obtained with comparable predictive performance.  These results highlight the 

differences between local and global MCTs, and show that once tuned local MCTs 

produce a more accurate result. 
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7.3 Mixed Type Profiling: Horse Colic Dataset 
 

In this analysis MCTs are used as a mixed type profiling tool. Here there is no known 

set of groups to compare against, and therefore the quality of the groups found must 

be assessed on how representative they are of each response variable.  This analysis is 

performed on the horse colic dataset, where the response set comprises of variables 

that describe the observed physical state of each horse, and the predictor set are 

variables that describe the type, site and severity of their colic lesion (Mcleish and 

Cecile 1989).  The goal is to use MCTs to identify groups in the predictor variables 

describing the lesions that correspond to groups within the response set of physical 

descriptors.  

 

The horse colic dataset contains 300 observations on 17 variables, 5 being 

quantitative and 12 being either ordinal or nominal  (Table 27).  With such a 

complicated response set spanning many types, it is expected that some variables will 

display different group profiles.  In this analysis MCTs are used as a search for 

subgroups of response variables that display a common group structure.  To do this a 

recursive search for common group structure using plaid combining is described.  The 

result of this search is subgroups of response variables that have similar 

configurations within their RFPs.  Upon these subgroups, separate MCTs are grown 

and compared to the structure found in an overall MCT involving all RFPs.  This is a 

data reduction step that is aimed at improving the understanding of group structure 

within each variable and how it relates to the overall structure within the dataset.  
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Table 27: Horse colic analysis dataset description. 
Variable 

Set 
Variable 

Name Description Type Missing 
Values 

Response REC.TEMP Rectal temperature Continuous 60 
Response PULSE Pulse rate Continuous 24 
Response CELL.VOL Packed cell volume Continuous 29 
Response TOT.PROT Total protein Continuous 33 
Response RESP.RATE Respiratory rate Continuous 58 
Response TEMP.EXT Temperature of extremities Ordinal {4 levels} 56 
Response PERIF.PU Peripheral pulse Ordinal {4 levels} 69 
Response MUCOUS.M Mucous membranes Nominal {6 levels} 47 
Response CAPILL.R Capillary refill time Ordinal {2 levels} 34 

Response PAIN A subjective judgment of pain 
level Nominal {5 levels} 55 

Response PERISTAL Peristalsis Nominal {4 levels} 44 
Response ABDOM.DI Abdominal distension Ordinal {4 levels} 56 
Response NASO.REF Nasogastric reflux Ordinal {4 levels} 106 
Predictor LESION Is surgery required on the lesion Dichotomous 

Yes or No 
0 

Predictor LESION.S Site of the lesion 

Nominal 
1. Gastric  
2. Small intestine  
3. Large colon  
4. Large colon and 

cecum 
5. Cecum  
6. Transverse colon. 
7. Retum/descending 

colon 
8. Uterus 
9. Bladder  
10. All intestinal sites 
11. None 

0 

Predictor LESION.T Type of the lesion 

Nominal 
1. Simple  
2. Strangulation  
3. Inflammation  
4. Other 

60 

Predictor LESION.A Subtype of the lesion 
Nominal 

1. Mechanical  
2. Paralytic  
3. N/A 

1 
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7.3.1 MRT methods 
 

To begin analysis on the horse colic dataset, simple MRTs with the Gower distance 

matrix and binary substituted response sets are grown.  If the grouping structure 

within the response is strong then these methods will adequately describe the groups 

present.  However it is expected that with such a complicated response these methods 

will be insufficient and unable to find meaningful structure. 

 

7.3.1.1 Gower dissimilarity Db-MRT 
 

Figure 82: Horse colic analysis Gower Db-MRT RE curve. 
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Figure 83: Horse colic analysis Gower Db-MRT and terminal node locations. 

Gower Db-MRT MDS plot of the Gower distance 
matrix. 

  
 

7.3.1.2 Binary substituted MRT 
 

Figure 84: Horse colic analysis binary substituted MRT RE curve. 

 

     (2)                                         (3) 
  n = 238                                  n = 62 
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Figure 85: Horse colic analysis binary substituted MRT and terminal node locations. 

Binary Substituted MRT MDS plot of the binary substituted 
response using a Euclidean distance. 

  

 

7.3.1.3 MRT method summary 
 

The issue of missing values within the response set is primary when interpreting the 

MRT methods.  The Gower distance simply ignores comparisons that involve a 

missing value in its distance computation.  The result of such an approach is no 

observable grouping structure within the response set (Figure 83).  This lack of 

structure is represented by a high RE of 95 % (Figure 82) and results in a simple 

single split tree (Figure 83). 

 

For the binary substituted data, the missing values are imputed using a K-nearest 

neighbour averaging on a Euclidean distance (Hastie, Tibshirani, Narasimhan and 

Chu 2005).  The effect of this is a more obvious grouping structure within the MDS 

plot, which is not found by the MRT (Figure 85).  The MRT itself acknowledges this 

with a poor predictive performance, displaying a RE of 0.93 +/- 0.052 (Figure 84).   

 

      (2)                            (3) 
   n = 153                    n = 147 
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The implications of these results are that the groups within the profiling set are not 

obvious within the predictor set.  As a result the trees found are simple and poorly 

performing. 

 

7.3.2 Tree-based ensemble methods 
 

To benchmark the MCT methods, overall consensus matrices are produced using 

random forests and treeboost on the binary substituted response.  The important 

results of these techniques will be observable structure within the MDS plots of the 

ensemble proximity matrices, and measures of predictive accuracy and stability of 

tree based methods with the error convergence plots. 

 

The consensus approaches show a much improved resolution of the lesion groups 

within the response (Figure 89, Figure 93).  However the complexity of these 

relationships is highlighted with the random forest models requiring over 200 trees to 

become stable and treeboost over 100 (Figure 86, Figure 90).  The partitions of the 

proximity images show for both methods a clear 2-3 group structure (Figure 87, 

Figure 91).   

 

The MCTs for each ensemble proximity matrix are slightly different (Figure 88, 

Figure 92) with nodes 6 and 7 being found by lesion type in random forest ensemble 

MCT splitting and by whether the lesion was surgical or not, in treeboost ensemble 

MCT.  For the split, of the 106 strangulation lesion types in LESION.T, 98 of these 

are flagged as being surgical in LESION implying a strong overlap between the two 
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potential splits.  The total difference between the two splits is 28 observations, which 

is 9.34 % of the observations. 

 

7.3.2.1 Binary substituted random forests 
 

Figure 86: Horse colic analysis binary substituted RF error convergence plot. 
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Figure 87: Horse colic analysis binary substituted RF RE curves. 
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Figure 88: Horse colic analysis RF tree grown to 3 splits using SSR splitting. 

 

Figure 89: Horse colic analysis RF proximity images. 
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7.3.2.2 Binary substituted treeboost 
 
Figure 90: Horse colic analysis binary substituted treeboost error convergence plot. 

 
 

Figure 91: Horse colic analysis binary substituted treeboost RE curves. 
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Figure 92: Horse colic analysis treeboost tree grown to 3 splits using SSR splitting. 

 
 
Figure 93: Horse colic analysis treeboost proximity images. 
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7.3.3 MCT methods 

 

MCTs treat each variable within the response set individually to gain more 

understanding on the grouping structure of each individual response.  As a result 

MCTs can be used not only for finding common profiles that exist in the entire 

dataset, but also sub-profiles or groups that are present in only a subset of response 

variables.  This analysis focuses on MCT’s ability to find these sub-groups and 

improved understanding of the final groups gained through the filtering process. 

 

The first step in this analysis is the construction of a global MCT to profile the 

complete response set of the horse colic dataset.  On this terminal node filtering is 

performed.  This will show that not all response set variables express every node 

within the MCT.  Secondly an algorithm of filtering the response variables before an 

MCT is grown is presented.  This algorithm finds groups of variables within the 

profiling set using the PLAID consensus generation method.  By doing this it is 

shown that further understanding and improved resolution of the groups found by the 

MCT is possible. 
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7.3.3.1 Complete response set global MCT 
 

The first step in the analysis is to run the random forests for each response separately.  

These RFPs are used for all analysis.  The global MCT random forest parameters: 

• Set seed at 123. 

• Separate test percentage of 60 observations to evaluate the ensemble’s 

performance. 

• 168 observations and 1 predictor used to construct each tree. 

• Maximum tree size is 10 splits. 

• Minimum terminal node size is 10 observations. 

• The random forest is built to 200 trees. 

Before being passed into any further analysis the performance of the random forests is 

assessed.  The percent training set error in the title of the RFP images plot in Figure 

94 show that for the response variables REC.TEMP, CELL.VOL, TOT.PROT and 

RESP.RAT the error in prediction is greater than if a simple mean is used as the 

prediction.  As a result these variables are removed from the analysis. 

 

To construct the global MCT the following profiling variables are used: 

• PULSE 
• TEMP.EXT 
• PERIF.PU 
• MUCOUS.M 
• CAPILL.R 
• PAIN 
• PERISTAL 
• ABDOM.DI 
• NASO.REF 
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The consensus MDS plots (Figure 95a) show that the structure within the individual 

RFPs (Figure 94) has been maintained.  Each combination method appears to have 

identified very similar structure with no observable difference in the MDS plots or in 

the RMSE profiles (Figure 95b).  This similarity is unsurprising, as all individual RFP 

images appear to show similar profiles.  The 10-fold global MCT RE graphs (Figure 

96) indicate the best splitting function is SSR, and all show a full MCT size of 3 splits 

(4 groups is optimal).  From this the MCT is grown with SSR to three splits using the 

GPA consensus (Figure 97). 
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Figure 94: Horse colic analysis individual RFP MDS plots.  The MDS plots are coloured by the predictor variable LESION. 
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Figure 95: Horse colic analysis consensus MDS plots and consensus RMSE plots. 

(a) Consensus MDS plots 

 
(b) RFP RMSE with Consensus 
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Figure 96: Horse colic analysis global MCT 10-fold CV RE curves. 
(a) GPA 

 
(b) BB 
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(c) PLAID 

 
 
Taking into consideration the similarity in consensus, individual RFP configurations 

and the RE curves, it is not surprising that for each combination method with SSR 

splitting grown 3 splits, the same MCT is produced (Figure 97a).  Interestingly, the 

least obvious group in the MDS plot, (Figure 97b, group 4) is the most well expressed 

in the MCT, showing a within node probability of 0.97.  Also, each group, especially 

group 5, appears to be a combination of two groups which have not been identified.  

In fact these groups can never be fully resolved, even when the MCT is grown to 10 

splits shown in Figure 106. 
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7.3.3.2 Complete response set global MCT plaid terminal node filtering 
 

Plaid terminal node filtering takes the sub-matrices for each terminal node for each 

RFP and observes their structure.  At a terminal node it is assumed that each RFP 

displays the same structure.  The assumption is that each cell can be modelled 

sufficiently with the mean centroid of that sub-matrix.  The PLAID consensus 

generation is seen as a way to test for the validity of this assumption.  If the plaid 

model finds a !
m

 of ‘1’, it means that this RFP has a different count profile to the 

other RFPs.  If the same structure is found the plaid consensus is the mean of all 

consensus matrices and each !
m

 will be zero.  

 

Running plaid terminal node filtering upon an MCT gives an indication of which 

RFPs express each group.  The result of this process (Table 28) identifies variables 

that express that node’s consensus structure as ‘0’.  For those that deviate, the 

magnitude and direction of the deviation is estimated.  The results clearly show that 

terminal node 4 is the most stable node with only CAPILL.R and ABDOM.DI 

expressing different configurations.  Conversely terminal node 5 is the least stable 

with only PULSE, PERIF.PU, PERSITAL and ABDOM.DI expressing the consensus 

structure.  Interestingly, terminal nodes 5 and 6 show the opposite expression 

structure, indicating a marked difference in profiles at these nodes.  This fits with 

their relative positions within the tree. 
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Table 28: Horse colic analysis plaid terminal node plaid filtering results. 
MCT Node Response 

Variable 4 5 6 7 
PULSE 0 0 4.57 0 

TEMP.EXT 0 6.04 0 0 
PERIF.PU 0 0 -6.92 -11.40 

MUCOUS.M 0 5.03 0 0 
CAPILL.R 17.03 -4.27 0 0 

PAIN 0 6.99 0 0 
PERISTAL 0 0 -3.57 0 
ABDOM.DI -17.29 0 5.79 -11.81 
NASO.REF 0 -13.78 0 23.09 

 

Terminal node filtering offers a means to test the homogeneity of each terminal node 

and investigate any variables that violate this assumption.  However the MCT is built 

using information from all response variables, whether they are homogeneous with 

the MCT groups or not.  It is possible that in a sufficiently complex response set that 

there will be sub-groupings of the variables that show different structure.  We now 

propose an extension to the plaid combining method aimed at identifying these sub-

groups before an MCT is build.  
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Figure 97: Horse colic analysis complete response set global MCT and terminal node 
location MDS plot. 
(a) MCT 

 
(b) Terminal node location MDS plot 
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7.3.3.3 Plaid response variable filtering algorithm 
 

Plaid model RFP combination estimates a binary variable κm, which flags those RFPs 

whose configurations deviate from the mean configuration.  An RFP with a κm of ‘1’, 

has a different configuration from the mean, whereas a κm of ‘0’ is considered to be 

adequately modelled by the background mean.  Using a recursive algorithm described 

in Figure 98 it is possible to construct a search for similar configurations, by 

identifying those RFPs with κms of ‘0’.  The algorithm is stopped either when all κm s 

are either ‘1’ or ‘0’, or when the residual sums of squares between the RFPs and the 

combined configuration has converged.   

 

If the residual sums of squares of the plaid model have converged, but there are still 

some κms of ‘1’, then plaid models considers these RFPs to be different but the effect 

of their difference is small.  Therefore removing them does not improve the error in 

the modelled consensus structure.  At this point, the RFPs are considered to be 

sufficiently homogeneous.   

 

If the algorithm returns a subset where all κm s are found to be ‘1’, it implies that all 

RFPs are sufficiently different from their background mean.  Therefore no simple 

mean of the RFPs can be used to model the overall structure.  If this occurs it is likely 

that PLAID combining will not yield the most accurate consensus matrix.  In this 

case, a different combination method, designed to model heterogeneity between 

RFPs, such as the BB or GPA combination methods, should be employed to estimate 

the consensus. 
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Figure 98: Plaid variable filtering algorithm. 

 

The result of the plaid variable filtering algorithm in Figure 98is 4 groups of response 

variables shown in Table 29.  For all variables but PERIF.PU the RMSE error 

between the RFP and the consensus configuration reduced, sometimes by over a half.  

Furthermore the variable groups found appear to make physical sense, with group 1 

and 2 relating primarily to the horse’s blood circulation function and group 3 relating 

to any observed pain the horse may be experiencing.  Finally group 4 just contains 

MUCOUS.M (a variable describing the colour of the horse’s eyes) and is grouped 

separately as it does not obviously relate to either heart function or observed pain. 

 

The first group is found with some κms not being zero.  This is because the plaid 

model error is shown to be sufficiently small at two iterations (Figure 99).  If the 

filtering algorithm is followed through to the third iteration, the first group of RFPs 

only contains TEMP.EXT.  The results in Figure 99 show that at iteration 2 the RFPs 

contribute to less than 34 % of initial plaid model error at iteration 1.  Because the 

error decrease from the second to the third iteration is small, the RFPs with a κm of ‘1’ 

1. Place all RFPs in subset A. 
2. While subset A has RFPs within it do: 

a. Calculate the complete plaid model parameters for all RFPs in subset A 
as described in Section 3.5.3. 

b. Compute the plaid model error, Qi, by (3.38). 
c. Compute the percent error relative to the error in the plaid model 

involving all RFPs in the initial subset A, Q0. 
d. If all κm = 0 then stop, a good subset of RFPs has been found. 
e. If all κm = 1 then stop, the RFPs cannot be modelled well by a stable 

mean representation. 
f. If the percent error has converged but all κm’s do not equal 0 then stop, 

a reasonable subset of RFPs has been found. 
g. Update subset A with all RFPs with a κm = 0. 
h. Update subset B with all RFPs with a κm = 1. 

3. Rerun the analysis on subset B. 
4. Stop when all RFPs have been placed into a stable group. 
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are shown to have a minimal effect on the homogeneity of the final consensus. 

Therefore they are considered sufficiently modelled by the consensus in the second 

iteration and the first group of RFPs is defined to be TEMP.EXT, PERIF.PU and 

CAPILL.R.  

 
Figure 99: Horse colic analysis plaid variable reduction error convergence for the first 
group. 

 

To investigate any improvements in resolution over these subgroups a global MCT is 

now built upon them.  For the first group, the RE curves (Figure 101a) indicate a tree 

size of three or four splits is possible.  This is one more split than the full response set 

MCT.  In this MCT (Figure 101b) the first three splits are the same as the full MCT, 

and the additional split acts upon the full MCT’s terminal node 5.  The resulting 

terminal nodes 10 and 11, improve the probability of expression from 0.65 in the full 

MCT to approximately 0.77 and 0.72 respectively, in the reduced MCT.  The MDS 

plot of the terminal node groups (Figure 101c) is more clearly resolved than in the full 

MCT with the noticeable difference in the group separation. 

 

By the RE curve for the second group (Figure 102a), 3 splits are selected.  The 

resulting MCT (Figure 102b) is identical to the full MCT in the splitting structure.  
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The only difference being in the MDS plot (Figure 102c), which appears to more 

clearly identify group 4. 

 

The third group RE curve (Figure 103a) clearly indicates 2 splits, a smaller tree to the 

other groups.  The splits made (Figure 103b) are the same as in the full MCT tree, 

however it does not make the partition to find nodes 7 and 8.  The MDS plot (Figure 

103c) shows a clear separation between nodes 3 and 5, however node 4 is not easily 

identified. 

 

As the fourth group only has one variable, a consensus matrix does not need to be 

computed.  The RE curves (Figure 104a) for this group indicate 4 splits as in the first 

group (Figure 104b).  However by observation of the MDS plot (Figure 104c) the 

differences in the group structure between the two are apparent.  Furthermore the 

fourth group more accurately defines groups 10 and 11.  This is shown in the mean 

probability of expression within these terminal nodes increasing from 0.77 and 0.72 in 

the first variable set to 0.8 and 0.8 in the fourth set. 

 

For each variable a strongly significant group profile is found (Figure 100).  For 

categorical variables this was tested using a ! 2  test of independence between the 

group categories and the MCT terminal node labels, and for a continuous variable a 

one-way ANOVA was performed testing the mean difference between MCT terminal 

nodes.  The significance of these profiles indicates the groups found by the MCTs are 

representative of structure within the responses.  Correlation coefficients, r, are also 
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presented to assess the strength of the relationships, for continuous variables 

Pearson’s r is computed and for categorical variables Cramer’s Phi is computed. 

 

From the response variable profiles (Figure 100) it can be seen that the group 

structure found is weak.  Group 1 appears to be defined by the temperature at the 

horse’s extremities being either normal or reduced, a reduced pulse and a capillary 

refill time of less than 3 seconds.  Group 2 finds MCT terminal nodes 4, 5 and 6 

relating to no nasogastric reflux.  The significant difference seen over the terminal 

nodes is driven by an elevation in pulse between nodes 4 and 7.  In fact all of these 

profiles significantly highlight terminal node 4 as showing different structure.  

Terminal node 4 in these groups more often identifies the groups labelled ‘normal’ 

within the response variables.  As a result an overall interpretation of these results is 

that RFP groups 1 and 2 are be primarily focused on identifying the profiles of a 

normal horse. 

 

Group 3 has the strongest observed correlations however no clear group structure 

exists over the variables.  Reversing the problem to a classification problem 

discriminating the groups in the predictor variable LESION, it is seen that only group 

3 variables are used in the tree (Figure 105).  This indicates the response variables 

within this group are those that are highly predictive of a single response variable 

LESION and therefore are determining the dominant grouping structure within the 

dataset. 
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Table 29: Horse colic analysis plaid response variable filtering results. 
1. Group one 

Variables: TEMP.EXT PERIF.PU CAPILL.R 
κm: 0 1 1 
βm: 0 -5.56 5.56 
RMSE with filtered response consensus: 8.15 8.90 4.85 
RMSE with full response set consensus: 16.26 8.49 10.41 

2. Second Group 
Variables: PULSE NASO.REF 
κm: 0 0 
βm: 0 0 
RMSE with filtered response consensus: 6.26 6.26 
RMSE with full response set consensus: 18.90 10.37 

3. Third Group 
Variables: PAIN PERSITAL ABDOM.DI 
κm: 0 0 0 
βm: 0 0 0 
RMSE with filtered response consensus: 4.59 6.58 6.49 
RMSE with full response set consensus: 8.33 9.52 10.31 

4. Fourth Group: MUCOUS.M 
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Figure 100: Horse colic analysis response variable group profiles. 
(a) Group 1 

TEMP.EXT PERIF.PU CAPILL.R 
 
 
 
 
 
 
 
 

  

! 2
= 43.044  

r = 0.19 
P-Value = 0.003 

! 2
= 53.7028  
r = 0.21 

P-Value = 0.00009 

! 2
= 30.0507  
r = 0.16 

P-Value = 0.00009 
(b) Group 2 

PULSE NASO.REF 

 

 

F = 36.908  
r = 0.36 

P-Value = 4.128 * 10-9 

! 2
= 25.6809  
r = 0.17 

P-Value = 0.0005 
 

MCT Node 
 4 6 7 10 11 
Absent 0 4 2 2 0 
Reduced 3 49 19 23 9 
Increased 3 1 0 1 0 
Normal 39 25 8 34 9 
 

MCT Node 
 4 6 7 10 11 
Absent 2 17 3 5 0 
Reduced 10 46 19 24 10 
Increased 11 6 1 10 2 
Normal 25 18 5 24 6 
 

MCT Node 
 4 6 7 10 11 
>= 3 Seconds 0 41 15 14 5 
< 3 Seconds 48 57 15 56 12 
 

MCT Node 
 4 5 6 7 
< 1 Litre 1 12 20 7 
> 1 Litre 0 12 15 8 
None 27 43 44 6 
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(c) Group 3 
PAIN PERISTAL ABDOM.DI 

 
 
 
 
 
 
 
 
 
 

  

! 2
= 69.2889  
r = 0.34 

P-Value = 0.00009 

! 2
= 65.4187  
r = 0.33 

P-Value = 0.00009 

! 2
= 50.2653  
r = 0.29 

P-Value = 0.00009 
(d) Group 4 

MUCOUS.M 
 
 
 
 
 
 
 
 
 

! 2
= 95.29  

r = 0.28 
P-Value = 0.00009 

 

MCT Node  
3 4 5 

Continuous 
severe pain 31 1 10 

Intermittent 
severe pain 25 1 13 

Intermittent 
mild pain 29 13 25 

Depressed 31 10 18 
Alert, no pain 2 23 13 
 

MCT Node  
3 4 5 

Abset 51 0 22 
Hypomotile 56 23 49 
Normal 4 6 6 
Hypermotile 8 23 8 
 

MCT Node  
3 4 5 

Severe 23 0 15 
Moderate 47 2 16 
Slight 26 17 22 
None 19 27 30 
 

MCT Node  
4 6 7 10 11 

Dark Cyanotic 1 11 6 2 0 
Bright Red/ Injected 2 6 10 5 2 
Pale Cyanotic 1 28 4 8 0 
Pale Pink 7 22 3 20 6 
Bright Pink 10 10 2 5 3 
Normal Pink 29 13 6 15 16 
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Figure 101: Horse colic analysis plaid filtered variable group one MCT results. 
(a) 10 fold CV RE curve 

 
(b) MCT 

 
(c) Terminal node location MDS plot 
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Figure 102: Horse colic analysis plaid filtered variable group two MCT results. 
(a) 10-fold CV RE curve  

 
(b) MCT 

 
(c) Terminal node location MDS plot 
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Figure 103: Horse colic analysis plaid filtered variable group three MCT results. 
(a) 10-fold CV RE curves 

 
(b) MCT 

 
(c) Terminal node location MDS plot 
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Figure 104: Horse colic analysis plaid filtered variable group four MCT results. 
(a) 10-fold CV RE curve 

 
(b) MCT 

 
(c) Terminal node locations MDS plot 
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Figure 105: Horse colic analysis classification tree classifying the groups within 
predictor LESION by the entire response set.  (Correct classification rate of 77.33 %). 
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Figure 106: Horse colic analysis MCT grown to 10 splits. 
(a) 10 split MCT 

 
(b) 10 split MCT terminal node locations 
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7.4 Horse Colic Summary  
 

The horse colic dataset is a good example of a profiling style analysis with MCTs.  

Firstly, using the a simple MRT on either the Gower distance matrix or binary 

substituted representation of the profiling set resulted in poor results.  The 

improvement gained from moving to the random forest and treeboost proximity 

matrix is considerable.  Groups that are common to both predictor and profiling sets 

now become obvious and easily found using the MCT splitting criteria.  These 

methods give good indications of the structure to be found within the analysis 

however provide little detailed information on the composition of the groups. 

 

Using MCTs it is possible to observe the grouping structure of each individual 

response variable and the relationship with the consensus matrix.  It allows for the 

terminal nodes of the resulting MCT to be simplified using plaid filtering.  By using 

MCTs with plaid terminal node filtering a two-way clustering is performed, where 

within a terminal node lie a subset of response variables and observations that define 

the common profile within the group. 

 

A pre-processing step can be taken with the recursive filtering algorithm, allowing for 

an initial clustering of the responses based on the structure within their RFPs.  This 

analysis highlights the complexities within profiling studies, as each response group 

displays a different subset of groups.  What is interesting in this analysis is not the 

differences but the similarities between the subsets:  in this case the splitting variables 

used in the tree and the tree size.  It is clear that modelling a subset of variables 

produces a more accurate result, however this improved accuracy relates to the same 
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groups found in the overall analysis.  It did not change the consensus structure 

completely, but reinforced the groups found in the overall consensus. 

 

A major issue with the horse colic analysis was the high level of missing values.  The 

results for the plaid filtering are dependant on the original global MCT model shown 

in Figure 97 and therefore if any bias in the missing values exists it will be obvious in 

this model.  The percent of missing values in each terminal is shown in Table 30 show 

that terminal nodes 5 and 6 contain the 69 % of missing values and 4 and 7 only 

contain 31 %.  However comparing this distribution to the relative size of each 

terminal node it is seen that the missing values are distributed with terminal node size.  

Therefore no obvious bias towards any particular group of missing values is observed. 

 

Table 30: Horse colic analysis global MCT terminal missing value distribution. 

MCT Node 4 5 6 7 
% Missing values 0.19 0.34 0.35 0.12 
Relative terminal node size 0.22 0.33 0.35 0.12 
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8. Discussion 
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The aim of this thesis is to extend tree based methods to handle a mixed type 

multivariate response.  To do this a series of methods have been developed.  Firstly, 

mixed type extensions to a multivariate tree are implemented by transforming the 

response using either the Gower distance, or binary substitution.  These techniques 

offer a simple solution to a complex problem, but provide little in the way of 

understanding the result.  Secondly, to improve on the performance of a single tree, 

multivariate tree based ensemble methods are also developed.  Ensemble methods 

improve the predictions on the multivariate responses, and by binary substitution, are 

further extended to mixed type response sets.  Multivariate tree-based ensembles are 

shown in this thesis to be powerful methods for profiling. 

 

One key feature provided by tree-based ensemble methods is their proximity matrices.  

These proximity matrices are identical to consensus matrices that can be produced 

over a cluster ensemble.  This changes the interpretation of a tree-based ensemble to 

that of a consensus clustering algorithm.  A result of this interpretation is that the 

predictive performance of the ensemble becomes a key statistic in determining the 

quality of the final clustering solution.  By using the ensemble predictive performance 

the problems in determining the accuracy and reproducibility of a cluster ensemble 

are reduced. 

 

The major contribution of this thesis is the development of multivariate consensus 

trees (MCT) for mixed type clustering or profiling.  MCTs combine ensemble 

proximities into one overall consensus matrix in an analogous step to the cluster 

ensemble search for the overall partition.  This provides more information on the 

accuracy of the final solution with the ability to analyse the individual group structure 
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of each response variable in the analysis.  MCTs partition the consensus matrix to find 

the optimal partition.  This procedure uses decision rules to map the predictor 

variables back over the consensus to allow for an understanding of the origin of the 

final groups in the optimal partition.  These rules also make MCTs a predictive 

clustering or profiling algorithm allowing them to easily group new observations 

without altering the original model.  This predictive ability allows MCTs to cross-

validate estimates on the number of groups and overall group accuracy. 

 

Before opting for the more complex and computationally expensive solution as 

implemented in MCTs, using the simple tree and ensemble methods can be useful.  

The Gower distance metric and binary substitution transformation of the response set 

are common ways of finding groups in mixed type domains.  In this thesis the results 

of these approaches are remarkably similar to each other as they both assume a 

Euclidean relationship between categorical and quantitative variables.  This similarity 

is highlighted in the breast cancer dataset analysis.  In this example both approaches 

grow the same tree and the MDS plots show very similar group structure (Figure 65, 

Figure 67).  Binary substitution is the more flexible of the two approaches as it can 

also be used with ensemble tree methods.  In the case of obvious structure these 

simple extensions will work.  

 

A major problem for binary substituting of the response is that of dimensionality.  

Binary substitution inflates the number of variables within the response by the total 

number of levels within each categorical variable.  In the case of the breast cancer 

analysis the 9 original categorical variables were transformed into 89 binary variables.  

Although it has been shown that multivariate tree based methods can handle a large 
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response set (Smyth, Coomans and Everingham 2006), the understanding of the final 

result is impaired by the dimensionality.  Furthermore as the response set is treated as 

a whole, filtering out unimportant variation is not possible. 

 

Multivariate extensions to tree based ensembles are shown to clearly improve group 

resolution within the MDS plots of the proximity matrices.  On comparison between 

multivariate random forest and treeboost notable differences in the group structure of 

the responses are observed.  The group structure within the random forest proximity 

matrices more closely matches that observed using the Gower distance and binary 

substitution.  However treeboost appears to find a consistently different group 

structure as seen in the thyroid and breast cancer analyses.  This difference does not 

manifest itself in performance, with the final grouping of the treeboost proximity 

matrix outperforming the final random forest proximity.   

 

Despite the improved accuracy observed when determining the groups over the 

treeboost proximities, they are not appropriate inputs for the MCT consensus 

construction.  There are two reasons for this:  

1) Boosting models are sensitive to the shrinkage parameter.  This prohibits 

automated running of the model as required for MCT construction.  The action of 

the shrinkage parameter means that simply increasing the number of trees within 

the model will not achieve optimal performance (Hastie, et al. 2001).  Random 

forests however can be easily tuned by increasing the number of trees within the 

forest to achieve optimal performance, and because of this are ideal candidates for 

MCT construction.   



 229 

2) The trees in a boosting model are dependant upon each other.  This means that 

each tree does not contribute equally to the construction of the proximity, a fact 

that is not reflected within the proximity matrix itself.  This violates the 

assumption of a binomial distribution of the counts and could seriously affect the 

combination methods. 

 

The analysis of the consensus matrix with the MDS plots must go hand in hand with a 

heat map of the reordered matrix.  The structure of the groups with the MDS plots 

does not represent their structure within the dataset but how well that group has been 

predicted by the ensemble.  The result of this is that groups that are poorly predicted 

will be large and noisy within the MDS plot.  These groups will also have a relatively 

low probability of expression.   

 

From the base tree and ensemble methods it is clear that trees are highly suited to 

mixed type clustering and profiling.  The primary feature of tree-based methods is the 

ensemble proximity matrices.  By partitioning these matrices it is possible to 

simultaneously view a logical decision path that predicts each group in the form of a 

tree and the relationships between these groups within the MDS plots, a feature that is 

not available with any other unsupervised technique.  This allows  for a detailed 

understanding on how the groups within the predictor set match the response set.  

However as the response set is treated as a whole, they do not allow for clear 

understanding of how well each response variable expresses each group.  To do this 

the more individualistic analysis of MCTs is required.   

MCTs are designed for simultaneous analysis of relationships in both the response 

variables and between the response and predictor variables.  This is done by 
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individually analysing the group structure within each response variable.  By 

combining these structures MCTs not only retain all the functionality of the random 

forest proximity matrices but also can improve on the group resolution.  In fact this 

thesis shows the performance of MCTs for unsupervised classification can be 

comparable to the performance of a classification tree.  Also by analysis of the 

individual RFP structures it is possible to filter noise and unrelated variables from the 

response set by using both performance diagnostics and plaid combining.  

 

By extending PLAID combining, MCTs offer an algorithm to filter the response 

variable set.  Plaid filtering is implemented in two ways, firstly to cluster the response 

variables before construction of an MCT, and secondly to test the assumption of 

homogeneity within the terminal nodes of an existing tree.  Plaid filtering extends 

MCTs to be a two-way technique, where a group is defined both on a subset of 

observations and variables.  In the horse colic analysis plaid filtering is used to cluster 

the variables within the response variable set.  Over the four response variable 

subgroups found, different group structure within them is observed.  Furthermore, the 

consensus produced from each subgroup is a more accurate consensus in terms of 

RMSE between RFPs of the subgroup and the overall model consensus.  

 

The horse colic results give a clear indication of the power of plaid filtering.  Firstly 

the algorithm removes the dominant variation corresponding to the normal symptoms 

of a horse, and then places together the variables related to the lesion groups. In 

addition the profiles found for each subgroup are different and also strongly 

significant.  However the relationships in terms of correlation observed over the 
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terminal nodes are weak ranging between 0.16 to 0.36.  Therefore plaid filtering is 

shown to be effective even when the observed grouping structure is weak.   

 

However, as plaid filtering is finding groups over RFPs generated from a random 

procedure, care should be taken to ensure that all structure in these matrices has been 

fully resolved.  This can be done easily by increasing the number of trees within each 

forest and observing the structure change.  If the RFPs themselves are unstable, then 

plaid filtering will also be unstable. 

 

Much of the effort in this thesis is spent of testing the effect of various parameter 

specifications in the three stages of MCT construction (Table 2).  The estimation of 

the overall consensus matrix from the individual RFPs is the first major complexity 

within the MCT algorithm.  Three combination methods are proposed in this thesis, 

GPA, BB and PLAID.  Both GPA and PLAID define the overall consensus by 

minimising the square error loss between each individual RFP and the consensus.  BB 

does not minimise a loss function but rather provides a robust estimation of each 

count within the proximities by estimating their overall probability distribution.  As a 

result it is expected that different combination methods will provide a different 

consensus solution. 

 

By analysing the RMSE errors between the RFPs and the consensus matrix it is 

possible to assess the quality of the combination.  This provides a response variable 

importance statistic for the overall MCT.  Strong similarity is found in the resulting 

consensus matrices from each combination method.  From the results it appears that 

GPA and BB are finding very similar structure as they produce the same global and 
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local MCT in the breast cancer analysis (Figure 79, Figure 81) and show the same 

performance convergence in the sensitivity analysis (Table 16, Table 17).  PLAID 

combining however produces a different global MCT for the breast cancer dataset 

(Figure 79), shows a different performance convergence in sensitivity analysis (Figure 

79, Figure 81) and shows a much increased RMSE for the 10 uneven but clear group 

simulation tests (Figure 39).  However whether these differences translate into 

reduced clustering accuracy is not clear.  In the sensitivity analysis using PLAID 

combining shows a less accurate consensus that resulted in a reduced performance of 

the overall tree.  However in the breast cancer dataset, using PLAID combining 

results in the most accurate tree.   

 

The inconsistent performance of PLAID combining is most likely due to the plaid 

model’s search for common structure over the RFPs.  In this thesis the plaid model is 

only run to a single layer.  This may result in smaller groups being modelled in later 

layers, as the common structure in the first layer is likely to favour the larger groups.  

This is what is observed in the sensitivity analysis.  With plaid models the MCTs 

grown using the PLAID consensus do not finding the smallest group (group 3) and in 

the ten group simulation experiment with large and small group sizes the RMSE for 

plaid combining is obviously the greatest.  These results show that PLAID combining 

may not resolve smaller group structure over the RFPs. 

 

An obvious solution to this problem is running plaid combining to more than one 

layer.  However, as different group configurations will exist within each additional 

layer any interpretation of what variables contribute to the groups in the final 

consensus will be confused.  This removes one of the most important features of the 
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plaid combining algorithm.  Another approach is to change the background layer from 

an average consensus matrix to one produced by BB or GPA.  This approach biases 

plaid models to the structure found by BB and GPA.  A flow on affect is to change the 

interpretation of the plaid parameters.  Instead of modelling the deviations from the 

mean consensus they are modelling the deviations from a modelled consensus.  As 

this modelled consensus has no simple expression, the interpretation of the plaid 

parameters as estimating deviations from homogeneity does not hold. 

 

This thesis also assessed the effect noise variables within the RFPs will have on the 

final consensus solution. The results showed that the consensus generation procedure 

of MCTs was found to be remarkable resistant to added noise within the response set.  

In these experiments it is shown that the consensus configuration has the same group 

structure as the original despite the addition of pure randomness within the consensus 

generation procedure.  Furthermore the RE curves accurately estimate the number of 

clusters, and the accuracy of the resulting partitions is found to be comparable or 

exceed that of K-means.   

 

Once an overall consensus has been estimated the task is now to partition the matrix 

to find the groups.  To do this five splitting criteria are developed.  These criteria 

search over all decisions within each variable in the predictor for blocks of 

observations with high similarity within the consensus matrix.  In an ideal case the 

decisions found will reorder the consensus matrix into a block diagonal structure 

where the similarities on the block diagonal are high and the similarities within the off 

diagonal blocks are low.  Of the five splitting criteria developed, one observes the 
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group variance structure (SSR), two utilise the count structure of the cells within the 

matrix (MR and OR) and the last two are combinations of MR and OR with SSR.  

 

The quality of each splitting criteria is best assessed by observation of their respective 

RE curves.  Over the simulation tests these curves were produced for each criteria for 

each experiment.  Overall it appears that MR and MR-SSR produced curves that are 

less accurate than the other splitting criteria (Figure 35, Figure 41, Figure 45).  This is 

shown by consistent high variability within the cross-validated performances.  The 

other splitting methods performed indistinguishably as the RE curves are closely 

matched and the misclassification performances similar.  However when moved from 

the sterile domain of the simulation experiments to an actual dataset a clear 

interaction between the performance of the splitting criteria, combination method and 

random forest parameters emerged. 

 

Considerable effort has been made in this thesis to quantify the interaction between 

the splitting criteria, combination method and random forest parameters for both 

global and local MCTs.  Global MCTs have a clear interaction with random forest 

tree terminal node size.  The structure of this is that if the terminal node size is set too 

small by increasing the tree size optimal performance can be reached (Table 16).  This 

interaction is seen to be mostly independent of combination method.  However local 

MCTs seemed only to be sensitive to terminal node size (Table 17).  Here the 

terminal node size must be specified as close as possible to the smallest group size in 

the data.   
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These results are not surprising given how the two types of MCTs are grown.  As 

local MCTs recompute the consensus matrix it is difficult to optimise the performance 

of the base random forests.  Furthermore the choice of MCT splitting criteria is a 

sensitive parameter as the accuracy of the intermediate consensus matrices is 

dependant on the previous decisions within the tree.  Global MCTs do not suffer as 

severely from this problem because the response is constant and therefore it is easier 

to optimise the important parameters.  These differences are highlighted in the 

sensitivity analysis of the Vietnam data. 

 

Local MCTs, when optimised, show a more improved resolution of the groups.  This 

improvement highlights the power of a localised clustering solution.  The resolution is 

improved as once obvious groups are removed from the analysis, more attention can 

be paid to separating the groups that are closer together.  This is strongly highlighted 

in the breast cancer dataset analysis.  To get the same performance the local MCTs 

require 3 splits whereas global MCTs require 5.  This increased split accuracy is 

highlighted in the identification of the benign group.  Global MCTs identify the 

majority of the benign group at terminal node 15, and much of the work in the early 

splits of the tree is dedicated to shaving off smaller malignant sub-groups (Figure 79).  

However local MCTs find the majority of the benign group first, in terminal node 3, 

and then use the other two splits to find the less obvious malignant sub-groups (Figure 

81).  This implies that local MCTs will find the most obvious groups first, whereas 

global MCTs are likely to favour smaller groups. 

 

MCTs however are limited by their tree structure when finding groups.  In the 

thyroid, Vietnam and breast cancer analyses it was found the performance of MCTs 



 236 

approaches the performance of a classification tree.  However in the thyroid analysis 

it was apparent that K-Means and PAM on the consensus matrix found by MCTs 

identified the known groups more accurately.  For example, the local MCT for the 

thyroid dataset misclassifies 15 observations, whereas on the ACM, K-means 

misclassifies 12 and PAM 10 observations.  The reason for this is that tree-based 

clustering methods are bound by groups that are separable by a single decision on a 

single predictor variable, where as K-Means and PAM are not.  A possible solution to 

this is to define a multivariate or linear combination of splitting functions (Breiman, 

et al. 1984, Brodley and Utgoff 1995). 

 

MCTs when run correctly are a powerful technique for clustering or profiling.  

However there are a lot of parameters that can serious affect the accuracy of the final 

solution. For a reasonable dataset as computation time for MCTs is considerable a 

course of action to determine a reasonable set of parameters for a MCTs analysis is 

now described: 

1. The first step is to produce a single multivariate tree upon the dataset.  If mixed 

types exist then use binary substitution or the Gower distance approaches.  From 

this analysis it is hoped that the following information is gained: 

a. To determine appropriate tree and terminal node sizes for the ensemble 

methods.  These can be determined through observation of the RE graphs. 

b. To assess the predictive performance of that tree.  If there is no stable tree 

observed from the RE graphs then it is unlikely that this will change with 

any further analysis. 

2. Once you have appropriate estimates for tree and terminal node size the next step 

is to build a simple multivariate random forest or treeboost model using these 
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parameters.  From these models the most important piece of information is the 

error convergence plots.  It is strongly recommended that a reasonable 

independent test set be used to assess the performance of the ensemble.  If the 

predictions upon this test set do not converge then no stable trees can be built, and 

as a result this analysis will not find stable groups.  If the performance does 

stabilise it is recommended that more trees well past the point of convergence be 

added to the model to ensure that this stability remains.   

3. Once the ensemble methods are stable then the MCT approaches can be 

considered.  Firstly observe the structure within the plots of the proximity matrix 

to get an idea of the quality of the group structure.  Then produce the RE curves to 

partition this proximity matrix for each splitting criteria. If a stable group structure 

has been found the elbow should appear at the number of groups observed in the 

proximity matrix plots.  If this is the case then MCT methods are likely to find a 

representative set of clusters. 

4. The decision to go to the local or global MCT methods using a combined 

consensus matrix should be determined on the number of response variables 

available.  If there are many responses then filtering out some before combining is 

recommended.  In the horse colic analysis this was done on the basis of the 

performance of the random forest for each response variable.  From here it is 

advisable to perform all combination techniques but only growing a global MCT 

on each.  Once the global MCT parameters have been optimised, then a local 

MCT approach using similar parameters may be attempted.  It should be noted 

that local MCTs are remarkably more sensitive than global MCTs to the choice of 

parameters and may take some time to optimise. 
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5. After the MCTs are grown and the results make sense, plaid filtering can be 

performed.  However it is advisable that a stable model be found before 

performing this step as reproducible proximity matrices for each varaible are 

required. 

It is hoped that this guide will produce stable MCT solutions, however the final result 

will be dataset dependent. 
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9. Conclusions 
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This thesis has developed models for mixed type clustering or profiling.  The core 

idea within this thesis is that groups found to describe a dataset must be predictive of 

each variable within it.  The methods developed in this thesis use tree-based ensemble 

techniques to predict the data, and cluster ensemble ideas to identify the overall 

grouping structure.  This combination of ideas culminated in the development of a 

new algorithm called Multivariate Consensus Trees (MCT). 

 

Multivariate Consensus Trees, in this thesis have been shown to find more accurate 

grouping structure than either hierarchical agglomeration, K-Means or PAM.  

Furthermore they enable an analysis of the found groups in terms of: “which predictor 

variables determine the groups?”; “which response variables express these groups?” 

and the probability that these groups are representative of the data.  MCTs also allow 

for pre and post-processing steps, using plaid models, to filter out response variables 

that do not express the groups found by the MCT.  These features of MCTs make 

them a unique tool for finding and understanding the grouping structure over a mixed 

type dataset. 

 

The focus of MCTs is in finding groups on a multivariate mixed type response.  

However this thesis has also suggested methods for mixed type prediction using 

multivariate extensions to tree-based ensembles using binary substitution of 

categorical variables within the response dataset.  Multivariate random forests and 

treeboost are new methods of predictive profiling analysis that can highlight grouping 

structure, but are more focused on creating an accurate predictive model.  Tree based 

models are resistant to overfitting problems and can handle large datasets.  These 

features are highly desirable for any multivariate model. 
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Overall this thesis has exploited the flexibility of trees in handling mixed data types 

and extended them to a predictive multivariate ensemble.  Moving from prediction to 

clustering this thesis views a tree-based ensemble as a consensus clustering algorithm.  

The result is multivariate consensus trees, a tree based clustering and profiling tool for 

mixed data types. 
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